1
|
Zhao S, Lin H, Li W, Xu X, Wu Q, Wang Z, Shi J, Chen Y, Ye L, Xi L, Chen L, Yuan M, Su J, Gao A, Jin J, Ying X, Wang X, Ye Y, Sun Y, Zhang Y, Deng X, Shen B, Gu W, Ning G, Wang W, Hong J, Wang J, Liu R. Post sleeve gastrectomy-enriched gut commensal Clostridia promotes secondary bile acid increase and weight loss. Gut Microbes 2025; 17:2462261. [PMID: 39915243 PMCID: PMC11810084 DOI: 10.1080/19490976.2025.2462261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/12/2025] Open
Abstract
The gut microbiome is altered after bariatric surgery and is associated with weight loss. However, the commensal bacteria involved and the underlying mechanism remain to be determined. We performed shotgun metagenomic sequencing in obese subjects before and longitudinally after sleeve gastrectomy (SG), and found a significant enrichment in microbial species in Clostridia and bile acid metabolizing genes after SG treatment. Bile acid profiling further revealed decreased primary bile acids (PBAs) and increased conjugated secondary bile acids (C-SBAs) after SG. Specifically, glycodeoxycholic acid (GDCA) and taurodeoxycholic acid (TDCA) were increased at different follow-ups after SG, and were associated with the increased abundance of Clostridia and body weight reduction. Fecal microbiome transplantation with post-SG feces increased SBA levels, and alleviated body weight gain in the recipient mice. Furthermore, both Clostridia-enriched spore-forming bacteria and GDCA supplementation increased the expression of genes responsible for lipolysis and fatty acid oxidation in adipose tissue and reduced adiposity via Takeda G-protein-coupled receptor 5 (TGR5) signaling. Our findings reveal post-SG gut microbiome and C-SBAs as contributory to SG-induced weight loss, in part via TGR5 signaling, and suggest SBA-producing gut microbes as a potential therapeutic target for obesity intervention.
Collapse
Affiliation(s)
- Shaoqian Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huibin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Qihan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Juan Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingxia Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuqing Xi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijia Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junlei Su
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabin Jin
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiayang Ying
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yingkai Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Ghusn W, Zeineddine J, Betancourt RS, Gajjar A, Yang W, Robertson AG, Ghanem OM. Advances in Metabolic Bariatric Surgeries and Endoscopic Therapies: A Comprehensive Narrative Review of Diabetes Remission Outcomes. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:350. [PMID: 40005466 PMCID: PMC11857516 DOI: 10.3390/medicina61020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Type 2 diabetes (T2D), closely associated with obesity, contributes to increased morbidity and mortality due to complications such as cardiometabolic disease. This review aims to evaluate the effectiveness of metabolic and bariatric surgeries (MBS) and endoscopic bariatric therapies (EBTs) in achieving diabetes remission and to examine key predictors influencing remission outcomes. Materials and Methods: This review synthesizes data from studies on MBS and EBT outcomes, focusing on predictors for diabetes remission such as preoperative insulin use, diabetes duration, HbA1c, and C-peptide levels. Additionally, predictive scoring systems, including the Individualized Metabolic Surgery (IMS), DiaRem, Advanced-DiaRem, ABCD, and Robert et al. scores, were analyzed for their utility in forecasting remission likelihood. Results: Key predictors of T2D remission include shorter diabetes duration, lower HbA1c, and higher C-peptide levels, while prolonged insulin use, and higher insulin doses are associated with lower remission rates. Scoring models like IMS and DiaRem demonstrate that lower scores correlate with a higher likelihood of remission, especially for procedures such as Roux-En-Y gastric bypass (RYGB). RYGB generally shows higher remission rates compared to sleeve gastrectomy (SG), particularly among patients with mild disease severity, while EBTs like ESG and IGBs contribute 5-20% total weight loss (TWL) and moderate glycemic control improvements. Conclusions: Both MBS and EBTs are effective for T2D management, with predictive scoring models aiding in individualized patient selection to optimize remission outcomes. Further research to validate these predictive tools across diverse populations could enhance treatment planning for both surgical and endoscopic interventions.
Collapse
Affiliation(s)
- Wissam Ghusn
- Department of Internal Medicine, Boston Medical Center, Boston, MA 02118, USA;
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jana Zeineddine
- Department of Colorectal Surgery, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Richard S. Betancourt
- Department of Surgery, Endocrine and Metabolic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.S.B.); (A.G.)
| | - Aryan Gajjar
- Department of Surgery, Endocrine and Metabolic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.S.B.); (A.G.)
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China;
| | - Andrew G. Robertson
- Clinical Department of Surgery, University of Edinburgh, Royal Infirmary, Edinburgh EH8 9YL, UK
| | - Omar M. Ghanem
- Department of Surgery, Endocrine and Metabolic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.S.B.); (A.G.)
| |
Collapse
|
4
|
Du J, Shen M, Chen J, Yan H, Xu Z, Yang X, Yang B, Luo P, Ding K, Hu Y, He Q. The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications. Front Pharmacol 2025; 15:1510080. [PMID: 39850557 PMCID: PMC11754210 DOI: 10.3389/fphar.2024.1510080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic dysregulation and related metabolic substances, we explored the relationship between several major families of SLC supergroup and metabolic diseases, providing examples of drugs targeting SLC proteins that have been approved or are currently in clinical/preclinical research as well as SLC-related diagnostic techniques that are in clinical use or under investigation. By highlighting these connections, we aim to provide insights that may contribute to the development of improved treatment strategies and targeted therapies for metabolic disorders.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhui Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhuai Hu
- Yuhong Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qiaojun He
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Boyle E, Elliott JA. Novel nutrition strategies in gastric and esophageal cancer. Expert Rev Gastroenterol Hepatol 2025; 19:89-104. [PMID: 39864091 DOI: 10.1080/17474124.2025.2457444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Advances in treatment strategies for gastric and esophageal cancer have led to improved long-term outcomes, however the local and systemic effects of the primary tumor, neoadjuvant therapies and surgery, result in specific nutritional challenges. Comprehensive nutritional evaluation and support represents a core component of multidisciplinary holistic care for this patient population. AREAS COVERED We provide a detailed overview of nutritional challenges in gastric and esophageal cancer, with a focus on malignant obstruction, preoperative optimization and survivorship. We discuss current management strategies and evidence base, and describe future therapeutic targets. EXPERT OPINION Data to support the optimal management of malignant dysphagia and obstruction, particularly regarding patient reported outcomes, is currently lacking. The advantages of nutritional optimization in the pre- and immediate postoperative phase are well described, but further research is needed to inform optimal personalised strategies. Emerging data regarding the physiologic regulation of appetite and body weight have provided key insights and informed the development of novel therapeutic targets to improve nutritional status among patients undergoing treatment for oesophageal and gastric cancer.
