1
|
Aimaier R, Li H, Cao W, Cao X, Zhang H, You J, Zhao J, Zhang Q, Yin L, Mei Q, Zhang X, Wang W, Zhao H, Li J, Zhao H. The Secondary Metabolites of Bacillus subtilis Strain Z15 Induce Apoptosis in Hepatocellular Carcinoma Cells. Probiotics Antimicrob Proteins 2025; 17:832-842. [PMID: 37906413 DOI: 10.1007/s12602-023-10181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
The lipopeptides produced by Bacillus subtilis have anti-cancer potential. We had previously identified a secondary metabolite of B. subtilis strain Z15 (BS-Z15), which has an operon that regulates lipopeptide synthesis, and also demonstrated that the fermentation products of this strain exerted antioxidant and pro-immune effects. The purpose of this study was to investigate in vitro and in vivo the anticancer effects of BS-Z15 secondary metabolites (BS-Z15 SMs) on hepatocellular carcinoma (HCC) cells. BS-Z15 SMs significantly inhibited H22 cell-derived murine xenograft tumor growth without any systemic toxicity. In addition, BS-Z15 SMs decreased the viability of H22 cells and BEL-7404 cells in vitro with respective IC50 values of 33.83 and 27.26 µg/mL. Consistent with this, BS-Z15 SMs induced apoptosis and G0/G1 phase arrest in the BEL-7404 cells, and the mitochondrial membrane potential was also significantly reduced in a dose-dependent manner. Mechanistically, BS-Z15 SMs upregulated the pro-apoptotic p53, Bax, cytochrome C, and cleaved-caspase-3/9 proteins and downregulated the anti-apoptotic Bcl-2. These findings suggest that the induction of apoptosis in HCC cells by BS-Z15 SMs may be related to the mitochondrial pathway. Thus, the secondary metabolites of B. subtilis strain Z15 are promising to become new anti-cancer drugs for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Reyihanguli Aimaier
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Haoran Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Wenzhi Cao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xiyuan Cao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Hui Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jia You
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jingjing Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Qi Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Yin
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qinshuang Mei
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xiaorong Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Weiquan Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China.
| | - Jinyu Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
2
|
Chen J, Liu Y, Wang Z, Zhang B, Feng Y. Nanocarriers for the delivery of plant-extracted camptothecin derivatives and hepatocellular carcinoma treatment. Nat Prod Res 2025:1-12. [PMID: 40102036 DOI: 10.1080/14786419.2025.2479249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide and a major cause of death in cirrhosis. The prognosis of HCC is poor, with a mortality rate close to the morbidity rate. Once HCC develops distant metastasis, the area affected by the cancer cells is significantly enlarged, and there is still no effective treatment for HCC. Therefore, the development of effective drugs is essential to improve the survival rate of HCC patients. We designed and optimised a delivery system for compound 1, derived from camptothecin extract, by developing a multifunctional fluorescent drug delivery platform composed of polylactic acid (PLA), chitosan (CS), and fluorescein isothiocyanate (FITC) (PLA-CS-FITC). This system successfully encapsulated CP1 and compound 1, forming a PLA-CS-FITC@CP1@1 composite nanocarrier with dual functions for drug delivery and real-time fluorescence monitoring. The effects of the system on HCC proliferation and its regulation were evaluated by treating HCC cells in vitro, which provided an experimental basis for the development of drugs for HCC.
Collapse
Affiliation(s)
- Jie Chen
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanfeng Liu
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zelin Wang
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingyuan Zhang
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujie Feng
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Sun M, Zhang Z, Chen C, Zhong J, Long Z, Shen L, Huang H, Lu J. Exploring the potential mechanisms of sorafenib resistance in hepatocellular carcinoma cell lines based on RNA sequencing. Cancer Cell Int 2025; 25:91. [PMID: 40082884 PMCID: PMC11907981 DOI: 10.1186/s12935-025-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Exploring the mechanisms underlying sorafenib resistance that arises in hepatocellular carcinoma (HCC) may provide new treatment perspectives. METHODS Drug-resistant and drug-sensitive HCC cell lines were constructed from existing HepG2 and Huh7 cell lines, and gene expression profiles were determined. Genes differentially expressed between the resistant and sensitive lines were identified and organized into modules based on weighted gene co-expression network analysis. Pathways and biological processes involving the module genes were explored and validated using gene set enrichment analysis. By analyzing the expression differences of Long non-coding ribonucleic acid (RNAs), microRNAs (miR), circular RNAs, and messenger RNAs between drug-resistant and sensitive cell lines, a gene regulatory network was constructed to reveal the mechanism of sorafenib resistance. In addition, we also analyzed the correlation between the candidate sorafenib resistance gene and the survival of patients with liver cancer. RESULTS Our analyses suggested that sorafenib resistance could arise when the circular RNA circ_SPECC1 regulated the microRNA hsa-let-7c-5p, which in turn regulated the cell cycle proteins cyclin-dependent kinase 1 and polo-like kinase 1, as well as interleukin 13 receptor, alpha 1 in the Janus kinase-signal transducer (JAK-STAT) and activator of transcription signaling pathway. Patient survival was associated with miR-18a-z and mitogen-activated protein kinase kinase 4 levels. CONCLUSIONS Sorafenib resistance in HCC may involve the circ_SPECC1, hsa-let-7c-5p, cell cycle, and JAK-STAT signaling pathways. These insights may guide future efforts to mitigate or prevent such resistance.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhi Zhang
- Department of Hepatobiliary Surger, Guangxi Medical University Affliated Wuming Hospital, Nanning, 530199, Guangxi, China
| | - Chunyan Chen
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, 201508, Shanghai, China
| | - Juan Zhong
- Department of traditional Chinese medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Zhongrong Long
- Department of Hepatobiliary Surger, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Ling Shen
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Hai Huang
- Department of Hepatobiliary Surger, Guangxi Medical University Affliated Wuming Hospital, Nanning, 530199, Guangxi, China.
| | - Jianxun Lu
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
| |
Collapse
|
4
|
Chen S, Liu J, Zhang S, Zhao L, Zhang J, Han P, Zhang Q, Liu Y, Wang F, Li J. Deciphering m6A signatures in hepatocellular carcinoma: Single-cell insights, immune landscape, and the protective role of IGFBP3. ENVIRONMENTAL TOXICOLOGY 2025; 40:367-383. [PMID: 38366283 DOI: 10.1002/tox.24177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
RNA m6 methyladenosine (m6A) modifications impact tumor biology and immune processes, particularly in hepatocellular malignant tumors. Using a consensus clustering algorithm on 371 hepatocellular carcinoma (HCC) samples, we identified three m6A-modified subtypes and correlated them with positive tumor microenvironment (TME) markers for distinct immune phenotypes. Stratifying patients based on m6A scores revealed a low presentation group with better immune penetration, lower tumor mutation load, and increased expression of immune checkpoint markers like CTLA-4 and PD-1, suggesting enhanced responsiveness to immunization therapy. A machine-learning model of 23 m6A genes was constructed. Single-cell analysis revealed a surprising enrichment of IGFBP3 in astrocytes, prompting the exploration of associated signaling pathways. Experimental verification shows that IGFBP3 is significantly enhanced in normal tissues, while immunohistochemical analysis shows that its expression is lower in tumor tissues, indicating its protective effect in HCC and a good prognosis. Importantly, high IGFBP3 expression is associated with better outcomes in patients receiving immunotherapy. Moreover, cytotoxic T lymphocyte (CTL) experiments have confirmed that high expression of IGFBP3 is associated with stronger T cell-killing ability. In summary, the comprehensive evaluation of m6A modification, immune characteristics, and single-cell analysis in this study not only revealed the TME of HCC but also made significant contributions to the progress of personalized HCC immunotherapy targeting IGFBP3. This study provides a solid theoretical foundation for clinical translation and emphasizes its potential impact on developing effective treatment strategies.
Collapse
Affiliation(s)
- Shujia Chen
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Liu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Shuting Zhang
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Lili Zhao
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Ping Han
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Qian Zhang
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Fengmei Wang
- Department of Hepatology and Gastroenterology, Tianjin First Center Hospital, Tianjin, China
| | - Jia Li
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| |
Collapse
|
5
|
Yin Z, Lu M, Fu R. Knockdown of FANCI suppresses hepatocellular carcinoma development via the PI3K/Akt/GSK-3β pathway. Heliyon 2025; 11:e42731. [PMID: 40040987 PMCID: PMC11876927 DOI: 10.1016/j.heliyon.2025.e42731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
Background Abnormal expression of Fanconi anaemia complementation group I (FANCI) has been implicated in carcinogenesis. However, the precise role of FANCI in the development of hepatocellular carcinoma (HCC) remains unclear. Materials & methods We conducted a comprehensive bioinformatics analysis of FANCI's role based on HCC patient sequencing data in the TCGA and GEO databases. Then, we performed qPCR, Western blotting (WB), and immunohistochemistry (IHC) assays. SiRNA-mediated knockdown of FANCI was conducted, followed by CCK-8, EdU staining, and colony formation experiments to evaluate the impact of FANCI knockdown on HCC cell behaviour. Flow cytometry was employed to explore alterations in the cell cycle after FANCI knockdown in HCC cell lines. Furthermore, RNA sequencing was performed to investigate potential mechanisms following FANCI knockdown, and WB analysis was used to validate the corresponding pathway. Results Our bioinformatics analysis revealed elevated expression of FANCI in HCC, which was subsequently validated through qPCR, WB, and IHC assays. High expression of FANCI was significantly associated with a poor prognosis in HCC patients. Univariate and multivariate Cox regression analyses identified FANCI as an independent prognostic risk factor for HCC patients. Additionally, the coexpressed genes of FANCI were found to be associated with multiple cancer pathways. Knockdown of FANCI expression significantly inhibited HCC cell proliferation and colony formation by inducing cell cycle arrest. Further WB analysis revealed that FANCI knockdown suppressed the expression of Cyclin D1 and p-AKT while increasing the expression of GSK-3β in HCC cells. However, no significant differences were observed in the expression levels of AKT and PI3K. Conclusion Overall, our research provides substantial proof of FANCI's crucial function as an oncogene in HCC. It could serve as a potential prognostic marker, therapeutic target, and tumorigenic factor in HCC.
