1
|
Zheng X, Sun Z, Wang S, Liu Q, Zhu B, Ren Z, Fan D, Zhang C, Fu X, Jin Y, Luo J, Wang J, Ren B. SKA3 promotes lung adenocarcinoma progression via the EGFR/E2F1/SKA3/integrin β1 signaling loop. Mol Cell Biochem 2025:10.1007/s11010-025-05242-x. [PMID: 40056339 DOI: 10.1007/s11010-025-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
Spindle and kinetochore-associated complex subunit 3 (SKA3) contributes to tumor growth and metastasis, but its specific roles have not been clearly elucidated. In this study, we found that SKA3 contributed to lung adenocarcinoma (LUAD) progression by interacting with integrin β1. The expression characteristics of SKA3 in LUAD patients were analyzed by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and validated in 33 paired LUAD tissues by immunohistochemistry. Our data confirmed that SKA3 was a crucial regulator of LUAD progression and was associated with worse patient survival. In vitro and in vivo studies showed that SKA3 increased cell migration and invasion. Mechanistically, it was demonstrated that SKA3 could bind to integrin β1 and promote its activation, which further promoted the activation of EGFR. As a positive feedback loop, the activation of EGFR in turn promoted the expression of SKA3 via E2F1-mediated transcriptional regulation. Inhibition of EGFR with AZD9291 blocked SKA3 signaling induced by E2F1. These results indicated that SKA3 was crucial for the activation of EGFR and its downstream signaling pathway. Our findings uncovered the oncogenic role of SKA3 in LUAD progression and elucidated a novel EGFR/E2F1/SKA3/integrin β1 signaling loop, providing a potential SKA3-directed therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Xiufen Zheng
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Zedong Sun
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Shi Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
- Department of Surgery, Wu Han Wu Chang Hospital, Wuhan, 430063, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Biqing Zhu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Zhijian Ren
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Dingwei Fan
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Chunping Zhang
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Xinyin Fu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Yan Jin
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China.
| | - Binhui Ren
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China.
| |
Collapse
|
2
|
Li C, Gao M, Huang H, Zha N, Guo G. Pan-Cancer Analysis Reveals SKA3 as a Potential Diagnostic and Prognostic Biomarker. APMIS 2025; 133:e70009. [PMID: 40007126 DOI: 10.1111/apm.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/25/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
SKA3, an important factor in cell cycle regulation, is involved in spindle assembly and kinetochore function, playing a critical role in maintaining cancer cell proliferation and division. However, its specific roles and regulatory mechanisms in cancer remain not fully understood. Large-scale datasets from multiple public databases, including The Cancer Genome Atlas and Genotype-Tissue Expression, covering various cancer types, were integrated. Systematic analysis revealed that SKA3 exhibits aberrant expression patterns in multiple cancers and is significantly associated with tumor progression and poor patient prognosis in certain cancers. We explored the status of SKA3 gene mutation, gene amplification and promoter region methylation in various tumors. In the context of immunotherapy, we assessed the value of SKA3 in cancer. Analyzing the correlation between SKA3 expression levels and immune checkpoints and immune cell infiltration, we discovered that SKA3 could serve as a novel immunotherapy biomarker across multiple cancers, guiding clinical immunotherapy decisions. Finally, SKA3 knockdown inhibited lung adenocarcinoma cell proliferation and metastasis. In conclusion, this study provides new insights into the role of SKA3 in cancer and offers significant theoretical and experimental evidence for its development as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Thoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Min Gao
- Department of Thoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Huang
- Tianjin Medical University, Tianjin, China
| | - Nashunbayaer Zha
- Department of Thoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Gang Guo
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Olislagers M, de Jong FC, Rutten VC, Boormans JL, Mahmoudi T, Zuiverloon TCM. Molecular biomarkers of progression in non-muscle-invasive bladder cancer - beyond conventional risk stratification. Nat Rev Urol 2025; 22:75-91. [PMID: 39095581 DOI: 10.1038/s41585-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
The global incidence of bladder cancer is more than half a million diagnoses each year. Bladder cancer can be categorized into non-muscle-invasive bladder cancer (NMIBC), which accounts for ~75% of diagnoses, and muscle-invasive bladder cancer (MIBC). Up to 45% of patients with NMIBC develop disease progression to MIBC, which is associated with a poor outcome, highlighting a clinical need to identify these patients. Current risk stratification has a prognostic value, but relies solely on clinicopathological parameters that might not fully capture the complexity of disease progression. Molecular research has led to identification of multiple crucial players involved in NMIBC progression. Identified biomarkers of progression are related to cell cycle, MAPK pathways, apoptosis, tumour microenvironment, chromatin stability and DNA-damage response. However, none of these biomarkers has been prospectively validated. Reported gene signatures of progression do not improve NMIBC risk stratification. Molecular subtypes of NMIBC have improved our understanding of NMIBC progression, but these subtypes are currently unsuitable for clinical implementation owing to a lack of prospective validation, limited predictive value as a result of intratumour subtype heterogeneity, technical challenges, costs and turnaround time. Future steps include the development of consensus molecular NMIBC subtypes that might improve conventional clinicopathological risk stratification. Prospective implementation studies of biomarkers and the design of biomarker-guided clinical trials are required for the integration of molecular biomarkers into clinical practice.
Collapse
Affiliation(s)
- Mitchell Olislagers
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Florus C de Jong
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Vera C Rutten
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Chen YC, Kilic E, Wang E, Rossman W, Suzuki A. CENcyclopedia: Dynamic Landscape of Kinetochore Architecture Throughout the Cell Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627000. [PMID: 39677682 PMCID: PMC11643120 DOI: 10.1101/2024.12.05.627000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinetochore, an intricate macromolecular protein complex located on chromosomes, plays a pivotal role in orchestrating chromosome segregation. It functions as a versatile platform for microtubule assembly, diligently monitors microtubule binding fidelity, and acts as a force coupler. Comprising over 100 distinct proteins, many of which exist in multiple copies, the kinetochore's composition dynamically changes throughout the cell cycle, responding to specific timing and conditions. This dynamicity is important for establishing functional kinetochores, yet the regulatory mechanisms of these dynamics have largely remained elusive. In this study, we employed advanced quantitative immunofluorescence techniques to meticulously chart the dynamics of kinetochore protein levels across the cell cycle. These findings offer a comprehensive view of the dynamic landscape of kinetochore architecture, shedding light on the detailed mechanisms of microtubule interaction and the nuanced characteristics of kinetochore proteins. This study significantly advances our understanding of the molecular coordination underlying chromosome segregation.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ece Kilic
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evelyn Wang
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Will Rossman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Zhang L, Wang S, Wang L. SKA1/2/3 is a prognostic and predictive biomarker in esophageal adenocarcinoma and squamous cell carcinoma. BMC Cancer 2024; 24:1480. [PMID: 39614199 PMCID: PMC11607974 DOI: 10.1186/s12885-024-13257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Esophageal carcinoma (ESCA) ranks among the most prevalent malignant tumors globally. Despite significant advancements in treatment options and improved patient outcomes, the 5-year survival rate remains unsatisfactory. The spindle and kinetochore associated complex subunit 1/2/3 (SKA1/2/3) attached to the kinetochore (KT) in the metaphase of mitosis are implicated in the occurrence and development of various tumors. However, the expression patterns, diagnostic significance and prognostic implications of SKA1/2/3 in ESCA have not been comprehensively determined. METHODS TCGA, UALCAN, Kaplan-Meier Plotter, and TIMER databases were leveraged to dissect the expression patterns, prognostic implications and diagnostic value of SKA1/2/3 in ESCA patients, as well as to investigate the potential regulatory mechanism of SKA1/2/3 in the onset and progression of ESCA. RESULTS In ESCA, SKA1/2/3 exhibited substantial expression, with higher levels relating significantly with clinicopathological features and patient prognosis. Enrichment analysis of genes co-expressed with SKA1/2/3 highlighted their involvement in the cell cycle, DNA replication and p53 signaling pathway. Protein-protein interaction (PPI) analysis identified ten hub genes that were not only markedly upregulated but also portended a poor prognosis in ESCA. Additionally, immune infiltration assays uncovered a significant link between SKA1/2/3 expression and the immune cell infiltration within ESCA. Silencing of SKA1/2/3 significantly suppresses cell proliferation and migration, while concurrently promoting apoptosis in ESCA cells. CONCLUSIONS SKA1/2/3 may serve as promising biomarkers for the prognosis and diagnosis of ESCA, which holds promise as a novel therapeutic target for the disease.
Collapse
Affiliation(s)
- Liming Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, 272029, P. R. China
- Department of Thoracic Surgery, Weifang Second People's Hospital, Weifang, Shandong Province, 261041, P. R. China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Weifang, Shandong Province, 261000, P. R. China
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, 272029, P. R. China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272029, China.
| |
Collapse
|
6
|
Gu Y, Li J, Guan H, Sun C. Prognostic and immunological values of SKA3 for overall survival in lung adenocarcinoma and its RNA binding protein involved mechanisms. J Chemother 2024; 36:566-579. [PMID: 38146901 DOI: 10.1080/1120009x.2023.2298153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
This article aimed to investigate the correlations among SKA3 expression and prognosis, clinical relevance, tumor immunity, and RNA-binding protein (RBP)-involved mechanisms for overall survival (OS) in lung adenocarcinoma (LUAD). To explore the SKA3 expression level in LUAD by analyzing the genomic data as well as related clinical characteristics from the database of TCGA. Nomogram and gene set enrichment analysis (GSEA) were applied, respectively, to evaluate the performance of SKA3 in LUAD. Correlations between SKA3 and immunity and RBP-involved mechanisms were also performed. SKA3 had a higher expression level in LUAD samples than in adjacent normal lung samples, with shorter survival times in the high-SKA3-expressed LUAD subgroup (P < 0.05). qRT-PCR results remained consistent (P < 0.05). Uni-/multivariate Cox analyses revealed that SKA3 could have independent prognostic ability for LUAD (both P < 0.05). The nomogram model constructed with clinical pathological parameters and SKA3 expression levels predicted OS rates for LUAD and GSEA revealed SKA3-related pathways. In aspects of tumor immunity, SKA3 was significantly involved with tumor neoantigen burden, tumor mutational burden, immune cell pathways, and immune checkpoint inhibitor (ICI) molecules (all P < 0.05). The CellMiner database also found significant correlations between SKA3 and the antitumor drug sensitivity of chemotherapy, fenretinide, and PX-316. Besides, a total of nine LncRNA/RBP/SKA3 networks were revealed in LUAD for their RBP-involved mechanisms. SKA3 could serve as a potential biomarker for OS prognosis and immunotherapy in LUAD. LncRNA/RBP/SKA3 networks were identified in LUAD for their RBP-involved mechanisms, paving the way for further experimental verifications.
