1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Liu P, Zhang Q, Liu F. Biological roles and clinical applications of EpCAM in HCC. Discov Oncol 2025; 16:319. [PMID: 40087210 PMCID: PMC11909382 DOI: 10.1007/s12672-025-02095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is an important biomarker in tumors. In hepatocellular carcinoma (HCC), EpCAM + cells exhibit high invasiveness, tumorigenic ability, therapeutic resistance, and self-renewal ability, often identified as liver cancer stem cells (CSCs). Detecting EpCAM + cells in tumor lesions and circulation is valuable for predicting patient prognosis and monitoring therapeutic outcomes, emphasizing its clinical significance. Given its broad expression in HCC, especially in CSCs and circulating tumor cells (CTCs), EpCAM-targeting agents have garnered substantial research interest. However, the role of EpCAM in HCC progression and its regulatory mechanisms remains poorly understood. Furthermore, clinical applications of EpCAM, such as liquid biopsy and targeted therapies, are still controversial. This review summarizes the biological properties of EpCAM + HCC cells, explores the regulatory mechanisms governing EpCAM expression, and discusses its clinical significance of using EpCAM as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Peng Liu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qun Zhang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Hefnawy A, Abdelhamid AS, Abdelaziz MM, Elzoghby AO, Khalil IA. Recent advances in nano-based drug delivery systems for treatment of liver cancer. J Pharm Sci 2024; 113:3145-3172. [PMID: 39151795 DOI: 10.1016/j.xphs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Liver cancer is one of the aggressive primary tumors as evident by high rate of incidence and mortality. Conventional treatments (e.g. chemotherapy) suffer from various drawbacks including wide drug distribution, low localized drug concentration, and severe off-site toxicity. Therefore, they cannot satisfy the mounting need for safe and efficient cancer therapeutics, and alternative novel strategies are needed. Nano-based drug delivery systems (NDDSs) are among these novel approaches that can improve the overall therapeutic outcomes. NDDSs are designed to encapsulate drug molecules and target them specifically to liver cancer. Thus, NDDSs can selectively deliver therapeutic agents to the tumor cells and avoid distribution to off-target sites which should improve the safety profile of the active agents. Nonetheless, NDDSs should be well designed, in terms of the preparing materials, nanocarriers structure, and the targeting strategy, in order to accomplish these objectives. This review discusses the latest advances of NDDSs for cancer therapy with emphasis on the aforementioned essential design components. The review also entails the challenges associated with the clinical translation of NDDSs, and the future perspectives towards next-generation NDDSs.
Collapse
Affiliation(s)
- Amr Hefnawy
- Smyth Lab, College of Pharmacy, University of Texas at Austin, TX 78712, USA.
| | - Ahmed S Abdelhamid
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Giza, Egypt.
| |
Collapse
|
4
|
Peng X, Wang J, Deng Z, Wei J, Xie C, Wang Y, Han J, Chen Z, Du J, Zhang Z. NIR laser-activated phthalocyanine loaded lipid nanoparticles targeting M2 macrophage for improved photoacoustic imaging-guided photothermal therapy. Mater Today Bio 2024; 28:101209. [PMID: 39221205 PMCID: PMC11364919 DOI: 10.1016/j.mtbio.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The development of novel phototheranostic agents with significant potential in bioimaging-guided therapy is highly desirable for precise tumor therapy. Herein, NIR laser-activated ruthenium phthalocyanine (PcRu) loaded sub-30 nm targeting lipid nanoparticles (α-PcRu-NPs) were fabricated for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Due to the formation of J-type aggregation of PcRu in the core of the nanostructure, the α-PcRu-NPs exhibited high stability, efficient NIR absorption, reduced singlet oxygen generation, high photothermal activity, and intense photoacoustic signal. With the M2 macrophage target peptide (M2pep) modification and small size of α-PcRu-NPs, in vivo evaluations reveal that α-PcRu-NPs can specifically target and deeply penetrate the tumor foci. Under a high contrast PAI guidance with α-PcRu-NPs (744 nm, 0.35 μW), it also realizes superior photothermal therapy (PTT) for breast cancer under 670 nm laser irradiation (0.5 W/cm2). The prominent therapeutic efficacy of α-PcRu-NP-based PTT not only directly kills tumor cells, but also enhances the immune response by promoting dendritic cell maturation and increasing cytotoxic T cell infiltration. Thus, this work broadens the applications of phthalocyanine derivatives as phototheranostics in the PAI-guided PTT field.
Collapse
Affiliation(s)
- Xingzhou Peng
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Hainan Medical University, Haikou, 571199, China
| | - Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, 430074, China
| | - Jianshuang Wei
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Changqiang Xie
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Yan Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Beijing, 100190, China
| | - Zhengyu Chen
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Jianghai Du
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Zhihong Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
5
|
Zhang W, Chen G, Chen Z, Yang X, Zhang B, Wang S, Li Z, Yang Y, Wu Y, Liu Z, Yu Z. Mitochondria-targeted polyprodrug nanoparticles induce mitochondrial stress for immunogenic chemo-photodynamic therapy of ovarian cancer. J Control Release 2024; 371:470-483. [PMID: 38849094 DOI: 10.1016/j.jconrel.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Hypoimmunogenicity and the immunosuppressive microenvironment of ovarian cancer severely restrict the capability of immune-mediated tumor killing. Immunogenic cell death (ICD) introduces a theoretical principle for antitumor immunity by increasing antigen exposure and presentation. Despite recent research progress, the currently available ICD inducers are still very limited, and many of them can hardly induce sufficient ICD based on traditional endoplasmic reticulum (ER) stress. Accumulating evidence indicates that inducing mitochondrial stress usually shows a higher efficiency in evoking large-scale ICD than that via ER stress. Inspired by this, herein, a mitochondria-targeted polyprodrug nanoparticle (named Mito-CMPN) serves as a much superior ICD inducer, effectively inducing chemo-photodynamic therapy-caused mitochondrial stress in tumor cells. The rationally designed stimuli-responsive polyprodrugs, which can self-assemble into nanoparticles, were functionalized with rhodamine B for mitochondrial targeting, cisplatin and mitoxantrone (MTO) for synergistic chemo-immunotherapy, and MTO also serves as a photosensitizer for photodynamic immunotherapy. The effectiveness and robustness of Mito-CMPNs in reversing the immunosuppressive microenvironment is verified in both an ovarian cancer subcutaneous model and a high-grade serous ovarian cancer model. Our results support that the induction of abundant ICD by focused mitochondrial stress is a highly effective strategy to improve the therapeutic efficacy of immunosuppressive ovarian cancer.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Gui Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Ziqi Chen
- Hong Yang, Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Shengtao Wang
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Yifen Wu
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| | - Zhigang Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| |
Collapse
|
6
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
7
|
Dutta D, Nair RR, Mangalath S, Nair SA, Joseph J, Gogoi P, Ramaiah D. Biocompatible Aza-BODIPY-Biotin Conjugates for Photodynamic Therapy of Cancer. ACS OMEGA 2023; 8:26180-26190. [PMID: 37521632 PMCID: PMC10373210 DOI: 10.1021/acsomega.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023]
Abstract
With an objective to develop efficient photosensitizers to cancerous tissues, we synthesized two novel biocompatible sensitizers based on aza-BODIPYs incorporated with heavy atoms and biotin moieties. The bioconjugates DPR2a and DPR2b exhibited a favorable absorption range (600-750 nm) with excellent triplet-state quantum yields (up to 79%) and singlet oxygen generation yields (up to 75%). In vitro photobiological investigations employing MDA-MB-231 breast cancer cell lines exhibited rapid cellular uptake, negligible dark toxicity, and high photocytotoxicity. The mechanism of cell death of these systems was predominantly due to the mitochondrial damage, leading to apoptosis mediated via the generation of singlet oxygen-triggered reactive oxygen species. The in vivo studies with the representative conjugate DPR2a employing female NOD/SCID mice models showed inhibition in tumor growth and significantly decreased tumor volume post photodynamic therapy (PDT) treatment. Our results validate that both DPR2a and DPR2b with iodine incorporation exhibit favorable and superior photophysical and photobiological aspects and demonstrate thereby their potential applications in imaging and PDT of cancer.