Collapse
Affiliation(s)
- Ziwei Yin
- Department of Hepatic Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
- Department of Hepatobiliary and Pancreatic Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Minqiang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Rongdang Fu
- Department of Hepatic Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| |
Collapse
|
6
|
Bucurica S, Nancoff AS, Marin RI, Preda CM. Hepatocellular Carcinoma in Patients with Chronic Hepatitis C and Liver Cirrhosis Treated with DAA: A Focused Review. J Clin Med 2025; 14:1505. [PMID: 40095031 PMCID: PMC11900587 DOI: 10.3390/jcm14051505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: The issue of HCC recurrence in patients with liver cirrhosis and chronic HCV infection after DAA treatment as well as the issue of de novo HCC in individuals with chronic HCV hepatitis treated with DAA is of great importance. In this review, the two important aspects are discussed and, finally, an algorithm for approaching the patient with HCC and chronic HCV infection is proposed. Methods: A literature search of the two databases (PubMed and Scopus) was conducted using the terms 'chronic hepatitis C' and/or 'liver cirrhosis' and 'hepatocellular carcinoma', from database inception to December 2024. Results: Thirty-one studies have examined the risk of HCC recurrence. Most of these studies conclude that DAA treatment reduces the risk of HCC recurrence compared to patients who did not receive DAA. There are considerable differences across various world regions. These variations may arise from: differences in genotypes, baseline characteristics of the populations, variability in DAA treatment protocols, and differences in follow-up intervals. Eleven studies that investigated the issue of de novo HCC after DAA were reviewed, of which two included historical cohorts of untreated patients. Conclusions: The conclusion is that these patients present a low or equal risk of HCC incidence compared to untreated patients, and the risk factors for HCC are: lower platelet number, impaired liver function, nonresponse to DAA. Most patients with chronic hepatitis C and HCC should receive DAAs, except for those in BCLC stage D, but we must emphasize that timing of intervention is crucial and it is very important to evaluate possible drug interactions.
Collapse
Affiliation(s)
- Sandica Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.B.); (A.-S.N.)
- Department of Gastroenterology, University Emergency Central Military Hospital “Dr. Carol Davila”, 024185 Bucharest, Romania
| | - Andreea-Simona Nancoff
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.B.); (A.-S.N.)
| | - Raluca Ioana Marin
- Department of Gastroenterology, Fundeni Clinic Institute, 022328 Bucharest, Romania;
| | - Carmen Monica Preda
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.B.); (A.-S.N.)
- Department of Gastroenterology, Fundeni Clinic Institute, 022328 Bucharest, Romania;
| |
Collapse
|
7
|
Zhang D, Zhang X, Chang S, Zhao Y, Zhang L. E2F1 activates USP19 to affect the stability of c-Myc to facilitate the progression of hepatocellular carcinoma. Mutat Res 2025; 830:111902. [PMID: 40020513 DOI: 10.1016/j.mrfmmm.2025.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common malignant tumor worldwide with a high mortality rate. Herein, this study aims to explore the molecular mechanisms of E2F transcription factor 1 (E2F1), ubiquitin specific peptidase 19 (USP19) and c-Myc in regulating HCC progression. METHODS RT-qPCR and western blotting were utilized to assess mRNA and protein expression, respectively. The behavior of cells was examined through Methylthiazolyldiphenyl-tetrazolium bromide (MTT), flow cytometry, transwell, and cell sphere formation assays. Glycolysis-related indicators were detected by kits. The interaction between USP19 and c-Myc was measured by co-immunoprecipitation (Co-IP). Dual-luciferase reporter assay and Chromatin Immunoprecipitation (ChIP) assays were used to assess the binding of E2F1 and USP19 promoter. A mouse xenograft model was established for the purpose of analysis in vivo. RESULTS High level of c-Myc was observed in HCC tissues and cells. Silencing c-Myc results in the suppression of cell migration, invasion, proliferation, and glycolysis or promotion of apoptosis. USP19 directly bound to c-Myc, and maintained its stability by removing ubiquitination on c-Myc. Overexpression of c-Myc in HCC cells rescued the anti-tumor effect of USP19 deletion. E2F1 promoted USP19 transcription, and increased USP19 expression counteracts the effects of E2F1 depletion on cell behaviors. In vivo, USP19 knockdown controlled HCC growth by modulating c-Myc. CONCLUSION E2F1 activated USP19 transcription, thereby stabilizing c-Myc via deubiquitination and accelerating HCC progression.
Collapse
Affiliation(s)
- Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Xinwu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Shuai Chang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Yao Zhao
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Li Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China.
| |
Collapse
|
8
|
Li G, Zhang G, Li J, Zhang J, Yang Z, Yang L, Wang J. High mobility group protein N2 inhibits the progression of hepatocellular carcinoma and the related molecular mechanisms. Cytotechnology 2025; 77:20. [PMID: 39676764 PMCID: PMC11638430 DOI: 10.1007/s10616-024-00678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
High mobility group protein N2 (HMGN2) related pathways are involved in chromatin regulation/acetylation. It has been reported to be involved in several types of cancers. A recent sequencing study suggested that HMGN2 might be involved in the progression of hepatocellular carcinoma (HCC). This study aimed to explore the role of HMGN2 in HCC, which has been proven to be involved in the development of HCC. In this study, we collected clinical samples and cultured normal hepatocytes and hepatocellular carcinoma cell lines to detect HMGN2 expression levels using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Subsequently, to determine the role of HMGN2 in HCC, HMGN2 was overexpressed in HCC cell lines. MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide) assay was used to detect the cell proliferative capacity, and proliferation-related proteins were detected by RT-qPCR and western blot assay. To observe the effect of HMGN2 on cell migration and invasion capacity, Transwell assay was performed. Then, cell apoptosis was detected by flow cytometry, and caspase3 and cleaved-caspase3 were detected using western blot assay. Finally, EMT (epithelial to mesenchymal transition)-related proteins, and matrix metalloproteinase-2 (MMP-2) and MMP-9 expression were detected by RT-qPCR and western blot assay. HMGN2 expression was decreased in HCC tissues as well as in HCC cell lines. After overexpression of HMGN2, MTT results suggested that cell proliferation was decreased, and flow cytometry results showed that the apoptosis level was increased and ki-67 and proliferating cell nuclear antigen (PCNA) expression levels were decreased. On the contrary, cleaved-caspase 3 expression level was increased. HCC cells overexpressing HMGN2 showed a drastic reduction in the number of migrating and invading cells, and the expression levels of MMP-2 and MMP-9 were significantly decreased. Finally, E-cadherin expression was elevated in HCC cells transfected with the HMGN2-plasmid, while N-cadherin showed the opposite result. HMGN2 expression was significantly decreased in patients with HCC. HMGN2 inhibits the malignant behavior of HCC cells and is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People’s Hospital, Chengdu, 610000 China
| | - Guanbo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People’s Hospital, Chengdu, 610000 China
| | - Jinsong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People’s Hospital, Chengdu, 610000 China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People’s Hospital, Chengdu, 610000 China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People’s Hospital, Chengdu, 610000 China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People’s Hospital, Chengdu, 610000 China
| | - Jiaxing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People’s Hospital, Chengdu, 610000 China
| |
Collapse
|
9
|
Hakami ZH, Abdo W, Nazeam JA, Osman SM, Goda W, Fadl SE, Alsulimani A, Al-Noshokaty TM, Haridy M, Alnasser SM, Abdeen A. Aloe arborescens Standardized Glycosidic Fraction Suppresses Hepatocarcinoma by Modulating TIMP1, MMP9 Genes Expression, and Inflammation/Ki67/TGFβ1 Pathway. Phytother Res 2025; 39:1090-1106. [PMID: 39731399 DOI: 10.1002/ptr.8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
(1) Background and aim: Aloe arborescens Mill. ( A. arborescens ) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties. However, the molecular mechanisms underlying these activities have not yet been fully elucidated. This study aimed to explore the effects of the plant polar glycosidic fraction (AAG) on hepatocellular carcinoma (HCC) in an in vivo model induced by diethylnitrosamine (DEN). (2) Experimental procedure: The fraction was standardized using HPLC-PDA-MS/MS fingerprinting, and two distinct intragastric AAG dose regimens were examined (10 and 20 mg/kg) in combination with DEN 200 mg/kg. Serum alpha-fetoprotein (AFP), gamma-glutamyl transferase (γ-GGT), glutathione S-transferase placental (GST-P), mRNA expression of metabolic cytochrome enzymes (CYP1A3 and CYP2B2), inflammatory genes (nuclear factor kappa-B p65 subunit; NF-κB p65), metalloproteases 9 (MMP9), tissue inhibitors of metalloproteases (TIMP1), transforming growth factor beta 1 (TGFβ1), and histological features were assessed. (3) Key results and conclusions and implications: AAG was characterized by five major secondary metabolites: saponins, chromones, anthraquinone, and triterpenes. The fraction reduced hepatic malignancy characteristics by diminishing the size and number of altered foci and lowering hepatic cancer biomarkers, such as γ-GGT, AFP, and GST-positive foci. It also reduced the mRNA levels of CYP1A3 and CYP2B2, NF-κB p65, and MMP9, hepatic Ki-67, and TGFβ1 while upregulating TIMP1 levels. This study revealed that AAG exhibited a marked suppressive effect on HCC cell proliferation, displaying a range of mechanistic actions, including decreasing the metabolic activation of cytochrome enzymes, which consequently reduced the production of reactive oxygen species and other genes implicated in cancer development. AAG could be a significant therapeutic candidate for patients diagnosed with hepatocarcinoma.
Collapse
Affiliation(s)
- Zaki H Hakami
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Samir M Osman
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Wael Goda
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Sabreen E Fadl
- Department of Biochemistry, Faculty of Veterinary Medicine, Matruh University, Matruh, Egypt
| | - Ahmad Alsulimani
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohie Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
10
|
Jiang Y, Qi S, Zhang R, Zhao R, Fu Y, Fang Y, Shao M. Diagnosis of hepatocellular carcinoma using liquid biopsy-based biomarkers: a systematic review and network meta-analysis. Front Oncol 2025; 14:1483521. [PMID: 39935848 PMCID: PMC11810725 DOI: 10.3389/fonc.2024.1483521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The diagnostic performance of liquid biopsy-based biomarkers for HCC was comprehensively compared in this network meta-analysis (NMA). Methods A thorough literature search was conducted to identify all comparative studies from January 1, 2000, to January 11, 2024. The QUADAS-2 tool was utilized to appraise the quality of studies involving diagnostic performance. R (v4.3.3) and an ANOVA model-based NMA were used to assess the diagnostic accuracy of each biomarker. Results This study included 82 studies comprising a total of 15,024 patients.CircRNA demonstrated significantly superior performance in distinguishing HCC from healthy populations (superiority index: 3.550 (95% CI [0.143-3])) compared to other diagnostic biomarkers for HCC. "mRNA exhibited significantly superior performance in distinguishing HCC from liver disease patients (superiority index:10.621 (95% CI [7-11])) compared to other diagnostic biomarkers for HCC. Further subgroup analysis of the top-ranking liquid biopsy-based diagnostic biomarkers revealed that hsa_circ_000224 (superiority index: 3.091 (95% CI[0.143-9]) ranked remarkably higher in distinguishing HCC from both healthy populations and liver disease patients. Subgroup analysis of mRNA demonstrated that KIAA0101 mRNA (superiority index: 2.434 (95% CI [0.2-5]) ranked remarkably higher in distinguishing HCC from healthy populations and liver disease patients, respectively. Discussion The results of this meta-analysis show that circRNA and mRNA are the first choice for HCC diagnosis. Subsequent analysis of circRNA and mRNA highlighted hsa_circ_000224, hsa_circ_0003998, KIAA0101 mRNA and GPC-3mRNA as the optimal diagnostic biomarkers for distinguishing HCC from healthy populations and liver disease patients, respectively. Well-structured prospective studies are crucial to comprehensively validate these findings. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/,identifier CRD42024521299.