Collapse
Affiliation(s)
- Yinfeng Gu
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinjin Li
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Hongjun Guan
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Changpeng Sun
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
7
|
Prevo B, Cheerambathur DK, Earnshaw WC, Desai A. Kinetochore dynein is sufficient to biorient chromosomes and remodel the outer kinetochore. Nat Commun 2024; 15:9085. [PMID: 39433738 PMCID: PMC11494143 DOI: 10.1038/s41467-024-52964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Multiple microtubule-directed activities concentrate on mitotic chromosomes to ensure their faithful segregation. These include couplers and dynamics regulators localized at the kinetochore, the microtubule interface built on centromeric chromatin, as well as motor proteins recruited to kinetochores and chromatin. Here, we describe an in vivo approach in the C. elegans one-cell embryo in which removal of the major microtubule-directed activities on mitotic chromosomes is compared to the selective presence of individual activities. Our approach reveals that the kinetochore dynein module, comprised of cytoplasmic dynein and its kinetochore-specific adapters, is sufficient to biorient chromosomes; by contrast, this module is unable to support congression. In coordination with orientation, the dynein module directs removal of outermost kinetochore components, including dynein itself, independently of the other microtubule-directed activities and kinetochore-localized protein phosphatase 1. These observations indicate that the kinetochore dynein module is sufficient to biorient chromosomes and to direct remodeling of the outer kinetochore in a microtubule attachment state-sensitive manner.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
| | | | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Asai K, Zhou Y, Takenouchi O, Kitajima TS. Artificial kinetochore beads establish a biorientation-like state in the spindle. Science 2024; 385:1366-1375. [PMID: 39298589 DOI: 10.1126/science.adn5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Faithful chromosome segregation requires biorientation, where the pair of kinetochores on the chromosome establish bipolar microtubule attachment. The integrity of the kinetochore, a macromolecular complex built on centromeric DNA, is required for biorientation, but components sufficient for biorientation remain unknown. Here, we show that tethering the outer kinetochore heterodimer NDC80-NUF2 to the surface of apolar microbeads establishes their biorientation-like state in mouse cells. NDC80-NUF2 microbeads align at the spindle equator and self-correct alignment errors. The alignment is associated with stable bipolar microtubule attachment and is independent of the outer kinetochore proteins SPC24-SPC25, KNL1, the Mis12 complex, inner kinetochore proteins, and Aurora. Larger microbeads align more rapidly, suggesting a size-dependent biorientation mechanism. This study demonstrates a biohybrid kinetochore design for synthetic biorientation of microscale particles in cells.
Collapse
Affiliation(s)
- Kohei Asai
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuanzhuo Zhou
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Zhang H, Chang Z, Wang C, Yuan Z, Liu Y, Wang Y, Zhang W, Zhong Y, Wang M, Zou C, Tang Q, Hu H, Wang G. SKA3/PTTG1/c-MYC signal loop drives the progression of colorectal cancer. Clin Transl Med 2024; 14:e1730. [PMID: 38849978 PMCID: PMC11161389 DOI: 10.1002/ctm2.1730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zewen Chang
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chunlin Wang
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ziming Yuan
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yunxiao Liu
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuliuming Wang
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Weiyuan Zhang
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuchen Zhong
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Meng Wang
- Department of Colorectal Cancer SurgeryCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology of Harbin Medical UniversityHarbinChina
| | - Qingchao Tang
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hanqing Hu
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Guiyu Wang
- Department of Colorectal Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
10
|
Buchholz K, Durślewicz J, Klimaszewska-Wiśniewska A, Wiśniewska M, Słupski M, Grzanka D. SKA3 Expression as a Prognostic Factor for Patients with Pancreatic Adenocarcinoma. Int J Mol Sci 2024; 25:5134. [PMID: 38791174 PMCID: PMC11120893 DOI: 10.3390/ijms25105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The spindle and kinetochore-associated complex subunit 3 (SKA3) is a protein essential for proper chromosome segregation during mitosis and thus responsible for maintaining genome stability. Although its involvement in the pathogenesis of various cancer types has been reported, the potential clinicopathological significance of SKA3 in pancreatic ductal adenocarcinoma (PDAC) has not been fully elucidated. Therefore, this study aimed to assess clinicopathological associations and prognostic value of SKA3 in PDAC. For this purpose, in-house immunohistochemical analysis on tissue macroarrays (TMAs), as well as a bioinformatic examination using publicly available RNA-Seq dataset, were performed. It was demonstrated that SKA3 expression at both mRNA and protein levels was significantly elevated in PDAC compared to control tissues. Upregulated mRNA expression constituted an independent unfavorable prognostic factor for the overall survival of PDAC patients, whereas altered SKA3 protein levels were associated with significantly better clinical outcomes. The last observation was particularly clear in the early-stage tumors. These findings render SKA3 a promising prognostic biomarker for patients with pancreatic ductal adenocarcinoma. However, further studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Karolina Buchholz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
| | - Magdalena Wiśniewska
- Department of Oncology and Brachytherapy, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-796 Bydgoszcz, Poland;
- Clinical Department of Oncology, Professor Franciszek Lukaszczyk Oncology Center in Bydgoszcz, 85-796 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of General, Hepatobiliary and Transplant Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (J.D.); (D.G.)
| |
Collapse
|
11
|
Feng D, Wang J, Xiao Y, Wu R, Li D, Tuo Z, Yu Q, Ye L, MIYAMOTO A, Yoo KH, Wei W, Ye X, Zhang C, Han P. SKA3 targeted therapies in cancer precision surgery: bridging bench discoveries to clinical applications - review article. Int J Surg 2024; 110:2323-2337. [PMID: 38241327 PMCID: PMC11020031 DOI: 10.1097/js9.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Spindle and kinetochore-associated complex subunit 3 (SKA3) is a microtubule-binding subcomplex of the outer kinetochore, which plays a vital role in proper chromosomal segregation and cell division. Recently, SKA3 have been demonstrated its oncogenic role of tumorigenesis and development in cancers. In this review, the authors comprehensively deciphered SKA3 in human cancer from various aspects, including bibliometrics, pan-cancer analysis, and narrative summary. The authors also provided the top 10 predicted drugs targeting SKA3. The authors proposed that SKA3 was a potential target and brought new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Yuhan Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People’s Republic of China
| | - Akira MIYAMOTO
- Department of Rehabilitation, West Kyushu University, Japan
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu
| |
Collapse
|
12
|
Islam A, Manjarrez-González JC, Song X, Gore T, Draviam VM. Search for chromosomal instability aiding variants reveal naturally occurring kinetochore gene variants that perturb chromosome segregation. iScience 2024; 27:109007. [PMID: 38361632 PMCID: PMC10867425 DOI: 10.1016/j.isci.2024.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancers, and CIN-promoting mutations are not fully understood. Here, we report 141 chromosomal instability aiding variant (CIVa) candidates by assessing the prevalence of loss-of-function (LoF) variants in 135 chromosome segregation genes from over 150,000 humans. Unexpectedly, we observe both heterozygous and homozygous CIVa in Astrin and SKA3, two evolutionarily conserved kinetochore and microtubule-associated proteins essential for chromosome segregation. To stratify harmful versus harmless variants, we combine live-cell microscopy and controlled protein expression. We find the naturally occurring Astrin p.Q1012∗ variant is harmful as it fails to localize normally and induces chromosome misalignment and missegregation, in a dominant negative manner. In contrast, the Astrin p.L7Qfs∗21 variant generates a shorter isoform that localizes and functions normally, and the SKA3 p.Q70Kfs∗7 variant allows wild-type SKA complex localisation and function, revealing distinct resilience mechanisms that render these variants harmless. Thus, we present a scalable framework to predict and stratify naturally occurring CIVa, and provide insight into resilience mechanisms that compensate for naturally occurring CIVa.
Collapse
Affiliation(s)
- Asifa Islam
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | | | - Xinhong Song
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Trupti Gore
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
- London Interdisciplinary Doctoral Program, University College London, London, UK
| | - Viji M. Draviam
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| |
Collapse
|
13
|
Ludwig E, Sumner J, Berry J, Polydore S, Ficor T, Agnew E, Haines K, Greenham K, Fahlgren N, Mockler TC, Gehan MA. Natural variation in Brachypodium distachyon responses to combined abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1676-1701. [PMID: 37483133 DOI: 10.1111/tpj.16387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
The demand for agricultural production is becoming more challenging as climate change increases global temperature and the frequency of extreme weather events. This study examines the phenotypic variation of 149 accessions of Brachypodium distachyon under drought, heat, and the combination of stresses. Heat alone causes the largest amounts of tissue damage while the combination of stresses causes the largest decrease in biomass compared to other treatments. Notably, Bd21-0, the reference line for B. distachyon, did not have robust growth under stress conditions, especially the heat and combined drought and heat treatments. The climate of origin was significantly associated with B. distachyon responses to the assessed stress conditions. Additionally, a GWAS found loci associated with changes in plant height and the amount of damaged tissue under stress. Some of these SNPs were closely located to genes known to be involved in responses to abiotic stresses and point to potential causative loci in plant stress response. However, SNPs found to be significantly associated with a response to heat or drought individually are not also significantly associated with the combination of stresses. This, with the phenotypic data, suggests that the effects of these abiotic stresses are not simply additive, and the responses to the combined stresses differ from drought and heat alone.