Collapse
Affiliation(s)
- Dhiraj Dutta
- Applied
Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology
(CSIR-NEIST), Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajshree R. Nair
- Cancer
Research Program 4, Rajiv Gandhi Centre
for Biotechnology, Trivandrum, Kerala 695014, India
- Manipal
Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sreejith Mangalath
- Photosciences
and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Trivandrum 695019, India
| | - S. Asha Nair
- Cancer
Research Program 4, Rajiv Gandhi Centre
for Biotechnology, Trivandrum, Kerala 695014, India
| | - Joshy Joseph
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Photosciences
and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology (CSIR-NIIST), Trivandrum 695019, India
| | - Pranjal Gogoi
- Applied
Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology
(CSIR-NEIST), Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Danaboyina Ramaiah
- Department
of Chemistry, Birla Institute of Technology
& Science (BITS), Jawahar Nagar, Hyderabad, Telangana 500078, India
| |
Collapse
|
8
|
Umapathy VR, Natarajan PM, Swamikannu B. Review of the Role of Nanotechnology in Overcoming the Challenges Faced in Oral Cancer Diagnosis and Treatment. Molecules 2023; 28:5395. [PMID: 37513267 PMCID: PMC10385509 DOI: 10.3390/molecules28145395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Throughout the world, oral cancer is a common and aggressive malignancy with a high risk of morbidity, mortality, and recurrence. The importance of early detection in cancer prevention and disease treatment cannot be overstated. Conventional therapeutic strategies have minor difficulties but considerable side effects and unfavourable consequences in clinical applications. Hence, there is a requirement for effective ways for early detection and treatment of oral cancer. At present, numerous forms of nanoparticles have piqued researchers' interest as a potentially useful tool for diagnostic probes and medicinal devices. Because of their inherent physicochemical properties and customizable surface modification, they are able to circumvent some of restrictions and accomplish the intended diagnostic and therapeutic impact. Nanotechnology is a unique field that has revolutionised the industry and is paving the way for new treatments for oral cancer. It can help with a better diagnosis with less harmful substances and is setting current guidelines for treatment. The use of nanotechnology in cancer diagnosis, therapy, and care improves clinical practise dramatically. The different types of nanoparticles that have been developed for the diagnosis and therapy of oral cancers will be covered in this study. The difficulties and potential uses of nanoparticles in the treatment and diagnosis of oral cancer are then highlighted. In order to emphasise existing difficulties and potential remedies for oral cancer, a prospective view of the future is also provided.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
9
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
10
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
11
|
Sun Y, Li B, Cao Q, Liu T, Li J. Targeting cancer stem cells with polymer nanoparticles for gastrointestinal cancer treatment. Stem Cell Res Ther 2022; 13:489. [PMID: 36182897 PMCID: PMC9526954 DOI: 10.1186/s13287-022-03180-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
Nanomaterials are developing rapidly in the medical field, bringing new hope for treating various refractory diseases. Among them, polymer nanomaterials, with their excellent properties, have been used to treat various diseases, such as malignant tumors, diabetes, and nervous system diseases. Gastrointestinal cancer is among the cancers with the highest morbidity and mortality worldwide. Cancer stem cells are believed to play an important role in the occurrence and development of tumors. This article summarizes the characteristics of gastrointestinal cancer stem cells and reviews the latest research progress in treating gastrointestinal malignant tumors using polymer nanoparticles to target cancer stem cells. In addition, the review article highlights the potential of polymer nanoparticles in targeting gastrointestinal cancer stem cells.
