1
|
Huang Y, Qiu M, Pan S, Zhou Y, Huang X, Jin Y, Zippi M, Fiorino S, Zimmer V, Hong W. Temporal trends in gender, etiology, severity and outcomes of acute pancreatitis in a third-tier Chinese city from 2013 to 2021. Ann Med 2025; 57:2442073. [PMID: 39699078 PMCID: PMC11660302 DOI: 10.1080/07853890.2024.2442073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND To evaluate temporal trends in gender, etiology, severity, outcomes, cost and median length of stay (MLS) in patients with acute pancreatitis (AP) in a third-tier Chinese city. METHODS Patients with AP admitted to a university hospital between January 2013 and December 2021. Relationships between etiology, prevalence of severe acute pancreatitis (SAP) and survey years were investigated by joinpoint regression analysis. RESULTS A total of 5459 (male 62.3%) patients with AP were included. Between January 2013 and December 2021, we observed: (a) the prevalence of biliary diseases-related AP was stable, while the prevalence of hypertriglyceridemia (HTG)-associated AP (Ptrend = 0.04) and alcohol-associated AP (Ptrend < 0.0001) both increased; (b) there was an increase in crude prevalence of SAP from 4.97% to 12.2% between 2013 and 2021 (Ptrend < 0.0001); (c) compared to female populations, male gender had a higher prevalence of AP; (d) there was a decrease in MLS from 11 days to 8 days (Ptrend < 0.0001) and in median cost of hospitalization (MCH) for all patients (from 20,166 to 12,845 YUAN) (Ptrend < 0.0001); (e) the overall in-hospital mortality rate was 1.28% (70/5459) for patients with AP. There was no statistically significant in the time trend of mortality during the study period (Ptrend = 0.5873). At multivariate analysis, survey year was associated with prevalence of SAP after adjustment by age and biliary diseases (OR: 1.07; 95% CI: 1.03-1.12). Based on the stratification by severity of disease, the decrease of MLS and MCH was more significant in non-SAP vs. SAP patients. CONCLUSIONS Over the observational period, the proportion of male patients with AP, prevalence of age-adjusted rate of HTG and alcohol-associated AP and SAP increased, while MLS and MCH for all patients decreased, and the time trend of mortality of AP was stable.
Collapse
Affiliation(s)
- Yining Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuang Pan
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhou
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyi Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yinglu Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Sirio Fiorino
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, Italy
| | - Vincent Zimmer
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Zhu Y, Wang Q, Zheng Y, Chen N, Kou L, Yao Q. Microenvironment responsive nanomedicine for acute pancreatitis treatment. Colloids Surf B Biointerfaces 2025; 251:114633. [PMID: 40112593 DOI: 10.1016/j.colsurfb.2025.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Acute pancreatitis (AP) is an acute inflammation of the pancreas, which is considered a prevalent gastrointestinal emergency characterized by rapid progression and significant mortality. Currently available medications primarily serve as adjunctive therapies, yielding suboptimal therapeutic outcomes. Consequently, there remains a dearth of specific and efficient treatment modalities for AP. In recent years, nanomedicine-based treatment strategies have exhibited significant potential as drug therapy approaches for pancreatitis. The distinctive features of the AP microenvironment encompass aberrant activation of pancreatic enzymes, oxidative stress induced by elevated reactive oxygen species levels, and excessive production of pro-inflammatory cytokines; these factors offer promising targeted sites for early diagnosis and treatment using nanomedicine. This article comprehensively delineates the pathological microenvironmental characteristics associated with AP while highlighting the application of microenvironment-responsive strategies in nanodrug delivery systems for its treatment, thereby providing insights into future prospects.
Collapse
Affiliation(s)
- Yixuan Zhu
- Wenzhou Municipal KeyLaboratory of Pediatric Pharmacy, Department of Pharmacy, The Second AffiliatedHospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yaoyao Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Nuo Chen
- Wenzhou Municipal KeyLaboratory of Pediatric Pharmacy, Department of Pharmacy, The Second AffiliatedHospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Wenzhou Municipal KeyLaboratory of Pediatric Pharmacy, Department of Pharmacy, The Second AffiliatedHospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Qing Yao
- Wenzhou Municipal KeyLaboratory of Pediatric Pharmacy, Department of Pharmacy, The Second AffiliatedHospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Almutary KH, Zaghloul MS, Nader MA, Elsheakh AR. Mechanistic insights into the protective potential of ambrisentan against L-arginine induced acute pancreatitis and multiorgan damage (role of NRF2/HO-1 and TXNIP/NLRP3 pathways). Biomed Pharmacother 2025; 187:118119. [PMID: 40319659 DOI: 10.1016/j.biopha.2025.118119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025] Open
Abstract
Acute pancreatitis (AP) is an abrupt inflammation of the pancreatic tissue. The severity of AP varies from mild and self-limiting to severe, potentially fatal, and can affect several organ systems. The most severe type of AP causes multiple organ damage (MOD) due to systemic inflammation. In this study, ambrisentan (AMB), an endothelin A receptor antagonist (ETA), was investigated for its potential to ameliorate L-arginine (L-Arg) induced AP and MOD in rats. AP was induced using L-Arg (100 mg/100 g). Two doses of AMB were tested and compared to N-acetylcystiene (NAC) effect. AMB restored the normal structure of the pancreatic, hepatic, pulmonary, and renal tissues. In addition, it normalized the levels of pancreatic enzymes, lactate dehydrogenase (LDH), serum liver enzymes, and kidney biomarkers. Furthermore, AMB corrected the imbalance in the levels of oxidants/antioxidants caused by L-Arg. In contrast, AMB (5 mg/kg) significantly upregulated the protein levels of adenosine monophosphate protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (NRF2), heme oxidase-1(HO-1) and thioredoxin reductase 1 (TXNRD1) by approximately 69.59 %, 85.14 %, 688 % and 96 % respectively, compared with those in rats treated with L-Arg. Furthermore, AMB (5 mg/kg) significantly lowered the thioredoxin-interacting protein (TXNIP), nod-like Receptor Protein 3 (NLRP3), glycogen synthase kinase-3β (GSK-3β), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), CD68, autophagic markers (P62 and LC3) and apoptotic marker caspase 3 by around 62.43 %, 73.56 %, 62.5 %,70 %, 80.3 %, 93 %, 96.7 %, 95 %, 39.6 % respectively, compared to the group treated with L-Arg. AMB effectively improved the AP and MOD produced by L-Arg through its anti-inflammatory and antioxidant properties. NRF2/HO-1 and TXNIP/NLRP3 pathways play major roles in these protective effects.
Collapse
Affiliation(s)
- Khaled H Almutary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Majmaah University, P.O.Box 66, Majmaah 11952, Saudi Arabia
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt
| | - Ahmed R Elsheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt; Future Studies and Risks Management & National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| |
Collapse
|
4
|
Yenice G, Ozkanlar S, Bolat I, Yildirim S. The Potential Ability of Betulinic Acid to Prevent Experimentally Induced Acute Pancreatitis in Rats. Basic Clin Pharmacol Toxicol 2025; 136:e70052. [PMID: 40344370 PMCID: PMC12061522 DOI: 10.1111/bcpt.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Acute pancreatitis (AP) is a serious pancreatic inflammatory disease that results in pancreatic enzyme activation and autodegradation. Betulinic acid (BA), a pentacyclic triterpene of natural origin that was isolated from several plants, has anti-inflammatory, immunomodulatory and antioxidant effects that can help with AP. With this study, we aimed to investigate the potential positive effects of BA on l-arginine-induced AP. A total of 24 male rats were divided into four groups (control, BA, AP and BA + AP). Animals in the BA group were given BA 50 mg/kg/day for 7 days. AP was induced by administering two doses of 250-mg/100-g l-arginine to animals in the AP group. The animals in the BA + AP group were administered 50-mg/kg/day BA (gavage) for 7 days and two doses of 250-mg/100-g l-arginine on the seventh day. BA pretreatment inhibited the increased lipase activity caused by AP and showed protective activity against oxidative damage to pancreatic tissue. It decreased the severity of inflammation by suppressing the release of pro-inflammatory cytokines while increasing the level of the anti-inflammatory cytokine IL-10. It showed a protective effect on pancreatic tissue by inhibiting tumour necrosis factor (TNF-α) and Bax expression. The findings of the study show that BA exhibits multifaceted protective activity in experimental AP induced with l-arginine.
Collapse
Affiliation(s)
- Guler Yenice
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional DisordersAtaturk UniversityErzurumTurkey
| | - Seckin Ozkanlar
- Faculty of Veterinary Medicine, Department of BiochemistryAtaturk UniversityErzurumTurkey
| | - Ismail Bolat
- Faculty of Veterinary Medicine, Department of PathologyAtaturk UniversityErzurumTurkey
| | - Serkan Yildirim
- Faculty of Veterinary Medicine, Department of PathologyAtaturk UniversityErzurumTurkey
| |
Collapse
|
5
|
Wang L, Gao Z, Tian M, Liu L, Xie J, Chen M, Huang Z, Dong B, Li W, Shi L, Tong Y, Xu H, Shen B, Cen D, Yu H, Yu X. A Nanosystem Alleviates Severe Acute Pancreatitis via Reactive Oxygen Species Scavenging and Enhancing Mitochondrial Autophagy. NANO LETTERS 2025; 25:8644-8654. [PMID: 40369909 DOI: 10.1021/acs.nanolett.5c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Severe acute pancreatitis (SAP) is a life-threatening condition characterized by excessive reactive oxygen species (ROS) production and impaired mitochondrial function, resulting from disrupted autophagic flux. Current clinical treatment for SAP fails to address the condition comprehensively, with the treatment targeting only a single pathogenesis. Herein, we report an innovative acid-responsive biomimetic nanozyme. This system features a hollow Prussian blue (PB) core, serving as an ROS scavenger encapsulated within a porous ZIF-8 shell, enabling the efficient delivery of celastrol that activates autophagic flux. Encased in a macrophage membrane, this system selectively targets inflamed pancreatic tissues and is readily internalized by pancreatic acinar cells. This dual-scavenging mechanism effectively attenuates inflammatory cytokine levels and restores mitochondrial homeostasis in three distinct SAP mouse models. Overall, this study presents a promising synergistic strategy for the dual scavenging of damaged mitochondria and ROS, offering a novel therapeutic approach to the treatment of SAP.
Collapse
Affiliation(s)
- Liying Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Zerui Gao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Mengxiang Tian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Li Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Jinyan Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Muxiong Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Zihao Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Bingzhi Dong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Weiqi Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Hongxia Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Dong Cen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Xin Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Zhejiang Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
- Department of Anesthesia, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, People's Republic of China
| |
Collapse
|
6
|
Hou X, Wang C, Chen C, Liu H, Wang L, Yi Y, Jiang S, Qi X, Wei Z, Cheng Y, Pu Q. Galangin protects against acute pancreatitis by inhibiting ROS-induced acinar cell apoptosis and M1-type macrophage polarization. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167887. [PMID: 40320186 DOI: 10.1016/j.bbadis.2025.167887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/22/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025]
Abstract
Acute pancreatitis (AP) is a common disease in the digestive tract and is characterized by elevated serum pancreatic proteases and abdominal pain. AP, especially severe AP, is still a deadly disease; thus, identifying potential therapies and exploring the underlying mechanism are essential for AP patients. Galangin, a flavonoid extracted from traditional medicinal herbs, shows robust anti-inflammatory and cell protection abilities in various diseases, but its role in AP has not been unveiled. We explored the function and mechanism of galangin in AP using caerulein-induced mouse, isolated acinar cell and bone marrow-derived macrophage models. The pancreas was analyzed using histology and immunofluorescent staining; cytokine levels, the activity of amylase and lipase, and reactive oxygen species (ROS) levels were determined; infiltrating macrophages were analyzed by flow cytometry; certain proteins and RNAs were analyzed; and the safety of galangin was also evaluated. We found that galangin significantly attenuated AP in mice and acinar cells by decreasing ROS and apoptosis via the promotion of Srxn1 expression through an NRF2-dependent pathway. Galangin significantly reduced the number of infiltrating macrophages and inhibited the activation of M1-type macrophages by negatively regulating NF-κB signaling. Compared to the control, no obvious side effects were observed in the galangin-treated group. Thus, our study demonstrated that galangin is a safe and efficient drug to treat AP by preventing injury to acinar cells and inhibiting M1-type macrophages, suggesting a potential therapy for AP in the future.