Collapse
Affiliation(s)
- Ellen Boyle
- Department of Surgery, Trinity St. James's Cancer Institute, Dublin, Ireland
| | - Jessie A Elliott
- Department of Surgery, Trinity St. James's Cancer Institute, Dublin, Ireland
| |
Collapse
|
6
|
Custers E, van der Burgh YG, Vreeken D, Schuren F, van den Broek TJ, Verschuren L, de Blaauw I, Bouwens M, Kleemann R, Kiliaan AJ, Hazebroek EJ. Gastrointestinal complaints after Roux-en-Y gastric bypass surgery. Impact of microbiota and its metabolites. Heliyon 2024; 10:e39899. [PMID: 39559236 PMCID: PMC11570293 DOI: 10.1016/j.heliyon.2024.e39899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Unexplainable gastrointestinal complaints occasionally occur after Roux-en-Y Gastric Bypass (RYGB) surgery. We therefor investigated the impact of microbiota composition and metabolites on gastrointestinal complaints after RYGB. In the BARICO study (Bariatric surgery Rijnstate and Radboudumc neuroimaging and Cognition in Obesity), microbiota and metabolites were measured before surgery, and 6, and 24 months after surgery. Gastrointestinal complaints were assessed with the Irritable Bowel Syndrome Severity Scoring System (IBS-SSS) questionnaire 24 months after surgery. 65 participants (86.2 % female) with a mean age of 46.2 ± 6.0 years, and mean BMI of 41.2 ± 3.6 kg/m2 were included. According to the IBS-SSS questionnaire, 32.3 % had moderate/severe gastrointestinal complaints 24 months after surgery. Microbiota alpha diversity remained stable, while beta diversity significantly changed over time. Bile acids and short-chain fatty acids were significantly higher, and inflammatory markers significantly lower after surgery. Barnesiella sp., Escherichia/Shigella sp., and Faecalibacterium prausnitzii correlated positively, while Akkermansia sp correlated inversely with gastrointestinal complaints. Patients with mild and moderate/severe gastrointestinal complaints showed higher levels of GLC-3S. These findings suggest involvement of microbiota and metabolite changes in gastrointestinal complaints after surgery. However, it remains unclear whether bacteria influence gastrointestinal complaints directly or indirectly. Further exploration is required for development of interventions against gastrointestinal symptoms after surgery.
Collapse
Affiliation(s)
- Emma Custers
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, Nijmegen, the Netherlands
| | - Yonta G.R. van der Burgh
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, the Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Debby Vreeken
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, Nijmegen, the Netherlands
| | - Frank Schuren
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Tim J. van den Broek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Ivo de Blaauw
- Department of Surgery, Division of Paediatric Surgery, Radboudumc-Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Mark Bouwens
- Dutch Digestive Foundation, Amersfoort, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, Nijmegen, the Netherlands
| | - Eric J. Hazebroek
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, the Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
7
|
Hilaire MJ, Babcock A, White G, Masson CF, Salem RM, Reddy UM, Gallagher D, LeDuc CA, Thaker VV. The association of higher offspring early-childhood weight gain with prepregnancy metabolic and bariatric surgery. Obesity (Silver Spring) 2024; 32:2012-2023. [PMID: 39497631 DOI: 10.1002/oby.24166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 12/06/2024]
Abstract
OBJECTIVE The objective of this study was to assess maternal gestational outcomes and offspring growth trajectories following prepregnancy metabolic and bariatric surgery (MBS) compared with non-MBS controls. METHODS Single-center deliveries between January 2020 and March 2023 with prepregnancy Roux-en-Y gastric bypass (herein referred to as "bypass"), sleeve gastrectomy (herein referred to as "sleeve"), and non-MBS controls were included. Offspring growth trajectories were compared with the World Health Organization child growth standards. Linear mixed models assessed MBS-bypass and MBS-sleeve offspring weight, length, and BMI trajectories with a prepregnancy BMI 27 to 37 kg/m2 and propensity score-matched controls. RESULTS The study included 440 participants with prepregnancy MBS (MBS-bypass, 185; MBS-sleeve, 225; 76% Hispanic/Latino) and 13,434 non-MBS controls. Gestational weight gain and gestational diabetes mellitus were similar, whereas hypertensive disorders of pregnancy were more common after MBS. The post-MBS offspring had lower birth weight but higher weight gain at 24 months (sleeve, +1.4 kg [95% CI: 1.0-1.9]; bypass, +0.5-0.7 kg [95% CI: 0.0-1.2]) compared with non-MBS groups. Male children had higher weight gain than females. The post-MBS-sleeve but not the post-MBS-bypass offspring had higher BMI z scores. CONCLUSIONS The higher early-life weight gain and sex differences in the post-MBS-sleeve group compared with the post-MBS-bypass group provide a window toward elucidating pathways to mitigate intergenerational metabolic risk transfer.