Collapse
Affiliation(s)
- Yao Sun
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Bo Li
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
12
|
Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:427. [PMID: 36175957 PMCID: PMC9524074 DOI: 10.1186/s12951-022-01615-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Primary liver cancer has become the second most fatal cancer in the world, and its five-year survival rate is only 10%. Most patients are in the middle and advanced stages at the time of diagnosis, losing the opportunity for radical treatment. Liver cancer is not sensitive to chemotherapy or radiotherapy. At present, conventional molecularly targeted drugs for liver cancer show some problems, such as short residence time, poor drug enrichment, and drug resistance. Therefore, developing new diagnosis and treatment methods to effectively improve the diagnosis, treatment, and long-term prognosis of liver cancer is urgent. As an emerging discipline, nanobiotechnology, based on safe, stable, and efficient nanomaterials, constructs highly targeted nanocarriers according to the unique characteristics of tumors and further derives a variety of efficient diagnosis and treatment methods based on this transport system, providing a new method for the accurate diagnosis and treatment of liver cancer. This paper aims to summarize the latest progress in this field according to existing research and the latest clinical diagnosis and treatment guidelines in hepatocellular carcinoma (HCC), as well as clarify the role, application limitations, and prospects of research on nanomaterials and the development and application of nanotechnology in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
13
|
Dibaba ST, Xie Y, Xi W, Bednarkiewicz A, Ren W, Sun L. Nd3+-sensitized upconversion nanoparticle coated with antimony shell for bioimaging and photothermal therapy in vitro using single laser irradiation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
15
|
Valdivia V, Gimeno-Ferrero R, Pernia Leal M, Paggiaro C, Fernández-Romero AM, González-Rodríguez ML, Fernández I. Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles. NANOMATERIALS 2022; 12:nano12101753. [PMID: 35630975 PMCID: PMC9145561 DOI: 10.3390/nano12101753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
The preparation of new and functional nanostructures has received more attention in the scientific community in the past decade due to their wide application versatility. Among these nanostructures, micelles appear to be one of the most interesting supramolecular organizations for biomedical applications because of their ease of synthesis and reproducibility and their biocompatibility since they present an organization similar to the cell membrane. In this work, we developed micellar nanocarrier systems from surfactant molecules derived from oleic acid and tetraethylene glycol that were able to encapsulate and in vitro release the drug dexamethasone. In addition, the designed micelle precursors were able to functionalize metallic NPs, such as gold NPs and iron oxide NPs, resulting in monodispersed hybrid nanomaterials with high stability in aqueous media. Therefore, a new triazole-derived micelle precursor was developed as a versatile encapsulation system, opening the way for the preparation of new micellar nanocarrier platforms for drug delivery, magnetic resonance imaging, or computed tomography contrast agents for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Victoria Valdivia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| | - Raúl Gimeno-Ferrero
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| | - Chiara Paggiaro
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
| | - Ana María Fernández-Romero
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (A.M.F.-R.); (M.L.G.-R.)
| | - María Luisa González-Rodríguez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (A.M.F.-R.); (M.L.G.-R.)
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| |
Collapse
|
16
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
17
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022; 13:126-147. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza, Piacenza, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| |
Collapse
|
19
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
20
|
Zhu F, Wang BR, Zhu ZF, Wang SQ, Chai CX, Shang D, Li M. Photodynamic therapy: A next alternative treatment strategy for hepatocellular carcinoma? World J Gastrointest Surg 2021; 13:1523-1535. [PMID: 35070061 PMCID: PMC8727193 DOI: 10.4240/wjgs.v13.i12.1523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/20/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the most common cancers in the world. Of all types of liver cancer, hepatocellular carcinoma (HCC) is known to be the most frequent primary liver malignancy and has seriously compromised the health status of the general population. Locoregional thermal ablation techniques such as radiofrequency and microwave ablation, have attracted attention in clinical practice as an alternative strategy for HCC treatment. However, their aggressive thermal effect may cause undesirable complications such as hepatic decompensation, hemorrhage, bile duct injury, extrahepatic organ injuries, and skin burn. In recent years, photodynamic therapy (PDT), a gentle locoregional treatment, has attracted attention in ablation therapy for patients with superficial or luminal tumors as an alternative treatment strategy. However, some inherent defects and extrinsic factors of PDT have limited its use in clinical practice for deep-seated HCC. In this contribution, the aim is to summarize the current status and challenges of PDT in HCC treatment and provide potential strategies to overcome these deficiencies in further clinical translational practice.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Bi-Rong Wang
- Department of Breast and Thyroid Surgery, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng-Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Si-Qin Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Chu-Xing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Dan Shang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
21
|
Fan Z, Zhuang C, Wang S, Zhang Y. Photodynamic and Photothermal Therapy of Hepatocellular Carcinoma. Front Oncol 2021; 11:787780. [PMID: 34950591 PMCID: PMC8688153 DOI: 10.3389/fonc.2021.787780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor. It is ranked the sixth most common neoplasm and the third most common cause of cancer mortality. At present, the most common treatment for HCC is surgery, but the 5-year recurrence rates are still high. Patients with early stage HCC with few nodules can be treated with resection or radiofrequency ablation (RFA); while for multinodular HCC, transarterial chemoembolization (TACE) has been the first-line treatment. In recent years, based on medical engineering cooperation, nanotechnology has been increasingly applied to the treatment of cancer. Photodynamic therapy and photothermal therapy are effective for cancer. This paper summarizes the latest progress of photodynamic therapy and photothermal therapy for HCC, with the aim of providing new ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Zhe Fan
- Department of General Surgery, the Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, the Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Chengjun Zhuang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Hierarchical dual-responsive cleavable nanosystem for synergetic photodynamic/photothermal therapy against melanoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112524. [PMID: 34857303 DOI: 10.1016/j.msec.2021.112524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023]
Abstract
Currently, the combining photodynamic therapy (PDT) with photothermal therapy (PTT) modalities based on a single near infrared (NIR) laser irradiation and highly selective internalization still remain a challenge. Herein, a hierarchical dual-responsive cleavable nanosystem for synergetic NIR triggered PDT/PTT is reported. The engineered nanoplatform (Au NRs/Cur/UCNPs@PBE) is designed by loading curcumin (Cur, photosensitizer) on gold nanarods (Au NRs) to build PDT/PTT therapy system, which was encapsulated outside with upconversion nanoparticles (UCNPs) and then modified with phenylboronic double ester (PBE). The pH and ROS-responsive feature made Au NRs/Cur/UCNPs@PBE provide a fundamental structural evolution and improve the specificity and intracellular accumulation to tumors. Au NRs/Cur/UCNPs@PBE exhibited significant PDT and PTT efficiency against two type melanoma cells due to upconversion nanoparticles and Au NRs induced by an 808 nm laser. Notably, the platform can mainly activate apoptosis and partial ferroptosis to achieve the synergistic PDT/PTT, furthermore, the integrated PDT with PTT using Au NRs/Cur/UCNPs@PBE showcased a great antitumor efficacy in vivo superior to the other alone treatment. Our findings highlight that this intelligent nanoagents for synergistic phototherapy facilitate enhanced fighting melanoma and provide a promising strategy for melanoma theranostics.