Collapse
Affiliation(s)
- Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chao Chen
- Department of General Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410006, China
| | - He Liu
- Department of General Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410006, China
| | - Lei Wang
- Department of General Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410006, China
| | - Yong Yi
- Department of General Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410006, China
| | - Shihe Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zuxing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yimiao Cheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qunwang Pu
- Department of General Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410006, China.
| |
Collapse
|
7
|
Seidel T, Ohri N, Glaß M, Sunami Y, Müller LP, Kleeff J. Stromal Cells in Early Inflammation-Related Pancreatic Carcinogenesis-Biology and Its Potential Role in Therapeutic Targeting. Cancers (Basel) 2025; 17:1541. [PMID: 40361466 DOI: 10.3390/cancers17091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor progression and therapy response. This review addresses the central role of stromal cells in the early inflammation-driven development of PDAC. It focuses on major subpopulations of pancreatic mesenchymal cells, i.e., fibroblasts, pancreatic stellate cells, and multipotent stroma cells, particularly their activation and functional alterations upon chronic inflammation including the development of different types of carcinoma-associated fibroblasts. In the second part, the current knowledge on the impact of activated stroma cells on acinar-to-ductal metaplasia and the transition to pancreatic intraepithelial neoplasia is summarized. Finally, putative strategies to target stroma cells and their signaling in early pancreatic carcinogenesis are reflected. In summary, the current data show that the activation of pancreatic stroma cells and the resulting fibrotic changes has pro- and anti-carcinogenetic effects but, overall, creates a carcinogenesis-promoting microenvironment. However, this is a dynamic process and the therapeutic targeting of specific pathways and cells requires in-depth knowledge of the molecular interplay of various cell types.
Collapse
Affiliation(s)
- Tina Seidel
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Lutz P Müller
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Zhang X, Xu C, Ji L, Zhang H. Endoplasmic reticulum stress in acute pancreatitis: Exploring the molecular mechanisms and therapeutic targets. Cell Stress Chaperones 2025; 30:119-129. [PMID: 40107566 PMCID: PMC11995708 DOI: 10.1016/j.cstres.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Acute pancreatitis (AP) is associated with multiple cellular mechanisms that trigger and or are triggered by the inflammatory injury and death of the acinar cells. One of the key mechanisms is the endoplasmic reticulum (ER) stress, which manifests as an accumulation of misfolded proteins within ER, an event that has proinflammatory and proapoptotic consequences. Hence, the degree of cell insult during AP could considerably depend on the signaling pathways that are upregulated during ER stress and its resulting dyshomeostasis such as C/EBP homologous protein (CHOP), cJUN NH2-terminal kinase (JNK), nuclear factor kappa B (NF-κB), and NOD-like receptor protein 3 (NLRP3) inflammasome. Exploring these molecular pathways is an interesting area for translational medicine as it may lead to identifying new therapeutic targets in AP. This review of the literature aims to shed light on the different roles of ER stress in the etiopathogenesis and pathogenesis of AP. Then, it specifically focuses on the therapeutic implications of ER stress in this context.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China
| | - Chenchen Xu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong, China
| | - LiJuan Ji
- Department of Internal Medicine, Weicheng People's Hospital, Weifang, Shandong, China
| | - Haiwei Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
9
|
Zhang R, Zhu S, Shi L, Zhang H, Xu X, Xiang B, Wang M. Automated machine learning for early prediction of systemic inflammatory response syndrome in acute pancreatitis. BMC Med Inform Decis Mak 2025; 25:167. [PMID: 40247291 PMCID: PMC12007213 DOI: 10.1186/s12911-025-02997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Systemic inflammatory response syndrome (SIRS) is a frequent and serious complication of acute pancreatitis (AP), often associated with increased mortality. This study aims to leverage automated machine learning (AutoML) algorithms to create a model for the early and precise prediction of SIRS in AP. METHODS This study retrospectively analyzed patients diagnosed with AP across multiple centers from January 2017 to December 2021. Data from the First Affiliated Hospital of Soochow University and Changshu Hospital were used for training and internal validation, while testing was conducted with data from the Second Affiliated Hospital. Predictive models were constructed and validated using the least absolute shrinkage and selection operator (LASSO) and AutoML. A nomogram was developed based on multivariable logistic regression (LR) analysis, and the performance of the models was assessed through receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Additionally, the AutoML model's effectiveness and interpretability were assessed through DCA, feature importance, SHapley Additive exPlanation (SHAP) plots, and locally interpretable model-agnostic explanations (LIME). RESULTS A total of 1,224 patients were included, with 812 in the training cohort, 200 in validation, and 212 in testing. SIRS occurred in 33.7% of the training cohort, 34.0% in validation, and 22.2% in testing. AutoML models outperformed traditional LR, with the deep learning (DL) model achieving an area under the ROC curve of 0.843 in the training set, and 0.848 and 0.867 in validation and testing, respectively. CONCLUSION The AutoML model using the DL algorithm is clinically significant for the early prediction of SIRS in AP.
Collapse
Affiliation(s)
- Rufa Zhang
- Department of Gastroenterology, The People's Hospital of Nanchuan, No. 16, Nanda Street, Nanchuan District, Chongqing, 408400, China
| | - Shiqi Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Shi
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu, China
| | - Hao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaodan Xu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu, China
| | - Bo Xiang
- Department of Gastroenterology, The People's Hospital of Nanchuan, No. 16, Nanda Street, Nanchuan District, Chongqing, 408400, China.
| | - Min Wang
- Department of Gastroenterology, The People's Hospital of Nanchuan, No. 16, Nanda Street, Nanchuan District, Chongqing, 408400, China.
| |
Collapse
|
10
|
Ma C, Zhu W, Hu X, Wu D, Zhao X, Du Y, Kong X. Acinar cells modulate the tumor microenvironment through the promotion of M1 macrophage polarization via macrophage endocytosis in pancreatic cancer. Discov Oncol 2025; 16:489. [PMID: 40198509 PMCID: PMC11979042 DOI: 10.1007/s12672-025-02244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is a highly aggressive and fatal cancer. M1 macrophages are generally considered to have anti-tumor properties, capable of suppressing tumor growth and metastasis by secreting pro-inflammatory cytokines and enhancing the immune response. AIMS The objective of this research was to pinpoint crucial genes associated with M1 macrophages and search for a new way to activate the M1 phenotype of macrophages in PDA. METHODS The level of immune cell infiltration was assessed using CIBERSORT in TCGA-PAAD cohort and ICGC-PACA cohort. We performed weighted gene co-expression network analysis (WGCNA) to identify the module most correlated with M1 macrophages and we identified hub genes through protein-protein interaction (PPI) analyse. Through survival analysis, correlation analysis and single cell analysis, we obtained the relationship between hub genes and prognosis, and the relationship between key genes and immune cells, as well as its expression in various cells. RESULTS PRSS1 (Cationic trypsinogen) and CTRB1 (Chymosinogen B) were hub genes of the M1 macrophage-associated WGCNA module (211genes) and are closely related to the extension of survival time, which are also verified as cell growth-related genes by DepMap database. Through single-cell sequencing analysis, we determined that the expression levels of PRSS1 and CTRB1 in the acinar cells of tumor tissues were diminished. PRSS1 and CTRB1 are considered to be the signature genes of acinar cells. The proportion of acinar cells was also correlated with the infiltration of CD8T cells and M1 cells. Immunostaining revealed elevated expression levels of PRSS1 and CTRB1 in adjacent normal tissues. Cell line experiments confirmed that macrophages polarize towards M1 by engulfing pancreatic enzyme granules, thereby inhibiting the malignant phenotype of tumor cells. CONCLUSION Our findings highlight the critical role of acinar cells in modulating the immune microenvironment of pancreatic tumors by influencing macrophage polarization. This insight may provide novel opportunities for therapeutic interventions in cancer treatment.
Collapse
Affiliation(s)
- Congjia Ma
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Wenbo Zhu
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Xiulin Hu
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Deli Wu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Soochow University, Soochow, China
| | - Xintong Zhao
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
| |
Collapse
|
11
|
Wu J, Huang H, Xu W, Cui B, Sun P, Hao X, Jiang S, Hou X, Qi X, Wei Z, Cheng Y, Zheng Y, Liu K, He J. Inflammation-driven biomimetic nano-polyphenol drug delivery system alleviates severe acute pancreatitis by inhibiting macrophage PANoptosis and pancreatic enzymes oversecretion. J Adv Res 2025:S2090-1232(25)00225-5. [PMID: 40210149 DOI: 10.1016/j.jare.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
INTRODUCTION Severe acute pancreatitis (SAP) is a critical inflammatory disease with high morbidity and mortality. Current treatments focused on symptomatic relief but failed to prevent inflammation progression in cellular level. OBJECTIVES In order to develop an SAP-targeting drug delivery system to alleviate SAP in cellular level and illustrate its mechanism, we explored the use of proanthocyanidin (PYD) and pentoxifylline (PTX) loaded into macrophage membrane-coated self-assembly nanoparticles (FePTX@CM NPs) for targeted SAP treatment. The combination application of these two drugs was innovative in SAP aid. METHODS We developed the NPs by self-assembly strategy and cell membrane coating. Its particle size and zeta potential were measured by dynamic light scatter (DLS). The morphology of the NPs was observed by transmission electron microscopy (TEM). And the encapsulation efficiency was evaluated by nano-flow cytometry. The total protein profile was determined via Coomassie brilliant blue. We explore the mechanism of our NPs against SAP in cellular and animal levels. Bioinformatics approaches, TEM, immunofluorescent assay and co-immunoprecipitation were performed to comprehensively explain the specific anti-SAP mechanism of FePTX@CM NPs. RESULTS After inflammation-driven targeting, PYD in the NPs inhibited pancreatic amylase and lipase release by suppressing mitochondrial reactive oxygen species (mtROS)/Golgi stress, while PTX prevented SAP-associated macrophage PANoptosis by inhibiting Zbp1 signal pathway. The protection effect of these biomimetic NPs worked from different aspects to alleviate SAP symptoms and inflammation progression in relative cells. CONCLUSION The FePTX@CM NPs demonstrated effective pancreas targeting, reduced systemic inflammation especially pro-inflammatory cell recruitment and activation, and minimized tissue damage in SAP mouse models, offering a promising therapeutic strategy for clinical SAP management.
Collapse
Affiliation(s)
- Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy Central South University Changsha 410011, China
| | - Hai Huang
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy Central South University Changsha 410011, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy Central South University Changsha 410011, China
| | - Beibei Cui
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Pengcheng Sun
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy Central South University Changsha 410011, China
| | - XinYan Hao
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy Central South University Changsha 410011, China
| | - Shihe Jiang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xuyang Hou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zuxing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yimiao Cheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yanwen Zheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Jun He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
An Y, Tu Z, Wang A, Gou W, Yu H, Wang X, Xu F, Li Y, Wang C, Li J, Zhang M, Xiao M, Di Y, Hou W, Cui Y. Qingyi decoction and its active ingredients ameliorate acute pancreatitis by regulating acinar cells and macrophages via NF-κB/NLRP3/Caspase-1 pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156424. [PMID: 40020626 DOI: 10.1016/j.phymed.2025.156424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND AND PURPOSE Macrophage infiltration and activation is a critical step during acute pancreatitis (AP). NLRP3 inflammasomes in macrophages plays a critical role in mediating pancreatic inflammatory responses. Qing-Yi Decoction(QYD)has been used for many years in clinical practice of Nankai Hospital combined with traditional Chinese and western medicine treatment of acute pancreatitis. Although QYD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects. Here, we elucidate the therapeutic effects of QYD against acute pancreatitis and reveal its mechanism of action. METHODS The main components of QYD were identified using UHPLC-Q-Orbitrap MS. Network pharmacology was employed to predict potential therapeutic targets and their mechanisms of action. C57BL/6 mice were randomly divided into control group, model group, low, medium and high dose (6, 12, 24 g/kg) QYD groups, with 10 mice in each group. The therapeutic effect of QYD on cerulein-induced acute pancreatitis. (CER-AP) was evaluated by histopathological score, immunohistochemistry, serum amylase and cytokines detection by ELISA. The protein expressions of MyD88/NF-κB/NLRP3 signaling pathway were detected by Western blotting. Along with molecular docking of key bioactive compounds and targets, RAW264.7 cells stimulated with 1μg/ml LPS is used to screen components with more potent effects on target proteins. AR42 J cells were stimulated with 100 nM dexamethasone (dexa) combined with 10 nM cerulein (CN) as s a cell-culture model of acute pancreatitis. Inhibitory effects of the main chemical composition Wogonoside on NLRP3 inflammasomes were analyzed by qRT-PCR and Western blots. RESULTS Using UHPLC-Q-Orbitrap MS, 217 compounds were identified from QYD, including Wogonoside, Catechins, Rhein, etc. A visualization network of QYD-compounds-key targets-pathways-AP show that QYD may modulate PI3K-Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, Ras signaling pathway and Apoptosis signaling pathway by targeting TNF, IL1β, AKT1, TP53 and STAT3 exerting a therapeutic effect on AP. QYD administration effectively mitigated CER-induced cytokine storm, pancreas edema and serum amylase. QYD (12 mg/kg) showed better effect. The protein expression levels of MyD88, NF-κB, NLRP3, Caspase-1 and GSDMD in pancreatic tissue were significantly decreased. Through molecular docking and LPS-RAW264.7 inflammation model, the selected Wogonoside significantly decreased IL-1β mRNA. The expression levels of NLRP3/Caspase-1/GSDMD pathway-related proteins were also decreased on AR42J-AP. CONCLUSION The results of network pharmacology indicate that QYD can inhibit AP through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that QYD can reduce AP by inhibiting NLRP3 inflammasomes, additionally, it should be noted that 12mg/kg was a relatively superior dose. One of the main chemical compositions Wogonoside regulated NLRP3 inflammasome activation to protect against AP. This study is the first to verify the intrinsic molecular mechanism of QYD in treating AP by combining network pharmacology and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.