Collapse
Affiliation(s)
- Ella Ludwig
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Joshua Sumner
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jeffrey Berry
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
- Bayer Crop Sciences, St. Louis, Missouri, 63017, USA
| | - Seth Polydore
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Tracy Ficor
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Erica Agnew
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kristina Haines
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kathleen Greenham
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
- University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
14
|
Chen Y, Xu X, Wang Y, Zhang Y, Zhou T, Jiang W, Wang Z, Chang J, Liu S, Chen R, Shan J, Wang J, Wang Y, Li C, Li X. Hypoxia-induced SKA3 promoted cholangiocarcinoma progression and chemoresistance by enhancing fatty acid synthesis via the regulation of PAR-dependent HIF-1a deubiquitylation. J Exp Clin Cancer Res 2023; 42:265. [PMID: 37821935 PMCID: PMC10565972 DOI: 10.1186/s13046-023-02842-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Spindle and kinetochore-associated complex subunit 3 (SKA3) plays an important role in cell proliferation by regulating the separation of chromosomes and their division into daughter cells. Previous studies demonstrated that SKA3 was strongly implicated in tumor development and progression. However, the roles of SKA3 in cholangiocarcinoma (CCA) and the underlying mechanisms remain unclear. METHODS Next-generation sequencing (NGS) was performed with paired CCA tissues and normal adjacent tissues (NATs). SKA3 was chose to be the target gene because of its remarkably upregulation and unknown function in cholangiocarcinoma in TCGA datasets, GSE107943 datasets and our sequencing results. RT-PCR and immunohistochemistry staining were used to detect the expression of SKA3 in paired CCA tissues and normal adjacent tissues. The SKA3 knockdown and overexpression cell line were constructed by small interfering RNA and lentivirus vector transfection. The effect of SKA3 on the proliferation of cholangiocarcinoma under hypoxic conditions was detected by experiments in vitro and in vivo. RNA-seq was used to find out the differentially expressed pathways in cholangiocarcinoma proliferation under hypoxia regulated by SKA3. IP/MS analysis and Western blot assays were used to explore the specific mechanism of SKA3 in regulating the expression of HIF-1a under hypoxia. RESULTS SKA3 was up-regulated in NGS, TCGA and GSE107943 databases and was associated with poor prognosis. Functional experiments in vitro and in vivo showed that hypoxia-induced SKA3 promoted cholangiocarcinoma cell proliferation. RNA-sequencing was performed and verified that SKA3 enhanced fatty acid synthesis by up-regulating the expression of key fatty acid synthase, thus promoting cholangiocarcinoma cell proliferation under hypoxic conditions. Further studies indicated that under hypoxic conditions, SKA3 recruited PARP1 to bind to HIF-1a, thus enhancing the poly ADP-ribosylation (PARylation) of HIF-1a. This PARylation enhanced the binding between HIF-1a and USP7, which triggered the deubiquitylation of HIF-1a under hypoxic conditions. Additionally, PARP1 and HIF-1a were upregulated in CCA and promoted CCA cell proliferation. SKA3 promoted CCA cell proliferation and fatty acid synthesis via the PARP1/HIF-1a axis under hypoxic conditions. High SKA3 and HIF-1a expression levels were associated with poor prognosis after surgery. CONCLUSION Hypoxia-induced SKA3 promoted CCA progression by enhancing fatty acid synthesis via the regulation of PARylation-dependent HIF-1a deubiquitylation. Furthermore, increased SKA3 level enhanced chemotherapy-resistance to gemcitabine-based regimen under hypoxic conditions. SKA3 and HIF-1a could be potential oncogenes and significant biomarkers for the analysis of CCA patient prognosis.
Collapse
Affiliation(s)
- Yananlan Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yirui Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Tao Zhou
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ziyi Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jiang Chang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jijun Shan
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yuming Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiangcheng Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
15
|
Zheng LL, Wang YR, Liu ZR, Wang ZH, Tao CC, Xiao YG, Zhang K, Wu AK, Li HY, Wu JX, Xiao T, Rong WQ. High spindle and kinetochore-associated complex subunit-3 expression predicts poor prognosis and correlates with adverse immune infiltration in hepatocellular carcinoma. World J Gastrointest Surg 2023; 15:1600-1614. [PMID: 37701707 PMCID: PMC10494596 DOI: 10.4240/wjgs.v15.i8.1600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Spindle and kinetochore-associated complex subunit 3 (SKA3) is a malignancy-associated gene that plays a critical role in the regulation of chromosome separation and cell division. However, the molecular mechanism through which SKA3 regulates tumor cell proliferation in hepatocellular carcinoma (HCC) has not been fully elucidated. AIM To investigate the molecular mechanisms underlying the role of SKA3 in HCC. METHODS SKA3 expression, clinicopathological, and survival analyses were performed using multiple public database platforms, and the results were verified by Western blot and immunohistochemistry staining using collected clinical samples. Functional enrichment analyses were performed to evaluate the biological functions and molecular mechanisms of SKA3 in HCC. Furthermore, the Tumor Immune Estimation Resource and single-sample Gene Set Enrichment Analysis (ssGSEA) algorithms were utilized to investigate the abundance of tumor-infiltrating immune cells in HCC. The response to chemotherapeutic drugs was evaluated by the R package "pRRophetic". RESULTS We found that upregulated SKA3 expression was significantly correlated with poor prognosis in patients with HCC. Multivariable Cox regression analysis indicated that SKA3 was an independent risk factor for survival. GSEA revealed that SKA3 expression may facilitate proliferation and migratory processes by regulating the cell cycle and DNA repair. Moreover, patients with high SKA3 expression had significantly decreased ratios of CD8+ T cells, natural killer cells, and dendritic cells. Drug sensitivity analysis showed that the high SKA3 group was more sensitive to sorafenib, sunitinib, paclitaxel, doxorubicin, gemcitabine, and vx-680. CONCLUSION High SKA3 expression led to poor prognosis in patients with HCC by enhancing HCC proliferation and repressing immune cell infiltration surrounding HCC. SKA3 may be used as a biomarker for poor prognosis and as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Lin-Lin Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ya-Ru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhen-Rong Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Hao Wang
- Department of Hepatobiliary Hernia Surgery, Liaocheng Dongcangfu People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Chang-Cheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Gang Xiao
- The Second Ward of Hepatobiliary Surgery, Qianxinan People's Hospital, Xingyi 562400, Guizhou Province, China
| | - Kai Zhang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300000, China
| | - An-Ke Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Yang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian-Xiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei-Qi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
16
|
Rahi A, Chakraborty M, Agarwal S, Vosberg KM, Agarwal S, Wang AY, McKenney RJ, Varma D. The Ndc80-Cdt1-Ska1 complex is a central processive kinetochore-microtubule coupling unit. J Cell Biol 2023; 222:e202208018. [PMID: 37265445 PMCID: PMC10238862 DOI: 10.1083/jcb.202208018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
It is known that microtubule-binding proteins including the Ska1 complex and the DNA replication licensing factor, Cdt1, enable the kinetochore-localized Ndc80 complex to form robust kinetochore-microtubule attachments. However, it is not clear how the Ndc80 complex is stably coupled to dynamic spindle microtubule plus-ends. Here, we have developed a conditional auxin-inducible degron approach to reveal a function for Cdt1 in chromosome segregation and kinetochore-microtubule interactions that is separable from its role in DNA replication licensing. Further, we demonstrate that a direct interaction between Cdt1 and Ska1 is required for recruiting Cdt1 to kinetochores and spindle microtubules. Cdt1 phosphorylation by Cdk1 kinase is critical for Ska1 binding, kinetochore-microtubule attachments, and mitotic progression. Furthermore, we show that Cdt1 synergizes with Ndc80 and Ska1 for microtubule binding, including forming a diffusive, tripartite Ndc80-Cdt1-Ska1 complex that can processively track dynamic microtubule plus-ends in vitro. Taken together, our data identify the Ndc80-Cdt1-Ska1 complex as a central molecular unit that can promote processive bidirectional tip-tracking of microtubules by kinetochores.
Collapse
Affiliation(s)
- Amit Rahi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Manas Chakraborty
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Kristen M. Vosberg
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Annie Y. Wang
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Dileep Varma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Normandin K, Coulombe-Huntington J, St-Denis C, Bernard A, Bourouh M, Bertomeu T, Tyers M, Archambault V. Genetic enhancers of partial PLK1 inhibition reveal hypersensitivity to kinetochore perturbations. PLoS Genet 2023; 19:e1010903. [PMID: 37639469 PMCID: PMC10491399 DOI: 10.1371/journal.pgen.1010903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase required for mitosis and cytokinesis. As cancer cells are often hypersensitive to partial PLK1 inactivation, chemical inhibitors of PLK1 have been developed and tested in clinical trials. However, these small molecule inhibitors alone are not completely effective. PLK1 promotes numerous molecular and cellular events in the cell division cycle and it is unclear which of these events most crucially depend on PLK1 activity. We used a CRISPR-based genome-wide screening strategy to identify genes whose inactivation enhances cell proliferation defects upon partial chemical inhibition of PLK1. Genes identified encode proteins that are functionally linked to PLK1 in multiple ways, most notably factors that promote centromere and kinetochore function. Loss of the kinesin KIF18A or the outer kinetochore protein SKA1 in PLK1-compromised cells resulted in mitotic defects, activation of the spindle assembly checkpoint and nuclear reassembly defects. We also show that PLK1-dependent CENP-A loading at centromeres is extremely sensitive to partial PLK1 inhibition. Our results suggest that partial inhibition of PLK1 compromises the integrity and function of the centromere/kinetochore complex, rendering cells hypersensitive to different kinetochore perturbations. We propose that KIF18A is a promising target for combinatorial therapies with PLK1 inhibitors.
Collapse
Affiliation(s)
- Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Corinne St-Denis
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Alexandre Bernard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de médecine, Université de Montréal, Montréal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
18
|
Pitayu-Nugroho L, Aubry M, Laband K, Geoffroy H, Ganeswaran T, Primadhanty A, Canman JC, Dumont J. Kinetochore component function in C. elegans oocytes revealed by 4D tracking of holocentric chromosomes. Nat Commun 2023; 14:4032. [PMID: 37419936 PMCID: PMC10329006 DOI: 10.1038/s41467-023-39702-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
During cell division, chromosome congression to the spindle center, their orientation along the spindle long axis and alignment at the metaphase plate depend on interactions between spindle microtubules and kinetochores, and are pre-requisite for chromosome bi-orientation and accurate segregation. How these successive phases are controlled during oocyte meiosis remains elusive. Here we provide 4D live imaging during the first meiotic division in C. elegans oocytes with wild-type or disrupted kinetochore protein function. We show that, unlike in monocentric organisms, holocentric chromosome bi-orientation is not strictly required for accurate chromosome segregation. Instead, we propose a model in which initial kinetochore-localized BHC module (comprised of BUB-1Bub1, HCP-1/2CENP-F and CLS-2CLASP)-dependent pushing acts redundantly with Ndc80 complex-mediated pulling for accurate chromosome segregation in meiosis. In absence of both mechanisms, homologous chromosomes tend to co-segregate in anaphase, especially when initially mis-oriented. Our results highlight how different kinetochore components cooperate to promote accurate holocentric chromosome segregation in oocytes of C. elegans.