Collapse
|
23
|
Du Y, Liu D, Du Y. Recent advances in hepatocellular carcinoma therapeutic strategies and imaging-guided treatment. J Drug Target 2021; 30:287-301. [PMID: 34727794 DOI: 10.1080/1061186x.2021.1999963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancer in the world, which greatly threatens human health. However, the routine treatment strategies for HCC have failed to specifically eradicate the tumorigenic cells, leading to the occurrence of metastasis and recurrence. To improve treatment efficacies, the development of novel effective technologies is urgently required. Recently, nanotechnologies have gained the extensive attention in cancer targeted therapy, which could provide a promising way for HCC clinical practice. However, a successful cancer management depends on accurate diagnosis of the tumour along with precise therapeutic protocol, thereby predicting the tumour response to existing therapies. The synergistic effect of targeted therapeutic systems and imaging approaches (also called 'imaging-guided cancer treatment') may establish a more effective platform for individual cancer care. This review outlines the recent advanced nano-targeted and -traceable therapeutic strategies for HCC management. The multifunctional nano agents that have both diagnosis and therapy abilities are highlighted. Finally, we conclude with our perspectives on the future development and challenges of HCC nanotheranostics.
Collapse
Affiliation(s)
- Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Jiang X, Hao C, Zhang H, Wu X, Xu L, Sun M, Xu C, Kuang H. Dual-Modal Fe xCu ySe and Upconversion Nanoparticle Assemblies for Intracellular MicroRNA-21 Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41405-41413. [PMID: 32191832 DOI: 10.1021/acsami.0c00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In situ quantification and imaging of low-level intracellular microRNAs (miRs) are important areas in biosensor research. Herein, DNA-driven FexCuySe@upconversion nanoparticle (UCNP) core@satellite nanostructures were developed to probe microRNA-21 (miR-21). FexCuySe@UCNP probes displayed dual signals: upconversion luminescence (UCL) and magnetic resonance imaging (MRI). In the presence of miR-21, the luminescence signal was restored and the T2 value was significantly increased because of dissociation of UCNPs from the assemblies. There was a good linear relationship between the dual signals and the expression levels of miR-21 in the range of 0.035-31.824 amol/ngRNA. The limit of detection (LOD) was 0.0058 amol/ngRNA for the luminescence intensity and 0.0182 amol/ngRNA for the MRI signal. This method opens a new avenue for intracellular miR-21 detection with high sensitivity and specificity.
Collapse
|
25
|
Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021; 9:733792. [PMID: 34557478 PMCID: PMC8452863 DOI: 10.3389/fbioe.2021.733792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021; 1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Liver cancer is one of the most common cancers worldwide and is also one of the most difficult cancers to treat, resulting in almost one million deaths per year, and the danger of this cancer is compounded when the tumor is nonresectable. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has the third highest mortality rate worldwide. Considering the morbid statistics surrounding this cancer it is a popular research topic to target for better therapy practices. This review summarizes the role of nanotechnology in these endeavors. Nanoparticles (NPs) are a very broad class of material and many different kinds have been used to potentially combat liver cancer. Gold, silver, platinum, metal oxide, calcium, and selenium NPs as well as less common materials are all inorganic NPs that have been used as a therapeutic, carrier, or imaging agent in drug delivery systems (DDS) and these efforts are described. Carbon-based NPs, including polymeric, polysaccharide, and lipid NPs as well as carbon dots, have also been widely studied for this purpose and the role they play in DDS for the treatment of liver cancer is illustrated in this review. The multifunctional nature of many NPs described herein, allows these systems to display high anticancer activity in vitro and in vivo and highlights the advantage of and need for combinatorial therapy in treating this difficult cancer. These works are summarized, and future directions are presented for this promising field.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
27
|
Oliveira BSAD, de Assis ACC, Souza NM, Ferreira LFR, Soriano RN, Bilal M, Iqbal HMN. Nanotherapeutic approach to tackle chemotherapeutic resistance of cancer stem cells. Life Sci 2021; 279:119667. [PMID: 34087280 DOI: 10.1016/j.lfs.2021.119667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Estimates indicate that cancer will become the leading cause of mortality worldwide in the future. Tumorigenesis is a complex process that involves self-sufficiency in signs of growth, insensitivity to anti-growth signals, prevention of apoptosis, unlimited replication, sustained angiogenesis, tissue invasion, and metastasis. Cancer stem cells (CSCs) have an important role in tumor development and resistance. Here we will approach phenotypic plasticity capacity, highly efficient DNA repair systems, anti-apoptotic machinery, sustained stemness features, interaction with the tumor microenvironment, and Notch, Wnt, and Hedgehog signaling pathways. The researches about CSCs as a target in cancer treatment has been growing. Many different options have pointed beneficial results, such as pathways and CSC-surface markers targeting. Besides its limitations, nanotherapeutics have emerged as a potential strategy in this context since they aim to improve pharmacokinetics, biodistribution, and reduce the side effects observed in traditional treatments. Nanoparticles have been studied in this field, mostly for drug delivery and a multitherapy approach. Another widely researched approaches in this area are related to heat therapy, such as photothermal therapy, photodynamic therapy and magnetic hyperthermia, besides molecular targeting. This review will contemplate the most relevant studies that have shown the effects of nanotherapeutics. In conclusion, although the studies analyzed are mostly preclinical, we believe that there is strong evidence that nanoparticles can increase the chances of a better prognosis to cancer in the future. It is also essential to transpose these findings to the clinic to confirm and better understand the role of nanotherapeutics in this context.