Collapse
Affiliation(s)
- Yu An
- Tianjin Medical University, Tianjin, China
| | - Zhengwei Tu
- Tianjin Nankai Hospital, Tianjin, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Ao Wang
- Tianjin Medical University, Tianjin, China
| | - Wenfeng Gou
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Huijuan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | | | - Feifei Xu
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yanli Li
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Cong Wang
- Tianjin Medical University, Tianjin, China
| | - Jinan Li
- Tianjin Medical University, Tianjin, China
| | - Mengyue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | | | - Ying Di
- Tianjin Medical University, Tianjin, China
| | - Wenbin Hou
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Yunfeng Cui
- Tianjin Medical University, Tianjin, China; Tianjin Nankai Hospital, Tianjin, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
13
|
Lin S, Liang F, Chen C, Lin J, Wu Y, Hou Z, Huang H, Fang H, Pan Y. Annexin A1 regulates inflammatory-immune response and reduces pancreatic and extra- pancreatic injury during severe acute pancreatitis. Genes Immun 2025; 26:124-136. [PMID: 40025269 DOI: 10.1038/s41435-025-00321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Severe acute pancreatitis (SAP) poses significant challenges due to its complex pathophysiology, which includes inflammatory-immune responses that cause considerable damage to both the pancreas and other tissues. In this study, we explored the role of Annexin A1 (Anxa1), a glucocorticoid-regulated protein recognized for its anti-inflammatory properties, in regulating inflammation during acute pancreatitis. Using flow cytometry, single-cell RNA sequencing, and gene expression analysis, we examined how Anxa1 expression is regulated in myeloid cells throughout acute pancreatitis, employing various animal models to evaluate the consequences of modulating Anxa1 on injuries induced by SAP. Our findings revealed dynamic regulation of Anxa1 expression in myeloid cells, with mice lacking Anxa1 exhibiting worsened pancreatic injury and heightened systemic inflammation, resulting in significant damage to extra-pancreatic organs such as the lungs, liver, and kidneys. In contrast, treatment with Ac2-26, a synthetic peptide derived from Anxa1, effectively mitigated both pancreatic and extra-pancreatic inflammation and tissue damage. Overall, this study highlights the critical role of Anxa1 in modulating inflammatory responses during acute pancreatitis. Targeting Anxa1 presents a promising therapeutic strategy to mitigate pancreatic injury and prevent systemic complications associated with severe acute pancreatitis.
Collapse
Affiliation(s)
- Shizhao Lin
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Feihong Liang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Changgan Chen
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Haizong Fang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
14
|
Kong N, Chang P, Shulman IA, Haq U, Amini M, Nguyen D, Khan F, Narala R, Sharma N, Wang D, Thompson T, Sadik J, Breze C, Whitcomb DC, Buxbaum JL. Machine Learning-Guided Fluid Resuscitation for Acute Pancreatitis Improves Outcomes. Clin Transl Gastroenterol 2025; 16:e00825. [PMID: 39851257 PMCID: PMC12020695 DOI: 10.14309/ctg.0000000000000825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
INTRODUCTION Ariel Dynamic Acute Pancreatitis Tracker (ADAPT) is an artificial intelligence tool using mathematical algorithms to predict severity and manage fluid resuscitation needs based on the physiologic parameters of individual patients. Our aim was to assess whether adherence to ADAPT fluid recommendations vs standard management impacted clinical outcomes in a large prospective cohort. METHODS We analyzed patients consecutively admitted to the Los Angeles General Medical Center between June 2015 and November 2022 whose course was richly characterized by capturing more than 100 clinical variables. We inputted these data into the ADAPT system to generate resuscitation fluid recommendations and compared with the actual fluid resuscitation within the first 24 hours from presentation. The primary outcome was the difference in organ failure in those who were over-resuscitated (>500 mL) vs adequately resuscitated (within 500 mL) with respect to the ADAPT fluid recommendation. Additional outcomes included intensive care unit admission, systemic inflammatory response syndrome (SIRS) at 48 hours, local complications, and pancreatitis severity. RESULTS Among the 1,083 patients evaluated using ADAPT, 700 were over-resuscitated, 196 were adequately resuscitated, and 187 were under-resuscitated. Adjusting for pancreatitis etiology, gender, and SIRS at admission, over-resuscitation was associated with increased respiratory failure (odd ratio [OR] 2.73, 95% confidence interval [CI] 1.06-7.03) as well as intensive care unit admission (OR 2.40, 1.41-4.11), more than 48 hours of hospital length of stay (OR 1.87, 95% CI 1.19-2.94), SIRS at 48 hours (OR 1.73, 95% CI 1.08-2.77), and local pancreatitis complications (OR 2.93, 95% CI 1.23-6.96). DISCUSSION Adherence to ADAPT fluid recommendations reduces respiratory failure and other adverse outcomes compared with conventional fluid resuscitation strategies for acute pancreatitis. This validation study demonstrates the potential role of dynamic machine learning tools in acute pancreatitis management.
Collapse
Affiliation(s)
- Niwen Kong
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Patrick Chang
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Ira A. Shulman
- Department of Pathology, University of Southern California, Los Angeles, California, USA;
| | - Ubayd Haq
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Maziar Amini
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Denis Nguyen
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Farhaad Khan
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Rachan Narala
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Nisha Sharma
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Daniel Wang
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Tiana Thompson
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Jonathan Sadik
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Cameron Breze
- Ariel Precision Medicine, Pittsburgh, Pennsylvania, USA;
| | - David C. Whitcomb
- Ariel Precision Medicine, Pittsburgh, Pennsylvania, USA;
- Division of Gastroenterology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - James L. Buxbaum
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| |
Collapse
|
15
|
Boggio V, Gonzalez CD, Zotta E, Ropolo A, Vaccaro MI. VMP1 Constitutive Expression in Mice Dampens Pancreatic and Systemic Histopathological Damage in an Experimental Model of Severe Acute Pancreatitis. Int J Mol Sci 2025; 26:3196. [PMID: 40243995 PMCID: PMC11988950 DOI: 10.3390/ijms26073196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Acute pancreatitis (AP) an inflammatory condition caused by the premature activation of pancreatic proteases, leads to organ damage, systemic inflammation, and multi-organ failure. Severe acute pancreatitis (SAP) has high morbidity and mortality, affecting the liver, kidneys, and lungs. Autophagy maintains pancreatic homeostasis, with VMP1-mediated selective autophagy (zymophagy) preventing intracellular zymogen activation and acinar cell death. This study examines the protective role of VMP1 (Vacuole Membrane Protein 1)-induced autophagy using ElaI-VMP1 transgenic mice in a necrohemorrhagic SAP model (Hartwig's model). ElaI-VMP1 mice show significantly reduced pancreatic injury, including lower necrosis, edema, and inflammation, compared to wild-type (WT) mice. Biochemical markers (lactate dehydrogenase-LDH-, amylase, and lipase) and histopathology confirm that VMP1 expression mitigates pancreatic damage. Increased zymophagy negatively correlates with acinar necrosis, reinforcing its protective role. Beyond the pancreas, ElaI-VMP1 mice exhibit preserved liver, kidney, and lung histology, indicating reduced systemic organ damage. The liver maintains normal architecture, kidneys show minimal tubular necrosis, and lung inflammation features are reduced compared to WT mice. Our results confirm that zymophagy functions as a protective pathophysiological mechanism against pancreatic and extrapancreatic tissue injury in SAP. Further studies on the mechanism of VMP1-mediated selective autophagy in AP are necessary to determine its relevance and possible modulation to prevent the severity of AP.
Collapse
Affiliation(s)
- Veronica Boggio
- Instituto de Bioquímica y Biología Molecular Prof. Alberto Boveris, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (V.B.); (E.Z.)
| | - Claudio Daniel Gonzalez
- Centro de Educación Medica e Investigaciones Clínicas (CEMIC), Hospital Universitario Saavedra, Buenos Aires 1431, Argentina;
| | - Elsa Zotta
- Instituto de Bioquímica y Biología Molecular Prof. Alberto Boveris, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (V.B.); (E.Z.)
| | - Alejandro Ropolo
- Instituto de Bioquímica y Biología Molecular Prof. Alberto Boveris, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (V.B.); (E.Z.)
| | - Maria Ines Vaccaro
- Instituto de Bioquímica y Biología Molecular Prof. Alberto Boveris, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (V.B.); (E.Z.)
- Centro de Educación Medica e Investigaciones Clínicas (CEMIC), Hospital Universitario Saavedra, Buenos Aires 1431, Argentina;
| |
Collapse
|
16
|
Yang B, Qiao H, Liu Y, Wang X, Peng W. The Structure and Functional Changes of Thyroid in Severe Acute Pancreatitis Rats. Physiol Res 2025; 74:105-114. [PMID: 40126147 PMCID: PMC11995943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 03/25/2025] Open
Abstract
Severe acute pancreatitis (SAP) is associated with metabolic disorders, hypocalcemia, and multiple organ failure. The objective of this study was to investigate changes in thyroid ultrastructure and function in rats with SAP and to provide a theoretical basis for the clinical treatment of thyroid injury in patients with SAP. 64 male SPF Wistar rats were randomly divided into the SAP group and the control group. Pancreatic enzymatic indicators and thyroid hormones were detected, pathology scores were evaluated, and morphological changes were observed under light microscopy and transmission electron microscopy (TEM) in both groups. The serum levels of triiodothyronine (T3), tetraiodothyronine (T4) and Ca2+ were significantly lower in the SAP group than in the control group (P<0.05), whereas the level of calcitonin (CT) was significantly higher than that in the control group (P<0.05). The thyroid structure (pathology and electron microscopy) of the SAP rats was seriously damaged and worsened over time. SAP can cause thyroid injury through a variety of mechanisms, which can also retroact to pancreatitis to aggravate the inflammatory response. This study may have theoretical significance for basic research on SAP. Key words Severe acute pancreatitis, Thyroid, Structure and functional changes, Transmission electron microscopy.
Collapse
Affiliation(s)
- B Yang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China. Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
17
|
Dahiya S, Arbujas JR, Hajihassani A, Amini S, Wageley M, Gurbuz K, Ma Z, Copeland C, Saleh M, Gittes GK, Koo BK, DelGiorno KE, Esni F. The Stmn1-lineage contributes to acinar regeneration but not to neoplasia upon oncogenic Kras expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643944. [PMID: 40166191 PMCID: PMC11957014 DOI: 10.1101/2025.03.18.643944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
BACKGROUND & AIMS The exocrine pancreas has a limited regenerative capacity, but to what extent all acinar cells are involved in this process is unclear. Nevertheless, the heterogenous nature of acinar cells suggests that cells exhibiting higher plasticity might play a more prominent role in acinar regeneration. In that regard, Stmn1 -expressing acinar cells have been identified as potential facultative progenitor-like cells in the adult pancreas. Here, we studied Stmn1-progeny under physiological conditions, during regeneration, and in the context of Kras G12D expression. METHODS We followed the fate of Stmn1-progenies both under baseline conditions, following caerulein-induced acute or chronic pancreatitis, pancreatic duct ligation, and in the context of Kras G12D expression. RESULTS The Stmn1-lineage contributes to baseline acinar cell turnover under physiological conditions. Furthermore, these cells rapidly proliferate and repopulate the acinar compartment in response to acute injury in an ADM-independent manner. Moreover, acinar regeneration during chronic pancreatitis progression is in conjunction with a decline in the proliferative capacity of the Stmn1-lineage. Interestingly, newly generated acinar cells display increased susceptibility to additional injury during recurrent acute pancreatitis (RAP). Finally, given their inability to form ADMs, the Stmn1-lineage fails to form PanINs upon oncogenic Kras expression. CONCLUSIONS Our findings establish the Stmn1-lineage as a pivotal subpopulation for acinar tissue homeostasis and regeneration. The ability of these cells to restore acinar tissue in an ADM-independent manner distinguishes them as a critical regenerative population. This study presents a new paradigm for acinar regeneration and repair in the context of pancreatitis and neoplasia.