Collapse
Affiliation(s)
| | - Mélanie Aubry
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Kimberley Laband
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Hélène Geoffroy
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | | | | | - Julie C Canman
- Columbia University Irving Medical Center; Department of Pathology and Cell Biology, New York, NY, 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| |
Collapse
|
19
|
Prevo B, Cheerambathur DK, Earnshaw WC, Desai A. Kinetochore dynein is sufficient to biorient chromosomes and remodel the outer kinetochore. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534015. [PMID: 36993239 PMCID: PMC10055418 DOI: 10.1101/2023.03.23.534015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Multiple microtubule-directed activities concentrate on chromosomes during mitosis to ensure their accurate distribution to daughter cells. These activities include couplers and dynamics regulators localized at the kinetochore, the specialized microtubule interface built on centromeric chromatin, as well as motor proteins recruited to kinetochores and to mitotic chromatin. Here, we describe an in vivo reconstruction approach in which the effect of removing the major microtubule-directed activities on mitotic chromosomes is compared to the selective presence of individual activities. This approach revealed that the kinetochore dynein module, comprised of the minus end-directed motor cytoplasmic dynein and its kinetochore-specific adapters, is sufficient to biorient chromosomes and to remodel outer kinetochore composition following microtubule attachment; by contrast, the kinetochore dynein module is unable to support chromosome congression. The chromosome-autonomous action of kinetochore dynein, in the absence of the other major microtubule-directed factors on chromosomes, rotates and orients a substantial proportion of chromosomes such that their sister chromatids attach to opposite spindle poles. In tight coupling with orientation, the kinetochore dynein module drives removal of outermost kinetochore components, including the dynein motor itself and spindle checkpoint activators. The removal is independent of the other major microtubule-directed activities and kinetochore-localized protein phosphatase 1, suggesting that it is intrinsic to the kinetochore dynein module. These observations indicate that the kinetochore dynein module has the ability coordinate chromosome biorientation with attachment state-sensitive remodeling of the outer kinetochore that facilitates cell cycle progression.
Collapse
Affiliation(s)
- Bram Prevo
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Arshad Desai
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| |
Collapse
|
20
|
Lan H, Yuan J, Zhang R, Jiang B, Li Q, Huang Z, Chen P, Xiang H, Zeng X, Xiao S. Pancancer analysis of SKA1 mutation and its association with the diagnosis and prognosis of human cancers. Genomics 2023; 115:110554. [PMID: 36587749 DOI: 10.1016/j.ygeno.2022.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
This study aims to explore the role of SKA1 in cancer diagnosis and prognosis and to investigate the mechanism by which SKA1 affects the malignant behaviors of ovarian cancer. Herein, we analyzed the oncogenic role of SKA1 at pan-cancer level by multiple informatics databases and verified the analysis by in vitro experiments. As a result, SKA1 was upregulated across cancers and was related to poor clinical outcome and immune infiltration. Specifically, the constructed nomogram showed superior performance in predicting the prognosis of epithelial ovarian cancer patients. Furthermore, the in vitro experiments revealed that silencing SKA1 significantly inhibited the proliferation, migratory ability and enhanced the cisplatin sensitivity of ovarian cancer cells. Therefore, we explored the oncogenic and potential therapeutic role of SKA1 across cancers through multiple bioinformatic analysis and revealed that SKA1 may promote ovarian cancer progression and chemoresistance to cisplatin by activating the AKT-FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Gynecology and Obstetrics, Changsha Central Hospital of University of South China, Changsha, Hunan, China
| | - Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Oncology, Huaihua Hospital of University of South China, Huaihua, Hunan, China
| | - Biyao Jiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaofen Li
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zongyan Huang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peiling Chen
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huimin Xiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyang Zeng
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Radhakrishnan RM, Kizhakkeduth ST, Nair VM, Ayyappan S, Lakshmi RB, Babu N, Prasannajith A, Umeda K, Vijayan V, Kodera N, Manna TK. Kinetochore-microtubule attachment in human cells is regulated by the interaction of a conserved motif of Ska1 with EB1. J Biol Chem 2023; 299:102853. [PMID: 36592928 PMCID: PMC9926122 DOI: 10.1016/j.jbc.2022.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/02/2023] Open
Abstract
The kinetochore establishes the linkage between chromosomes and the spindle microtubule plus ends during mitosis. In vertebrates, the spindle-kinetochore-associated (Ska1,2,3) complex stabilizes kinetochore attachment with the microtubule plus ends, but how Ska is recruited to and stabilized at the kinetochore-microtubule interface is not understood. Here, our results show that interaction of Ska1 with the general microtubule plus end-associated protein EB1 through a conserved motif regulates Ska recruitment to kinetochores in human cells. Ska1 forms a stable complex with EB1 via interaction with the motif in its N-terminal disordered loop region. Disruption of this interaction either by deleting or mutating the motif disrupts Ska complex recruitment to kinetochores and induces chromosome alignment defects, but it does not affect Ska complex assembly. Atomic-force microscopy imaging revealed that Ska1 is anchored to the C-terminal region of the EB1 dimer through its loop and thereby promotes formation of extended structures. Furthermore, our NMR data showed that the Ska1 motif binds to the residues in EB1 that are the binding sites of other plus end targeting proteins that are recruited to microtubules by EB1 through a similar conserved motif. Collectively, our results demonstrate that EB1-mediated Ska1 recruitment onto the microtubule serves as a general mechanism for the formation of vertebrate kinetochore-microtubule attachments and metaphase chromosome alignment.
Collapse
Affiliation(s)
- Renjith M Radhakrishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Shine Ayyappan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Neethu Babu
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Anjaly Prasannajith
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
22
|
Bunning AR, Gupta Jr. ML. The importance of microtubule-dependent tension in accurate chromosome segregation. Front Cell Dev Biol 2023; 11:1096333. [PMID: 36755973 PMCID: PMC9899852 DOI: 10.3389/fcell.2023.1096333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation.
Collapse
|
23
|
Xia X, Tao C, Du K, Meng P, Hu L, Cheng D, Liu X, Bu Y, Fan X, Chen Q. SKA2-mediated transcriptional downregulation of the key enzyme of CoQ 10 biosynthesis PDSS2 in lung cancer cells. J Cancer 2023; 14:379-392. [PMID: 36860919 PMCID: PMC9969585 DOI: 10.7150/jca.79058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide. SKA2 is a novel cancer-associated gene that plays critical roles in both cell cycle and tumorigenesis including lung cancer. However, the molecular mechanisms underlying its implication in lung cancer remains elusive. In this study, we first analyzed the gene expression profiling after SKA2 knockdown, and identified several candidate downstream target genes of SKA2, including PDSS2, the first key enzyme in CoQ10 biosynthesis pathway. Further experiments verified that SKA2 remarkably repressed PDSS2 gene expression at both mRNA and protein levels. Luciferase reporter assay showed that SKA2 repressed PDSS2 promoter activity through its Sp1-binding sites. Co-immunoprecipitation assay demonstrated that SKA2 associated with Sp1. Functional analysis revealed that PDSS2 remarkably suppressed lung cancer cell growth and motility. Furthermore, SKA2-induced malignant features can be also significantly attenuated by PDSS2 overexpression. However, CoQ10 treatment showed no obvious effects on lung cancer cell growth and motility. Of note, PDSS2 mutants with no catalytic activity exhibited comparable inhibitory effects on the malignant features of lung cancer cells and could also abrogate SKA2-promoted malignant phenotypes in lung cancer cells, highly suggesting a non-enzymatic tumor-suppressing activity of PDSS2 in lung cancer cells. The levels of PDSS2 expression were significantly decreased in lung cancer samples, and lung cancer patients with high expression of SKA2 and low expression of PDSS2 displayed remarkable poor prognosis. Collectively, our results demonstrated that PDSS2 is a novel downstream target gene of SKA2 in lung cancer cells, and the SKA2-PDSS2 transcriptional regulatory axis functionally contributes to human lung cancer cell malignant phenotypes and prognosis.
Collapse
Affiliation(s)
- Xing Xia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chuntao Tao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Peixin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lanyue Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dong Cheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xianjun Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Fan
- Department of Basic Medical Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Quanmei Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
24
|
Dong Q, Li F. Cell cycle control of kinetochore assembly. Nucleus 2022; 13:208-220. [PMID: 36037227 PMCID: PMC9427032 DOI: 10.1080/19491034.2022.2115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The kinetochore is a large proteinaceous structure assembled on the centromeres of chromosomes. The complex machinery links chromosomes to the mitotic spindle and is essential for accurate chromosome segregation during cell division. The kinetochore is composed of two submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review focuses on recent advances in our understanding of the mechanisms governing the proper assembly of the outer kinetochore during mitosis and highlights open questions for future investigation.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
25
|
Feng D, Zhu W, Shi X, Xiong Q, Li D, Wei W, Han P, Wei Q, Yang L. Spindle and kinetochore-associated complex subunit 3 could serve as a prognostic biomarker for prostate cancer. Exp Hematol Oncol 2022; 11:76. [PMID: 36266657 PMCID: PMC9583514 DOI: 10.1186/s40164-022-00337-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
Spindle and kinetochore-associated complex subunit 3 (SKA3) is a microtubule-binding subcomplex of the outer kinetochore that is required for proper chromosomal segregation and cell division. However, little is known regarding the probable mechanism of SKA3, particularly in terms of prostate cancer (PCA) progression. Multiple databases, including TCGA and GTEx, were utilized to examine the expression of SKA3 in PCA patients and to shed light on the clinical significance and potential mechanism of SKA3 in the onset and progression of PCA. The biological function of SKA3 was evaluated in vitro using RT-qPCR and the CCK8 assay. For statistical analysis, the R 3.6.3 software and its associated packages were utilized. SKA3 was shown to be considerably elevated in PCA patients and was linked to a shorter progress free interval (PFI). Furthermore, we discovered that SKA3 mRNA expression was higher in PCA cells than in normal cells, and inhibition of SKA3 could clearly reduce PCA cell proliferation using the CCK8 assay. Finally, SKA3 could be used as a predictive biomarker in PCA patients.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
26
|
Gomes AM, Orr B, Novais-Cruz M, De Sousa F, Macário-Monteiro J, Lemos C, Ferrás C, Maiato H. Micronuclei from misaligned chromosomes that satisfy the spindle assembly checkpoint in cancer cells. Curr Biol 2022; 32:4240-4254.e5. [PMID: 36057259 PMCID: PMC9559752 DOI: 10.1016/j.cub.2022.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Chromosome alignment to the spindle equator is a hallmark of mitosis thought to promote chromosome segregation fidelity in metazoans. Yet chromosome alignment is only indirectly supervised by the spindle assembly checkpoint (SAC) as a byproduct of chromosome bi-orientation, and the consequences of defective chromosome alignment remain unclear. Here, we investigated how human cells respond to chromosome alignment defects of distinct molecular nature by following the fate of live HeLa cells after RNAi-mediated depletion of 125 proteins previously implicated in chromosome alignment. We confirmed chromosome alignment defects upon depletion of 108/125 proteins. Surprisingly, in all confirmed cases, depleted cells frequently entered anaphase after a delay with misaligned chromosomes. Using depletion of prototype proteins resulting in defective chromosome alignment, we show that misaligned chromosomes often satisfy the SAC and directly missegregate without lagging behind in anaphase. In-depth analysis of specific molecular perturbations that prevent proper kinetochore-microtubule attachments revealed that misaligned chromosomes that missegregate frequently result in micronuclei. Higher-resolution live-cell imaging indicated that, contrary to most anaphase lagging chromosomes that correct and reintegrate the main nuclei, misaligned chromosomes are a strong predictor of micronuclei formation in a cancer cell model of chromosomal instability, but not in non-transformed near-diploid cells. We provide evidence supporting that intrinsic differences in kinetochore-microtubule attachment stability on misaligned chromosomes account for this distinct outcome. Thus, misaligned chromosomes that satisfy the SAC may represent a previously overlooked mechanism driving chromosomal/genomic instability during cancer cell division, and we unveil genetic conditions predisposing for these events.