Collapse
Affiliation(s)
- Bruna Stefane Alves de Oliveira
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Ana Carolina Correa de Assis
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Natália Melo Souza
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil; Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35010-177, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
28
|
Chowdhury MMH, Salazar CJJ, Nurunnabi M. Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomater Sci 2021; 9:4821-4842. [PMID: 34032223 DOI: 10.1039/d1bm00167a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, liver cancer is the fourth leading cause of cancer associated with death worldwide. It demands effective treatment and diagnostic strategies to hinder its recurrence, complexities, aggressive metastasis and late diagnosis. With recent progress in nanotechnology, several nanoparticle-based diagnostic and therapeutic modalities have entered into clinical trials. With further developments in nanoparticle mediated liver cancer diagnosis and treatment, the approach holds promise for improved clinical liver cancer management. In this review, we discuss the key advances in nanoparticles that have potential for liver cancer diagnosis and treatment. We also discuss the potential of nanoparticles to overcome the limitations of existing therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed Mehadi Hassan Chowdhury
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurnponds, Vic-3216, Australia and Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | | | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, TX 79968, USA. and Biomedical Engineering, University of Texas at El Paso, TX 79968, USA and Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA and Border Biomedical Research Center, University of Texas at El Paso, TX 79968, USA
| |
Collapse
|
29
|
Long-Term Tri-Modal In Vivo Tracking of Engrafted Cartilage-Derived Stem/Progenitor Cells Based on Upconversion Nanoparticles. Biomolecules 2021; 11:biom11070958. [PMID: 34209859 PMCID: PMC8301782 DOI: 10.3390/biom11070958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Cartilage-derived stem/progenitor cells (CSPCs) are a potential choice for seed cells in osteal and chondral regeneration, and the outcomes of their survival and position distribution in vivo form the basis for the investigation of their mechanism. However, the current use of in vivo stem cell tracing techniques in laboratories is relatively limited, owing to their high operating costs and cytotoxicity. Herein, we performed tri-modal in vivo imaging of CSPCs during subcutaneous chondrogenesis using upconversion nanoparticles (UCNPs) for 28 days. Distinctive signals at accurate positions were acquired without signal noise from X-ray computed tomography, magnetic resonance imaging, and upconversion luminescence. The measured intensities were all significantly proportional to the cell numbers, thereby enabling real-time in vivo quantification of the implanted cells. However, limitations of the detectable range of cell numbers were also observed, owing to the imaging shortcomings of UCNPs, which requires further improvement of the nanoparticles. Our study explores the application value of upconversion nanomaterials in the tri-modal monitoring of implanted stem cells and provides new perspectives for future clinical translation.
Collapse
|
30
|
Mahata MK, De R, Lee KT. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021; 9:756. [PMID: 34210059 PMCID: PMC8301434 DOI: 10.3390/biomedicines9070756] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| |
Collapse
|
31
|
Liu Z, Xie Z, Li W, Wu X, Jiang X, Li G, Cao L, Zhang D, Wang Q, Xue P, Zhang H. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. J Nanobiotechnology 2021; 19:160. [PMID: 34051801 PMCID: PMC8164771 DOI: 10.1186/s12951-021-00903-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive or minimally-invasive treatment which applies photosensitizers (PSs) to create reactive oxygen species (ROS) exposed to light trigger to destroy cancer cells. PDT can activate host anti-tumor immune responses but not powerful enough to kill metastatic tumors. Because of its carrier advantage, imaging, and therapeutic function together with enhanced permeability and retention (EPR) effect, nano-materials have already been used in photo-immunotherapy. Herein, photodynamic immunotherapy (PDIT) based on nanotechnology seems to be a hopeful new form of cancer therapy. In this article, we firstly summarize the recent development in photodynamic immunotherapy based on nanotechnology. ![]()
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongjian Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Wenting Li
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xinqiang Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiwen Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. .,Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
32
|
Dai Q, Jiang W, Liu H, Qing X, Wang G, Huang F, Yang Z, Wang C, Gu E, Zhao H, Zhang J, Liu X. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury. NANOTECHNOLOGY 2021; 32:265101. [PMID: 33472187 DOI: 10.1088/1361-6528/abde02] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study is to evaluate the effect of rare earth upconversion nanoparticles (UCNs) on hepatic ischemia reperfusion injury (IRI) and explore its possible mechanism. Hepatic IRI seriously affects the prognosis of patients undergoing liver surgery. Liver-resident Kupffer cells have been reported to promote IRI. Nanomedicines are known to be effective in the treatment of liver diseases, however, Kupffer cell-targeting nanomedicines for the treatment of IRI are yet to be developed. As potential bioimaging nanomaterials, UCNs have been found to specifically deplete Kupffer cells, but the underlying mechanism is unknown. In this study, we found that UCNs specifically depleted Kupffer cells by pyroptosis, while the co-administration of the caspase-1 inhibitor VX-765 rescued the UCN-induced Kupffer cell pyroptosis in mice. Furthermore, the pre-depletion of Kupffer cells by the UCNs significantly suppressed the release of inflammatory cytokines and effectively improved hepatic IRI. The rescue of the pyroptosis of the Kupffer cells by VX-765 abrogated the protective effect of UCNs on the liver. These results suggest that UCNs are highly promising for the development of Kupffer cell-targeting nanomedicines for intraoperative liver protection.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Wei Jiang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Hu Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xin Qing
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Guobin Wang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| |
Collapse
|
33
|
Qi X, Han Y, Liu S, Hu H, Cheng Z, Liu T. NaYF 4:Yb/Tm@SiO 2-Dox/Cur-CS/OSA nanoparticles with pH and photon responses. NANOTECHNOLOGY 2021; 32:255703. [PMID: 33684903 DOI: 10.1088/1361-6528/abecba] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Stimulus-triggered drug delivery systems (DDSs) based on lanthanide-doped upconversion nanoparticles (UCNPs) have attracted significant attention for treating cancers due to their merits of high drug availability, precisely controlled drug release, and low side-effects. However, such DDSs usually exhibit a single stimulus-response, which may limit the efficiency of cancer treatment. To extend response types in a single DDS, we construct NaYF4:Yb/Tm@SiO2-doxorubicin (Dox)/curcumin (Cur)-chitosan (CS)/2-Octen-1-ylsuccinic anhydride (OSA) nanoparticles with core-shell structures. Our method is based on the exploration of the synergistic effect of UCNPs and multiple drugs. In particular, the NaYF4:Yb/Tm is used to convert near-infrared light to visible light, activating Cur photosensitizers to produce singlet oxygen for photodynamic therapy, while CS/OSA responds to a low pH environment to release cancer drugs, including Dox and Cur for chemotherapy through breaking a free carboxyl group. The results show that the UCNPs with a 40 nm diameter, 23 nm thick mesoporous SiO2, and 19/1 mol% Yb3+/Tm3+concentrations could continuously release Dox and Cur at a pH value of 6.5 within 6 h after the excitation of a 980 nm-wavelength CW laser. Our study provides a promising approach for developing efficient DDSs for cancer treatment.