Collapse
Affiliation(s)
- Maya-Jean Hilaire
- Columbia College, Columbia University in the City of New York, New York, New York, USA
| | - Annelise Babcock
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Glenn White
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Cynthia F Masson
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California at San Diego, La Jolla, California, USA
| | - Uma M Reddy
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Dympna Gallagher
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Charles A LeDuc
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Vidhu V Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
8
|
Schmid A, Liebisch G, Burkhardt R, Belikan H, Köhler S, Steger D, Schweitzer L, Pons-Kühnemann J, Karrasch T, Schäffler A. Dynamics of the human bile acid metabolome during weight loss. Sci Rep 2024; 14:25743. [PMID: 39468179 PMCID: PMC11519931 DOI: 10.1038/s41598-024-75831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Bile acids (BA) are supposed to cause metabolic alterations after bariatric surgery (BS). Here we report the longitudinal dynamics of the human BA metabolome by LC-MS/MS after BS versus low calory diet (LCD) in two obesity cohorts over 12 months. Rapid and persistent oscillations of 23 BA subspecies could be identified with highly specific patterns in BS vs. LCD. TCDCA, GLCA, and TLCA represent most promising candidates for drug development.
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory of Molecular Endocrinology, Adipocyte Biology and Biochemistry, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Hannah Belikan
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Sebastian Köhler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Daniel Steger
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Leonie Schweitzer
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, University of Giessen, Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany.
- Department of Internal Medicine, Giessen University Hospital, Klinikstrasse 33, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Hussan H, Ali MR, Lyo V, Webb A, Pietrzak M, Zhu J, Choueiry F, Li H, Cummings BP, Marco ML, Medici V, Clinton SK. Bariatric Surgery Is Associated with Lower Concentrations of Fecal Secondary Bile Acids and Their Metabolizing Microbial Enzymes: A Pilot Study. Obes Surg 2024; 34:3420-3433. [PMID: 39042309 DOI: 10.1007/s11695-024-07420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Excess body fat elevates colorectal cancer risk. While bariatric surgery (BRS) induces significant weight loss, its effects on the fecal stream and colon biology are poorly understood. Specifically, limited data exist on the impact of bariatric surgery (BRS) on fecal secondary bile acids (BA), including lithocholic acid (LCA), a putative promotor of colorectal carcinogenesis. METHODS This cross-sectional case-control study included 44 patients with obesity; 15 pre-BRS (controls) vs. 29 at a median of 24.1 months post-BRS. We examined the fecal concentrations of 11 BA by liquid chromatography and gene abundance of BA-metabolizing bacterial enzymes through fecal metagenomic sequencing. Differences were quantified using non-parametric tests for BA levels and linear discriminant analysis (LDA) effect size (LEfSe) for genes encoding BA-metabolizing enzymes. RESULTS Total fecal secondary BA concentrations trended towards lower levels post- vs. pre-BRS controls (p = 0.07). Individually, fecal LCA concentrations were significantly lower post- vs. pre-BRS (8477.0 vs. 11,914.0 uM/mg, p < 0.008). Consistent with this finding, fecal bacterial genes encoding BA-metabolizing enzymes, specifically 3-betahydroxycholanate-3-dehydrogenase (EC 1.1.1.391) and 3-alpha-hydroxycholanate dehydrogenase (EC 1.1.1.52), were also lower post- vs. pre-BRS controls (LDA of - 3.32 and - 2.64, respectively, adjusted p < 0.0001). Post-BRS fecal BA concentrations showed significant inverse correlations with weight loss, a healthy diet quality, and increased physical activity. CONCLUSIONS Concentrations of LCA, a secondary BA, and bacterial genes needed for BA metabolism are lower post-BRS. These changes can impact health and modulate the colorectal cancer cascade. Further research is warranted to examine how surgical alterations and the associated dietary changes impact bile acid metabolism.
Collapse
Affiliation(s)
- Hisham Hussan
- Division of Gastroenterology, Department of Internal Medicine, University of California, Davis, Sacramento, CA, 95616, USA.
- The UC Davis Comprehensive Cancer Center, Sacramento, CA, 95616, USA.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UC Davis Medical Center, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA.
| | - Mohamed R Ali
- Division of Foregut, Metabolic, and General Surgery, Department of Surgery, University of California Davis, Sacramento, CA, 95616, USA
- Center for Alimentary and Metabolic Sciences, Department of Surgery, University of California, Davis, Sacramento, CA, 95616, USA
| | - Victoria Lyo
- Division of Foregut, Metabolic, and General Surgery, Department of Surgery, University of California Davis, Sacramento, CA, 95616, USA
- Center for Alimentary and Metabolic Sciences, Department of Surgery, University of California, Davis, Sacramento, CA, 95616, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiangjiang Zhu
- The Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Fouad Choueiry
- The Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hong Li
- The UC Davis Comprehensive Cancer Center, Sacramento, CA, 95616, USA
- Division of Biostatistics, Public Health Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Bethany P Cummings
- Center for Alimentary and Metabolic Sciences, Department of Surgery, University of California, Davis, Sacramento, CA, 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Valentina Medici
- Division of Gastroenterology, Department of Internal Medicine, University of California, Davis, Sacramento, CA, 95616, USA
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
10
|
Jia H, Dong N. Effects of bile acid metabolism on intestinal health of livestock and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:1258-1269. [PMID: 38649786 DOI: 10.1111/jpn.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bile acids are synthesised in the liver and are essential amphiphilic steroids for maintaining the balance of cholesterol and energy metabolism in livestock and poultry. They can be used as novel feed additives to promote fat utilisation in the diet and the absorption of fat-soluble substances in the feed to improve livestock performance and enhance carcass quality. With the development of understanding of intestinal health, the balance of bile acid metabolism is closely related to the composition and growth of livestock intestinal microbiota, inflammatory response, and metabolic diseases. This paper systematically reviews the effects of bile acid metabolism on gut health and gut microbiology in livestock. In addition, our paper summarised the role of bile acid metabolism in performance and disease control.