Collapse
Affiliation(s)
- Ana Margarida Gomes
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marco Novais-Cruz
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Filipe De Sousa
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Macário-Monteiro
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UnIGENe, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cristina Ferrás
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
27
|
Cai C, Zhang Y, Hu X, Yang S, Ye J, Wei Z, Chu T. Spindle and Kinetochore-associated Family Genes are Prognostic and Predictive Biomarkers in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:627-641. [PMID: 36062274 PMCID: PMC9396317 DOI: 10.14218/jcth.2021.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. Spindle and kinetochore-associated (SKA) family genes are essential for the maintenance of the metaphase plate and spindle checkpoint silencing during mitosis. Recent studies have indicated that dysregulation of SKA family genes induces tumorigenesis, tumor progression, and chemoresistance via modulation of cell cycle and DNA replication. However, the differential transcription of SKAs in the context of HCC and its prognostic significance has not been demonstrated. METHODS Bioinformatics analyses were performed using TCGA, ONCOMINE, HCCDB, Kaplan-Meier plotter, STRING, GEPIA databases. qRT-PCR, western blot, and functional assays were utilized for in vitro experiments. RESULTS We found remarkable upregulation of transcripts of SKA family genes in HCC samples compared with normal liver samples on bioinformatics analyses and in vitro validation. Interaction analysis and enrichment analysis showed that SKA family members were mainly related to microtubule motor activity, mitosis, and cell cycle. Immuno-infiltration analysis showed a correlation of all SKA family genes with various immune cell subsets, especially T helper 2 (Th2) cells. Transcriptional levels of SKA family members were positively associated with histologic grade, T stage, and α-fetoprotein in HCC patients. Receiver operating characteristic curve analysis demonstrated a strong predictive ability of SKA1/2/3 for HCC. Increased expression of these SKAs was associated with unfavorable overall survival, progression-free survival, and disease-specific survival. On Cox proportional hazards regression analyses, SKA1 upregulation and pathological staging were independent predictors of overall survival and disease-specific survival of HCC patients. Finally, clinical tissue microarray validation and in vitro functional assays revealed SKA1 acts an important regulatory role in tumor malignant behavior. CONCLUSIONS SKA family members may potentially serve as diagnostic and prognostic markers in the context of HCC. The correlation between SKAs and immune cell infiltration provides a promising research direction for SKA-targeted immunotherapeutics for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tongwei Chu
- Correspondence to: Tongwei Chu, Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), No.83 Xinqiao Main Street, Shapingba District, Chongqing 400037, China. ORCID: https://orcid.org/0000-0003-0309-7082. Tel: +86-13708388336, E-mail:
| |
Collapse
|
28
|
Xu H, Chen G, Niu Q, Song K, Feng Z, Han Z. SKA3 promotes cell growth via the PI3K/AKT/GSK3β and PI3K/AKT/FOXO1 pathways and is a potential prognostic biomarker for oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:599-614. [DOI: 10.1016/j.oooo.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/04/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
|
29
|
Flores RL, Peterson ZE, Zelter A, Riffle M, Asbury CL, Davis TN. Three interacting regions of the Ndc80 and Dam1 complexes support microtubule tip-coupling under load. J Cell Biol 2022; 221:213102. [PMID: 35353161 DOI: 10.1083/jcb.202107016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 01/15/2023] Open
Abstract
Accurate mitosis requires kinetochores to make persistent, load-bearing attachments to dynamic microtubule tips, thereby coupling chromosome movements to tip growth and shortening. This tip-coupling behavior depends on the conserved Ndc80 complex and, in budding yeast, on the Dam1 complex, which bind each other directly via three distinct interacting regions. The functional relevance of these multiple interactions was mysterious. Here we show that interactions between two of these regions support the high rupture strengths that occur when applied force is rapidly increased and also support the stability of tip-coupling when force is held constant over longer durations. The contribution of either of these two regions to tip-coupling is reduced by phosphorylation by Aurora B kinase. The third interaction region makes no apparent contribution to rupture strength, but its phosphorylation by Aurora B kinase specifically decreases the long-term stability of tip-coupling. The specific reduction of long-term stability relative to short-term strength might have important implications for mitotic error correction.
Collapse
Affiliation(s)
- Rachel L Flores
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
30
|
Yu S, Ma J. Spindle and Kinetochore-Associated Complex is Associated With Poor Prognosis in Adrenocortical Carcinoma. J Surg Res 2022; 277:50-59. [PMID: 35460921 DOI: 10.1016/j.jss.2022.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 02/15/2022] [Accepted: 03/19/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The spindle and kinetochore-associated (SKA) complex, composed of three subunits (SKA1, SKA2, and SKA3), stabilizes spindle microtubule attachment to the kinetochore (KT) in the middle stage of mitosis. High expression of this complex is associated with poor prognosis for several tumors. However, the potential role of SKA complex overexpression in rare malignant diseases, such as adrenocortical carcinoma (ACC), has not been well investigated. MATERIALS AND METHODS In this study, we used several databases to explore the relationship between SKA subunit expression and prognosis in ACC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) databases were used to analyze enriched pathways in ACC. RESULTS The results suggest that each of the three SKA subunits are overexpressed in ACC and that high expression is correlated with poor patient prognosis. Overexpression of the SKA complex is associated with the expression of organelle fission, nuclear division, and chromosome segregation pathways. Furthermore, differential expression of hub genes for proteins that interact physically or functionally with the SKA complex (CCNB2, UBE2C, BUB1B, TPX2, CCNA2, CDCA8, CCNB1, MELK, TOP2A, and KIF2C) revealed additional potential biomarkers for ACC. CONCLUSIONS Our findings provide additional understanding of the mechanisms of ACC and suggest an approach for biomarker discovery using publicly available resources.
Collapse
Affiliation(s)
- Shoukai Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Almeida AC, Soares-de-Oliveira J, Drpic D, Cheeseman LP, Damas J, Lewin HA, Larkin DM, Aguiar P, Pereira AJ, Maiato H. Augmin-dependent microtubule self-organization drives kinetochore fiber maturation in mammals. Cell Rep 2022; 39:110610. [PMID: 35385739 PMCID: PMC8994134 DOI: 10.1016/j.celrep.2022.110610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
Chromosome segregation in mammals relies on the maturation of a thick bundle of kinetochore-attached microtubules known as k-fiber. How k-fibers mature from initial kinetochore microtubule attachments remains a fundamental question. By combining molecular perturbations and phenotypic analyses in Indian muntjac fibroblasts containing the lowest known diploid chromosome number in mammals (2N = 6) and distinctively large kinetochores, with fixed/live-cell super-resolution coherent-hybrid stimulated emission depletion (CH-STED) nanoscopy and laser microsurgery, we demonstrate a key role for augmin in kinetochore microtubule self-organization and maturation, regardless of pioneer centrosomal microtubules. In doing so, augmin promotes kinetochore and interpolar microtubule turnover and poleward flux. Tracking of microtubule growth events within individual k-fibers reveals a wide angular dispersion, consistent with augmin-mediated branched microtubule nucleation. Augmin depletion reduces the frequency of kinetochore microtubule growth events and hampers efficient repair after acute k-fiber injury by laser microsurgery. Together, these findings underscore the contribution of augmin-mediated microtubule amplification for k-fiber self-organization and maturation in mammals.
Collapse
Affiliation(s)
- Ana C Almeida
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Soares-de-Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Danica Drpic
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Liam P Cheeseman
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK; Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - António J Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
32
|
Du WW, Li X, Ma J, Fang L, Wu N, Li F, Dhaliwal P, Yang W, Yee AJ, Yang BB. Promotion of tumor progression by exosome transmission of circular RNA circSKA3. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:276-292. [PMID: 35024241 PMCID: PMC8718830 DOI: 10.1016/j.omtn.2021.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023]
Abstract
We performed in vitro and in vivo experiments to investigate the role of the circular RNA circSKA3 in tumor development. We examined the effects of circSKA3 on mediating breast cancer metastasis. In vitro, we found that the circular RNA circSKA3 was transferred between breast cancer cells, which were decreased by inhibiting exosome secretion. In vivo, circSKA3-containing exosomes potentiated tumor development and invasion that were inhibited by blocking exosome transmission. The ascites isolated from tumor-bearing mice or breast cancer patients showed high levels of circSKA3 and integrin β1. Single-cell culture and single-cell PCR showed that circSKA3 was heterogeneously expressed, the cells expressing higher levels of circSKA3 had a higher potential to form large colonies. This property was similar to c-myc, but circSKA3 expression had no correlation with c-myc levels. The effects of circSKA3 on cell migration and invasion appeared to predominate c-myc functions. By releasing circSKA3-containing exosomes to cancer cells expressing lower levels of circSKA3, the large colonies could regulate the activities of small colonies, enhancing the tumor-forming capacity of the entire population. Thus, we provide evidence that the transmission of circular RNAs in tumor-derived exosomes may allow for the maintenance of advantageous invasive sub-clones in breast cancer.