Collapse
|
18
|
Wu D, Cai W, Wu Z, Huang Y, Mukherjee R, Peng J, Huang W, Li Q, Xia Q, Jiang K. Multi-omics profiles reveal immune microenvironment alterations associated with PD-L1 checkpoint in acute pancreatitis in the early phase. Biochem Biophys Res Commun 2025; 751:151451. [PMID: 39922059 DOI: 10.1016/j.bbrc.2025.151451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Acute pancreatitis (AP) initiates as primarily sterile local inflammation that triggers pro-inflammatory response, which is subsequently counterbalanced by an anti-inflammatory response. Immune checkpoints, such as PD-1/PD-L1, play a pivotal role in modulating these responses to prevent excessive immune activation and associated inflammatory damage. This study aimed to investigate the underlying mechanisms of these processes in both murine and human AP. METHODS We conducted a comprehensive integration of data from cerulein-induced AP mouse models (CER-AP), utilizing single-cell RNA sequencing and digital spatial profiling for pancreatic samples, as well as single-cell Cytometry by Time Of Flight (CyTOF) for blood samples. Additionally, bulk-RNA sequencing performed on blood samples from AP patients was employed to investigate innate and adaptive immune changes at early stage of the disease. RESULTS Across the four analytical approaches, we observed consistent immune cell type distributions. Our integrative analysis revealed a significant imbalance between increased innate immune cells, including neutrophils, macrophages, and monocytes, and decreased adaptive immune cells, including CD4+ and CD8+ T cells, in early-stage AP. Notably, the PD-1/PD-L1 related pathway exhibited substantial alterations, especially in the acinar cells, T cells, B cells, macrophages, and neutrophils at the early stage of disease. Moreover, we observed a significant reduction in PD-L1 expression in the blood and regulatory T cells of CyTOF mice at the CyTOF level. CONCLUSION This multi-omics analysis deciphers a distinct imbalance between increased innate immunity and decreased adaptive immunity during the early phase of AP. The PD-L1 checkpoint emerges as a key regulator of immune homeostasis and a critical factor in the pathogenesis of AP.
Collapse
Affiliation(s)
- Di Wu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zehao Wu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yilin Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Li
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Kuirong Jiang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Park J, Eun Y, Han K, Jung J, Kang S, Kim S, Hyun JJ, Kim H, Shin DW. Rheumatoid arthritis and risk of pancreatitis: a nationwide cohort study. Sci Rep 2025; 15:7607. [PMID: 40038384 PMCID: PMC11880365 DOI: 10.1038/s41598-025-91898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
We aimed to assess whether patients with rheumatoid arthritis (RA) have a higher risk of developing acute and chronic pancreatitis compared to individuals without RA. We identified 54,910 individuals with RA between 2010 and 2017. After exclusion, they were matched in a 1:3 ratio based on age and gender to control population without RA. Cox regression analyses were performed to estimate hazard ratio. During a median follow-up of 5.5 years, 0.18% of the patients with RA and 0.14% of the matched control developed acute pancreatitis. The risk acute pancreatitis was higher in the RA cohort compared to matched control (adjusted hazard ratio [aHR] 1.33; 95% confidence interval [CI] 1.02-1.74). In the case of chronic pancreatitis, 0.11% of patients with RA and 0.09% of the matched control developed chronic pancreatitis. Patients with RA appear to have a marginally elevated risk of chronic pancreatitis compared to matched controls (aHR 1.25, 95% CI 0.90-1.74), though this increase did not achieve statistical significance. The risk of acute pancreatitis is slightly higher in individuals with RA than in matched controls. The risk of chronic pancreatitis did not show statistical significance, but it tended to increase marginally in patients with RA.
Collapse
Affiliation(s)
- Jiho Park
- Division of Infectious Disease, Department of Internal Medicine, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Yeonghee Eun
- Division of Rheumatology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - JinHyung Jung
- Samsung Biomedical Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seonyoung Kang
- Division of Rheumatology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seonghye Kim
- International Healthcare Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Jin Hyun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyungjin Kim
- Department of Medical Humanities, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Dong Wook Shin
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Sutar P, Pethe A, Kumar P, Tripathi D, Maity D. Hydrogel Innovations in Biosensing: A New Frontier for Pancreatitis Diagnostics. Bioengineering (Basel) 2025; 12:254. [PMID: 40150718 PMCID: PMC11939681 DOI: 10.3390/bioengineering12030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Pancreatitis is a prominent and severe type of inflammatory disorder that has grabbed a lot of scientific and clinical interest to prevent its onset. It should be detected early to avoid the development of serious complications, which occur due to long-term damage to the pancreas. The accurate measurement of biomarkers that are released from the pancreas during inflammation is essential for the detection and early treatment of patients with severe acute and chronic pancreatitis, but this is sub-optimally performed in clinically relevant practices, mainly due to the complexity of the procedure and the cost of the treatment. Clinically available tests for the early detection of pancreatitis are often time-consuming. The early detection of pancreatitis also relates to disorders of the exocrine pancreas, such as cystic fibrosis in the hereditary form and cystic fibrosis-like syndrome in the acquired form of pancreatitis, which are genetic disorders with symptoms that can be correlated with the overexpression of specific markers such as creatinine in biological fluids like urine. In this review, we studied how to develop a minimally invasive system using hydrogel-based biosensors, which are highly absorbent and biocompatible polymers that can respond to specific stimuli such as enzymes, pH, temperature, or the presence of biomarkers. These biosensors are helpful for real-time health monitoring and medical diagnostics since they translate biological reactions into quantifiable data. This paper also sheds light on the possible use of Ayurvedic formulations along with hydrogels as a treatment strategy. These analytical devices can be used to enhance the early detection of severe pancreatitis in real time.
Collapse
Affiliation(s)
- Prerna Sutar
- School of Health Sciences and Technology, UPES, Bidholi Campus, Dehradun 248007, Uttarakhand, India
| | - Atharv Pethe
- School of Health Sciences and Technology, UPES, Bidholi Campus, Dehradun 248007, Uttarakhand, India
| | - Piyush Kumar
- School of Health Sciences and Technology, UPES, Bidholi Campus, Dehradun 248007, Uttarakhand, India
| | - Divya Tripathi
- School of Health Sciences and Technology, UPES, Bidholi Campus, Dehradun 248007, Uttarakhand, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Li Z, Yu Y, Zhao X, Qu Y, Wang J, Zhang D. Chaperone-Mediated Autophagy Reactivation Protects Against Severe Acute Pancreatitis-Associated Liver Injury Through Upregulating Keap1/Nrf2 Signaling Pathway and Inhibiting NLRP3 Inflammasome Activation. Cell Biochem Biophys 2025:10.1007/s12013-025-01677-7. [PMID: 39998716 DOI: 10.1007/s12013-025-01677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
Acute liver injury (ALI) is a vital factor in the early progression of severe acute pancreatitis (SAP). It exacerbates systemic inflammation, impairs the liver's capacity to clear inflammatory mediators and cytokines, and contributes to systemic organ dysfunction syndrome (SODS). However, the mechanisms driving SAP-associated liver injury (SAP-ALI) are poorly understood, and effective therapeutic options remain limited. Chaperone-mediated autophagy (CMA), a selective form of autophagy, plays an essential role in reducing inflammation and oxidative stress by clearing damaged or dysfunctional proteins. This study examines the role of CMA in SAP-ALI and evaluates its therapeutic potential. In a sodium taurocholate-induced SAP-ALI rat model, CMA dysfunction was observed, characterized by reduced LAMP2A expression and the accumulation of CMA substrate proteins in pancreatic and hepatic tissues. The activator AR7 successfully restored CMA function, enhanced anti-inflammatory and antioxidant responses, and mitigated pancreatic and liver damage in SAP rat. In contrast, the CMA inhibitor PPD exacerbated liver injury, underscoring CMA's protective role in SAP-ALI. Mechanistic analyses demonstrated that CMA reactivation activated the Keap1/Nrf2 signaling pathway, leading to increased expression of antioxidant-related genes and suppression of NLRP3 inflammasome activation. Specifically, the protective effects of AR7-induced CMA activation were significantly reversed by the Nrf2 inhibitor ML385, which inhibited Nrf2 signaling and its associated protein levels. These findings show AR7-induced CMA reactivation as a promising therapeutic strategy for SAP-ALI, primarily through its enhancement of Keap1/Nrf2-regulated antioxidant pathways and inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhongbiao Li
- Qingdao Medical College, Qingdao University, Qingdao, 266073, China
- Department of Gastrointestinal Surgery, Qingdao University Affiliated to Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Yue Yu
- Department of Gastrointestinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266011, China
| | - Xihao Zhao
- Department of Gastrointestinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266011, China
| | - Yue Qu
- Imageing department, Qingdao University Affiliated Qingdao Haici Hospital, Qingdao, 266033, China
| | - Jiang Wang
- Department of Gastrointestinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266011, China.
| | - Dianliang Zhang
- Department of Gastrointestinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266011, China.
| |
Collapse
|
22
|
Luo M, Jin T, Fang Y, Chen F, Zhu L, Bai J, Ding J. Signaling Pathways Involved in Acute Pancreatitis. J Inflamm Res 2025; 18:2287-2303. [PMID: 40230438 PMCID: PMC11995411 DOI: 10.2147/jir.s485804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/25/2025] [Indexed: 04/16/2025] Open
Abstract
Acute pancreatitis (AP) is a common digestive emergency with high morbidity and mortality. Over the past decade, significant progress has been made in understanding the mechanisms of AP, including oxidative stress, disruptions in calcium homeostasis, endoplasmic reticulum stress, inflammatory responses, and various forms of cell death. This review provides an overview of the typical signaling pathways involved and proposes the latest clinical translation prospects. These strategies are important for the early management of AP, preventing multi-organ injury, and improving the overall prognosis of the disease.