Collapse
Affiliation(s)
- Xiaoling Qi
- Department of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, People's Republic of China
- Department of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin 300072, People's Republic of China
| | - Yingdong Han
- Department of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin 300072, People's Republic of China
| | - Shujing Liu
- Department of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Haofeng Hu
- Department of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin 300072, People's Republic of China
| | - Zhenzhou Cheng
- Department of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin 300072, People's Republic of China
| | - Tiegen Liu
- Department of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin 300072, People's Republic of China
| |
Collapse
|
34
|
Wang L, Sun Z, Wang H. Extracellular vesicles and the regulation of tumor immunity: Current progress and future directions. J Cell Biochem 2021; 122:760-769. [PMID: 33594754 DOI: 10.1002/jcb.29904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
As nano-level information carriers, extracellular vesicles (EVs) contain proteins, DNA or RNA, which maintain the transmembrane transport of biomolecules and the homeostasis of normal cells. EVs can be released by most cell types and absorbed by specific recipient cells, subsequently affecting phenotypic expression. EVs are believed to play an important role in cellular communication, especially in immune cells. During tumor development, EVs of different origins have different effects on the survival and growth of tumor cells. Some tumor cell-derived EVs can mediate tumor immunosuppressive responses by inhibiting the differentiation and maturation of dendritic cells (DCs) and by negatively regulating the expression of T cell receptors, causing tumor cells to escape immune surveillance and proliferate. EVs have therefore become a key component of tumor cell proliferation and metastasis. In contrast, EVs derived from DCs mediate antitumor immune activation by inducing the killing and inhibitory effects of the immune system. This makes it an antigen component of the antitumor response. Integrating the interaction and connection of EVs to immunosuppression and immune response is significant for the application of EVs in clinical practice. Here, we reviewed the research progress on the role of EVs in the immune regulation of tumors.
Collapse
Affiliation(s)
- Lingyun Wang
- Departments of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China.,Basic Department, Jiangxi Health Vocational College, Nanchang, Jiangxi, China
| | - Zhichao Sun
- Departments of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China.,Academy of Queen Mary, Nanchang University, Nanchang, Jiangxi, China
| | - Hongmei Wang
- Departments of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Li S, Yang S, Liu C, He J, Li T, Fu C, Meng X, Shao H. Enhanced Photothermal-Photodynamic Therapy by Indocyanine Green and Curcumin-Loaded Layered MoS 2 Hollow Spheres via Inhibition of P-Glycoprotein. Int J Nanomedicine 2021; 16:433-442. [PMID: 33488079 PMCID: PMC7815073 DOI: 10.2147/ijn.s275938] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE P-glycoprotein (P-gp), which is highly expressed in liver cancer cells, is one of the obstacles for the treatment of cancer. In this study, we have prepared and characterized a kind of novel ICG&Cur@MoS2 (ICG and Cur represent indocyanine green and curcumin, respectively) nanoplatform, which can achieve photothermal-photodynamic therapy and inhibit the P-gp effectively and safely. METHODS In this work, plenty of studies including drug release, acute toxicity, Western blot, real-time PCR, cell viability, therapeutic experiment in vivo, immunofluorescence and so on were conducted to test the antitumor potential of ICG&Cur@MoS2 and the inhibitory effect of curcumin on P-gp. RESULTS The ICG&Cur@MoS2 NPs exhibit an excellent photothermal effect and relatively low toxicity. Cell viability in the ICG&Cur@MoS2 + NIR group was significantly lower than that in ICG@MoS2 + NIR group (75.3% vs 81.2%, 59.0% vs 64.4%, 20.3% vs 27.5%, and 15.4% vs 22.3%) at the concentration of ICG at 0.5, 5, 25, 50 μg/mL (P<0.05 at each concentration). Western blot, Q-PCR, and immunofluorescence assay indicate ICG&Cur@MoS2 NPs can inhibit the P-gp effectively and safely. In vivo, the tumors in the ICG@MoS2 + NIR group are significantly smaller than those in the MoS2 + NIR group (95.0 vs 420.9 mm3, p<0.05). CONCLUSION In conclusion, we have successfully synthesized ICG&Cur@MoS2 nanoparticles which can not only achieve PTT-PDT but also inhibit P-gp effectively. Our findings indicate that the PTT-PDT exhibits great potential in the treatment of hepatocellular carcinoma. Meanwhile, ICG&Cur@MoS2 can effectively inhibit the expression of P-gp, which will enhance the PDT effect.
Collapse
Affiliation(s)
- Shuai Li
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang110001, Liaoning, People’s Republic of China
| | - Shuping Yang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning, People’s Republic of China
| | - Chong Liu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang110001, Liaoning, People’s Republic of China
| | - Jintong He
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang110001, Liaoning, People’s Republic of China
| | - Tian Li
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang110001, Liaoning, People’s Republic of China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Haibo Shao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang110001, Liaoning, People’s Republic of China
| |
Collapse
|
37
|
Wang Q, Xiao J, Su Y, Huang J, Li J, Qiu L, Zhan M, He X, Yuan W, Li Y. Fabrication of thermoresponsive magnetic micelles from amphiphilic poly(phenyl isocyanide) and Fe3O4 nanoparticles for controlled drug release and synergistic thermochemotherapy. Polym Chem 2021. [DOI: 10.1039/d1py00022e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The drug-loaded micelles self-assembled from co-poly(phenyl isocyanide), Fe3O4 and DOX demonstrated thermoresponsiveness and magnetic hyperthermia for synergistic thermochemotherapy.
Collapse
|
38
|
Robertson AG, Rendina LM. Gadolinium theranostics for the diagnosis and treatment of cancer. Chem Soc Rev 2021; 50:4231-4244. [DOI: 10.1039/d0cs01075h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combining therapeutic and diagnostic tools into a single ‘theranostic’ platform lies at the forefront of cancer research. Some of the most promising theranostics exploit the unique nuclear and electronic properties of the lanthanoid metal gadolinium.