Collapse
Affiliation(s)
- William W. Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Xiangmin Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences
| | - Jian Ma
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Ling Fang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- China-Japan Union Hospital of Jilin University, Jilin, China
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Feiya Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Preet Dhaliwal
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Weining Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Albert J. Yee
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Burton B. Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Zhang C, Zhao S, Tan Y, Pan S, An W, Chen Q, Wang X, Xu H. The SKA3-DUSP2 Axis Promotes Gastric Cancer Tumorigenesis and Epithelial-Mesenchymal Transition by Activating the MAPK/ERK Pathway. Front Pharmacol 2022; 13:777612. [PMID: 35295342 PMCID: PMC8918524 DOI: 10.3389/fphar.2022.777612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Spindle and kinetochore-related complex subunit 3 (SKA3), a member of the SKA family of proteins, is associated with the progression of multiple cancers. However, the role of SKA3 in gastric cancer has not been studied.Methods: The expression levels of SKA3 and dual-specificity phosphatase 2 (DUSP2) proteins were detected by immunohistochemistry. The effects of SKA3 and DUSP2 on the proliferation, migration, invasion, adhesion, and epithelial-mesenchymal transition of gastric cancer were studied in vitro and in vivo.Results: Immunohistochemical analysis of 164 cases of gastric cancer revealed that high expression of SKA3 was negatively correlated with DUSP2 expression and related to N stage, peritoneal metastasis, and poor prognosis. In vitro studies showed that silencing SKA3 expression inhibited the proliferation, migration, invasion, adhesion and epithelial-mesenchymal transition of gastric cancer. In vivo experiments showed that silencing SKA3 inhibited tumor growth and peritoneal metastasis. Mechanistically, SKA3 negative regulates the tumor suppressor DUSP2 and activates the MAPK/ERK pathway to promote gastric cancer.Conclusion: Our results indicate that the SKA3-DUSP2-ERK1/2 axis is involved in the regulation of gastric cancer progression, and SKA3 is a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shutao Zhao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuen Tan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Siwei Pan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Wen An
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Qingchuan Chen
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xudong Wang, ; Huimian Xu,
| | - Huimian Xu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
- *Correspondence: Xudong Wang, ; Huimian Xu,
| |
Collapse
|
34
|
Yu S. Overexpression of SKA Complex Is Associated With Poor Prognosis in Gliomas. Front Neurol 2022; 12:755681. [PMID: 35095717 PMCID: PMC8791909 DOI: 10.3389/fneur.2021.755681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The spindle and kinetochore-associated complex is composed of three members: SKA1, SKA2, and SKA3. It is necessary for stabilizing spindle microtubules attaching to kinetochore (KT) in the middle stage of mitosis. The SKA complex is associated with poor prognosis in several human cancers. However, the role of SKA complex in rare malignant diseases, such as gliomas, has not been fully investigated. We investigated several databases, including Oncomine, UALCAN, and cBioPortal to explore the expression profile and prognostic significance of SKA complex in patients with gliomas. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathways were used to analyze the potential enriched pathways. The genes co-expressed with SKA complex were identified and used for developing a protein-protein interaction (PPI) network using the STRING database. We found a significant overexpression of the mRNA levels of SKA1, SKA2, and SKA3 in patients with glioma patients. Higher expression of SKA1 and SKA3, but not SKA2, was significantly correlated with shorter overall survival of patients with glioma. In glioma, SKA complex was found to be involved in nuclear division, chromosome segregation, and DNA replication. The results of PPI network identified 10 hub genes (CCNB2, UBE2C, BUB1B, TPX2, CCNA2, CCNB1, MELK, TOP2A, PBK, and KIF11), all of which were overexpressed and negatively associated with prognosis of patients with glioma. In conclusion, our study sheds new insights into the biological role and prognostic significance of SKA complex in glioma.
Collapse
Affiliation(s)
- Shoukai Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Solovieva T, Lu HC, Moverley A, Plachta N, Stern CD. The embryonic node behaves as an instructive stem cell niche for axial elongation. Proc Natl Acad Sci U S A 2022. [PMID: 35101917 DOI: 10.1101/2020.11.10.376913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
In warm-blooded vertebrate embryos (mammals and birds), the axial tissues of the body form from a growth zone at the tail end, Hensen's node, which generates neural, mesodermal, and endodermal structures along the midline. While most cells only pass through this region, the node has been suggested to contain a small population of resident stem cells. However, it is unknown whether the rest of the node constitutes an instructive niche that specifies this self-renewal behavior. Here, we use heterotopic transplantation of groups and single cells and show that cells not destined to enter the node can become resident and self-renew. Long-term resident cells are restricted to the posterior part of the node and single-cell RNA-sequencing reveals that the majority of these resident cells preferentially express G2/M phase cell-cycle-related genes. These results provide strong evidence that the node functions as a niche to maintain self-renewal of axial progenitors.
Collapse
Affiliation(s)
- Tatiana Solovieva
- Department of Cell and Developmental Biology, University College London, WC1E 6BT London, United Kingdom
| | - Hui-Chun Lu
- Department of Cell and Developmental Biology, University College London, WC1E 6BT London, United Kingdom
| | - Adam Moverley
- Department of Cell and Developmental Biology, University College London, WC1E 6BT London, United Kingdom
- Institute of Molecular Cell Biology, A*STAR, 138673 Proteos, Singapore
| | - Nicolas Plachta
- Institute of Molecular Cell Biology, A*STAR, 138673 Proteos, Singapore
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, WC1E 6BT London, United Kingdom;
| |
Collapse
|
36
|
Feng D, Zhang F, Liu L, Xiong Q, Xu H, Wei W, Liu Z, Yang L. SKA3 Serves as a Biomarker for Poor Prognosis in Kidney Renal Papillary Cell Carcinoma. Int J Gen Med 2021; 14:8591-8602. [PMID: 34849004 PMCID: PMC8627265 DOI: 10.2147/ijgm.s336799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Background There is a surprising paucity of studies investigating the potential mechanism of SKA3 in the progression and prognosis of kidney renal papillary cell carcinoma (KIRP). Methods We used TCGA and other databases to analyze the expression, clinical value, and potential mechanisms of SKA3 in KIRP patients. We also explored therapeutic agents for KIRP through GSCALite. Results SKA3 mRNA expression was significantly upregulated and the area under the curve was 0.792 (95% CI 0.727–0.856). Increased SKA3 expression was related to shorter overall survival, disease-specific survival and progression-free survival. Hub genes in protein–protein interactions were CDK1, CDC20, CCNB1, CCNA2, BUB1, AURKB, BUB1B, PLK1, CCNB2, and MAD2L1, which were differentially expressed and also associated with KIRP prognosis. Gene-set enrichment analysis indicated that E2F targets, epithelial–mesenchymal transition, glycolysis, the WNT signaling pathway, and other pathways were highly enriched upon SKA3 upregulation. Gene-set variation analysis of SKA3 and its ten hub genes showed that the significant correlation of cancer-related pathways included the cell cycle, DNA damage, hormone androgen receptor, hormone estrogen receptor, PI3K/Akt, and Ras/MAPK. In addition, we found that MEK inhibitors, ie, trametinib, selumetinib, PD0325901, and RDEA119, may be feasible targeting agents for KIRP patients. Conclusion SKA3 might contribute to poor prognosis of KIRP through cell cycle, DNA damage, hormone androgen receptor, hormone estrogen receptor, PI3K/Akt, and RAS/MAPK. SKA3 potentially serves as a prognostic biomarker and target for KIRP.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ling Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhenghua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
37
|
Song X, Conti D, Shrestha RL, Braun D, Draviam VM. Counteraction between Astrin-PP1 and Cyclin-B-CDK1 pathways protects chromosome-microtubule attachments independent of biorientation. Nat Commun 2021; 12:7010. [PMID: 34853300 PMCID: PMC8636589 DOI: 10.1038/s41467-021-27131-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Defects in chromosome-microtubule attachment can cause chromosomal instability (CIN), frequently associated with infertility and aggressive cancers. Chromosome-microtubule attachment is mediated by a large macromolecular structure, the kinetochore. Sister kinetochores of each chromosome are pulled by microtubules from opposing spindle-poles, a state called biorientation which prevents chromosome missegregation. Kinetochore-microtubule attachments that lack the opposing-pull are detached by Aurora-B/Ipl1. It is unclear how mono-oriented attachments that precede biorientation are spared despite the lack of opposing-pull. Using an RNAi-screen, we uncover a unique role for the Astrin-SKAP complex in protecting mono-oriented attachments. We provide evidence of domains in the microtubule-end associated protein that sense changes specific to end-on kinetochore-microtubule attachments and assemble an outer-kinetochore crescent to stabilise attachments. We find that Astrin-PP1 and Cyclin-B-CDK1 pathways counteract each other to preserve mono-oriented attachments. Thus, CIN prevention pathways are not only surveying attachment defects but also actively recognising and stabilising mature attachments independent of biorientation. Chromosome instability frequently occurs due to issues with chromosome-microtubule attachments. Here the authors show that the Astrin-PP1 and Cyclin-B-CDK1 pathways counteract each other to protect chromosome-microtubule attachments independent of biorientation.