Collapse
Affiliation(s)
- Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Wang R, Mijiti S, Xu Q, Liu Y, Deng C, Huang J, Yasheng A, Tian Y, Cao Y, Su Y. The Potential Mechanism of Remission in Type 2 Diabetes Mellitus After Vertical Sleeve Gastrectomy. Obes Surg 2024; 34:3071-3083. [PMID: 38951388 DOI: 10.1007/s11695-024-07378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
In recent years, there has been a gradual increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM), with bariatric surgery remaining the most effective treatment strategy for these conditions. Vertical sleeve gastrectomy (VSG) has emerged as the most popular surgical procedure for bariatric/metabolic surgeries, effectively promoting weight loss and improving or curing T2DM. The alterations in the gastrointestinal tract following VSG may improve insulin secretion and resistance by increasing incretin secretion (especially GLP-1), modifying the gut microbiota composition, and through mechanisms dependent on weight loss. This review focuses on the potential mechanisms through which the enhanced action of incretin and metabolic changes in the digestive system after VSG may contribute to the remission of T2DM.
Collapse
Affiliation(s)
- Rongfei Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Salamu Mijiti
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Qilin Xu
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yile Liu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Chaolun Deng
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Jiangtao Huang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Abudoukeyimu Yasheng
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yunping Tian
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yanlong Cao
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
12
|
Wahlström A, Aydin Ö, Olsson LM, Sjöland W, Henricsson M, Lundqvist A, Marschall HU, Franken R, van de Laar A, Gerdes V, Meijnikman AS, Hofsø D, Groen AK, Hjelmesæth J, Nieuwdorp M, Bäckhed F. Alterations in bile acid kinetics after bariatric surgery in patients with obesity with or without type 2 diabetes. EBioMedicine 2024; 106:105265. [PMID: 39096744 PMCID: PMC11345581 DOI: 10.1016/j.ebiom.2024.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Bariatric surgery is an effective treatment option for obesity and provides long-term weight loss and positive effects on metabolism, but the underlying mechanisms are poorly understood. Alterations in bile acid metabolism have been suggested as a potential contributing factor, but comprehensive studies in humans are lacking. METHODS In this study, we analysed the postprandial responses of bile acids, C4 and FGF19 in plasma, and excretion of bile acids in faeces, before and after bariatric surgery in patients (n = 38; 74% females) with obesity with or without type 2 diabetes from the BARIA cohort. FINDINGS We observed that total fasting plasma bile acid levels increased, and faecal excretion of bile acids decreased after surgery suggesting increased reabsorption of bile acids. Consistent with increased bile acid levels after surgery we observed increased postprandial levels of FGF19 and suppression of the bile acid synthesis marker C4, suggesting increased FXR activation in the gut. We also noted that a subset of bile acids had altered postprandial responses before and after surgery. Finally, fasting plasma levels of 6α-hydroxylated bile acids, which are TGR5 agonists and associated with improved glucose metabolism, were increased after surgery and one of them, HDCA, covaried with diabetes remission in an independent cohort. INTERPRETATION Our findings provide new insights regarding bile acid kinetics and suggest that bariatric surgery in humans alters bile acid profiles leading to activation of FXR and TGR5, which may contribute to weight loss, improvements in glucose metabolism, and diabetes remission. FUNDING Novo Nordisk Fonden, Leducq Foundation, Swedish Heart-Lung Foundation, Knut and Alice Wallenberg Foundation, the ALF-agreement, ZonMw.
Collapse
Affiliation(s)
- Annika Wahlström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Ömrüm Aydin
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Lisa M Olsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Wilhelm Sjöland
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Annika Lundqvist
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Rutger Franken
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | | | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Dag Hofsø
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Albert K Groen
- Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
| |
Collapse
|
13
|
Lu G, Gao H, Hu R, Miao J, Dong Z, Wang C, Chen X. Early changes of microRNAs in blood one month after bariatric surgery. Diabetol Metab Syndr 2024; 16:163. [PMID: 39010180 PMCID: PMC11251336 DOI: 10.1186/s13098-024-01364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Changes in microRNAs (miRNAs) are relevant to bariatric surgery and its comorbidities. The characteristics of changes in miRNAs of the early postoperative period following both bariatric procedures, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), as well as the factors that related to the effectiveness of early weight loss remain unclear. METHODS We recruited 18 patients who performed SG and 15 patients who performed RYGB. Their preoperative and 1-month postoperative clinical data and fasting serum samples were collected, and the latter were analyzed by RNA-sequencing. Differential expression analysis of miRNAs was performed by the R-tool. Functional classification annotation and pathway enrichment analysis of targeted genes were analyzed by KOBAS software. The change profiles of miRNAs for both surgeries and their correlation with clinical characteristics and weight loss effectiveness were further analyzed. RESULTS A total of 85 differentially expressed miRNAs were identified before and after SG, while a total of 76 were found before and after RYGB. The target genes of these miRNAs were similar in the Gene Ontology enrichment analysis in SG and RYGB, and the enrichment analysis in the Kyoto Encyclopedia of Genes and Genomes was mainly related to metabolic pathways. Hsa-miR-493-5p, hsa-miR-184, and hsa-miR-3199 exhibited similar changes in SG and RYGB, and the former two were correlated with clinical characteristics. Hsa-miR-6729-5p, hsa-miR-4659b-5p, and hsa-miR-2277-5p were correlated with the weight loss effectiveness of SG, while hsa-miR-4662a-5p was correlated with the weight loss effectiveness of RYGB. CONCLUSIONS Short-term metabolic improvement and weight loss occurring after SG and RYGB surgery might be related to changes in miRNAs, which act on multiple biological pathways by regulating genes. In addition, some clinical characteristics and miRNAs were related to the effectiveness of early weight loss after SG and RYGB surgery. CLINICAL TRIAL REGISTRATION ChiCTR2200058333.