Collapse
Affiliation(s)
- Yutong Jiang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shangwen Qi
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Rongrong Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruixia Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yu Fu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuxuan Fang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingyi Shao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Chen K, Zhu M, Hu Q, Huang H, Chen K, Shuai X, Huang J, Tao Q, Guo Z. Regulatory role of lnc-MAP3K13-3:1 on miR-6894-3p and SHROOM2 in modulating cellular dynamics in hepatocellular carcinoma. BMC Cancer 2025; 25:83. [PMID: 39810131 PMCID: PMC11731390 DOI: 10.1186/s12885-024-13263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes. Database analysis using Targetscan identified complementary binding sites for the human-specific miRNA hsa-miR-6894-3p (hereafter referred to as miR-6894-3p) on SHROOM2, and Starbase data suggested a potential regulatory interaction between lnc-MAP3K13-3:1 and miR-6894-3p in liver cancer. OBJECTIVE This study aimed to investigate the role of lnc-MAP3K13-3:1 in regulating miR-6894-3p, with a focus on its impact on proliferation, apoptosis, migration, and related cellular processes in liver cancer cells via SHROOM2 regulation. METHODS Quantitative PCR (qPCR) was initially employed to measure the expression levels of lnc-MAP3K13-3:1 and miR-6894-3p in three HCC cell lines: HepG2, HuH-7, and Li-7. Based on these initial assessments, two cell lines were selected for further experimentation. Stable cell lines overexpressing lnc-MAP3K13-3:1 were developed, and cells were transfected with miR-6894-3p mimics or a mimic negative control (NC). After 24 h, qPCR was utilized to quantify the relative expression of lnc-MAP3K13-3:1, miR-6894-3p, SHROOM2, and Caspase9 mRNA in each group. Cell proliferation was analyzed using the cell counting Kit-8 assay, while flow cytometry was used to assess cell cycle distribution and apoptosis. Migration capabilities were evaluated through cell scratch assays, and dual-luciferase assays were utilized to verify interactions between miR-6894-3p, lnc-MAP3K13-3:1, and SHROOM2. RESULTS Overexpression of lnc-MAP3K13-3:1 and miR-6894-3p mimic transfection resulted in increased expression of SHROOM2 and Caspase9 mRNA, as demonstrated by qPCR. The miR-6894-3p mimic regulated the activity of lnc-MAP3K13-3:1. Functional assays showed that lnc-MAP3K13-3:1 overexpression inhibited proliferation in HuH-7 and Li-7 cells, promoted apoptosis, reduced migration in Li-7 cells, but enhanced migration in HuH-7 cells. Additionally, lnc-MAP3K13-3:1 overexpression significantly increased the proportion of HuH-7 cells in the G2/M phase and Li-7 cells in the S phase. The miR-6894-3p mimic modulated the effects of lnc-MAP3K13-3:1 on cell proliferation, apoptosis, and migration. Dual-luciferase assays confirmed direct binding between lnc-MAP3K13-3:1 and miR-6894-3p, as well as between miR-6894-3p and SHROOM2. CONCLUSION These findings indicate that overexpression of lnc-MAP3K13-3:1 regulates SHROOM2 expression through targeting miR-6894-3p, thereby influencing cell proliferation, apoptosis, migration, and other cellular processes associated with HCC.
Collapse
Affiliation(s)
- Kuai Chen
- Department of Neonatal Surgery, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China
| | - Manqin Zhu
- Office of Clinical trial institution, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China
| | - Qinghua Hu
- Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China
| | - Hui Huang
- Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China
| | - Ka Chen
- Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China
| | - Xia Shuai
- Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China
| | - Jinshi Huang
- Department of Neonatal Surgery, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.
| | - Qiang Tao
- Department of Neonatal Surgery, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China
| | - Zhibin Guo
- Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.
| |
Collapse
|
12
|
Wang W, Wang H, Wang Q, Yu X, Ouyang L. Lactate-induced protein lactylation in cancer: functions, biomarkers and immunotherapy strategies. Front Immunol 2025; 15:1513047. [PMID: 39867891 PMCID: PMC11757118 DOI: 10.3389/fimmu.2024.1513047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Lactate, long viewed as a byproduct of glycolysis and metabolic waste. Initially identified within the context of yogurt fermentation, lactate's role extends beyond culinary applications to its significance in biochemical processes. Contemporary research reveals that lactate functions not merely as the terminal product of glycolysis but also as a nexus for initiating physiological and pathological responses within the body. Lysine lactylation (Kla), a novel post-translational modification (PTM) of proteins, has emerged as a pivotal mechanism by which lactate exerts its regulatory influence. This epigenetic modification has the potential to alter gene expression patterns, thereby impacting physiological and pathological processes. Increasing evidence indicates a correlation between lactylation and adverse prognosis in various malignancies. Consequently, this review article aims to encapsulate the proteins that interact with lactate, elucidate the role of lactylation in tumorigenesis and progression, and explore the potential therapeutic targets afforded by the modulation of lactylation. The objective of this review is to clarify the oncogenic significance of lactylation and to provide a strategic framework for future research directions in this burgeoning field.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Hong Wang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Qi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Xiaojing Yu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
13
|
Higarza SG, De Antón-Cosío M, Zorzo C, Arias JL, Arias N. Effects of Metabolic Dysfunction-Associated Steatohepatitis in Alertness, Associative Learning, and Astrocyte Density. Brain Behav 2025; 15:e70222. [PMID: 39740785 DOI: 10.1002/brb3.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
PURPOSE Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats. METHODS Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks. Then, we assessed the acoustic startle response and alertness through the prepulse inhibition paradigm as well as the associative learning by the use of the passive avoidance test. Also, we explored the astrocyte density in the prefrontal cortex and hippocampus. RESULTS Our results showed that, whereas the MASH group did not display an impaired associative learning, a lower exploration rate was found in this group. Moreover, a reduced prepulse inhibition was found in these subjects in the case of the weaker and closer-to-the-stimulus prepulse, which indicates a mild alteration in this process. No differences were found in astrocyte density in the MASH group in comparison with controls. CONCLUSION MASH seems to be linked with cognitive dysfunction. Further research is needed to elucidate the pathway involved in this disease and its underlying mechanism, as well as the potential implication in human health.
Collapse
Affiliation(s)
- Sara G Higarza
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Marina De Antón-Cosío
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Candela Zorzo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Jorge L Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, Madrid, Spain
| |
Collapse
|
14
|
Jiang J, Wu H, Jiang X, Ou Q, Gan Z, Han F, Cai Y. Single-Cell RNA Sequencing, Cell Communication, and Network Pharmacology Reveal the Potential Mechanism of Senecio scandens Buch.-Ham in Hepatocellular Carcinoma Inhibition. Pharmaceuticals (Basel) 2024; 17:1707. [PMID: 39770551 PMCID: PMC11676315 DOI: 10.3390/ph17121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a prevalent form of primary liver malignancy, arises from liver-specific hepatocytes. Senecio scandens Buch.-Ham(Climbing senecio) is a bitter-tasting plant of the Compositae family with anti-tumor properties. This study aims to identify the molecular targets and pathways through which Climbing senecio regulates HCC. METHODS Active ingredients of Climbing senecio were collected from four online databases and mapped to relevant target databases to obtain predicted targets. After recognizing the key pathways through which Climbing senecio acts in HCC. Gene expression data from GSE54238 Underwent differential expression and weighted gene correlation network analyses to identify HCC-related genes. The "Climbing senecio-Hepatocellular Carcinoma Targets" network was constructed using Cytoscape 3.10.1 software, followed by topology analysis to identify core genes. The expression and distribution of key targets were evaluated, and the differential expression of each key target between normal and diseased samples was calculated. Moreover, single-cell data from the Gene Expression Omnibus (GSE202642) were used to assess the distribution of Climbing senecio's bioactive targets within major HCC clusters. An intersection analysis of these clusters with pharmacological targets and HCC-related genes identified Climbing senecio's primary targets for this disease. Cell communication, receiver operating characteristic (ROC)analysis, survival analysis, immune filtration analysis, and molecular docking studies were conducted for detailed characterization. RESULTS Eleven components of Climbing senecio were identified, along with 520 relevant targets, 300 differentially expressed genes, and 3765 co-expression module genes associated with HCC. AKR1B1, CA2, FOS, CXCL2, SRC, ABCC1, and PLIN1 were identified within the intersection of HCC-related genes and Climbing senecio targets. TGFβ, IL-1, VEGF, and CXCL were identified as significant factors in the onset and progression of HCC. These findings underscore the anti-HCC potential and mode of action of Climbing senecio, providing insights into multi-targeted treatment approaches for HCC. CONCLUSIONS This study revealed that Climbing senecio may target multiple pathways and genes in the process of regulating HCC and exert potential drug effects through a multi-target mechanism, which provides a new idea for the treatment of HCC. However, the research is predicated on network database analysis and bioinformatics, offering insights into HCC therapeutic potential while emphasizing the need for further validation.
Collapse
Affiliation(s)
- Jiayi Jiang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.J.); (H.W.); (X.J.); (Q.O.); (Z.G.)
| | - Haitao Wu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.J.); (H.W.); (X.J.); (Q.O.); (Z.G.)
| | - Xikun Jiang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.J.); (H.W.); (X.J.); (Q.O.); (Z.G.)
| | - Qing Ou
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.J.); (H.W.); (X.J.); (Q.O.); (Z.G.)
| | - Zhanpeng Gan
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.J.); (H.W.); (X.J.); (Q.O.); (Z.G.)
| | - Fangfang Han
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.J.); (H.W.); (X.J.); (Q.O.); (Z.G.)