Collapse
Affiliation(s)
| | - Louis M. Rendina
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
- The University of Sydney
| |
Collapse
|
39
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
40
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
41
|
Jędrzak A, Grześkowiak BF, Golba K, Coy E, Synoradzki K, Jurga S, Jesionowski T, Mrówczyński R. Magnetite Nanoparticles and Spheres for Chemo- and Photothermal Therapy of Hepatocellular Carcinoma in vitro. Int J Nanomedicine 2020; 15:7923-7936. [PMID: 33116509 PMCID: PMC7569049 DOI: 10.2147/ijn.s257142] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction We present a multimodal nanoplatforms for the treatment of hepatocellular carcinoma (HCC) in vitro. The nanoplatforms are based on polydopamine (PDA)-coated magnetite nanoparticles (NPs) and spheres (sMAG) with PAMAM dendrimers and functionalized with NHS-PEG-Mal (N-hydroxysuccinimide–polyethylene glycol–maleimide) linker, which allows their functionalization with a folic acid derivative. The nanomaterials bearing a folic acid-targeting moiety show high efficiency in killing cancer cells in the dual chemo- and photothermal therapy (CT-PTT) of the liver cancer cells in comparison to modalities performed separately. Materials and Methods All materials are characterized in detail with transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential and magnetic measurements. Also, photothermal properties were determined under irradiation of nanoparticles with laser beam of 2 W/cm2. The nontoxicity of nanoparticles with doxorubicin and without was checked by WST and LIVE/DEAD assay. Those tests were also used to evaluate materials bearing folic acid and anticancer drug in combined chemo- and photothermal therapy of HCC. Further, the generation of reactive oxygen species profile was also evaluated using flow cytometry test. Results Both NPs and sMAG showed high photothermal properties. Nevertheless, the higher photothermal response was found for magnetic spheres. Materials of concentration above 10 µg/mL reveal that their activity was comparable to free doxorubicin. It is worth highlighting that a functionalized magnetic sphere with DOXO more strongly affected the HepG2 cells than smaller functionalized nanoparticles with DOXO in the performed chemotherapy. This can be attributed to the larger size of particles and a different method of drug distribution. In the further stage, both materials were assessed in combined chemo- and photothermal therapy (CT-PTT) which revealed that magnetic spheres were also more effective in this modality than smaller nanoparticles. Conclusion Here, we present two types of nanomaterials (nanoparticles and spheres) based on polydopamine and PAMAM dendrimers g.5.0 functionalized with NHS-PEG-Mal linker terminated with folic acid for in vitro hepatocellular carcinoma treatment. The obtained materials can serve as efficient agents for dual chemo- and photothermal therapy of HCC. We also proved that PDA-coated magnetic spheres were more efficient in therapies based on near-infrared irradiation because determined cell viabilities for those materials are lower than for the same concentrations of nanomaterials based on small magnetic nanoparticles.
Collapse
Affiliation(s)
- Artur Jędrzak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan PL-61614, Poland.,Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan PL-60965, Poland
| | - Bartosz F Grześkowiak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan PL-61614, Poland
| | - Klaudia Golba
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan PL-61614, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan PL-61614, Poland
| | - Karol Synoradzki
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan PL-61614, Poland.,Institute of Molecular Physics Polish Academy of Sciences, Poznan PL-60179, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan PL-61614, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan PL-60965, Poland
| | - Radosław Mrówczyński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan PL-61614, Poland
| |
Collapse
|
42
|
Animal heat activated cancer therapy by a traditional catalyst TiO 2-Pd/graphene composites. Sci Rep 2020; 10:15823. [PMID: 32978476 PMCID: PMC7519649 DOI: 10.1038/s41598-020-72682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/01/2020] [Indexed: 11/10/2022] Open
Abstract
Cancer therapy is one of the most important challenges in clinical medicine. So far different methods have been developed for cancer therapy, such as radiation therapy, surgery, chemotherapy and photodynamic therapy. Here we propose a new concept for cancer therapy, i.e., killing the cancer cells simply via reactive oxygen species (ROS) generated by TiO2-Pd/graphene composites. Activated by animal heat of 37 °C, the electrons in the valence band can be excited to the conduction band of TiO2 via the energy levels of Pd species and graphene, generating ROS without light irradiation or electric excitation. The tumors in BALB/c mice are successfully regressed at animal heat without any other external conditions, such as radiation, UV, visible and IR irradiation. Our results suggest that the design of animal heat activated cancer therapy is a feasible concept for practical applications of cancer treatments.
Collapse
|
43
|
Wei Z, Liu X, Niu D, Qin L, Li Y. Upconversion Nanoparticle-Based Organosilica–Micellar Hybrid Nanoplatforms for Redox-Responsive Chemotherapy and NIR-Mediated Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:4655-4664. [DOI: 10.1021/acsabm.0c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhenyang Wei
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohang Liu
- Department of Radiology,Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Limei Qin
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
44
|
Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020; 35:237-263. [DOI: 10.1177/0885328220924540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700–1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing, PR China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangwei Zhang
- Zhejiang Fountain Aptitude Technology Inc., Hangzhou, Zhejiang, PR China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
45
|
Krylov IV, Akasov RA, Rocheva VV, Sholina NV, Khochenkov DA, Nechaev AV, Melnikova NV, Dmitriev AA, Ivanov AV, Generalova AN, Khaydukov EV. Local Overheating of Biotissue Labeled With Upconversion Nanoparticles Under Yb 3+ Resonance Excitation. Front Chem 2020; 8:295. [PMID: 32457866 PMCID: PMC7225365 DOI: 10.3389/fchem.2020.00295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023] Open
Abstract
Local overheating of biotissue is a critical step for biomedical applications, such as photothermal therapy, enhancement of vascular permeability, remote control of drug release, and so on. Overheating of biological tissue when exposed to light is usually realized by utilizing the materials with a high-absorption cross section (gold, silica, carbon nanoparticles, etc.). Here, we demonstrate core/shell NaYF4:Yb3+, Tm3+/NaYF4 upconversion nanoparticles (UCNPs) commonly used for bioimaging as promising near-infrared (NIR) absorbers for local overheating of biotissue. We assume that achievable temperature of tissue labeled with nanoparticles is high enough because of Yb3+ resonance absorption of NIR radiation, whereas the use of auxiliary light-absorbing materials or shells is optional for photothermal therapy. For this purpose, a computational model of tissue heating based on the energy balance equations was developed and verified with the experimentally obtained thermal-graphic maps of a mouse in response to the 975-nm laser irradiation. Labeling of biotissue with UCNPs was found to increase the local temperature up to 2°C compared to that of the non-labeled area under the laser intensity lower than 1 W/cm2. The cellular response to the UCNP-initiated hyperthermia at subcritical ablation temperatures (lower than 42°C) was demonstrated by measuring the heat shock protein overexpression. This indicates that the absorption cross section of Yb3+ in UCNPs is relatively large, and microscopic temperature of nanoparticles exceeds the integral tissue temperature. In summary, a new approach based on the use of UCNP without any additional NIR absorbers was used to demonstrate a simple approach in the development of photoluminescent probes for simultaneous bioimaging and local hyperthermia.