Collapse
Affiliation(s)
- Xinhong Song
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK
| | - Duccio Conti
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK.,Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Roshan L Shrestha
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dominique Braun
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Viji M Draviam
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK. .,Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
38
|
Bai S, Chen W, Zheng M, Wang X, Peng W, Zhao Y, Wang Y, Xiong S, Cheng B. Spindle and kinetochore-associated complex subunit 3 (SKA3) promotes stem cell-like properties of hepatocellular carcinoma cells through activating Notch signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1361. [PMID: 34733913 PMCID: PMC8506556 DOI: 10.21037/atm-21-1572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022]
Abstract
Background Cancer stemness contributes to hepatocellular carcinoma (HCC) initiation, metastasis, drug resistance, and recurrence. The spindle and kinetochore-associated (SKA) complex has been shown to be involved in tumor progression; however, its effects on cancer stem cell-like properties have not yet been examined. This research sought to study each subunit of the SKA complex in HCC systematically. Methods Bioinformatic analyses were carried out to examine the expression and clinical data of the SKA complex’s each subunit in HCC. The expression of the target genes was detected by quantitative reverse transcription-polymerase chain reaction and Western blot assays. Clone formation and Transwell assays were performed to assess the proliferation and migration abilities of the SKA complex’s each subunit. Sphere formation assays and subcutaneous xenograft experiments were performed to investigate the effects of SKA complex subunit 3 (SKA3) on the self-renewal and tumorigenic abilities of HCC. Results Each subunit of the SKA complex was highly expressed in HCC, but only SKA complex subunit 1 (SKA1) and SKA3 were associated with the poor overall survival of HCC patients. Additionally, the HCC cells overexpressing SKA3 exhibited increased migration, invasion, proliferation, self-renewal, Sorafenib resistance and tumorigenic abilities. Notch signaling played a vital role in the process by which SKA3 promoted HCC stemness. Conclusions SKA3 promotes HCC stem cell-like properties via the Notch signaling pathway. As SKA3 appears to act as a regulator of stemness in HCC, it might be a potential molecular target for HCC.
Collapse
Affiliation(s)
- Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Digestive Endoscopy, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Liang Y, Zheng Y, Mou K, Han D, Wang L, Ge R, Meng A. Inhibition of spindle and kinetochore associated complex subunit 3 suppresses the proliferation and invasion and induced the apoptosis of cutaneous melanoma by affecting the PI3K/Akt pathway. J Biochem Mol Toxicol 2021; 35:e22895. [PMID: 34423490 DOI: 10.1002/jbt.22895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/28/2021] [Accepted: 08/13/2021] [Indexed: 11/11/2022]
Abstract
Spindle and kinetochore-associated complex subunit 3 (SKA3) is reportedly a key contributor to the progression of various cancers. The present work aimed to evaluate the possible role of SKA3 in cutaneous melanoma (CM). A high SKA3 level was found in CM tissues and predicted a poor prognosis. SKA3 silencing markedly repressed the proliferation, invasion, and epithelial-mesenchymal transition and induced the apoptosis of CM cells. SKA3 silencing decreased the phosphorylation of PI3K and Akt. Akt inhibition markedly reversed SKA3 overexpression-induced oncogenic effects on CM cells. SKA3 silencing significantly prohibited the formation and growth of CM-derived xenograft tumors in nude mice in vivo. Our findings demonstrated SKA3 inhibition repressed the progression of CM by downregulating the PI3K/Akt pathway. This study indicates that SKA3 has potential as an anticancer candidate for CM.
Collapse
Affiliation(s)
- Yan Liang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Han
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Ge
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anfeng Meng
- Department of Plastic Surgery, The Municipal People's Hospital of Baoji, Baoji, China
| |
Collapse
|
40
|
Integrative Transcriptome Profiling Reveals SKA3 as a Novel Prognostic Marker in Non-Muscle Invasive Bladder Cancer. Cancers (Basel) 2021; 13:cancers13184673. [PMID: 34572901 PMCID: PMC8470398 DOI: 10.3390/cancers13184673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023] Open
Abstract
Approximately 80% of all new bladder cancer patients are diagnosed with non-muscle invasive bladder cancer (NMIBC). However, approximately 15% of them progress to muscle-invasive bladder cancer (MIBC), for which prognosis is poor. The current study aimed to improve diagnostic accuracy associated with clinical outcomes in NMIBC patients. Nevertheless, it has been challenging to identify molecular biomarkers that accurately predict MIBC progression because this disease is complex and heterogeneous. Through integrative transcriptome profiling, we showed that high SKA3 expression is associated with poor clinical outcomes and MIBC progression. We performed RNA sequencing on human tumor tissues to identify candidate biomarkers in NMIBC. We then selected genes with prognostic significance by analyzing public datasets from multiple cohorts of bladder cancer patients. We found that SKA3 was associated with NMIBC pathophysiology and poor survival. We analyzed public single-cell RNA-sequencing (scRNA-seq) data for bladder cancer to dissect transcriptional tumor heterogeneity. SKA3 was expressed in an epithelial cell subpopulation expressing genes regulating the cell cycle. Knockdown experiments confirmed that SKA3 promotes bladder cancer cell proliferation by accelerating G2/M transition. Hence, SKA3 is a new prognostic marker for predicting NMIBC progression. Its inhibition could form part of a novel treatment lowering the probability of bladder cancer progression.
Collapse
|
41
|
Ferreira LT, Maiato H. Prometaphase. Semin Cell Dev Biol 2021; 117:52-61. [PMID: 34127384 DOI: 10.1016/j.semcdb.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
The establishment of a metaphase plate in which all chromosomes are attached to mitotic spindle microtubules and aligned at the cell equator is required for faithful chromosome segregation in metazoans. The achievement of this configuration relies on the precise coordination between several concurrent mechanisms that start upon nuclear envelope breakdown, mediate chromosome capture at their kinetochores during mitotic spindle assembly and culminate with the congression of all chromosomes to the spindle equator. This period is called 'prometaphase'. Because the nature of chromosome capture by mitotic spindle microtubules is error prone, the cell is provided of error correction mechanisms that sense and correct most erroneous kinetochore-microtubule attachments before committing to separate sister chromatids in anaphase. In this review, aimed for newcomers in the field, more than providing an exhaustive mechanistic coverage of each and every concurrent mechanism taking place during prometaphase, we provide an integrative overview of these processes that ultimately promote the subsequent faithful segregation of chromosomes during mitosis.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
42
|
Meyer RE, Tipton AR, LaVictoire R, Gorbsky GJ, Dawson DS. Mps1 promotes poleward chromosome movements in meiotic prometaphase. Mol Biol Cell 2021; 32:1020-1032. [PMID: 33788584 PMCID: PMC8101486 DOI: 10.1091/mbc.e20-08-0525-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In prophase of meiosis I, homologous chromosomes pair and become connected by cross-overs. Chiasmata, the connections formed by cross-overs, enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiotic spindle forms in prometaphase, most bivalents are associated with one spindle pole and then go through a series of oscillations on the spindle, attaching to and detaching from microtubules until the partners of the bivalent become bioriented—attached to microtubules from opposite sides of the spindle. The conserved kinase, Mps1, is essential for the bivalents to be pulled by microtubules across the spindle in prometaphase. Here we show that MPS1 is needed for efficient triggering of the migration of microtubule-attached kinetochores toward the poles and promotes microtubule depolymerization. Our data support the model Mps1 acts at the kinetochore to coordinate the successful attachment of a microtubule and the triggering of microtubule depolymerization to then move the chromosome.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Aaron R Tipton
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Rebecca LaVictoire
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Gary J Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
43
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
44
|
Spindle and kinetochore‑associated complex subunit 3 accelerates breast cancer cell proliferation and invasion through the regulation of Akt/Wnt/β-catenin signaling. Breast Cancer Res Treat 2021; 186:247-258. [PMID: 33423159 DOI: 10.1007/s10549-020-06078-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Spindle and kinetochore‑associated complex subunit 3 (SKA3) has recently been identified as a novel regulator of carcinogenesis in multiple types of cancers. However, the function and potential regulatory mechanisms of SKA3 in breast cancer remain poorly understood. The present study was designed to gain a detailed relevance of SKA3 in breast cancer. METHODS Expression of SKA3 in breast cancer was examined via real-time quantitative PCR, western blotting and immunohistochemistry analysis. Malignant behaviors of breast cancer cells were investigated via cell counting kit-8, cell apoptosis, and transwell invasion assays. The activity of Wnt/β-catenin signaling was monitored via luciferase reporter assay. The tumorigenicity of breast cancer cells in vivo was assessed via xenograft tumor assay. RESULTS SKA3 expression was elevated in breast cancer tissue and was correlated with shorter survival rates in breast cancer patients. Knockdown of SKA3 caused marked reductions in cellular proliferation and invasion in breast cancer cells, whereas SKA3 overexpression accelerated proliferation and invasion. Knockdown of SKA3 resulted in decreased Akt and glycogen synthase kinase-3β phosphorylation, and decreased expression of active β-catenin, which lead to the inactivation of Wnt/β-catenin signaling. Inhibition of Akt significantly reversed the SKA3 overexpression-induced activation of Wnt/β-catenin signaling. Inhibition of Wnt/β-catenin signaling markedly abrogated SKA3 overexpression-induced tumor-promotion effects, while re-activation of Wnt/β-catenin signaling significantly reversed SKA3 knockdown-mediated tumor-inhibition effects. Knockdown of SKA3 resulted in a significant decrease in breast cancer tumor formation in vivo. CONCLUSIONS SKA3 accelerates proliferation and invasion in breast cancer through the modulation of Akt/Wnt/β-catenin signaling.
Collapse
|
45
|
Herman JA, Miller MP, Biggins S. chTOG is a conserved mitotic error correction factor. eLife 2020; 9:e61773. [PMID: 33377866 PMCID: PMC7773332 DOI: 10.7554/elife.61773] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Accurate chromosome segregation requires kinetochores on duplicated chromatids to biorient by attaching to dynamic microtubules from opposite spindle poles, which exerts forces to bring kinetochores under tension. However, kinetochores initially bind to microtubules indiscriminately, resulting in errors that must be corrected. While the Aurora B protein kinase destabilizes low-tension attachments by phosphorylating kinetochores, low-tension attachments are intrinsically less stable than those under higher tension in vitro independent of Aurora activity. Intrinsic tension-sensitive behavior requires the microtubule regulator Stu2 (budding yeast Dis1/XMAP215 ortholog), which we demonstrate here is likely a conserved function for the TOG protein family. The human TOG protein, chTOG, localizes to kinetochores independent of microtubules by interacting with Hec1. We identify a chTOG mutant that regulates microtubule dynamics but accumulates erroneous kinetochore-microtubule attachments that are not destabilized by Aurora B. Thus, TOG proteins confer a unique, intrinsic error correction activity to kinetochores that ensures accurate chromosome segregation.