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou 510300, China
- Guangdong Provincial Traditional Chinese Medicine Precision Medicine Big Data Engineering Technology Research Center, Guangzhou 510006, China
| | - Yongming Cai
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.J.); (H.W.); (X.J.); (Q.O.); (Z.G.)
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou 510300, China
- Guangdong Provincial Traditional Chinese Medicine Precision Medicine Big Data Engineering Technology Research Center, Guangzhou 510006, China
| |
Collapse
|
15
|
Cui H, Yang W. Single-cell RNA sequencing analysis reveals potential key prognostic markers in hepatocellular carcinoma. Discov Oncol 2024; 15:747. [PMID: 39633216 PMCID: PMC11618547 DOI: 10.1007/s12672-024-01646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most frequently diagnosed cancer worldwide accompanied by a low 5-year survival rate. In our study, we aimed to analyze relevant genetic features that can predict the prognosis of HCC patients by single-cell RNA sequencing (scRNA-seq). METHODS Single-cell RNA-seq data of HCC were analyzed from the Gene Expression Omnibus (GEO) database. Using the Seurat package, we performed quality control to remove cells with low quality. After normalization, we detected highly variable genes across the single cells. Then, cell clustering and Cell type annotation were performed using highly variable genes. Then, functional enrichment analyses were performed by GO and KEGG, and cell-cell communication analysis, trajectory analysis were conducted. LASSO-Cox regression analysis was used to perform Survival analysis and ROC evaluation for high and low-risk groups. Validation of the expressions and survival prognosis of the screened genes in HCC. Expression levels of the genes were analyzed by RT-qPCR and western blot in normal liver cell line THLE-3 and HCC cell lines (HuH7, HCCLM9, and HCCLM13). RESULTS A total of 2208 up-regulated and 1447 down-regulated genes were identified in HCC samples. These differentially expressed genes (DEGs) were enriched in several cytokine-related pathways and the MIF-CD74/CXCR4 signaling pathway. By integrating large amounts of RNA sequencing data, we identified 566 prognostic genes associated with HCC cells. Eleven genes were screened using the LASSO-COX risk factor model. Stratifying patients into high- or low-risk groups based on these genes allowed us to effectively predict their survival and ROC curve. Five genes were further found to be associated with poor survival prognosis in HCC and were notably overexpressed in HCC cell lines compared to normal liver cell line. CONCLUSION This study revealed potential prognostic marker genes in HCC patients, providing insights into predicting patients' survival rates.
Collapse
Affiliation(s)
- Heteng Cui
- Department of Oncology, The 940Th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, 333 Nan Bin He Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Wenyuan Yang
- Department of Oncology, The 940Th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, 333 Nan Bin He Road, Qilihe District, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
16
|
Ren Q, Chen G, Wan Q, Xiao L, Zhang Z, Feng Y. Unravelling the role of natural and synthetic products as DNA topoisomerase inhibitors in hepatocellular carcinoma. Bioorg Chem 2024; 153:107860. [PMID: 39442463 DOI: 10.1016/j.bioorg.2024.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Topoisomerase is a ubiquitous enzyme in the control of DNA chain topology. There have been extensive research on topoisomerase inhibitors derived from natural sources, which act as partial inducers of tumor cell apoptosis. However, their specific efficacy in treating hepatocellular carcinoma is relatively unexplored. Hence, this comprehensive review focuses on the structural characteristics and anti-cancer properties of topoisomerase inhibitors in hepatocellular carcinoma. Furthermore, this review is also elucidating the mechanism of action, structure-activity relationships, therapeutic limitations, stage of clinical trials of described classes of natural bioactive compounds as well as their potential application in cancer chemotherapies. This broad understanding of topoisomerase medical biology will provide indispensable framework for enhancing the efficiency of rational anti-hepatocellular carcinoma drug discovery.
Collapse
Affiliation(s)
- Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Qi Wan
- Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Liangman Xiao
- Acupuncture Rehabilitation Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhitong Zhang
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
17
|
Ma S, Xie F, Wen X, Adzavon YM, Zhao R, Zhao J, Li H, Li Y, Liu J, Liu C, Yi Y, Zhao P, Wang B, Zhao W, Ma X. GSTA1/CTNNB1 axis facilitates sorafenib resistance via suppressing ferroptosis in hepatocellular carcinoma. Pharmacol Res 2024; 210:107490. [PMID: 39510148 DOI: 10.1016/j.phrs.2024.107490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The emergence of sorafenib resistance has become a predominant impediment and formidable dilemma in the therapeutic approach for hepatocellular carcinoma (HCC). Although the approval of next-generation drugs as alternatives to sorafenib is a significant development, the concurrent use of inhibitors that target additional key molecular pathways remains an effective strategy to mitigate the acquisition of resistance. Here, we identified Glutathione S-Transferase Alpha 1 (GSTA1) as a critical modulator of sorafenib resistance (SR) in hepatocellular carcinoma (HCC) based on our findings from experiments conducted on recurrent liver cancer tissues, xenograft mouse models, organoids, and sorafenib-resistant cells. Elevated GSTA1 levels are strongly associated with adverse clinical prognoses. The knockout of GSTA1 reinstates sorafenib sensitivity, whereas its overexpression attenuates drug efficacy. Mechanistically, GSTA1 enhances the accumulation of lipid peroxides and suppresses ferroptosis by exerting its peroxidase function to regulate the SR. Notably, the upregulation of GSTA1 expression is mediated by the transcription factor CTNNB1 (β-catenin), resulting in the formation of a cytoplasmic complex between GSTA1 and CTNNB1. This complex facilitates the nuclear translocation of CTNNB1, establishing a positive feedback loop. The combined use of GSTA1 and CTNNB1 inhibitors demonstrated synergistic anti-tumour effects through the induction of ferroptosis both in vitro and in vivo. Our findings reveal a novel regulatory role of the GSTA1/CTNNB1 axis in ferroptosis, suggesting that targeting GSTA1 and CTNNB1 could be a promising strategy to circumvent sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Shiwen Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China; Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Xie
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xiaohu Wen
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China; Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yao Mawulikplimi Adzavon
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Ruping Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Jinyi Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Han Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yanqi Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chen Liu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yang Yi
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Boqing Wang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| |
Collapse
|
18
|
Wang T, Du Y, Song H, Sun J, Jiang W, Xu Z. hsa_circ_0072309 Inhibits Oncogenesis in Hepatocellular Carcinoma by Epigenetic Activation of its Host Gene. Cell Biochem Biophys 2024; 82:3251-3263. [PMID: 39283585 DOI: 10.1007/s12013-024-01330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 11/20/2024]
Abstract
Recently, numerous studies have revealed the participation of circular RNAs (circRNAs) in cancer progression. Likewise, this research focused on circRNAs in hepatocellular carcinoma (HCC). A lowly expressed circRNA hsa_circ_0072309 in HCC was screened by analyzing the circRNA microarray GSE242797 and GSE216115 and identified in clinical specimens and cells. Subsequently, CCK-8, colony formation, and transwell assays were performed. The results revealed that hsa_circ_0072309 overexpression suppressed HCC cell proliferation, migration, invasion, and sorafenib resistance, whereas its suppression showed opposite results. Mechanistic investigation found an interaction between hsa_circ_0072309 and its host gene leukemia inhibitory factor receptor (LIFR) in HCC. We found that LIFR overexpression promoted the hsa_circ_0072309 formation. In turn, hsa_circ_0072309 recruited the E1A binding protein p300 to promote the enrichment of H3K27 acetylation (H3K27ac) in the LIFR enhancer, thus transcriptionally promoting LIFR expression. To conclude, we revealed a hsa_circ_0072309/LIFR regulatory loop in HCC, which may provide a potential target for HCC treatment.
Collapse
Affiliation(s)
- Tao Wang
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Yanan Du
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Haiyang Song
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Jiewei Sun
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Wenjin Jiang
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China.
| | - Zhiying Xu
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China.
| |
Collapse
|
19
|
Chai B, Zhang A, Liu Y, Zhang X, Kong P, Zhang Z, Guo Y. KLF7 Promotes Hepatocellular Carcinoma Progression Through Regulating SLC1A5-Mediated Tryptophan Metabolism. J Cell Mol Med 2024; 28:e70245. [PMID: 39648156 PMCID: PMC11625504 DOI: 10.1111/jcmm.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/24/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024] Open
Abstract
Krüppel-like factor 7 is a transcriptional activator and acts as an oncogene in human cancers, including hepatocellular carcinoma (HCC). Tryptophan metabolism is important for HCC cell proliferation, metastasis, and invasion. It is unclear whether KLF7 could regulate Trp metabolism in HCC. In this study, we found that Trp metabolism was suppressed in HCC cells with KLF7 knockdown. The mRNA and protein levels of SLC1A5, SLC7A5, and TPH1, as well as the content of Trp and serotonin, were reduced after KLF7 knockdown, and were potentiated following KLF7 overexpression. Increasing the content of serotonin could restore the malignancy of tumour cells in vitro and tumour growth in vivo. Conversely, decreasing the content of serotonin suppressed HCC cell proliferation. The binding activity of KLF7 was on the promoter of SLC1A5, and KLF7 positively regulated the expression of SLC1A5. KLF7 contributed to the proliferation and migration of HCC cells by up-regulation of SLC1A5. Collectively, KLF7 promotes the progression of HCC through regulating Trp metabolism. The newly identified axis of KLF7/ SLC1A5 in HCC could represent a potential target for HCC therapy.