Collapse
Affiliation(s)
- Mengchen Luo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Feng Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
23
|
Zhang Y, Ma H, Wang R, Li L, Kong Q, Hao C, Zhang Y, Li J. Correlation between baseline anion gap and early acute kidney injury in patients with acute pancreatitis in the intensive care unit: A single-center retrospective cohort study. PLoS One 2025; 20:e0315386. [PMID: 39932897 PMCID: PMC11813115 DOI: 10.1371/journal.pone.0315386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/23/2024] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE Acute pancreatitis (AP) is an acute inflammatory disease that can lead to multiple system dysfunction, including acute kidney injury (AKI). AKI occurs in 10%-42% of AP patients, and studies have shown that early (48 hours) acute pancreatitis associated acute kidney injury (AP-AKI) can increases the risk of death in acute pancreatitis. Anion gap (AG) is a common index in clinical evaluation of acid-base imbalance and an important index in critically ill patients. The aim of this study was to investigate the relationship between baseline anion gap values and early acute kidney injury in patients with acute pancreatitis in intensive care unit. METHODS Our data were derived from inpatients admitted to Beth Israel Deaconess Medical Center (BIDMC) in the United States between 2008 and 2019. A total of 4,017 adult patients with acute pancreatitis admitted to the ICU were enrolled in the study, and 475 were enrolled according to the exclusion and inclusion criteria. Only the baseline value and one day after arrival to the intensive care unit (ICU) were considered for all laboratory test values. According to previous literature and clinical significance, AG was divided into two groups: low value (< 16mmol/L) group and high value (≥16mmol/L) group, and logistics univariate and multifactor regression analysis was applied to verify the relationship between anion gap and AKI risk. RESULTS Only 157 of the 475 AP cases had an AG level below 16 mmol/L, whereas 318 patients had an AG level over 16 mmol/L. Within 48 hours, 89 and 240 cases (56.7% and 75.5%) and the low- and high-AG groups had AKI. In AP cases, an elevated AG was related to an increased risk of AKI [odds ratio (OR) = 1.06, 95% confidence interval (CI): 1.03-1.1], and is a nonlinear relationship. When controlling for other factors, this correlation was still significant. Compared to the lower group, high-AG (≥16mmol/L) values can increase the risk of early acute kidney injury in patients with acute pancreatitis (OR = 2.35, CI: 1.57-3.53). CONCLUSION Anion gap (AG) is an independent risk factor for early acute kidney injury in patients with acute pancreatitis, and has a nonlinear relationship with 48-hour AKI. Higher AG(≥16mmol/L) values can significantly increase the risk of AP-AKI.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Haiping Ma
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Rui Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Li Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qingwei Kong
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Cuiping Hao
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jinfeng Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
24
|
Shi F, Ergashev A, Pan Z, Sun H, Kong L, Jin Y, Zhang T, Liu Z, Xie H, Wang J, Li H, Wang Y, Zheng L, Shen J, Herrmann A, Chen G, Kong H. Macrophage-mimicking nanotherapy for attenuation of acute pancreatitis. Mater Today Bio 2025; 30:101406. [PMID: 39816666 PMCID: PMC11733200 DOI: 10.1016/j.mtbio.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics. To address this challenge, we herein demonstrate a surface masking strategy that involves coating the surface of selenylated Poria cocos polysaccharide nanoparticles with a layer of macrophage plasma membrane to circumvent MPS sequestration, thereby enhancing the therapeutic efficacy of selenylated Poria cocos polysaccharide nanoparticles. Nanoparticles encapsulated with macrophage membranes can simulate the active homing efficacy of macrophages to inflamed lesions during AP, resulting in excessive infiltration of macrophages in pancreatic inflammation sites and prolonged tissue retention time. This technique converts non-adhesive lipid nanoparticles into bioadhesive nanoparticles, increasing local tissue accumulation under inflammatory conditions, including the pancreas and vulnerable lungs. The mechanism is related to targeting pro-inflammatory macrophages. In murine models of mild and severe AP, intravenous treatment with macrophage-mimicking nanoparticles effectively reduces systemic inflammation level and diminishes the recruitment of macrophages and neutrophils. Mechanistic studies elucidate that macrophage membrane-biomimetic selenylated Poria cocos polysaccharide nanoparticles primarily mitigate pancreatic inflammation by inhibiting the AKT/mTOR pathway to reverse autophagic flux impairment. This allows us to envision that the developed biomimetic nanotherapy approach could potentially serve as a novel strategy for pancreatic drug therapy.
Collapse
Affiliation(s)
- Fengyu Shi
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Akmal Ergashev
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhenyan Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Hongwei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Lingming Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Yuepeng Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Tan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Haonan Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Jinhui Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Huiping Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Andreas Herrmann
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
- DWI – Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute for Technical and Macromolecular Chemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52074, Germany
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Hongru Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
25
|
Yang Y, Peng Y, Li Y, Shi T, Xu N, Luan Y, Yin C. Sestrin2 balances mitophagy and apoptosis through the PINK1-Parkin pathway to attenuate severe acute pancreatitis. Cell Signal 2025; 126:111518. [PMID: 39577789 DOI: 10.1016/j.cellsig.2024.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Mitophagy serves as a mitochondrial quality control mechanism to maintain the homeostasis of mitochondria and the intracellular environment. Studies have shown that there is a close relationship between mitophagy and apoptosis. Sestrin2 (Sesn2) is a highly conserved class of stress-inducible proteins that play important roles in reducing oxidative stress damage, inflammation, and apoptosis. However, the potential mechanism of how Sesn2 regulates mitophagy and apoptosis in severe acute pancreatitis (SAP) remains unclear. In the study, RAW264.7 (macrophage cell Line) cellular inflammation model established by lipopolysaccharide (LPS) treatment as well as LPS and CAE-induced SAP mouse model (wild-type and Sen2 Knockout mouse) were used. Our study showed that LPS stimulation significantly increased the level of Sesn2 in RAW264.7 cells, Sesn2 increased mitochondrial membrane potential, decreased inflammation levels, mitochondrial superoxide levels and apoptosis, and also promoted monocyte macrophages toward the M2 anti-inflammatory phenotype, suggesting a protective effect of Sesn2 on mitochondria. Further, Sesn2 increased mitophagy and decreased apoptosis via modulating the PINK1-Parkin signaling. Meanwhile, knockout of Sesn2 exacerbated pancreatic, mitochondrial damage and inflammation in a mouse model of SAP. In addition, the protective effect of Sesn2 against SAP was shown to be associated with mitophagy conducted by the PINK1-Parkin pathway via inhibiting apoptosis. These findings reveal that Sesn2 in balancing mitochondrial autophagy and apoptosis by modulating the PINK1-Parkin signaling may present a new therapeutic strategy for the treatment of SAP.
Collapse
Affiliation(s)
- Yuxi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yiqiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yingying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Tingjuan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Ning Xu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| |
Collapse
|
26
|
Bellin MD, Andersen DK, Akshintala V, Born D, Coghill RC, Easler J, Fogel EL, Forsmark CE, Freeman AJ, Hughes SJ, Jensen A, Liran O, Martin L, Pandol SJ, Palermo TM, Papachristou GI, Park WG, Phillips AE, Schwarzenberg SJ, Singh VK, Toledo FGS, VanDalfsen J, Whitcomb DC, Wu B, Yadav D. Heterogeneity in Pancreatitis: Recognizing Heterogeneity and Its Role in the Management of Pancreatitis Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2025; 54:e114-e121. [PMID: 39661048 DOI: 10.1097/mpa.0000000000002403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Both the clinical management and study of recurrent acute pancreatitis and chronic pancreatitis are complicated by significant heterogeneity in the etiology, mechanisms, symptoms, and complications of pancreatitis. The National Institutes of Diabetes and Digestive and Kidney Disease recently convened a workshop to address current knowledge and knowledge gaps in the field. Preclinical models that better replicate human disease are important for development of new therapies. Pain is often the most common and most difficult symptom to treat, as the causes are multifactorial and effective treatment may vary depending on whether pain is neuropathic or nociceptive in origin, and the placebo effect can complicate evaluation of the efficacy of medical and procedural interventions. Novel technologies like functional magnetic resonance imaging and virtual reality may offer novel means for assessing and treating pain, respectively. Clinical trial designs will need to consider best approaches to addressing the heterogeneity of chronic pancreatitis, including careful attention to designing eligibility criteria, and establishing accepted and validated core outcomes criteria for the field. The latter may be informed by consensus in pain research. Recruitment of participants into clinical trials has been challenging, often requiring multiple centers. Establishment of a clinical trials network would facilitate greater opportunities for therapeutic trials in pancreatitis.
Collapse
Affiliation(s)
- Melena D Bellin
- From the Departments of Pediatrics and Surgery, University of Minnesota and Masonic Children's Hospital, Minneapolis, MN
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Venkata Akshintala
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Robert C Coghill
- Pediatric Pain Research Center, Cincinnati Children's Hospital; Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Jeffrey Easler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Evan L Fogel
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Christopher E Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL
| | - A Jay Freeman
- Pancreas and Liver Care Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Steven J Hughes
- Division of Surgical Oncology, University of Florida, Gainesville, FL
| | | | - Omer Liran
- Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Linda Martin
- Co-Founder and Board Chair, Mission-Cure, New York, NY
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tonya M Palermo
- Department of Anesthesiology & Pain Medicine, University of Washington; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sarah Jane Schwarzenberg
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, MHealth Fairview Masonic Children's Hospital, University of Minnesota, Minneapolis, MN
| | - Vikesh K Singh
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jill VanDalfsen
- Cystic Fibrosis Therapeutic Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA
| | - David C Whitcomb
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Bechien Wu
- Kaiser Permanente Southern California, Los Angeles, CA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
27
|
Chen X, Zhong R, Hu B. Mitochondrial dysfunction in the pathogenesis of acute pancreatitis. Hepatobiliary Pancreat Dis Int 2025; 24:76-83. [PMID: 38212158 DOI: 10.1016/j.hbpd.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
The mechanism of cell damage during acute pancreatitis (AP) has not been fully elucidated, and there is still a lack of specific or effective treatments. Increasing evidence has implicated mitochondrial dysfunction as a key event in the pathophysiology of AP. Mitochondrial dysfunction is closely related to calcium (Ca2+) overload, intracellular adenosine triphosphate depletion, mitochondrial permeability transition pore openings, loss of mitochondrial membrane potential, mitophagy damage and inflammatory responses. Mitochondrial dysfunction is an early triggering event in the initiation and development of AP, and this organelle damage may precede the release of inflammatory cytokines, intracellular trypsin activation and vacuole formation of pancreatic acinar cells. This review provides further insight into the role of mitochondria in both physiological and pathophysiological aspects of AP, aiming to improve our understanding of the underlying mechanism which may lead to the development of therapeutic and preventive strategies for AP.