Collapse
Affiliation(s)
- Guanhua Lu
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 250, Changgang East Road, Haizhu District, Guangzhou, Guangdong Province, China
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong Province, China
| | - Huanhuan Gao
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixiang Hu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong Province, China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong Province, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong Province, China.
| | - Xinxin Chen
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 250, Changgang East Road, Haizhu District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
14
|
Shishani R, Wang A, Lyo V, Nandakumar R, Cummings BP. Vertical Sleeve Gastrectomy Reduces Gut Luminal Deoxycholic Acid Concentrations in Mice. Obes Surg 2024; 34:2483-2491. [PMID: 38777944 PMCID: PMC11217124 DOI: 10.1007/s11695-024-07288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Bariatric surgery alters bile acid metabolism, which contributes to post-operative improvements in metabolic health. However, the mechanisms by which bariatric surgery alters bile acid metabolism are incompletely defined. In particular, the role of the gut microbiome in the effects of bariatric surgery on bile acid metabolism is incompletely understood. Therefore, we sought to define the changes in gut luminal bile acid composition after vertical sleeve gastrectomy (VSG). METHODS Bile acid profile was determined by UPLC-MS/MS in serum and gut luminal samples from VSG and sham-operated mice. Sham-operated mice were divided into two groups: one was fed ad libitum, while the other was food-restricted to match their body weight to the VSG-operated mice. RESULTS VSG decreased gut luminal secondary bile acids, which was driven by a decrease in gut luminal deoxycholic acid concentrations and abundance. However, gut luminal cholic acid (precursor for deoxycholic acid) concentration and abundance did not differ between groups. Therefore, the observed decrease in gut luminal deoxycholic acid abundance after VSG was not due to a reduction in substrate availability. CONCLUSION VSG decreased gut luminal deoxycholic acid abundance independently of body weight, which may be driven by a decrease in gut bacterial bile acid metabolism.
Collapse
Affiliation(s)
- Rahaf Shishani
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of CA - Davis, Davis, CA, 95616, USA
| | - Annie Wang
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
| | - Victoria Lyo
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Bethany P Cummings
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA.
- Department of Molecular Biosciences, School of Veterinary Medicine, University of CA - Davis, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Zhang L, Lu L, Jiang S, Yin Z, Tan G, Ning F, Qin Z, Huang J, Huang M, Jin J. Salvianolic acid extract prevents Tripterygium wilfordii polyglycosides-induced acute liver injury by modulating bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117939. [PMID: 38382651 DOI: 10.1016/j.jep.2024.117939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii polyglycosides (TWP) tablet is the most widely used traditional Chinese medicine preparation for the treatment of rheumatoid arthritis (RA), but the hepatotoxicity often limits its widespread application. In traditional use, Salvia miltiorrhiza has cardioprotective and hepatoprotective effects. Salvianolic acid extract (SA) is a hydrophilic component of Salvia miltiorrhiza and has significant antioxidant and hepatoprotective effects. AIM OF THE STUDY To investigate the protective effects of SA on the TWP-induced acute liver injury in rats and to explore the related mechanisms by integration of metabolomics and transcriptomics. MATERIALS AND METHODS SA and TWP extracts were identified by UPLC-Q/TOF-MS. SA (200 mg/kg) was administered for consecutive 7 days. On day 7, TWP (360 mg/kg) was administered by gavage to induce the acute liver injury in rats. Serum biochemical assay and H&E staining were used to evaluate liver damage. Liver metabolomics and transcriptomics were used to explore the potential mechanisms, and further molecular biological experiments such as qPCR and IHC were utilized to validate the relevant signaling pathways. RESULTS SA can prevent liver injury symptoms caused by TWP, such as elevated liver index, elevated ALT and AST, and pathological changes in liver tissue. Liver metabolomics studies showed that TWP can significantly alter the content of individual bile acid in the liver and SA had the most significant impact on the biosynthetic pathway of bile acids. The transcriptomics results of the liver indicated that the genes changed in the SA + TWP group were mainly involved in sterol metabolism, lipid regulation and bile acid homeostasis pathways. The gene expression of Nr1h4, which encodes farnesoid X receptor (FXR), an important regulator of bile acid homeostasis, was significantly changed. Further studies confirmed that SA can prevent the downregulation of FXR and its downstream signaling induced by TWP, thereby regulating bile acid metabolism, ultimately preventing acute liver injury caused by TWP. CONCLUSION Our results demonstrated that SA could protect the liver from TWP-induced hepatic injury by modulation of the bile acid metabolic pathway. SA may provide a new strategy for the protection against TWP-induced acute liver injury.
Collapse
Affiliation(s)
- Lei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Langqing Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shiqin Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhaokun Yin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guoyao Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fangqing Ning
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiyan Qin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junyuan Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Jin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
17
|
Pandey V, Adhikrao PA, Motiram GM, Yadav N, Jagtap U, Kumar G, Paul A. Biaryl carboxamide-based peptidomimetics analogs as potential pancreatic lipase inhibitors for treating obesity. Arch Pharm (Weinheim) 2024; 357:e2300503. [PMID: 38251950 DOI: 10.1002/ardp.202300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
A series of 1,1'-biphenyl-3-carboxamide and furan-phenyl-carboxamide analogs were synthesized using an optimized scheme and confirmed by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry techniques. The synthesized peptidomimetics analogs were screened in vitro to understand the inhibitory potential of pancreatic lipase (PL). Analogs were assessed for the PL inhibitory activity based on interactions, geometric complementarity, and docking score. Among the synthesized analogs, 9, 29, and 24 were found to have the most potent PL inhibitory activity with IC50 values of 3.87, 4.95, and 5.34 µM, respectively, compared to that of the standard drug, that is, orlistat, which inhibits PL with an IC50 value of 0.99 µM. The most potent analog, 9, exhibited a competitive-type inhibition with an inhibition constant (Ki) of 2.72 µM. In silico molecular docking of analog 9 with the PL (PDB ID:1LPB) showed a docking score of -11.00 kcal/mol. Analog 9 formed crucial hydrogen bond interaction with Ser152, His263, π-cation interaction with Asp79, Arg256, and π-π stacking with Phe77, Tyr114 at the protein's active site. The molecular dynamic simulation confirmed that analog 9 forms stable interactions with PL at the end of 200 ns with root mean square deviation values of 2.5 and 6 Å. No toxicity was observed for analog 9 (concentration range of 1-20 µM) when tested by MTT assay in RAW 264.7 cells.