Collapse
Affiliation(s)
- Bao Chai
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical sciences, TongilShanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Anhong Zhang
- Department of SurgeryThe First Affiliated Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yang Liu
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Xi Zhang
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Pengzhou Kong
- Translational Medicine Research Center, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of PathologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Zhuowei Zhang
- College of Medical ImagingShanxi Medical UniversityTaiyuanShanxiChina
| | - Yarong Guo
- Department of Digestive System Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical sciences, TongilShanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Department of OncologyThe First Affiliated Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
20
|
Zhao P, Qiao C, Wang J, Zhou Y, Zhang C. Histone lactylation facilitates hepatocellular carcinoma progression by upregulating endothelial cell-specific molecule 1 expression. Mol Carcinog 2024; 63:2078-2089. [PMID: 39016629 DOI: 10.1002/mc.23794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. Histone lactylation, a novel epigenetic modification, plays a crucial role in various cancers. However, the functional role and underlying mechanism of histone lactylation in HCC progression have not yet been investigated. Histone lactylation levels in HCC tissues and cells were assessed using a densitometric kit and western blot analysis. The role of histone lactylation in cell malignant phenotypes was determined through functional assays in vitro, and a xenograft tumor model was established to verify the function of histone lactylation in vivo. ChIP assay was performed to explore the interaction between histone lactylation and endothelial cell-specific molecule 1 (ESM1). Additionally, gain-and-loss-of-function assays were conducted to investigate the regulatory role of ESM1 in HCC pathogenesis. Histone lactylation levels were increased in HCC tissues and cells, and H3K9 lactylation (H3K9la) and H3K56 lactylation (H3K56la) were identified as the histone modification sites. We observed that H3K9la and H3K56la caused abnormal histone lactylation and were associated with poor prognosis. Functionally, histone lactylation was found to promote HCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process in vitro. However, histone lactylation inhibition with 2-deoxy-d-glucose (2-DG) reduced the malignant phenotypes of HCC cells. In vivo, 2-DG treatment reduced tumor growth and metastasis in the HCC mouse model. Mechanistically, it was revealed that histone lactylation activated ESM1 transcription in HCC cells. ESM1 was expressed at a high level in HCC and exerted a carcinogenic role. Histone lactylation facilitates cell malignant phenotypes, tumor growth, and metastasis by upregulating ESM1 expression in HCC, which reveals the downstream molecular mechanism of histone lactylation and might provide a novel therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Peng Zhao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chunzhong Qiao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jiawei Wang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ye Zhou
- Department of Postanesthesia Care Unit, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Changhe Zhang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
21
|
Zhang H, Zhao L, Ren P, Sun X. LncRNA MBNL1-AS1 knockdown increases the sensitivity of hepatocellular carcinoma to tripterine by regulating miR-708-5p-mediated glycolysis. Biotechnol Genet Eng Rev 2024; 40:1407-1424. [PMID: 36951619 DOI: 10.1080/02648725.2023.2193776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Hepatocellular carcinoma (HCC) is identified as a common cancer type across the world and needs novel and efficient treatment. Tripterine, a well-known compound, exerts suppressive role in HCC development. However, the related molecular mechanism of tripterine in HCC remains unclear. The expression of MBNL1-AS1in HCC tissues and cells was measured via qRT-PCR assay. MTT assay was employed to estimate cell viability. Besides, cell migration as well as invasion was determined through transwell assay. Additionally, the binding ability of miR-708-5p and MBNL1-AS1or HK2 was proved by starBase database and luciferase reporter gene assay. Moreover, the HK2 level was detected by immunoblotting. MBNL1-AS1 was reduced in HCC tissues and cells. Overexpression of MBNL1-AS1 decreased the sensitivity of HCC cells to tripterine while MBNL1-AS1 silence played opposite effect. In addition, miR-708-5p was the target of MBNL1-AS1 and was down-regulated through MBNL1-AS1 in HCC cells. Moreover, miR-708-5p suppressed glycolysis rate and reduced the expression of vital glycolytic enzyme (HK2, LDHA and PKM2) in HCC cells. Furthermore, miR-708-5p reduced HK2 expression by binding to it directly. In this investigation, we proved that LncRNA MBNL1-AS1 increased the tripterine resistance of HCC cells at least partly by mediating miR-708-5p-related glycolysis. These findings revealed a potent therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Houbin Zhang
- Major of integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Lei Zhao
- Department of Thyroid Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Peiyou Ren
- Department of Thyroid Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - XiangJun Sun
- Department of General Surgery, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
22
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
23
|
Yang K, Ding Y, Han J, He R. CircROBO1 knockdown improves the radiosensitivity of hepatocellular carcinoma by regulating RAD21. Ann Hepatol 2024; 29:101536. [PMID: 39151890 DOI: 10.1016/j.aohep.2024.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION AND OBJECTIVES Radioresistance is a common problem in the treatment of many cancers, including hepatocellular carcinoma (HCC). Previous studies have shown that circROBO1 is highly expressed in HCC tissues and acts as a cancer promoter to accelerate the malignant progression of HCC. However, the role and mechanism of circROBO1 in HCC radioresistance remain unclear. MATERIALS AND METHODS CircROBO1, microRNA (miR)-136-5p and RAD21 expression levels were analyzed by quantitative real-time PCR. Cell function and radioresistance were evaluated by colony formation assay, cell counting kit 8 assay, EdU assay and flow cytometry. Protein expression was determined using western blot analysis. RNA interaction was analyzed by dual-luciferase reporter assay and RNA pull-down assay. In vivo experiments were performed by constructing mice xenograft models. RESULTS CircROBO1 was highly expressed in HCC, and its knockdown inhibited HCC cell proliferation and promoted apoptosis to enhance cell radiosensitivity. On the mechanism, circROBO1 could serve as miR-136-5p sponge to positively regulate RAD21. MiR-136-5p inhibitor or RAD21 overexpression reversed the regulation of circROBO1 knockdown on the radiosensitivity of HCC cells. Also, circROBO1 interference improved the radiosensitivity of HCC tumors in vivo. CONCLUSIONS CircROBO1 might be a promising target for treating HCC radioresistance.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, PR China
| | - Yanpeng Ding
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, PR China
| | - Jun Han
- Department of Interventional Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, PR China.
| | - Rui He
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, PR China.
| |
Collapse
|
24
|
Zeng L, Zhu L, Fu S, Li Y, Hu K. Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma. Mol Cell Biochem 2024:10.1007/s11010-024-05144-4. [PMID: 39463200 DOI: 10.1007/s11010-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.
Collapse
Affiliation(s)
- Lianlin Zeng
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Lutao Zhu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Shasha Fu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Yangan Li
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Kehui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China.
| |
Collapse
|
25
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Fan M, Hu J, Xu X, Chen J, Zhang W, Zheng X, Pan J, Xu W, Feng S. Mass spectrometry-based multi-omics analysis reveals distinct molecular features in early and advanced stages of hepatocellular carcinoma. Heliyon 2024; 10:e38182. [PMID: 39381095 PMCID: PMC11456867 DOI: 10.1016/j.heliyon.2024.e38182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) is a serious primary solid tumor that is prevalent worldwide. Due to its high mortality rate, it is crucial to explore both early diagnosis and advanced treatment for HCC. In recent years, multi-omics approaches have emerged as promising tools to identify biomarkers and investigate molecular mechanisms of biological processes and diseases. In this study, we performed proteomics, phosphoproteomics, metabolomics, and lipidomics to reveal the molecular features of early- and advanced-stage HCC. The data obtained from these omics were analyzed separately and then integrated to provide a comprehensive understanding of the disease. The multi-omics results unveiled intricate biological pathways and interaction networks underlying the initiation and progression of HCC. Moreover, we proposed specific potential biomarker panels for both early- and advanced-stage HCC by overlapping our data with CPTAC database for HCC diagnosis, and deduced novel insights and mechanisms related to HCC origination and development, such as glucose depletion during tumor progression, ROCK1 deactivation and GSK3A activation.
Collapse
Affiliation(s)
- Mingzhu Fan
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jin Hu
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Xiaoyan Xu
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jia Chen
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wenwen Zhang
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Xiaoping Zheng
- Pathology Department, Shulan (Hangzhou) Hospital, Hangzhou, 311112, Zhejiang, China
| | - Jinheng Pan
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wei Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Hangzhou Tongchuang Medical Laboratory, Shulan Health Group, Hangzhou, 310015, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
27
|
Alruwaili NK, Almalki WH, Almujri SS, Alhamyani A, Alzahrani A, Aodah A, Alrobaian M, Singh T, Ahmad FJ, Singh A, Lal JA, Rahman M. Hispolon-loaded lipid nanocapsules for the management of hepatocellular carcinoma: comparative study with solid lipid nanoparticles and suspension. Nanomedicine (Lond) 2024; 19:2555-2576. [PMID: 39404092 DOI: 10.1080/17435889.2024.2406741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 12/12/2024] Open
Abstract
Aim: The present study aims to develop, optimize and assess hispolon (HPN) lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and suspension for treating hepatocellular carcinoma (HCC).Materials & methods: It included UPLC-MS/MS, solubility, optimization, characterization, stability, in vitro and in vivo studies.Results: HPN-loaded LNCs were developed using phase-inversion and temperature cycling, while SLNs and suspension using hot homogenization and trituration methods. HPN-LNCs had a particle size (PS) of 196.9 nm, a PDI of 0.315 and a zeta potential of -24.3 mV. HPN-S2 had a PS of 199.90 nm, a PDI of 0.381 and a zeta potential of -19.1 mV. HPN-SPN3 showed a PS of 946.60 nm, a PDI of 0.31 and a zeta potential of -0.1945 mV. Stability tests over 3 months and gastric stability testing in different media showed no significant changes in PS, PDI, entrapment efficiency (EE) and loading capacity (LC). HPN-LNCs demonstrated 96.22% sustained drug release over 25 h, outperforming HPN-S2 (87.12%) and HPN-SPN3 (22% within 2 h). HPN-loaded LNCs improved oral bioavailability by 2.03-times, the most effective hepatoprotective action and higher localization in liver tumors over HPN-S2 and HPN-SPN3.Conclusion: HPN-Loaded LNCs results are promising, but more safety data needed in the future.