Collapse
Affiliation(s)
- Xia Chen
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Rui Zhong
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
Liu D, Liu C, Deng F, Ouyang F, Qin R, Zhai Z, Wang Y, Zhang Y, Liao M, Pan X, Huang Y, Cen Y, Li X, Zhou H. Artesunate protects against a mouse model of cerulein and lipopolysaccharide‑induced acute pancreatitis by inhibiting TLR4‑dependent autophagy. Int J Mol Med 2025; 55:25. [PMID: 39635846 PMCID: PMC11637502 DOI: 10.3892/ijmm.2024.5466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Severe acute pancreatitis (SAP) is a severe clinical condition associated with high rates of morbidity and mortality. Multiple organ dysfunction syndrome that follows systemic inflammatory response syndrome is the leading cause of SAP‑related death. Since the inflammatory mechanism of SAP remains unclear, there is currently a lack of effective drugs available for its treatment. Therefore, it is important to study effective therapeutic drugs and their molecular mechanisms based on studying the inflammatory mechanism of SAP. In the present study, in vivo, a mouse model of AP induced by cerulein (CR) combined with lipopolysaccharide (LPS) was established to clarify the therapeutic effect of artesunate (AS) in AP mice by observing the gross morphological changes of the pancreas and surrounding tissues, calculating the pancreatic coefficient, and observing the histopathology of the pancreas. The serum amylase activity in AP mice was detected by iodine colorimetry and the superoxide dismutase activity in the pancreas was detected by WST‑1 assay. The levels of proinflammatory cytokines in the serum, the supernatant of pancreatic tissue homogenates and the peritoneal lavage fluid were detected by ELISA assay. The total number of peritoneal macrophages was assessed using the cellular automatic counter, and the expression of proteins related to autophagy, and the TLR4 pathway was detected by immunohistochemistry and western blotting. In vitro, the effect of trypsin (TP) combined with LPS was observed by detecting the release of proinflammatory cytokine levels from macrophages by ELISA assay, and detecting the expression of proteins related to autophagy and the TLR4 pathway by immunofluorescence and western blotting. The present study revealed that AS reduced pancreatic histopathological damage, decreased pancreatic TP and serum amylase activities, increased superoxide dismutase activity, and inhibited pro‑inflammatory cytokine levels in a mouse model of AP induced by cerulein combined with lipopolysaccharide. In vitro, TP combined with LPS was found to synergistically induce pro‑inflammatory cytokine release from mouse macrophages and RAW264.7 cells, while AS could inhibit cytokine release. Furthermore, CR combined with LPS synergistically increased amylase activity in acinar cells, whereas AS decreased amylase activity. Autophagy serves an important role in the release of pro‑inflammatory cytokines. In the present study, it was revealed that the autophagy inhibitor LY294002 suppressed the release of pro‑inflammatory cytokines from macrophages treated with TP combined with LPS, and pro‑inflammatory cytokine release was not further reduced by AS combined with LY294002. Furthermore, AS not only inhibited the expression of important molecules in the Toll‑like receptor 4 (TLR4) signaling pathway, but also inhibited autophagy proteins and reduced the number of autolysosomes in mice with AP and in macrophages. In conclusion, these results suggested that AS may protect against AP in mice via inhibition of TLR4‑dependent autophagy; therefore, AS may be considered a potential therapeutic agent against SAP.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chao Liu
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Fei Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Fumin Ouyang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Rongxin Qin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Zhaoxia Zhai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yu Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Mengling Liao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xichun Pan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Yasi Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanyan Cen
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
29
|
Yao J, Jiang Y, Zhang P, Miao Y, Wu X, Lei H, Xie Z, Tian Y, Zhao X, Li J, Zhu L, Wan M, Tang W. Genetic and pharmacological targeting of HINT2 promotes OXPHOS to alleviate inflammatory responses and cell necrosis in acute pancreatitis. Pharmacol Res 2025; 212:107620. [PMID: 39848351 DOI: 10.1016/j.phrs.2025.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
The necrosis of pancreatic acinar cells is a key molecular event in the progression of acute pancreatitis (AP), with disturbances in mitochondrial energy metabolism considered to be a direct causative factor of acinar cell necrosis. Histidine triad nucleotide-binding protein 2 (HINT2) has been implicated in the development of various diseases, whereas its involvement in the progression of AP remains unclear. This study aims to investigate the role of HINT2 in AP. HINT2 expression in pancreatic tissues was significantly downregulated after AP. The results of glutathione-S-transferase (GST) pull-down and proteomics analyses revealed the involvement of HINT2 in regulating mitochondrial oxidative phosphorylation (OXPHOS) in AP mice. Moreover, lentivirus-mediated HINT2 overexpression not only alleviated AP-induced ATP depletion, but also relieved inflammatory responses and cell necrosis. Mechanistically, HINT2 interacted with cytochrome C oxidase II (MTCO2) to promote mitochondrial OXPHOS, thereby reducing ROS accumulation and inhibiting the activation of inflammatory signaling pathway. Besides, HINT2 act as a direct pharmacological target of Emo to elicit protective effects on AP. Importantly, Emo upregulates the expression of HINT2 and OXPHOS complex proteins and enhances the interaction between HINT2 and MTCO2. Furthermore, CRISPR/Cas9-mediated HINT2 knockout significantly impaired the protective effects of Emo against AP-induced mitochondrial energy metabolism disorders, inflammatory responses, and acinar cell necrosis. Overall, these results uncover a previously unexplored role for HINT2 in maintaining mitochondrial energy metabolism in pancreatic acinar cells and reveals novel mechanism and target for Emo-mediated AP remission.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yuhong Jiang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Pengcheng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yifan Miao
- Department of Emergency Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610075, China
| | - Xiajia Wu
- Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hang Lei
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhijun Xie
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Tian
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xianlin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China; Digestive Department, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Tang N, Li W, Shang H, Yang Z, Chen Z, Shi G. Irisin-mediated KEAP1 degradation alleviates oxidative stress and ameliorates pancreatitis. Immunol Res 2025; 73:37. [PMID: 39821708 DOI: 10.1007/s12026-024-09588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive. Our study aims to elucidate irisin expression in AP patients and investigate its mechanism of action to propose a novel treatment strategy for AP. Serum irisin levels in 65 AP patients were quantified using an enzyme-linked immunosorbent assay and correlated with disease severity scores. Core genes implicated in AP-related oxidative stress were identified and screened via bioinformatics analysis. The therapeutic efficacy of irisin in AP was confirmed using a murine cerulein-induced AP model. The intrinsic mechanism of irisin's antioxidative stress action was investigated and verified in pancreatic AR42J cells (Supplementary Fig. 1). Common targets shared by irisin and AP were further validated using a molecular docking model which was constructed for virtual docking analysis. This study investigated alterations in redox status in AP and found a significant reduction in serum irisin levels, correlating inversely with AP severity. In a murine AP model, we showed that irisin triggers an antioxidative stress program via the KEAP1 gene; this process helps reestablish redox balance by decreasing the buildup of reactive oxygen species (ROS) and suppressing the secretion of inflammatory mediators within pancreatic tissues Notably, increased KEAP1 expression counteracted the antioxidative effects of irisin. Our findings unveil a novel therapeutic mechanism for AP, wherein irisin inhibits KEAP1 to alleviate OS. Increasing irisin levels in vivo presents a promising strategy for AP treatment.
Collapse
Affiliation(s)
- Nan Tang
- Dalian Medical University, Dalian, Liaoning, China
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
- First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Wendi Li
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Hezhen Shang
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Zhen Yang
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Zengyin Chen
- Department of Hepatobiliary Surgery, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Guangjun Shi
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China.
- First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
31
|
Zhang S, Wang Z, Zhang Y, Dong X, Zhu Q, Yuan C, Lu G, Gong W, Bi Y, Wang Y. LASP1 inhibits the formation of NETs and alleviates acute pancreatitis by stabilizing F-actin polymerization in neutrophils. Biochem Biophys Res Commun 2025; 744:151134. [PMID: 39708397 DOI: 10.1016/j.bbrc.2024.151134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) play a significant role in the development of acute pancreatitis (AP). The actin-binding protein LASP1 regulates proteins associated with the cytoskeleton, yet its precise involvement in NETs and AP remains to be elucidated. METHODS To investigate the role of LASP1 in NETs and AP, several bioinformatics methods, such as weighted gene co-expression network analysis (WGCNA), differential analysis, and least absolute shrinkage and selection operator (LASSO) regression, were utilized to screen for feature genes based on the Gene Expression Omnibus (GEO) dataset. To further assess the impact of LASP1, both an in vitro model of 12-myristic-13-acetate phobolol (PMA)-induced NETs and a caerulein-induced AP model were employed. RESULTS Through WGCNA, AP-related module genes were screened, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted to identify enriched pathways and functions. Six characteristic genes were identified through LASSO regression screening, with LASP1 being the most distinct. LASP1 reduces the generation of NETs induced by PMA in vitro. Mechanistically, LASP1 may increase F-actin protein levels by inhibiting the depolymerization of F-actin. Furthermore, our study utilizing a mouse AP model demonstrated that the LSAP1 recombinant protein effectively alleviated pancreatic necrosis in mice afflicted with AP. CONCLUSION LASP1 inhibits the formation of NETs and may alleviate AP by increasing the level of F-actin protein.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Yangzhou University, Kunshan, Suzhou, Jiangsu, China; Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhihao Wang
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuyan Zhang
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowu Dong
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingtian Zhu
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenchen Yuan
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guotao Lu
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weijuan Gong
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yawei Bi
- Department of Gastroenterology, Chinese PLA General Hospital First Medical Center, Beijing, China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Yangzhou University, Kunshan, Suzhou, Jiangsu, China.
| |
Collapse
|
32
|
Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, Wileman T, Tepikin AV. Deletion of the WD40 domain of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy 2025; 21:210-222. [PMID: 39216469 PMCID: PMC11702947 DOI: 10.1080/15548627.2024.2392478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The WD40 domain (WDD) of ATG16L1 plays a pivotal role in non-canonical autophagy. This study examined the role of recently identified LAP-like non-canonical autophagy (LNCA) in acute pancreatitis. LNCA involves rapid single-membrane LC3 conjugation to endocytic vacuoles in pancreatic acinar cells. The rationale for this study was the previously observed presence of trypsin in the organelles undergoing LNCA; aberrant trypsin formation is an important factor in pancreatitis development. Here we report that the deletion of WDD (attained in ATG16L1[E230] mice) eliminated LNCA, aggravated caerulein-induced acute pancreatitis and suppressed the fast trypsin degradation observed in both a rapid caerulein-induced disease model and in caerulein-treated isolated pancreatic acinar cells. These experiments indicate that LNCA is a WDD-dependent mechanism and suggest that it plays not an activating but a protective role in acute pancreatitis. Furthermore, palmitoleic acid, another inducer of experimental acute pancreatitis, strongly inhibited LNCA, suggesting a novel mechanism of pancreatic lipotoxicity.Abbreviation: AMY: amylase; AP: acute pancreatitis; CASM: conjugation of Atg8 to single membranes; CCK: cholecystokinin; FAEE model: fatty acid and ethanol model; IL6: interleukin 6; LA: linoleic acid; LAP: LC3-associated phagocytosis; LMPO: lung myeloperoxidase; LNCA: LAP-like non-canonical autophagy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MPO: myeloperoxidase; PMPO: pancreatic myeloperoxidase; POA: palmitoleic acid; WDD: WD40 domain; WT: wild type.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Jefferson
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David N. Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexei V. Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
33
|
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z, Cao F. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol 2024; 15:1503087. [PMID: 39776917 PMCID: PMC11703726 DOI: 10.3389/fimmu.2024.1503087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Yimin Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
34
|
Shou C, Sun Y, Zhang Q, Zhang W, Yan Q, Xu T, Li H. S100A9 Inhibition Mitigates Acute Pancreatitis by Suppressing RAGE Expression and Subsequently Ameliorating Inflammation. Inflammation 2024:10.1007/s10753-024-02194-0. [PMID: 39690365 DOI: 10.1007/s10753-024-02194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
Acute pancreatitis (AP) is a common acute inflammatory abdominal condition. Severe acute pancreatitis (SAP) can provoke a systemic inflammatory response and lead to multiple organ failure. The S100A9 protein, recognized as a major inflammatory biomarker, plays a significant role in both infection and inflammatory responses. Despite its known role in inflammation, the precise role of S100A9 in AP remains poorly understood. This study aimed to elucidate the potential role of S100A9 in AP and investigate the underlying mechanism. We employed a mouse model of AP and the AR42J cell line to investigate the functional role of S100A9. The effect of S100A9 on pancreatic injury and the expression of inflammatory factors (IL-6, IL-1β, and TNF-α) was assessed through targeted inhibition of S100A9 expression in the mouse model of AP. Furthermore, the modulatory effect of cerulein-induced inflammatory responses on AR42J cells was assessed after adding the S100A9 recombinant protein. In the mouse model of AP, targeted inhibition of S100A9 markedly ameliorated pancreatic injury and significantly decreased the expression levels of IL-6, IL-1β, and TNF-α. Moreover, increased levels of S100A9 were positively correlated with elevated expression of receptor for advanced glycation endproducts (RAGE) in pancreatic acinar cells. In AR42J cells, the introduction of S100A9 recombinant protein enhanced RAGE expression and exacerbated cerulein-induced inflammatory response. S100A9 inhibition significantly alleviated the pancreatic inflammatory response by downregulating RAGE expression, thereby improving AP.
Collapse
Affiliation(s)
- Chenfeng Shou
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Research Center of Minimally Invasive Intervention, Anhui Medical University, Hefei, 230032, China
| | - Yuansong Sun
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Research Center of Minimally Invasive Intervention, Anhui Medical University, Hefei, 230032, China
| | - Qiao Zhang
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Research Center of Minimally Invasive Intervention, Anhui Medical University, Hefei, 230032, China
| | - Wenqiang Zhang
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Research Center of Minimally Invasive Intervention, Anhui Medical University, Hefei, 230032, China
| | - Qi Yan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Tao Xu
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - He Li
- Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Research Center of Minimally Invasive Intervention, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
35
|
Li H, Zeng X, Sun D, Qi X, Li D, Wang W, Lin Y. Albiflorin Alleviates Severe Acute Pancreatitis-Associated Liver Injury by Inactivating P38MAPK/NF-κB Signaling Pathway. Biochem Genet 2024; 62:4987-5003. [PMID: 38381358 DOI: 10.1007/s10528-024-10686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024]
Abstract
Albiflorin (Alb) is a monoterpenoid component that is commonly found in Paeonia lactiflora Pall. or Paeonia veitchii Lynch. It is known for its impressive anti-oxidant and anti-inflammatory properties. However, the effect of Alb on severe acute pancreatitis (SAP)-associated liver injury has not been fully understood. To investigate this, we conducted a study using a rat model of SAP induced by administering two intraperitoneal injections of 20% L-arginine (3.3 g/kg) over a period of 2 h. Subsequently, the SAP-induced rats were randomly assigned into different groups with the treatment of gradient doses of Alb (5, 10, and 20 mg/kg), with the normal saline as the sham group. The pathological changes in rat livers were evaluated through hematoxylin-eosin staining. Furthermore, the levels of amylase (AMY), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were determined using specific enzyme-linked immunosorbent assay kits. Moreover, the serum levels of inflammatory factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, were quantified. Finally, immunohistochemical and Western blot analyses were conducted to determine phosphorylation levels of nuclear factor kappa B (NF-κB) p65 and mitogen-associated protein kianse (MAPK) p38 in the liver tissues. TNF-α stimulated liver cells were used as a cell model to further confirm the involvement of NF-κB and p38 in the effect of Alb. Our study revealed that Alb effectively mitigated the hepatic pathological damage in a dose-dependent manner and reduced the levels of indicators associated with hepatic malfunction (AMY, AST, and ALT) in rats with SAP-induced liver injury. Additionally, Alb demonstrated its ability to suppress inflammation and oxidative stress markers in the liver tissues. Alb exerted dose-dependent inhibitory effects by modulating the P38MAPK/NF-κB signaling pathway. Overall, our findings strongly support the hepatoprotective effect of Alb in rats with SAP-induced liver injury, suggesting that Alb protects against SAP-induced liver injury through the suppression of inflammation and oxidative stress via the P38MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haitao Li
- Department of Gastroenterology, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of the Joint Logistics Support Force Fuzhou, No. 156, West Second Ring Road, Fuzhou City, 350025, Fujian, People's Republic of China
| | - Xiangpeng Zeng
- Department of Gastroenterology, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of the Joint Logistics Support Force Fuzhou, No. 156, West Second Ring Road, Fuzhou City, 350025, Fujian, People's Republic of China
| | - Dongjie Sun
- Department of Gastroenterology, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of the Joint Logistics Support Force Fuzhou, No. 156, West Second Ring Road, Fuzhou City, 350025, Fujian, People's Republic of China
| | - Xingfeng Qi
- Department of Pathology, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of the Joint Logistics Support Force Fuzhou, No. 156, West Second Ring Road, Fuzhou City, 350025, Fujian, People's Republic of China
| | - Dazhou Li
- Department of Gastroenterology, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of the Joint Logistics Support Force Fuzhou, No. 156, West Second Ring Road, Fuzhou City, 350025, Fujian, People's Republic of China
| | - Wen Wang
- Department of Pathology, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of the Joint Logistics Support Force Fuzhou, No. 156, West Second Ring Road, Fuzhou City, 350025, Fujian, People's Republic of China.