Collapse
Affiliation(s)
- Vikash Pandey
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Patil A Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gudle M Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nisha Yadav
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (Pilani Campus), Pilani, Rajasthan, India
| | - Utkarsh Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (Pilani Campus), Pilani, Rajasthan, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Atish Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (Pilani Campus), Pilani, Rajasthan, India
| |
Collapse
|
18
|
Samarasinghe SNS, Woods C, Miras AD. Bariatric Surgery in Women with Polycystic Ovary Syndrome. Metabolism 2024; 151:155745. [PMID: 38036245 DOI: 10.1016/j.metabol.2023.155745] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition in premenopausal women and is a common cause of anovulatory subfertility. Although obesity does not form part of the diagnostic criteria, it affects a significant proportion of women with PCOS and is strongly implicated in the pathophysiology of the disease. Both PCOS and obesity are known to impact fertility in women; obesity also reduces the success of assisted reproductive technology (ART). With or without pharmacotherapy, lifestyle intervention remains the first-line treatment in women with PCOS and obesity. Bariatric surgery is still an experimental treatment in women with PCOS and subfertility. This review will present an overview of the pathophysiology of PCOS and obesity and the role of bariatric surgery. Although data are sparse regarding the impact of bariatric surgery on subfertility in women with PCOS and obesity, existing studies point to a beneficial role in treating metabolic and reproductive dysfunction.
Collapse
|
19
|
Lin IC, Liu H. Impact of Bariatric Surgery on Outcomes of Patients with Inflammatory Bowel Disease: a Nationwide Inpatient Sample Analysis, 2005-2018. Obes Surg 2024; 34:479-486. [PMID: 38157143 DOI: 10.1007/s11695-023-07023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The global prevalence of inflammatory bowel disease (IBD) has steadily risen over the past few decades. Bariatric surgery stands out as an effective strategy for inducing weight loss. This study investigated the impacts of bariatric surgery on the clinical outcomes in patients with IBD. MATERIALS AND METHODS Data of hospitalized patients aged ≥ 18 years with IBD were extracted from the Nationwide Inpatient Sample (NIS) 2005-2018. The patients were categorized according to whether they underwent bariatric surgery or not. Univariate and multivariable logistic regression analyses were performed to determine the associations between bariatric surgery, prolonged LOS, unfavorable discharge, hospital mortality, and morbidity. RESULTS Data from 807,843 hospitalized patients with IBD were extracted. After exclusions and propensity-score matching, 80,545 patients were analyzed, with 16,109 undergoing bariatric surgery and 64,436 not. A total of 23% of patients had a prolonged LOS, 8% had unfavorable discharge, and the mortality rate was 1.2%. Multivariable analyses revealed that, compared to patients without bariatric surgery, patients with bariatric surgery had significantly decreased odds of prolonged LOS (adjusted odds ratio [aOR], 0.89; 95% CI 0.85-0.93), unfavorable discharge (aOR, 0.83; 95% CI: 0.77-0.89), and mortality (aOR, 0.54; 95% CI: 0.44-0.67), but had increased odds of morbidity (aOR, 1.09; 95% CI 1.04-1.13). CONCLUSION In adults with IBD, bariatric surgery is associated with favorable outcomes concerning hospital LOS, discharge status, and mortality. However, the risk of overall morbidity is slightly increased in those who received bariatric surgery compared to those who did not.
Collapse
Affiliation(s)
- I-Chen Lin
- Division of Colorectal Surgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City, 600, Taiwan
| | - Hsien Liu
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City, 600, Taiwan.
| |
Collapse
|
20
|
Hou Y, Zhai X, Wang X, Wu Y, Wang H, Qin Y, Han J, Meng Y. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:235. [PMID: 37978556 PMCID: PMC10656899 DOI: 10.1186/s13098-023-01207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insulin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examining the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic strategies and identify areas for future research. Additionally, this review critically assesses current research limitations to contribute to the effective management of T2DM.
Collapse
Affiliation(s)
- Yisen Hou
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China
| | - Xinzhe Zhai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Xiaotao Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yi Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Heyue Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yaxin Qin
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Jianli Han
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China.
| | - Yong Meng
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China.
| |
Collapse
|
21
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
22
|
Igwe JK, Surapaneni PK, Cruz E, Cole C, Njoku K, Kim J, Alaribe U, Weze K, Mohammed B. Bariatric Surgery and Inflammatory Bowel Disease: National Trends and Outcomes Associated with Procedural Sleeve Gastrectomy vs Historical Bariatric Surgery Among US Hospitalized Patients 2009-2020. Obes Surg 2023; 33:3472-3486. [PMID: 37804470 PMCID: PMC10603008 DOI: 10.1007/s11695-023-06833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE The association between bariatric surgery and IBD-related inpatient outcomes is not well characterized. We report, analyze, and compare inpatient trends and outcomes among encounters with a history of bariatric surgery (Hx-MBS) compared to those receiving bariatric surgery during index admission (PR-MBS) admitted from 2009 to 2020. METHODS Retrospective cohort design: the 2009-2020 National Inpatient Sample (NIS) databases were used to identify hospital encounters with patients aged ≥ 18 years with a history of MBS (Hx-MBS) or with procedure coding indicating MBS procedure (PR-MBS) according to International Classification of Diseases, Ninth (ICD-9-CM/ ICD-9-PCS) or Tenth Revision (ICD-10-CM/ICD-10-PCS) Clinical Modification/Procedure Coding System during index admission (ICD-9-CM: V4586; ICD-10-CM: Z9884; ICD-9-PR: 4382, 4389; ICD-10-PR: 0DB64Z3, 0DB63ZZ). Pearson χ2 analysis, analysis of variance, multivariable regression analyses, and propensity matching on independent variables were conducted to analyze significant associations between variables and for primary outcome inflammatory bowel disease-related admission, and secondary outcomes: diagnosis of nonalcoholic steatohepatitis, nonalcoholic fatty liver disease, or chronic mesenteric ischemia during admission. RESULTS We identified 3,365,784 (76.20%) Hx-MBS hospitalizations and 1,050,900 hospitalizations with PR-MBS (23.80%). Propensity score matching analysis demonstrated significantly higher odds of inflammatory bowel disease, and chronic mesenteric ischemia for Hx-MBS compared to PR-MBS, and significantly lower odds of nonalcoholic steatohepatitis and nonalcoholic fatty liver disease for Hx-MBS compared to PR-MBS. CONCLUSION In our study, Hx-MBS was associated with significantly increased odds of inflammatory bowel disease and other GI pathologies compared to matched controls. The mechanism by which this occurs is unclear. Additional studies are needed to examine these findings.