Collapse
Affiliation(s)
- Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology & Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha, 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, 65779, Saudi Arabia
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq, 65779-7738, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanuja Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Anjali Singh
- Principal Scientist, IIR (2nd floor), Vivantes Hospital & Research Institute, Patna, Bihar 801503, India
| | - Jonathan A Lal
- Department of Molecular & Cellular Engineering, Jacob Institute of Biotechnology & Bioengineering, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| |
Collapse
|
28
|
Zhang H, Pei S, Li J, Zhu J, Li H, Wu G, Weng R, Chen R, Fang Z, Sun J, Chen K. Insights about exosomal circular RNAs as novel biomarkers and therapeutic targets for hepatocellular carcinoma. Front Pharmacol 2024; 15:1466424. [PMID: 39444611 PMCID: PMC11496148 DOI: 10.3389/fphar.2024.1466424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression. Studies have revealed the potential clinical applications of exosomal circRNAs as biomarkers and therapeutic targets for HCC. These circRNAs can be transferred via exosomes to nearby non-cancerous cells, thereby regulating HCC progression and influencing malignant phenotypes, such as cell proliferation, invasion, metastasis, and drug resistance. This review provides a comprehensive overview of the identified exosomal circRNAs, highlighting their potential as non-invasive biomarkers for HCC, and suggesting new perspectives for HCC diagnosis and treatment. The circRNA from exosomal organelles promotes metastasis and immune scape because of their unique chirality which is different from the Biomolecular Homochirality.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Shuren College, Hangzhou, China
| | - Shanshan Pei
- School of Pharmacy, Beihua University, Jilin, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
29
|
Cai Q, Zhu H, Dai Y, Zhou Q, Zhang Q, Zhu Q. ATP citrate lyase promotes the progression of hepatocellular carcinoma by activating the REGγ-proteasome pathway. Mol Carcinog 2024; 63:1874-1891. [PMID: 38888205 DOI: 10.1002/mc.23777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
The search for novel tumor biomarkers and targets is of significant importance for the early clinical diagnosis and treatment of Hepatocellular Carcinoma (HCC). The mechanisms by which ATP citrate lyase (ACLY) promotes HCC progression remain unclear, and the connection between ACLY and REGγ has not been reported in the literature. In vitro, we will perform overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to investigate the impact of ACLY on HCC cells and its underlying mechanisms. In vivo, we will establish mouse tumor models with overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to study the effect of ACLY on mouse tumors and its mechanisms. Firstly, ACLY overexpression upregulated REGγ expression and activated the REGγ-proteasome pathway, leading to changes in the expression of downstream signaling pathway proteins. This promoted HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Secondly, ACLY overexpression increased acetyl-CoA production, upregulated the acetylation level of the REGγ promoter region histone H3K27ac, and subsequently induced REGγ expression. Lastly, enhanced acetylation of the REGγ promoter region histone H3K27ac resulted in upregulated REGγ expression, activation of the REGγ-proteasome pathway, changes in downstream signaling pathway protein expression, and promotion of HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Conversely, REGγ knockdown reversed these effects. ACLY and REGγ may serve as potential biomarkers and clinical therapeutic targets for HCC.
Collapse
Affiliation(s)
- Qihong Cai
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Honghua Zhu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yile Dai
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qingqing Zhou
- Departments of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qiyu Zhang
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qiandong Zhu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
30
|
Zhang Q, Yu M, Yang L, Sun D. MiR-875-5p suppresses Gli1 to alter the hedgehog signaling pathway, which in turn has hepatocellular cancer-related tumor suppressing properties. Heliyon 2024; 10:e37771. [PMID: 39381215 PMCID: PMC11459020 DOI: 10.1016/j.heliyon.2024.e37771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background One of the most prevalent cancers worldwide is HCC, which has put patient health at risk. Increasing evidence indicated that messenger RNAs (mRNAs) played significant roles in modulating tumorigenesis. It has been established that Gli1 acts as an oncogene in a number of malignancies. However, more research was necessary to understand the Gli1 regulation mechanism in HCC. Methods Microarray technology was used to evaluate the expression of mRNAs. RT-qPCR was utilized to evaluate Gli1 and miR-875-5p expression. To investigate the role of Gli1, tests using CCK-8, EdU, transwell, immunofluorescence, and Western blot analysis was performed. RIP, RNA pull down, and luciferase reporter assays were employed to verify the interaction between Gli1 and miR-875-5p. Results In tissues and cells of HCC, Gli1 expression appeared to be upregulated, especially in metastatic samples and advanced stages of the disease. A worse outcome was predicted by elevated Gli1 expression. Additionally, in HCC, Gli1 inhibition impeded the growth, migration, and development of the EMT. Since miR-875-5p was shown to have a molecular target in Gli1, miR-875-5p mediated the negative regulation of Gli1. In HCC tissues, its expression pattern was less prominent. In HCC tissues, there was an inverse relationship between Gli1 expression and miR-875-5p expression. Overexpressing Gli1 helped to partially counteract the suppression of HCC migration, proliferation, and EMT formation by miR-875-5p overexpression. Conclusions MiR-875-5p in HCC suppresses tumors by downregulating Gli1, which supplies a novel treatment for HCC patients.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pathology, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Miao Yu
- Department of Clinical Laboratory, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Leilei Yang
- Department of Hepatobiliary Surgery, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Defeng Sun
- Department of Hepatobiliary Surgery, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| |
Collapse
|
31
|
Li D, Bao Q, Ren S, Ding H, Guo C, Gao K, Wan J, Wang Y, Zhu M, Xiong Y. Comprehensive Analysis of the Mechanism of Anoikis in Hepatocellular Carcinoma. Genet Res (Camb) 2024; 2024:8217215. [PMID: 39297018 PMCID: PMC11410409 DOI: 10.1155/2024/8217215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 08/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC), ranking as the second-leading cause of global mortality among malignancies, poses a substantial burden on public health worldwide. Anoikis, a type of programmed cell death, serves as a barrier against the dissemination of cancer cells to distant organs, thereby constraining the progression of cancer. Nevertheless, the mechanism of genes related to anoikis in HCC is yet to be elucidated. Methods This paper's data (TCGA-HCC) were retrieved from the database of the Cancer Genome Atlas (TCGA). Differential gene expression with prognostic implications for anoikis was identified by performing both the univariate Cox and differential expression analyses. Through unsupervised cluster analysis, we clustered the samples according to these DEGs. By employing the least absolute shrinkage and selection operator Cox regression analysis (CRA), a clinical predictive gene signature was generated from the DEGs. The Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to determine the proportions of immune cell types. The external validation data (GSE76427) were procured from Gene Expression Omnibus (GEO) to verify the performance of the clinical prognosis gene signature. Western blotting and immunohistochemistry (IHC) analysis confirmed the expression of risk genes. Results In total, 23 prognostic DEGs were identified. Based on these 23 DEGs, the samples were categorized into four distinct subgroups (clusters 1, 2, 3, and 4). In addition, a clinical predictive gene signature was constructed utilizing ETV4, PBK, and SLC2A1. The gene signature efficiently distinguished individuals into two risk groups, specifically low and high, demonstrating markedly higher survival rates in the former group. Significant correlations were observed between the expression of these risk genes and a variety of immune cells. Moreover, the outcomes from the validation cohort analysis aligned consistently with those obtained from the training cohort analysis. The results of Western blotting and IHC showed that ETV4, PBK, and SLC2A1 were upregulated in HCC samples. Conclusion The outcomes of this paper underscore the effectiveness of the clinical prognostic gene signature, established utilizing anoikis-related genes, in accurately stratifying patients. This signature holds promise in advancing the development of personalized therapy for HCC.
Collapse
Affiliation(s)
- Dongqian Li
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Qian Bao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Shiqi Ren
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Haoxiang Ding
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Chengfeng Guo
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Kai Gao
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yao Wang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - MingYan Zhu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yicheng Xiong
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
32
|
Ye Z, Li W, Ouyang H, Ruan Z, Liu X, Lin X, Chen X. Natural killer (NK) cells-related gene signature reveals the immune environment heterogeneity in hepatocellular carcinoma based on single cell analysis. Discov Oncol 2024; 15:406. [PMID: 39231877 PMCID: PMC11374944 DOI: 10.1007/s12672-024-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
The early diagnosis of liver cancer is crucial for the treatment and depends on the coordinated use of several test procedures. Early diagnosis is crucial for precision therapy in the treatment of the hepatocellular carcinoma (HCC). Therefore, in this study, the NK cell-related gene prediction model was used to provide the basis for precision therapy at the gene level and a novel basis for the treatment of patients with liver cancer. Natural killer (NK) cells have innate abilities to recognize and destroy tumor cells and thus play a crucial function as the "innate counterpart" of cytotoxic T cells. The natural killer (NK) cells is well recognized as a prospective approach for tumor immunotherapy in treating patients with HCC. In this research, we used publicly available databases to collect bioinformatics data of scRNA-seq and RNA-seq from HCC patients. To determine the NK cell-related genes (NKRGs)-based risk profile for HCC, we isolated T and natural killer (NK) cells and subjected them to analysis. Uniform Manifold Approximation and Projection plots were created to show the degree of expression of each marker gene and the distribution of distinct clusters. The connection between the immunotherapy response and the NKRGs-based signature was further analyzed, and the NKRGs-based signature was established. Eventually, a nomogram was developed using the model and clinical features to precisely predict the likelihood of survival. The prognosis of HCC can be accurately predicted using the NKRGs-based prognostic signature, and thorough characterization of the NKRGs signature of HCC may help to interpret the response of HCC to immunotherapy and propose a novel tumor treatment perspective.
Collapse
Affiliation(s)
- Zhirong Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Guangdong Medical University, No. 12, Minyou Road, Xiashan District, Zhanjiang, 524000, Guangdong, China
| | - Wenjun Li
- Department of Anesthesia, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Hao Ouyang
- Department of Clinical Laboratory, Dongguan Binhaiwan Central Hospital, Dongguan, 523903, Guangdong, China
| | - Zikang Ruan
- Department of Hepatobiliary Surgery, The People's Hospital of Gaozhou, No. 89, Xiguan Road, Gaozhou, Maoming, 525200, Guangdong, China
| | - Xun Liu
- Department of Clinical Laboratory, The People's Hospital of Xingning, Meizhou, 514500, Guangdong, China
| | - Xiaoxia Lin
- Department of Hepatobiliary Surgery, The People's Hospital of Gaozhou, No. 89, Xiguan Road, Gaozhou, Maoming, 525200, Guangdong, China.
| | - Xuanting Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Guangdong Medical University, No. 12, Minyou Road, Xiashan District, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
33
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
34
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
35
|
Zhou K, Xie M, Liu Y, Zheng L, Pu J, Wang C. Virtual screening and network pharmacology-based synergistic coagulation mechanism identification of multiple components contained in compound Kushen Injection against hepatocellular carcinoma. J Ayurveda Integr Med 2024; 15:101055. [PMID: 39427483 PMCID: PMC11533665 DOI: 10.1016/j.jaim.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a primary liver malignancy commonly encountered in the setting of chronic liver disease and cirrhosis. Compound Kushen Injection (CKI) has been widely used in HCC, however, the underlying mechanisms are scarce. OBJECTIVE To explore the molecular mechanisms of CKI for HCC. MATERIALS AND METHODS The chemical ingredients of CKI were reviewed from published articles and the potential targets were got from Herbal Ingredients' Targets Platform. Coagulation-related targets were from Kyoto Encyclopedia of Genes and Genomes and HCC-related targets were from Therapeutic Target Database, Gene Expression Omnibus, and The Cancer Genome Atlas. Then the CKI-Herb-Target and CKI-Herb-Target-HCC networks were built. The shared targets between CKI and HCC were used for functional enrichment through Metascape and the shared coagulation-related target was used for molecular docking and survival analysis. RESULTS A total of 23 chemical ingredients and 41 potential targets shared between CKI and HCC were obtained. The results of functional enrichment indicated that several canonical pathways of CKI mostly participated in the treatment of HCC. Furthermore, a chemical ingredient of CKI formed a stable hydrogen bond link with the ASN-189 on PLG, with a best binding energy of -4.7 kcal/mol. Finally, PLG was confirmed as the shared coagulation-related target and interrelated with the prognosis of HCC. CONCLUSION CKI probably improves HCC prognosis through PLG. Our research undoubtedly deepened the understanding of the molecular mechanism of CKI anti-HCC.