| | - Yan Lin
- Department of Gastroenterology, Fuzhou Second Hospital Affiliated to Xiamen University, No. 47 Shangjidi Road, Cangshan District, Fuzhou City, 350007, Fujian, People's Republic of China.
| |
Collapse
|
36
|
Wang H, Gao J, Wen L, Huang K, Liu H, Zeng L, Zeng Z, Liu Y, Mo Z. Ion channels in acinar cells in acute pancreatitis: crosstalk of calcium, iron, and copper signals. Front Immunol 2024; 15:1444272. [PMID: 39606246 PMCID: PMC11599217 DOI: 10.3389/fimmu.2024.1444272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The initial stages of acute pancreatitis (AP) are characterized by a significant event - acinar ductal metaplasia (ADM). This process is a crucial feature of both acute and chronic pancreatitis, serving as the first step in the development of pancreatic cancer. Ion channels are integral transmembrane proteins that play a pivotal role in numerous biological processes by modulating ion flux. In many diseases, the expression and activity of ion channels are often dysregulated. Metal ions, including calcium ions (Ca2+), ferrous ions (Fe2+), and Copper ions (Cu2+), assume a distinctive role in cellular metabolism. These ions possess specific biological properties relevant to cellular function. However, the interactions among these ions exacerbate the imbalance within the intracellular environment, resulting in cellular damage and influencing the progression of AP. A more in-depth investigation into the mechanisms by which these ions interact with acinar cells is essential for elucidating AP's pathogenesis and identifying novel therapeutic strategies. Currently, treatment for AP primarily focuses on pain relief, complications prevention, and prognosis improvement. There are limited specific treatments targeting acinous cell dedifferentiation or ion imbalance. This study aims to investigate potential therapeutic strategies by examining ion crosstalk within acinar cells in the context of acute pancreatitis.
Collapse
Affiliation(s)
- Hanli Wang
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Jianhua Gao
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Lingling Wen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kejun Huang
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Huixian Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Linsheng Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Zhongyi Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yuxiang Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Gukovskaya AS, Lerch MM, Mayerle J, Sendler M, Ji B, Saluja AK, Gorelick FS, Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30:4417-4438. [PMID: 39534420 PMCID: PMC11551668 DOI: 10.3748/wjg.v30.i41.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine pancreas. Its pathogenesis remains obscure, and no specific or effective treatment is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a small portion of patients the disease is hereditary. Pancreatitis is believed to be initiated by injured acinar cells (the main exocrine pancreas cell type), leading to parenchymal necrosis and local and systemic inflammation. The primary function of these cells is to produce, store, and secrete a variety of enzymes that break down all categories of nutrients. Most digestive enzymes, including all proteases, are secreted by acinar cells as inactive proforms (zymogens) and in physiological conditions are only activated when reaching the intestine. The generation of trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/inappropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experimental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its' damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death and unrelenting inflammation.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Markus M Lerch
- Department of Medicine, Ludwig Maximilian University Hospital, Munich 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Matthias Sendler
- Department of Medicine A, University of Greifswald, Greifswald 17475, Germany
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Ashok K Saluja
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Fred S Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, New Haven, CT 06519, United States
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| |
Collapse
|
38
|
Zhu Y, Fang Y, Huang W, Zhang W, Chen F, Dong J, Zeng W. AI-driven precision subcellular navigation with fluorescent probes. J Mater Chem B 2024; 12:11054-11062. [PMID: 39392117 DOI: 10.1039/d4tb01835d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Precise navigation within intricate biological systems is pivotal for comprehending cellular functions and diagnosing diseases. Fluorescent molecular probes, designed to target specific biological molecules, are indispensable tools for this endeavor. This paper delves into the revolutionary potential of artificial intelligence (AI) in crafting highly precise and effective fluorescent probes. We will discuss how AI can be employed to: design new subcellular dyes by optimizing physicochemical properties; design prospective subcellular targeting probes based on specific receptors; quantitatively explore the potential chemical laws of fluorescent molecules to optimize the optical properties of fluorescent probes; optimize the comprehensive properties of the probe and guide the construction of multifunctional targeting probes. Additionally, we showcase recent AI-driven advancements in probe development and their successful biomedical applications, while addressing challenges and outlining future directions towards transforming subcellular research, diagnostics, and drug discovery.
Collapse
Affiliation(s)
- Yingli Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Weiheng Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
39
|
Lin B, Huang C. Identifying the ceRNA Regulatory Network in Early-Stage Acute Pancreatitis and Investigating the Therapeutic Potential of NEAT1 in Mouse Models. J Inflamm Res 2024; 17:8099-8115. [PMID: 39507263 PMCID: PMC11539775 DOI: 10.2147/jir.s490315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Acute pancreatitis (AP) is a common digestive disorder characterized by high morbidity and mortality. This study aims to uncover differentially expressed long noncoding RNAs (lncRNAs) and mRNAs, as well as related pathways, in the early stage of acute pancreatitis (AP), with a focus on the role of Neat1 in AP and severe acute pancreatitis (SAP). Methods In this study, we performed high-throughput RNA sequencing on pancreatic tissue samples from three normal mice and three mice with cerulein-induced AP to describe and analyze the expression profiles of long non-coding RNAs (lncRNAs) and mRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted on the differentially expressed mRNAs to identify enriched pathways and biological processes. An lncRNA-miRNA-mRNA interaction network was constructed to elucidate potential regulatory mechanisms. Furthermore, we utilized Neat1 knockout mice to investigate the role of Neat1 in the pathogenesis of cerulein-AP and L-arginine-severe acute pancreatitis (SAP). Results Our results revealed that 261 lncRNAs and 1522 mRNAs were differentially expressed in the cerulein-AP group compared to the control group. GO and KEGG analyses of the differentially expressed mRNAs indicated that the functions of the corresponding genes are enriched in cellular metabolism, intercellular structure, and positive regulation of inflammation, which are closely related to the central events in the pathogenesis of AP. A ceRNA network involving 5 lncRNAs, 226 mRNAs, and 61 miRNAs were constructed. Neat1 was identified to have the potential therapeutic effects in AP. Neat1 knockout in mice inhibited pyroptosis in both the AP/SAP mouse models. Conclusion We found that lncRNAs, particularly Neat1, play a significant role in the pathogenesis of AP. This finding may provide new insights into further exploring the pathogenesis of SAP and could lead to the identification of new targets for the treatment of AP and SAP.
Collapse
Affiliation(s)
- Bi Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Chaohao Huang
- Department of Hepatological Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
40
|
de Almeida Chuffa LG, Seiva FRF, Silveira HS, Cesário RC, da Silva Tonon K, Simão VA, Zuccari DAPC, Reiter RJ. Melatonin regulates endoplasmic reticulum stress in diverse pathophysiological contexts: A comprehensive mechanistic review. J Cell Physiol 2024; 239:e31383. [PMID: 39039752 DOI: 10.1002/jcp.31383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Henrique S Silveira
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Karolina da Silva Tonon
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinicius Augusto Simão
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Debora Aparecida P C Zuccari
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, Texas, USA
| |
Collapse
|
41
|
Wang H, Qi L, Han H, Li X, Han M, Xing L, Li L, Jiang H. Nanomedicine regulating PSC-mediated intercellular crosstalk: Mechanisms and therapeutic strategies. Acta Pharm Sin B 2024; 14:4756-4775. [PMID: 39664424 PMCID: PMC11628839 DOI: 10.1016/j.apsb.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 12/13/2024] Open
Abstract
Pancreatic fibrosis (PF) is primarily distinguished by the stimulation of pancreatic stellate cells (PSCs) and excessive extracellular matrix deposition, which is the main barrier impeding drug delivery and distribution. Recently, nanomedicine, with efficient, targeted, and controllable drug release characteristics, has demonstrated enormous advantages in the regression of pancreas fibrotic diseases. Notably, paracrine signals from parenchymal and immune cells such as pancreatic acinar cells, islet cells, pancreatic cancer cells, and immune cells can directly or indirectly modulate PSC differentiation and activation. The intercellular crosstalk between PSCs and these cells has been a critical event involved in fibrogenesis. However, the connections between PSCs and other pancreatic cells during the progression of diseases have yet to be discussed. Herein, we summarize intercellular crosstalk in the activation of PSCs and its contribution to the development of common pancreatic diseases, including pancreatitis, pancreatic cancer, and diabetes. Then, we also examine the latest treatment strategies of nanomedicine and potential targets for PSCs crosstalk in fibrosis, thereby offering innovative insights for the design of antifibrotic nanomedicine. Ultimately, the enhanced understanding of PF will facilitate the development of more precise intervention strategies and foster individually tailored therapeutic approaches for pancreatic diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xuena Li
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Mengmeng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing 210009, China
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
42
|
Fu F, Li W, Zheng X, Wu Y, Du D, Han C. Role of Sphingosine-1-Phosphate Signaling Pathway in Pancreatic Diseases. Int J Mol Sci 2024; 25:11474. [PMID: 39519028 PMCID: PMC11545938 DOI: 10.3390/ijms252111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolic product produced via the phosphorylation of sphingosine by sphingosine kinases (SPHKs), serving as a powerful modulator of various cellular processes through its interaction with S1P receptors (S1PRs). Currently, this incompletely understood mechanism in pancreatic diseases including pancreatitis and pancreatic cancer, largely limits therapeutic options for these disorders. Recent evidence indicates that S1P significantly contributes to pancreatic diseases by modulating inflammation, promoting pyroptosis in pancreatic acinar cells, regulating the activation of pancreatic stellate cells, and affecting organelle functions in pancreatic cancer cells. Nevertheless, no review has encapsulated these advancements. Thus, this review compiles information about the involvement of S1P signaling in exocrine pancreatic disorders, including acute pancreatitis, chronic pancreatitis, and pancreatic cancer, as well as prospective treatment strategies to target S1P signaling for these conditions. The insights presented here possess the potential to offer valuable guidance for the implementation of therapies targeting S1P signaling in various pancreatic diseases.