Collapse
Affiliation(s)
- Joseph-Kevin Igwe
- School of Medicine, Department of Medicine, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA.
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30313, USA.
- American Heart Association Strategically Focused Research Network on the Science of Diversity in Clinical Trials Research Fellowship, 5001 S Miami Blvd #300, Durham, NC, 27703, USA.
| | | | - Erin Cruz
- School of Medicine, Department of Medicine, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Cedric Cole
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30313, USA
| | - Kingsley Njoku
- Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Jisoo Kim
- Department of Surgery, Texas Tech University Health Sciences Center at El Paso, El Paso, USA
| | - Ugo Alaribe
- School of Medicine, Caribbean Medical University, Willemstad, USA
| | - Kelechi Weze
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30313, USA
| | - Bilal Mohammed
- Department of Medicine, Ascension Saint Vincent, Indianapolis, USA
| |
Collapse
|
23
|
Golzarand M, Toolabi K, Douraghi M, Mirmiran P, Djafarian K. Changes in the Gut Microbiota Composition and Their Relation to Dietary Intake After Bariatric Surgery. Obes Surg 2023; 33:2866-2873. [PMID: 37530921 DOI: 10.1007/s11695-023-06760-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Prior studies have demonstrated that both dietary components and bariatric surgery modify the gut microbiota's composition. However, there is a scarcity of research that has examined the relationship between post-surgical dietary intake and changes in the gut microbiota. The aim of this study was to assess changes in gut microbiota following bariatric surgery and examine their association with postoperative dietary intake. MATERIALS AND METHODS The present study involved a sample of 42 adult women who were potential candidates for bariatric surgery, i.e., laparoscopic Roux-en-Y gastric bypass (LRYGB) or sleeve gastrectomy (LSG). The assessment of dietary intake was conducted through the use of three-day food records, both at baseline and six months following the surgical procedure. The gut microbiota was determined through the detection of 16S ribosomal RNA (16S rRNA) gene sequencing. RESULTS After six months, a significant increase in abundance of Firmicutes (P = 0.01), Bifidobacterium (P = 0.01), and Ruminococcus (P = 0.04) in the LSG group was found. In contrast to the observed rise in Enterobacteria (P = 0.02) levels in the LRYGB group, no significant changes were detected in the composition of other gut microbiota over the 6-month monitoring period subsequent to LRYGB. The results of our study indicate that there is not a statistically significant relationship between dietary consumption and changes in the composition of the gut microbiota in individuals who have undergone LRYGB and LSG. CONCLUSION Our findings suggest that there may not be a significant correlation between dietary intake following LRYGB and LSG, and the observed alterations in the gut microbiota during a six-month period of observation. Nevertheless, it is important to acknowledge that the sample size utilized in our study was limited, potentially leading to reduced statistical power and the possibility of yielding findings that do not accurately reflect reality.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Karamollah Toolabi
- Department of Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoomeh Douraghi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Korush Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Alkhaled L, Al-Kurd A, Butsch WS, Kashyap SR, Aminian A. Diagnosis and management of post-bariatric surgery hypoglycemia. Expert Rev Endocrinol Metab 2023; 18:459-468. [PMID: 37850227 DOI: 10.1080/17446651.2023.2267136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION While bariatric surgery remains the most effective treatment for obesity that allows substantial weight loss with improvement and possibly remission of obesity-associated comorbidities, some postoperative complications may occur. Managing physicians need to be familiar with the common problems to ensure timely and effective management. Of these complications, postoperative hypoglycemia is an increasingly recognized complication of bariatric surgery that remains underreported and underdiagnosed. AREA COVERED This article highlights the importance of identifying hypoglycemia in patients with a history of bariatric surgery, reviews pathophysiology and addresses available nutritional, pharmacological and surgical management options. Systemic evaluation including careful history taking, confirmation of hypoglycemia and biochemical assessment is essential to establish accurate diagnosis. Understanding the weight-dependent and weight-independent mechanisms of improved postoperative glycemic control can provide better insight into the causes of the exaggerated responses that lead to postoperative hypoglycemia. EXPERT OPINION Management of post-operative hypoglycemia can be challenging and requires a multidisciplinary approach. While dietary modification is the mainstay of treatment for most patients, some patients may benefit from pharmacotherapy (e.g. GLP-1 receptor antagonist); Surgery (e.g. reversal of gastric bypass) is reserved for unresponsive severe cases. Additional research is needed to understand the underlying pathophysiology with a primary aim in optimizing diagnostics and treatment options.
Collapse
Affiliation(s)
- Lina Alkhaled
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH USA
| | - Abbas Al-Kurd
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
- Department of General Surgery, Henry Ford Hospital, Detroit, MI USA
| | - W Scott Butsch
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
| | - Sangeeta R Kashyap
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY USA
| | - Ali Aminian
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
25
|
Luo X, Tan C, Tao F, Xu CY, Zheng ZH, Pang Q, He XA, Cao JQ, Duan JY. Differences in metabolic improvement after metabolic surgery are linked to the gut microbiota in non-obese diabetic rats. World J Gastrointest Surg 2023; 15:1304-1316. [PMID: 37555105 PMCID: PMC10405102 DOI: 10.4240/wjgs.v15.i7.1304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Different metabolic/bariatric surgery approaches vary in their effect on weight loss and glucose levels, although the underlying mechanism is unclear. Studies have demonstrated that the gut microbiota might be an important mechanism of improved metabolism after metabolic/bariatric surgery. AIM To investigate the relationship between the improvement in metabolic disturbances and the changes in gut microbiota after gastric or intestinal bypass. METHODS We performed sleeve gastrectomy (SG), distal small intestine bypass (DSIB) or sham surgery in nonobese rats with diabetes induced by 60 mg/kg streptozotocin (STZ-DM). RESULTS The group comparisons revealed that both SG and DSIB induced a reduction in body weight and significant improvements in glucose and lipid metabolism in the STZ-DM rats. Furthermore, DSIB exhibited a stronger glucose-lowering and lipid-reducing effect on STZ-DM rats than SG. 16S ribosomal RNA gene sequencing revealed the gut abundance of some Lactobacillus spp. increased in both the SG and DSIB groups after surgery. However, the DSIB group exhibited a more pronounced increase in the gut abundance of Lactobacillus spp. compared to the SG group, with more Lactobacillus spp. types increased in the gut. CONCLUSION The gut abundance of Lactobacillus was significantly correlated with the improvement in glycolipid metabolism and the change in serum fibroblast growth factor 21 levels.