Collapse
Affiliation(s)
- Kejun Zhou
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mengyi Xie
- Hepatobiliary Research Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Liu
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lei Zheng
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Juan Pu
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cheng Wang
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
36
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
37
|
AmeliMojarad M, AmeliMojarad M, Cui X. Discovering the lipid metabolism-related hub genes of HCC-treated samples with PPARα agonist through weighted correlation network analysis. Sci Rep 2024; 14:19591. [PMID: 39179766 PMCID: PMC11344068 DOI: 10.1038/s41598-024-69998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Liver cancer is the 4th most lethal form of cancer with a poor prognosis for patients worldwide. Dysregulation of lipid metabolism is related to FA oxidation alternation which can be modified by peroxisome proliferator-activated receptor-α (PPARα). Therefore, it is important to identify the lipid metabolism-related genes regulated by PPARα in liver cancer. Hub genes related to the lipid metabolism pathway of HCC samples treated with PPARα agonist (WY-14,643) were identified through a weighted gene co-expression network analysis (WGCNA). Gene expression and clinical information were obtained from the Gene Expression Omnibus (GEO) database. The network of top main hub genes was visualized by the Cytoscape software using MCODE and CytoHubba plugins. Finally, the expression and clinical association of each hub gene were evaluated using enrichment analysis, TCGA data, GEPIA, GSCA, and q-PCR. Based on our results, the top 5 co-expressed genes including (CPT2, ACSL1, ACSL3, ACOX1, and SLC27A2) were selected as the main hub genes participating in fatty acid metabolism, fatty acid beta-oxidation, and PPAR signaling pathway. All association of higher ACSL3 expression with lower outcomes and survival rates was detected in HCC patients. Therefore, lipid metabolism-related Hub genes regulated by PPARα are potential biomarkers, and they may offer a therapeutical foundation for targeted therapy directed against the HCC antitumor strategy.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Mandana AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China.
| |
Collapse
|
38
|
Ruishi X, Linyi X, Yunfan B, Wenbo Y, Xiaoying Z, Xiaoxue F, Difu Z, Xintian L, Ming Z, Haoming L. New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Front Immunol 2024; 15:1456405. [PMID: 39206194 PMCID: PMC11349538 DOI: 10.3389/fimmu.2024.1456405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.
Collapse
Affiliation(s)
- Xie Ruishi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Linyi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bai Yunfan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Wenbo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhang Xiaoying
- The First Hospital of Jilin University, Changchun, China
| | - Fang Xiaoxue
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Difu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lan Xintian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Ming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Luo Haoming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
39
|
Ma W, Liu R, Wang J, Liu L, Qiu Z, Yu J, Wang W. High tumor burden score indicated the unfavorable prognosis in patients with hepatocellular carcinoma: A meta-analysis. PLoS One 2024; 19:e0308570. [PMID: 39116157 PMCID: PMC11309382 DOI: 10.1371/journal.pone.0308570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Tumor burden score (TBS) based on maximum tumor diameter and number has been shown to correlate with prognosis in patients with hepatocellular carcinoma (HCC). Nevertheless, the results are conflicting. Hence, we conducted a meta-analysis to analyze the association between TBS and survival outcomes of HCC patients. METHODS A comprehensively search of the databases including PubMed, Embase and Web of Science was performed to retrieve studies satisfying the inclusion criteria until August 31, 2023. The hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. All the data analyses were carried out by STATA 12.0. RESULTS 10 retrospective studies containing 25073 patients were incorporated in the study. The results demonstrated that high TBS was markedly association with poor overall survival (OS) (HR: 1.79, 95% CI: 1.45-2.23) and relapse-free survival / progression-free survival(RFS/PFS) (HR: 1.71; 95% CI: 1.42-2.07). Subgroup analysis showed that the prognostic value of TBS in HCC was not affected by any subgroup. CONCLUSIONS TBS may be an efficient prognostic index in HCC patients.
Collapse
Affiliation(s)
- Wangbin Ma
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Rongqiang Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Li Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhendong Qiu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jia Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Weixing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
40
|
Zhang R, Liao Y, Yang X, Tian H, Wu S, Zeng Q, He Q, Zhang R, Wei C, Liu J. Effect of lidocaine pumped through hepatic artery to relieve pain of hepatic artery infusion chemotherapy. Front Surg 2024; 11:1378307. [PMID: 39170099 PMCID: PMC11335477 DOI: 10.3389/fsurg.2024.1378307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background This study aims to explore the analgesic effect of lidocaine administered through the hepatic artery during hepatic artery infusion chemotherapy (HAIC) for hepatocellular carcinoma (HCC). Methods A total of 45 HCC patients were randomly divided into a study group and a control group. Both groups received oxaliplatin (OXA) based FOLFOX protocol via electronic infusion pump. The study group was continuously infused with 100 mg of lidocaine during HAIC, while 5% glucose solution was infused in the same way as described above. Changes in vital signs, visual analogue score (VAS) and general comfort score (GCQ scale) were recorded before surgery (Time point 0), at the end of infusion (Time point 01), 1 h after HAIC (Time point 02), 3 h after HAIC (Time point 03) and 6 h after HAIC (Time point 04). Results At each point of time from Time point 0 through Time point 04, the differences in MAP, RR and SPO2 between the two groups were not statistically significant (P > 0.05). At each point of time from Time point 01 through Time point 04, the mean VAS scores in the study group were smaller and GCQ scores were higher than those in the control group, and the differences were both statistically significant (P < 0.05). Conclusions Lidocaine infusion through the hepatic artery during HAIC effectively reduces intraoperative and postoperative pain and improves patient satisfaction with pain management, making it a valuable technique for clinical practice.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yiling Liao
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoya Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Hengyu Tian
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shenfeng Wu
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qingteng Zeng
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qinghua He
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ruikun Zhang
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Chunshan Wei
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialin Liu
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
41
|
Kotulkar M, Paine-Cabrera D, Apte U. Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer. Semin Liver Dis 2024; 44:383-393. [PMID: 38901435 DOI: 10.1055/a-2349-7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
42
|
Pastras P, Zazas E, Kalafateli M, Aggeletopoulou I, Tsounis EP, Kanaloupitis S, Zisimopoulos K, Kottaridou EEK, Antonopoulou A, Drakopoulos D, Diamantopoulou G, Tsintoni A, Thomopoulos K, Triantos C. Predictive Risk Factors and Scoring Systems Associated with the Development of Hepatocellular Carcinoma in Chronic Hepatitis B. Cancers (Basel) 2024; 16:2521. [PMID: 39061161 PMCID: PMC11274905 DOI: 10.3390/cancers16142521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic hepatitis B (CHB) infection constitutes a leading cause of hepatocellular carcinoma (HCC) development. The identification of HCC risk factors and the development of prognostic risk scores are essential for early diagnosis and prognosis. The aim of this observational, retrospective study was to evaluate baseline risk factors associated with HCC in CHB. Six hundred thirty-two consecutive adults with CHB (n = 632) [median age: 46 (IQR: 24)], attending the outpatients' Hepatology clinics between 01/1993-09/2020 were evaluated. Core promoter mutations and cirrhosis-HCC (GAG-HCC), Chinese University-HCC (CU-HCC), risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B), Fibrosis-4 (FIB-4), and Platelet Age Gender-HBV (PAGE-B) prognostic scores were calculated, and receiver operating curves were used to assess their prognostic performance. HCC was developed in 34 (5.38%) patients. In the multivariable Cox regression analysis, advanced age (HR: 1.086, 95% CI: 1.037-1.137), male sex (HR: 7.696, 95% CI: 1.971-30.046), alcohol abuse (HR: 2.903, 95% CI: 1.222-6.987) and cirrhosis (HR: 21.239, 95% CI: 6.001-75.167) at baseline were independently associated with the development of HCC. GAG-HCC and PAGE-B showed the highest performance with c-statistics of 0.895 (95% CI: 0.829-0.961) and 0.857 (95% CI: 0.791-0.924), respectively. In the subgroup of patients with cirrhosis, the performance of all scores declined. When treated and untreated patients were studied separately, the discriminatory ability of the scores differed. In conclusion, HCC development was independently associated with advanced age, male sex, alcohol abuse, and baseline cirrhosis among a diverse population with CHB. GAG-HCC and PAGE-B showed high discriminatory performance to assess the risk of HCC development in these patients, but these performances declined in the subgroup of patients with cirrhosis. Further research to develop scores more specific to certain CHB subgroups is needed.
Collapse
Affiliation(s)
- Ploutarchos Pastras
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Evaggelos Zazas
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Maria Kalafateli
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Stavros Kanaloupitis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Konstantinos Zisimopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Eirini-Eleni-Konstantina Kottaridou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Aspasia Antonopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Dimosthenis Drakopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Georgia Diamantopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Aggeliki Tsintoni
- Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| |
Collapse
|
43
|
Liu L, Chen J, Ye F, Chu F, Rao C, Wang Y, Yan Y, Wu J. Prognostic value of oxidative phosphorylation-related genes in hepatocellular carcinoma. Discov Oncol 2024; 15:258. [PMID: 38960931 PMCID: PMC11222354 DOI: 10.1007/s12672-024-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the most prevalent malignancies worldwide. Recently, oxidative phosphorylation (OXPHOS) has received extensive concern as an emerging target in antitumor therapy. However, the OXPHOS-involved underlying genes and clinical utilization in HCC remain worth exploring. The present research aimed to create an OXPHOS-relevant signature in HCC. PATIENTS AND METHODS In this study, the prognostic signature genes linked with OXPHOS were identified, and prognostic models were built using least absolute shrinkage and selection operator (LASSO) cox regression analysis. Furthermore, the combination study of immune microenvironment and signature genes looked into the involvement of immune cells in signature-based genes in HCC. Following that, chemotherapeutic drug sensitivity and immunotherapy analysis was implemented to predict clinical efficacy in HCC patients. Finally, clinical samples were collected to measure the expression of OXPHOS-related signature genes. RESULTS Following a series of screens, six prognostic signature genes related with OXPHOS were identified: MRPS23, MPV17, MAPK3, IGF2BP2, CDK5, and IDH2, on which a risk model was built. The findings revealed a significant drop in the survival rate of HCC patients as their risk score increased. Meanwhile, independent prognostic study demonstrated that the risk score could accurately identify HCC patients. Immuno-microenvironmental correlation research suggested that the prognostic characteristics could serve as a reference index for both immunotherapy and chemotherapy. Finally, RT-qPCR exhibited a trend in signature gene expression that was consistent with the results. CONCLUSION In this study, a total of six prognostic genes associated with OXPHOS were selected and a prognostic model was constructed, providing an essential reference for the study of OXPHOS in HCC.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Fei Ye
- Department of Blood Cell Therapy, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Fengran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Chaoluan Rao
- Department of Nursing, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China.