Collapse
Affiliation(s)
- Fei Fu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Wanmeng Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Xiaoyin Zheng
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
43
|
Yue X, Lai L, Wang R, Tan L, Wang Y, Xie Q, Li Y. DGA ameliorates severe acute pancreatitis through modulating macrophage pyroptosis. Inflamm Res 2024; 73:1803-1817. [PMID: 39231819 DOI: 10.1007/s00011-024-01931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Severe acute pancreatitis (SAP) is an inflammatory disease with varying severity, ranging from mild local inflammation to severe systemic disease, with a high incidence rate and mortality. Current drug treatments are not ideal. Therefore, safer and more effective therapeutic drugs are urgently needed. 7α,14β-dihydroxy-ent-kaur-17-dimethylamino-3,15-dione DGA, a diterpenoid compound derivatized from glaucocalyxin A, exhibits anti-inflammatory activity. In this study, we demonstrated the therapeutic potential of DGA against SAP and elucidated the underlying mechanisms. Treatment with DGA markedly (1) inhibited death of RAW264.7 and J774a.1 cells induced by Nigericin and lipopolysaccharide, (2) alleviated edema, acinar cell vacuolation, necrosis, and inflammatory cell infiltration of pancreatic tissue in mice, and (3) inhibited the activity of serum lipase and the secretion of inflammatory factor IL-1β. DGA significantly reduced the protein expression of IL-1β and NLRP3 and inhibited the phosphorylation of NF-κB. However, DGA exhibited no inhibitory effect on the expression of caspase-1, gasdermin D (GSDMD), NF-κB, TNF-α, or apoptosis-associated speck-like protein (ASC) and on the cleavage of caspase-1 or GSDMD. Molecular docking simulation confirmed that DGA can bind to TLR4 and IL-1 receptor. In conclusion, DGA may effectively alleviate the symptoms of SAP in mice and macrophages by inhibiting the binding of TLR4 and IL-1 receptor to their ligands; therefore, DGA is a promising drug candidate for the treatment of patients with SAP.
Collapse
Affiliation(s)
- Xiyue Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Ruina Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Lulu Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Yanping Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Qing Xie
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China.
| |
Collapse
|
44
|
Zhu Q, Yuan C, Wang D, Tu B, Chen W, Dong X, Wu K, Tao L, Ding Y, Xiao W, Hu L, Gong W, Li Z, Lu G. The TRIM28/miR133a/CD47 axis acts as a potential therapeutic target in pancreatic necrosis by impairing efferocytosis. Mol Ther 2024; 32:3025-3041. [PMID: 38872307 PMCID: PMC11403229 DOI: 10.1016/j.ymthe.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Efferocytosis, the clearance of apoptotic cells by macrophages, plays a crucial role in inflammatory responses and effectively prevents secondary necrosis. However, the mechanisms underlying efferocytosis in acute pancreatitis (AP) remain unclear. In this study, we demonstrated the presence of efferocytosis in injured human and mouse pancreatic tissues. We also observed significant upregulation of CD47, an efferocytosis-related the "do not eat me" molecule in injured acinar cells. Subsequently, we used CRISPR-Cas9 gene editing, anti-adeno-associated virus (AAV) gene modification, and anti-CD47 antibody to investigate the potential therapeutic role of AP. CD47 expression was negatively regulated by upstream miR133a, which is controlled by the transcription factor TRIM28. To further investigate the regulation of efferocytosis and reduction of pancreatic necrosis in AP, we used miR-133a-agomir and pancreas-specific AAV-shTRIM28 to modulate CD47 expression. Our findings confirmed that CD47-mediated efferocytosis is critical for preventing pancreatic necrosis and suggest that targeting the TRIM28-miR133a-CD47 axis is clinically relevant for the treatment of AP.
Collapse
Affiliation(s)
- Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Dan Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Bo Tu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Keyan Wu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Lide Tao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
45
|
Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis. Mol Med 2024; 30:136. [PMID: 39227768 PMCID: PMC11373529 DOI: 10.1186/s10020-024-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Acute pancreatitis (AP) is a multifaceted inflammatory disorder stemming from the aberrant activation of trypsin within the pancreas. Despite the contribution of various factors to the pathogenesis of AP, such as trypsin activation, dysregulated increases in cytosolic Ca2+ levels, inflammatory cascade activation, and mitochondrial dysfunction, the precise molecular mechanisms underlying the disease are still not fully understood. Mitophagy, a cellular process that preserves mitochondrial homeostasis under stress, has emerged as a pivotal player in the context of AP. Research suggests that augmenting mitophagy can mitigate pancreatic injury by clearing away malfunctioning mitochondria. Elucidating the role of mitophagy in AP may pave the way for novel therapeutic strategies. This review article aims to synthesize the current research findings on mitophagy in AP and underscore its significance in the clinical management of the disorder.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yunfei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- Postdoctoral Research Station of Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jian Lei
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
46
|
Jiang W, Li X, Zhang Y, Zhou W. Natural Compounds for the Treatment of Acute Pancreatitis: Novel Anti-Inflammatory Therapies. Biomolecules 2024; 14:1101. [PMID: 39334867 PMCID: PMC11430608 DOI: 10.3390/biom14091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Acute pancreatitis remains a serious public health problem, and the burden of acute pancreatitis is increasing. With significant morbidity and serious complications, appropriate and effective therapies are critical. Great progress has been made in understanding the pathophysiology of acute pancreatitis over the past two decades. However, specific drugs targeting key molecules and pathways involved in acute pancreatitis still require further study. Natural compounds extracted from plants have a variety of biological activities and can inhibit inflammation and oxidative stress in acute pancreatitis by blocking several signaling pathways, such as the nuclear factor kappa-B and mitogen-activated protein kinase pathways. In this article, we review the therapeutic effects of various types of phytochemicals on acute pancreatitis and discuss the mechanism of action of these natural compounds in acute pancreatitis, aiming to provide clearer insights into the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Wenkai Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Yi Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China;
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| |
Collapse
|
47
|
Falcão KVG, Azevedo RDSD, Lima LRAD, Bezerra RDS. A rapid protocol for inducing acute pancreatitis in zebrafish models. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109958. [PMID: 38857668 DOI: 10.1016/j.cbpc.2024.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Acute pancreatitis (AP) is an inflammatory disorder that occurs in the exocrine pancreas associated with tissue injury and necrosis. Experimental models of AP typically involve rodents, such as rats or mice. However, rodents exhibit divergent pathophysiological responses after the establishment of AP between themselves and in comparison, with human. The experiments conducted for this manuscript aimed to standardize a new AP model in zebrafish and validate it. Here, we provide a protocol for inducing AP in zebrafish through intraperitoneal injections of synthetic caerulein. Details are provided for solution preparation, pre-injection procedures, injection technique, and monitoring animal survival. Subsequently, validation was performed through biochemical and histological analyses of pancreatic tissue. The administered dose of caerulein for AP induction was 10 μg/kg applied four times in the intraperitoneal region. The histological validation study demonstrated the presence of necrosis within the first 12 h post-injection, accompanied by an excess of zymogen granules in the extracellular milieu. These observations align with those reported in conventional rodent models. We have standardized and validated the AP model in zebrafish. This model can contribute to preclinical and clinical studies of new drugs for AP treatment. Therefore, this novel model expands the toolkit for exploring faster and more effective preventive and therapeutic strategies for AP.
Collapse
Affiliation(s)
| | | | - Luiza Rayanna Amorim de Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco - UPE, Campus Garanhuns, Brazil
| | | |
Collapse
|
48
|
Qiu Q, Fu F, Wu Y, Han C, Pu W, Wen L, Xia Q, Du D. Rhei Radix et Rhizoma and its anthraquinone derivatives: Potential candidates for pancreatitis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155708. [PMID: 38733906 DOI: 10.1016/j.phymed.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.
Collapse
Affiliation(s)
- Qi Qiu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100073, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
49
|
Zhang R, Zhu Z, Ma Y, Tang T, Wu J, Huang F, Xu L, Wang Y, Zhou J. Rhizoma Alismatis Decoction improved mitochondrial dysfunction to alleviate SASP by enhancing autophagy flux and apoptosis in hyperlipidemia acute pancreatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155629. [PMID: 38677271 DOI: 10.1016/j.phymed.2024.155629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas, especially hyperlipidemia acute pancreatitis (HLAP) is the third leading cause of acute pancreatitis which is more severe with a greater incidence of persistent multiorgan failure. HLAP inflicts injury upon the organelles within the acinar cell, particularly mitochondria, the endolysosomal-autophagy system, and is accompanied by senescence-associated secretory phenotype (SASP). RAD, only two consists of Rhizoma Alismatis and Atractylodes macrocephala Rhizoma, which is best known for its ability to anti-inflammatory and lipid-lowering. Nevertheless, the mechanism by which RAD alleviates HLAP remains obscure, necessitating further investigation. PURPOSE The study aimed to assess the effects of the RAD on HLAP and to elucidate the underlying mechanism in vivo and in vitro, offering a potential medicine for clinical treatment for HLAP. STUDY DESIGN AND METHODS C57BL/6 mice with hyperlipidemia acute pancreatitis were induced by HFD and CER, then administrated with RAD. AR42J were stimulated by cerulein or conditioned medium and then cultured with RAD. Serums were analyzed to evaluate potential pancreas and liver damage. Furthermore, tissue samples were obtained for histological, and protein investigations by H&E, Oil red staining, and Western blot. In addition, western blot and immunofluorescent staining were utilized to estimate the effect of RAD on mitochondrial function, autophagy flux, and SASP. RESULTS In vivo, RAD considerably alleviated systemic inflammation while attenuating TC, TG, AMY, LPS, inflammatory cytokines, histopathology changes, oxidative damage, mitochondrial fission, and autophagy markers in HLAP mice. Impaired autophagy flux and mitochondrial dysfunction resulted in a significant enhancement of NLRP3 and IL-1β in the pancreas. RAD could reverse these changes. In vitro, RAD significantly restored mitochondrial membrane potential and oxidative phosphorylation levels. RAD decreased Beclin-1 and LC3-II expression and increased LAMP-1 and Parkin-Pink expression, which showed that RAD significantly ameliorated HLAP-induced damage to the mitochondria function by suppressing mitochondrial oxidative damage and enhancing autophagy flux and mitophagy to remove the damaged mitochondria. In addition, we found that RAD could up-regulate the expression of BAX, and Bad and down-regulate the expression of p16, and p21, indicating that RAD could promote damaged cell apoptosis and alleviate SASP. CONCLUSIONS This study revealed that RAD ameliorates mitochondrial function to alleviate SASP through enhancing autophagy flux, mitophagy, and apoptosis which provided a molecular basis for the advancement and development of protection strategies against HLAP.
Collapse
Affiliation(s)
- Rongzhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiyong Zhu
- Wuxi Huishan District People's Hospital, Wuxi, 214187, China; Affiliated Hushan Hospital of Xingling College, Nantong University, 226019, China
| | - Yumei Ma
- Digestive Department of Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Tiantian Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiejie Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fang Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Luzhou Xu
- Gastroenterology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, China
| | - Yaping Wang
- Wuxi Huishan District People's Hospital, Wuxi, 214187, China; Affiliated Hushan Hospital of Xingling College, Nantong University, 226019, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
50
|
Xu MS, Xu JL, Gao X, Mo SJ, Xing JY, Liu JH, Tian YZ, Fu XF. Clinical study of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in hypertriglyceridemia-induced acute pancreatitis and acute biliary pancreatitis with persistent organ failure. World J Gastrointest Surg 2024; 16:1647-1659. [PMID: 38983313 PMCID: PMC11230014 DOI: 10.4240/wjgs.v16.i6.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/10/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are novel inflammatory indicators that can be used to predict the severity and prognosis of various diseases. We categorize acute pancreatitis by etiology into acute biliary pancreatitis (ABP) and hypertriglyceridemia-induced acute pancreatitis (HTGP). AIM To investigate the clinical significance of NLR and PLR in assessing persistent organ failure (POF) in HTGP and ABP. METHODS A total of 1450 patients diagnosed with acute pancreatitis (AP) for the first time at Shanxi Bethune Hospital between January 2012 and January 2023 were enrolled. The patients were categorized into two groups according to the etiology of AP: ABP in 530 patients and HTGP in 241 patients. We collected and compared the clinical data of the patients, including NLR, PLR, and AP prognostic scoring systems, within 48 h of hospital admission. RESULTS The NLR (9.1 vs 6.9, P < 0.001) and PLR (203.1 vs 160.5, P < 0.001) were significantly higher in the ABP group than in the HTGP group. In the HTGP group, both NLR and PLR were significantly increased in patients with severe AP and those with a SOFA score ≥ 3. Likewise, in the ABP group, NLR and PLR were significantly elevated in patients with severe AP, modified computed tomography severity index score ≥ 4, Japanese Severity Score ≥ 3, and modified Marshall score ≥ 2. Moreover, NLR and PLR showed predictive value for the development of POF in both the ABP and HTGP groups. CONCLUSION NLR and PLR vary between ABP and HTGP, are strongly associated with AP prognostic scoring systems, and have predictive potential for the occurrence of POF in both ABP and HTGP.
Collapse
Affiliation(s)
- Mu-Sen Xu
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Jia-Le Xu
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Xin Gao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Shao-Jian Mo
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Jia-Yu Xing
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Jia-Hang Liu
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Yan-Zhang Tian
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Xi-Feng Fu
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| |
Collapse
|