Collapse
Affiliation(s)
- Ivan V. Krylov
- Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
| | - Roman A. Akasov
- Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Vasilina V. Rocheva
- Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
| | - Natalya V. Sholina
- Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Dmitry A. Khochenkov
- Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center for Oncology, Ministry of Health of Russian Federation, Moscow, Russia
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| | - Andrey V. Nechaev
- Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- Institute of Fine Chemical Technologies, Moscow Technological University, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Ivanov
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Alla N. Generalova
- Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- Laboratory of Polymers for Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V. Khaydukov
- Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
46
|
Yang H, He Y, Wang Y, Yang R, Wang N, Zhang LM, Gao M, Jiang X. Theranostic Nanoparticles with Aggregation-Induced Emission and MRI Contrast Enhancement Characteristics as a Dual-Modal Imaging Platform for Image-Guided Tumor Photodynamic Therapy. Int J Nanomedicine 2020; 15:3023-3038. [PMID: 32431499 PMCID: PMC7200263 DOI: 10.2147/ijn.s244541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Advanced tumor-targeted theranostic nanoparticles play a key role in tumor diagnosis and treatment research. In this study, we developed a multifunctional theranostic platform based on an amphiphilic hyaluronan/poly-(N-ε-carbobenzyloxy-L-lysine) derivative (HA-g-PZLL), superparamagnetic iron oxide (SPIO) and aggregation-induced emission (AIE) nanoparticles for tumor-targeted magnetic resonance (MR) and fluorescence (FL) dual-modal image-guided photodynamic therapy (PDT). Materials and Methods The amphiphilic hyaluronan acid (HA) derivative HA-g-PZLL was synthesized by grafting hydrophobic poly-(N-ε-carbobenzyloxy-L-lysine) (PZLL) blocks onto hyaluronic acid by a click conjugation reaction. The obtained HA-g-PZLLs self-assembled into nanoparticles in the presence of AIE molecules and SPIO nanoparticles to produce tumor-targeted theranostic nanoparticles (SPIO/AIE@HA-g-PZLLs) with MR/FL dual-modal imaging ability. Cellular uptake of the theranostic nanoparticles was traced by confocal laser scanning microscopy (CLSM), flow cytometry and Prussian blue staining. The intracellular reactive oxygen species (ROS) generation characteristics of the theranostic nanoparticles were evaluated with CLSM and flow cytometry. The effect of PDT was evaluated by cytotoxicity assay. The dual-mode imaging ability of the nanoparticles was evaluated by a real-time near-infrared fluorescence imaging system and magnetic resonance imaging scanning. Results The resulting theranostic nanoparticles not only emit red fluorescence for high-quality intracellular tracing but also effectively produce singlet oxygen for photodynamic tumor therapy. In vitro cytotoxicity experiments showed that these theranostic nanoparticles can be efficiently taken up and are mainly present in the cytoplasm of HepG2 cells. After internalization, these theranostic nanoparticles showed serious cytotoxicity to the growth of HepG2 cells after white light irradiation. Discussion This work provides a simple method for the preparation of theranostic nanoparticles with AIE characteristics and MR contrast enhancement, and serves as a dual-modal imaging platform for image-guided tumor PDT.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Yufang He
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Yan Wang
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Nianhua Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province 510006, People's Republic of China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| |
Collapse
|
47
|
Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS NANO 2020; 14:2585-2627. [PMID: 32031781 DOI: 10.1021/acsnano.9b08133] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy. However, nanomaterial applications in nanotheranostics are still in its infancy. This is due to the fact that each disease has a particular microenvironment with well-defined characteristics, which promotes deeper selection criteria of nanomaterials to meet the disease needs. In this review, we have outlined how nanomaterials are designed and tailored for nanotheranostics of cancer and other diseases such as neurodegenerative, autoimmune (particularly on rheumatoid arthritis), and cardiovascular diseases. The penetrability and retention of a nanomaterial in the biological system, the therapeutic strategy used, and the imaging mode selected are some of the aspects discussed for each disease. The specific properties of the nanomaterials in terms of feasibility, physicochemical challenges, progress in clinical trials, its toxicity, and their future application on translational medicine are addressed. Our review meticulously and critically examines the applications of nanotheranostics with various nanomaterials, including graphene, across several diseases, offering a broader perspective of this emerging field.
Collapse
Affiliation(s)
- Xin Yi Wong
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | - Amadeo Sena-Torralba
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
48
|
Superior temperature sensing of small-sized upconversion nanocrystals for simultaneous bioimaging and enhanced synergetic therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102135. [DOI: 10.1016/j.nano.2019.102135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/12/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023]
|
49
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Xia Y, Zhong J, Zhao M, Tang Y, Han N, Hua L, Xu T, Wang C, Zhu B. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv 2019; 26:1-11. [PMID: 31928356 PMCID: PMC6327939 DOI: 10.1080/10717544.2018.1556359] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Galactose-modified selenium nanoparticles (GA-SeNPs) loading with doxorubicin (DOX) for hepatocellular carcinoma (HCC) therapy was investigated in this paper. Selenium nanoparticles (SeNPs) were modified with galactose as tumor targeting moiety to fabricate tumor-targeted delivery carrier GA-SeNPs, then doxorubicin was loaded onto the surface of GA-SeNPs for improving antitumor efficacy of DOX in HCC therapy. Chemical structure characterization of GA-Se@DOX showed that DOX was successfully loaded to the surface of GA-SeNPs to prepare functionalized antitumor drug delivery system GA-Se@DOX. GA-Se@DOX exhibited effective cellular uptake in HepG2 cells and entered HepG2 cells mainly by clathrin-mediated endocytosis pathway. GA-Se@DOX showed significant activity to induce the apoptosis of HepG2 cells in vitro. The western blotting result indicated that GA-Se@DOX induced HepG2 cells apoptosis via activating caspase signaling and Bcl-2 family proteins. Moreover, active targeting delivery system GA-Se@DOX exhibited excellent antitumor efficacy in vivo in comparison with passive targeting delivery system Se@DOX. Histology analysis showed that GA-Se@DOX exhibited no obvious damage to major organs including heart, liver, spleen, lung, and kidney under the experimental condition. Taken together, GA-Se@DOX may be one novel promising nanoscale drug candidate for HCC therapy.
Collapse
Affiliation(s)
- Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiayu Zhong
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Tang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Han
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liang Hua
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|