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
44
|
Cui Y, Lan L, Lv J, Zhao B, Kong J, Lai Y. Chalcomoracin promotes apoptosis and endoplasmic reticulum stress in hepatocellular carcinoma cells. J Antibiot (Tokyo) 2024; 77:428-435. [PMID: 38724630 DOI: 10.1038/s41429-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Chalcomoracin (CMR), a Diels-Alder adduct obtained from mulberry leaves, demonstrated wide-spectrum anti-cancer activity. Herein, we aimed to explore the function of CMR and how it works in hepatocellular carcinoma (HCC). Human HCC cell lines Hep3B and SNU-387 were cultured and treated with various concentrations of CMR (1.5, 3, and 6 µM). Subsequently, the effects of CMR on cell viability, colony formation, apoptosis, migration, and invasion abilities were studied in vitro. Furthermore, the levels of endoplasmic reticulum (ER) stress-related proteins and mitogen-activated protein kinase (MAPK) pathway-related proteins in cells under CMR exposure were detected using western blot. Experiments in vivo were conducted to examine the effects of CMR on tumor growth in HCC. CMR administration inhibited the viability and clonogenic, migration, and invasion abilities, as well as promoted cell apoptosis and ER stress in Hep3B and SNU-387 cells. In addition, CMR treatment reduced the phosphorylation levels of ERK, P38, and JNK in the MAPK pathway. Moreover, an in vivo study showed that CMR administration could inhibit tumorigenesis and MAPK pathway activity in HCC. Our data indicate that CMR has the potential to inhibit the development of HCC, potentially through the inhibition of the MAPK pathway. These findings suggest that CMR may have promising applications as an anticancer agent in future therapeutics for HCC.
Collapse
Affiliation(s)
- Yongliang Cui
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Liqin Lan
- Department of Intensive Care Unit, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jiahui Lv
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jinfeng Kong
- Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Yongping Lai
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| |
Collapse
|
45
|
Feng Z, Luan M, Zhu W, Xing Y, Ma X, Wang Y, Jia Y. Targeted ferritinophagy in gastrointestinal cancer: from molecular mechanisms to implications. Arch Toxicol 2024; 98:2007-2018. [PMID: 38602537 DOI: 10.1007/s00204-024-03745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.
Collapse
Affiliation(s)
- Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
46
|
Kraglund F, Skou N, Villadsen GE, Jepsen P. Landmark analysis of the risk of recurrence after resection or ablation for HCC: A nationwide study. Hepatol Commun 2024; 8:e0472. [PMID: 38896083 PMCID: PMC11186808 DOI: 10.1097/hc9.0000000000000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The risk of HCC recurrence at particular landmarks since the initial treatment is unknown. With this registry-based study, we aimed to provide a nuanced description of the prognosis following resection or ablation for HCC, including landmark analyses. METHODS Using the Danish nationwide health care registries, we identified all patients who received resection or ablation in 2000-2018 as the first HCC treatment. HCC recurrence was defined as a new HCC treatment > 90 days after the first treatment. We conducted competing risk landmark analyses of the cumulative risk of recurrence and death. RESULTS Among 4801 patients with HCC, we identified 426 patients who received resection and 544 who received ablation. The 2 treatment cohorts differed in cirrhosis prevalence and tumor stage. The 5-year recurrence risk was 40.7% (95% CI 35.5%-45.8%) following resection and 60.7% (95% CI: 55.9%-65.1%) following ablation. The 1-year recurrence risk decreased over the landmarks from 20.4% (95% CI: 16.6%-24.6%) at the time of resection to 4.7% (95% CI: 0.9%-13.9%) at the 5-year landmark. For ablation, the risk decreased from 36.1% (95% CI: 31.9%-40.4%) at the time of treatment to 5.3% (95% CI: 0.4%-21.4%) at the 5-year landmark. The risk of death without recurrence was stable over the landmarks following both resection and ablation. CONCLUSIONS In conclusion, the risk of recurrence or death following resection or ablation for HCC is high from the treatment date, but the risk of recurrence decreases greatly over the survival landmarks. This information is valuable for clinicians and their patients.
Collapse
Affiliation(s)
- Frederik Kraglund
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Nikolaj Skou
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Peter Jepsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
47
|
Li R, Yan X, Zhong W, Zheng J, Li X, Liang J, Hu Z, Liu H, Chen G, Yang Y, Zhang J, Qu E, Liu W. Stratifin promotes the malignant progression of HCC via binding and hyperactivating AKT signaling. Cancer Lett 2024; 592:216761. [PMID: 38490326 DOI: 10.1016/j.canlet.2024.216761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with limited treatment options and poor prognosis. In this study, we reveal the pivotal role of Stratifin (SFN), also recognized as 14-3-3σ, in driving HCC progression. Our investigation underscores a substantial upregulation of SFN within HCC tissues, manifesting a significant association with worse prognostic outcomes among HCC patients. In vitro and in vivo experiments reveal that SFN overexpression significantly amplifies proliferation, mitigates sorafenib-induced effects on HCC cells, and enhances tumorigenesis. While SFN silencing exerts converse effects on HCC progression. Additionally, we unveil a critical interaction between SFN and AKT, where SFN boosts AKT kinase activity by disrupting the binding of PHLPP2 and AKT, thereby intensifying the malignant progression of HCC cells. In conclusion, this study identifies the oncogenic role of SFN and elucidates the regulatory mechanism of the SFN/AKT axis in HCC, which may provide valuable insights into the mechanisms of HCC progression and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
| | - Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenhui Zhong
- Department of Pancreatic and Gastric Surgery, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Huanyi Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yang Yang
- Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Enze Qu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China.
| |
Collapse
|
48
|
Zhao LJ, Wang ZY, Liu WT, Yu LL, Qi HN, Ren J, Zhang CG. Aspirin suppresses hepatocellular carcinoma progression by inhibiting platelet activity. World J Gastrointest Oncol 2024; 16:2742-2756. [PMID: 38994144 PMCID: PMC11236245 DOI: 10.4251/wjgo.v16.i6.2742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Platelets (PLTs) are known to play a key role in the maintenance of liver homeostasis and the pathophysiological processes of a variety of liver diseases. Aspirin is the most classic antiplatelet agent. However, the molecular mechanism of platelet action and whether aspirin can affect HCC progression by inhibiting platelet activity need further study. AIM To explore the impact of the antiplatelet effect of aspirin on the development of HCC. METHODS Platelet-rich plasma, platelet plasma, pure platelet, and platelet lysate were prepared, and a coculture model of PLTs and HCC cells was established. CCK-8 analysis, apoptosis analysis, Transwell analysis, and real-time polymerase chain reaction (RT-PCR) were used to analyze the effects of PLTs on the growth, metastasis, and inflammatory microenvironment of HCC. RT-PCR and Western blot were used to detect the effects of platelet activation on tumor-related signaling pathways. Aspirin was used to block the activation and aggregation of PLTs both in vitro and in vivo, and the effect of PLTs on the progression of HCC was detected. RESULTS PLTs significantly promoted the growth, invasion, epithelial-mesenchymal transition, and formation of an inflammatory microenvironment in HCC cells. Activated PLTs promoted HCC progression by activating the mitogen-activated protein kinase/protein kinase B/signal transducer and activator of transcription three (MAPK/ AKT/STAT3) signaling axis. Additionally, aspirin inhibited HCC progression in vitro and in vivo by inhibiting platelet activation. CONCLUSION PLTs play an important role in the pathogenesis of HCC, and aspirin can affect HCC progression by inhibiting platelet activity. These results suggest that antiplatelet therapy has promising application prospects in the treatment and combined treatment of HCC.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Zhi-Yin Wang
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
| | - Wei-Ting Liu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Li-Li Yu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Hao-Nan Qi
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jie Ren
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Chen-Guang Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| |
Collapse
|
49
|
Zhao LJ, Wang ZY, Liu WT, Yu LL, Qi HN, Ren J, Zhang CG. Aspirin suppresses hepatocellular carcinoma progression by inhibiting platelet activity. World J Gastrointest Oncol 2024; 16:2730-2744. [DOI: 10.4251/wjgo.v16.i6.2730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Platelets (PLTs) are known to play a key role in the maintenance of liver homeostasis and the pathophysiological processes of a variety of liver diseases. Aspirin is the most classic antiplatelet agent. However, the molecular mechanism of platelet action and whether aspirin can affect HCC progression by inhibiting platelet activity need further study.
AIM To explore the impact of the antiplatelet effect of aspirin on the development of HCC.
METHODS Platelet-rich plasma, platelet plasma, pure platelet, and platelet lysate were prepared, and a coculture model of PLTs and HCC cells was established. CCK-8 analysis, apoptosis analysis, Transwell analysis, and real-time polymerase chain reaction (RT-PCR) were used to analyze the effects of PLTs on the growth, metastasis, and inflammatory microenvironment of HCC. RT-PCR and Western blot were used to detect the effects of platelet activation on tumor-related signaling pathways. Aspirin was used to block the activation and aggregation of PLTs both in vitro and in vivo, and the effect of PLTs on the progression of HCC was detected.
RESULTS PLTs significantly promoted the growth, invasion, epithelial-mesenchymal transition, and formation of an inflammatory microenvironment in HCC cells. Activated PLTs promoted HCC progression by activating the mitogen-activated protein kinase/protein kinase B/signal transducer and activator of transcription three (MAPK/ AKT/STAT3) signaling axis. Additionally, aspirin inhibited HCC progression in vitro and in vivo by inhibiting platelet activation.
CONCLUSION PLTs play an important role in the pathogenesis of HCC, and aspirin can affect HCC progression by inhibiting platelet activity. These results suggest that antiplatelet therapy has promising application prospects in the treatment and combined treatment of HCC.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Zhi-Yin Wang
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
| | - Wei-Ting Liu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Li-Li Yu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Hao-Nan Qi
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jie Ren
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Chen-Guang Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| |
Collapse
|
50
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|