Collapse
Affiliation(s)
- Jacob A Herman
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Matthew P Miller
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
46
|
Liu Y, Jin ZR, Huang X, Che YC, Liu Q. Identification of Spindle and Kinetochore-Associated Family Genes as Therapeutic Targets and Prognostic Biomarkers in Pancreas Ductal Adenocarcinoma Microenvironment. Front Oncol 2020; 10:553536. [PMID: 33224872 PMCID: PMC7667267 DOI: 10.3389/fonc.2020.553536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Aim The role of spindle and kinetochore-associated (SKA) genes in tumorigenesis and cancer progression has been widely studied. However, so far, the oncogenic involvement of SKA family genes in pancreatic cancer and their prognostic potential remain unknown. Methods Here, we carried out a meta-analysis of the differential expression of SKA genes in normal and tumor tissue. Univariate and multivariate survival analyses were done to evaluate the correlation between SKA family gene expression and pancreas ductal adenocarcinoma (PDAC) prognosis. Joint-effect and stratified survival analysis as well as nomogram analysis were used to estimate the prognostic value of genes. The underlying regulatory and biological mechanisms were identified by Gene set enrichment analysis. Interaction between SKA prognosis-related genes and immune cell infiltration was assessed using the Tumor Immune Estimation Resource tool. Results We find that SKA1-3 are highly expressed in PDAC tissues relative to non-cancer tissues. Survival analysis revealed that high expression of SKA1 and SKA3 independently indicate poor prognosis but they are not associated with relapse-free survival. The prognostic value of SKA1 and SKA3 was further confirmed by the nomogram, joint-effect, and stratified survival analysis. Analysis of underlying mechanisms reveals that these genes influence cancer-related signaling pathways, kinases, miRNA, and E2F family genes. Notably, prognosis-related genes are inversely correlated with several immune cells infiltrating levels. Conclusion We find that SKA1 and SKA3 expression correlates with prognosis and immune cell infiltration in PDAC, highlighting their potential as pancreatic cancer prognostic biomarkers.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Zong-Rui Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xing Huang
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye-Cheng Che
- Department of Emergency Medicine, First People's Hospital of Fuzhou, Fuzhou, China
| | - Qin Liu
- Department of Medical Ultrasonics, Second People's Hospital of Guilin, Guilin, China
| |
Collapse
|
47
|
Gao W, Zhang Y, Luo H, Niu M, Zheng X, Hu W, Cui J, Xue X, Bo Y, Dai F, Lu Y, Yang D, Guo Y, Guo H, Li H, Zhang Y, Yang T, Li L, Zhang L, Hou R, Wen S, An C, Ma T, Jin L, Xu W, Wu Y. Targeting SKA3 suppresses the proliferation and chemoresistance of laryngeal squamous cell carcinoma via impairing PLK1-AKT axis-mediated glycolysis. Cell Death Dis 2020; 11:919. [PMID: 33106477 PMCID: PMC7589524 DOI: 10.1038/s41419-020-03104-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Spindle and kinetochore-associated complex subunit 3 (SKA3) is a well-known regulator of chromosome separation and cell division, which plays an important role in cell proliferation. However, the mechanism of SKA3 regulating tumor proliferation via reprogramming metabolism is unknown. Here, SKA3 is identified as an oncogene in laryngeal squamous cell carcinoma (LSCC), and high levels of SKA3 are closely associated with malignant progression and poor prognosis. In vitro and in vivo experiments demonstrate that SKA3 promotes LSCC cell proliferation and chemoresistance through a novel role of reprogramming glycolytic metabolism. Further studies reveal the downstream mechanisms of SKA3, which can bind and stabilize polo-like kinase 1 (PLK1) protein via suppressing ubiquitin-mediated degradation. The accumulation of PLK1 activates AKT and thus upregulates glycolytic enzymes HK2, PFKFB3, and PDK1, resulting in enhancement of glycolysis. Furthermore, our data reveal that phosphorylation at Thr360 of SKA3 is critical for its binding to PLK1 and the increase in glycolysis. Collectively, the novel oncogenic signal axis "SKA3-PLK1-AKT" plays a critical role in the glycolysis of LSCC. SKA3 may serve as a prognostic biomarker and therapeutic target, providing a potential strategy for proliferation inhibition and chemosensitization in tumors, especially for LSCC patients with PLK1 inhibitor resistance.
Collapse
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Cell Biology and Genetics, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Hongjie Luo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Wanglai Hu
- School of Basic Medical Science, Anhui Medical University, 230032, Hefei, Anhui, P.R. China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, 030013, Taiyuan, Shanxi, P.R. China
| | - Fengsheng Dai
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, 121001, Jinzhou, Liaoning, P.R. China
| | - Dongli Yang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Huizheng Li
- Department of Otolaryngology Head & Neck Surgery, Dalian Municipal Friendship Hospital, 116100, Dalian, Liaoning, P.R. China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Physiology, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Li Li
- Department of Cell Biology and Genetics, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Linshi Zhang
- Department of Thyroid Surgery, Zhejiang University School of Medicine Second Affiliated Hospital, 310009, Hangzhou, Zhejiang, P.R. China
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Shuxin Wen
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, 030032, Taiyuan, Shanxi, P.R. China.
| | - Changming An
- Department of Head and Neck Surgery, Chinese Academy of Medical Sciences Cancer Institute and Hospital, 100021, Beijing, P.R. China.
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149, Beijing, P.R. China.
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Wei Xu
- Department of Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, 250022, Jinan, Shandong, P.R. China.
- Shandong Provincial Institute of Otolaryngology, 250022, Jinan, Shandong, P.R. China.
- Key Laboratory of Otolaryngology, Ministry of Health, Shandong University, 250022, Jinan, Shandong, P.R. China.
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
| |
Collapse
|
48
|
Kinetochore-microtubule coupling mechanisms mediated by the Ska1 complex and Cdt1. Essays Biochem 2020; 64:337-347. [PMID: 32844209 DOI: 10.1042/ebc20190075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
The faithful segregation of duplicated sister chromatids rely on the remarkable ability of kinetochores to sustain stable load bearing attachments with the dynamic plus ends of kinetochore-microtubules (kMTs). The outer layer of the kinetochore recruits several motor and non-motor microtubule-associated proteins (MAPs) that help the kinetochores establish and maintain a load bearing dynamic attachment with kMTs. The primary kMT-binding protein, the Ndc80 complex (Ndc80c), which is highly conserved among diverse organisms from yeast to humans, performs this essential function with assistance from other MAPs. These MAPs are not an integral part of the kinetochore, but they localize to the kinetochore periodically throughout mitosis and regulate the strength of the kinetochore microtubule attachments. Here, we attempt to summarize the recent advances that have been made toward furthering our understanding of this co-operation between the Ndc80c and these MAPs, focusing on the spindle and kinetochore-associated 1 (Ska1) complex (Ska1c) and Cdc10-dependent transcript 1 (Cdt1) in humans.
Collapse
|
49
|
Zhang Q, Hu L, Chen Y, Tian W, Liu H. Multisite phosphorylation determines the formation of Ska-Ndc80 macro-complexes that are essential for chromosome segregation during mitosis. Mol Biol Cell 2020; 31:1892-1903. [PMID: 32491969 PMCID: PMC7525821 DOI: 10.1091/mbc.e19-10-0569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human Ska complex (Ska) localizing to both spindle microtubules and kinetochores is essential for proper chromosome segregation during mitosis. Although several mechanisms have been proposed to explain how Ska is recruited to kinetochores, it is still not fully understood. By analyzing Ska3 phosphorylation, we identified six critical Cdk1 sites, including the previously identified Thr358 and Thr360. Mutations of these sites to phospho-deficient alanine (6A) in cells completely abolished Ska3 localization to kinetochores and Ska functions in chromosome segregation. In vitro, Cdk1 phosphorylation on Ska enhanced WT, not phospho-deficient 6A, binding to Ndc80C. Strikingly, the phosphomimetic Ska 6D complex formed a stable macro-complex with Ndc80C, but Ska WT failed to do so. These results suggest that multisite Cdk1 phosphorylation-enabled Ska–Ndc80 binding is decisive for Ska localization to kinetochores and its functions. Moreover, we found that Ska decrease at kinetochores triggered by the microtubule-depolymerizing drug nocodazole is independent of Aurora B but can be overridden by Ska3 overexpression, suggestive of a role of spindle microtubules in promoting Ska kinetochore recruitment. Thus, based on the current and previous results, we propose that multisite Cdk1 phosphorylation is critical for the formation of Ska–Ndc80 macro-complexes that are essential for chromosome segregation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| | - Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| |
Collapse
|
50
|
Wimbish RT, DeLuca KF, Mick JE, Himes J, Jiménez-Sánchez I, Jeyaprakash AA, DeLuca JG. The Hec1/Ndc80 tail domain is required for force generation at kinetochores, but is dispensable for kinetochore-microtubule attachment formation and Ska complex recruitment. Mol Biol Cell 2020; 31:1453-1473. [PMID: 32401635 PMCID: PMC7359571 DOI: 10.1091/mbc.e20-05-0286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
The conserved kinetochore-associated NDC80 complex (composed of Hec1/Ndc80, Nuf2, Spc24, and Spc25) has well-documented roles in mitosis including 1) connecting mitotic chromosomes to spindle microtubules to establish force-transducing kinetochore-microtubule attachments and 2) regulating the binding strength between kinetochores and microtubules such that correct attachments are stabilized and erroneous attachments are released. Although the NDC80 complex plays a central role in forming and regulating attachments to microtubules, additional factors support these processes as well, including the spindle and kinetochore-associated (Ska) complex. Multiple lines of evidence suggest that Ska complexes strengthen attachments by increasing the ability of NDC80 complexes to bind microtubules, especially to depolymerizing microtubule plus ends, but how this is accomplished remains unclear. Using cell-based and in vitro assays, we demonstrate that the Hec1 tail domain is dispensable for Ska complex recruitment to kinetochores and for generation of kinetochore-microtubule attachments in human cells. We further demonstrate that Hec1 tail phosphorylation regulates kinetochore-microtubule attachment stability independently of the Ska complex. Finally, we map the location of the Ska complex in cells to a region near the coiled-coil domain of the NDC80 complex and demonstrate that this region is required for Ska complex recruitment to the NDC80 complex--microtubule interface.
Collapse
Affiliation(s)
- Robert T. Wimbish
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Keith F. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jeanne E. Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jack Himes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | | | | | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|