Collapse
Affiliation(s)
- Xin Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Cai Tan
- Department of Women’s Health, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, Jiangxi Province, China
| | - Fang Tao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Chi-Ying Xu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Zhi-Hua Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Qiang Pang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Xiang-An He
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jia-Qing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jin-Yuan Duan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| |
Collapse
|
26
|
Altalhi RA, Alsaqqa RM, Alasmari RM, Aljuaid A, Althobaiti L, Mahfouz MEM. The Incidence of Cholelithiasis After Bariatric Surgery in Saudi Arabia and Its Associated Risk Factors. Cureus 2023; 15:e40549. [PMID: 37465782 PMCID: PMC10350650 DOI: 10.7759/cureus.40549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Saudi Arabia has one of the highest obesity rates (35.4%) in the world, and bariatric surgery (BS) has emerged as the most effective treatment for obesity and its comorbidities. Despite its effectiveness, it is a known risk factor for cholelithiasis. The aim of this study is to identify the incidence and risk factors that contribute to the development of symptomatic cholelithiasis after different types of bariatric surgery in Saudi Arabia. METHODS This is a cross-sectional study conducted among the Saudi adult population. The sample size was 706 participants who underwent bariatric surgery from all over Saudi Arabia. Data collection was done through a validated online self-reported survey. RESULTS Out of 706 participants who fulfilled the inclusion criteria, it was found that the incidence of gallstones (GS) after bariatric surgery was 18.8%. The most incidence was during the first year of surgery, where the number of individuals reached 80.4%. The majority were in females (22.9%) and those who underwent Roux-en-Y gastric bypass (RYGB) surgery (51.2%). Patients who had a body mass index (BMI) of >25 kg/m² significantly had a higher incidence of gallstones (23.1%) compared to those who had a lesser BMI (15.8%). As the analysis showed, the medication used to prevent the occurrence of gallstones can be considered one of the protective factors, where 85.4% of individuals who used these medications did not develop cholelithiasis. CONCLUSION The incidence of gallstones after bariatric surgery was high, particularly within the first year of surgery. The increase in postoperative gallstone formation is correlated with hyperlipidemia and Roux-en-Y gastric bypass as basic predictive factors. On the contrary, the medication used to prevent the occurrence of gallstones is considered a protective factor.
Collapse
|
27
|
Garruti G, Baj J, Cignarelli A, Perrini S, Giorgino F. Hepatokines, bile acids and ketone bodies are novel Hormones regulating energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1154561. [PMID: 37274345 PMCID: PMC10236950 DOI: 10.3389/fendo.2023.1154561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Current views show that an impaired balance partly explains the fat accumulation leading to obesity. Fetal malnutrition and early exposure to endocrine-disrupting compounds also contribute to obesity and impaired insulin secretion and/or sensitivity. The liver plays a major role in systemic glucose homeostasis through hepatokines secreted by hepatocytes. Hepatokines influence metabolism through autocrine, paracrine, and endocrine signaling and mediate the crosstalk between the liver, non-hepatic target tissues, and the brain. The liver also synthetizes bile acids (BAs) from cholesterol and secretes them into the bile. After food consumption, BAs mediate the digestion and absorption of fat-soluble vitamins and lipids in the duodenum. In recent studies, BAs act not simply as fat emulsifiers but represent endocrine molecules regulating key metabolic pathways. The liver is also the main site of the production of ketone bodies (KBs). In prolonged fasting, the brain utilizes KBs as an alternative to CHO. In the last few years, the ketogenic diet (KD) became a promising dietary intervention. Studies on subjects undergoing KD show that KBs are important mediators of inflammation and oxidative stress. The present review will focus on the role played by hepatokines, BAs, and KBs in obesity, and diabetes prevention and management and analyze the positive effects of BAs, KD, and hepatokine receptor analogs, which might justify their use as new therapeutic approaches for metabolic and aging-related diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Angelo Cignarelli
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
28
|
Shah H, Kramer A, Mullins CA, Mattern M, Gannaban RB, Townsend RL, Campagna SR, Morrison CD, Berthoud HR, Shin AC. Reduction of Plasma BCAAs following Roux-en-Y Gastric Bypass Surgery Is Primarily Mediated by FGF21. Nutrients 2023; 15:1713. [PMID: 37049555 PMCID: PMC10096671 DOI: 10.3390/nu15071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes (T2D) is a challenging health concern worldwide. A lifestyle intervention to treat T2D is difficult to adhere, and the effectiveness of approved medications such as metformin, thiazolidinediones (TZDs), and sulfonylureas are suboptimal. On the other hand, bariatric procedures such as Roux-en-Y gastric bypass (RYGB) are being recognized for their remarkable ability to achieve diabetes remission, although the underlying mechanism is not clear. Recent evidence points to branched-chain amino acids (BCAAs) as a potential contributor to glucose impairment and insulin resistance. RYGB has been shown to effectively lower plasma BCAAs in insulin-resistant or T2D patients that may help improve glycemic control, but the underlying mechanism for BCAA reduction is not understood. Hence, we attempted to explore the mechanism by which RYGB reduces BCAAs. To this end, we randomized diet-induced obese (DIO) mice into three groups that underwent either sham or RYGB surgery or food restriction to match the weight of RYGB mice. We also included regular chow-diet-fed healthy mice as an additional control group. Here, we show that compared to sham surgery, RYGB in DIO mice markedly lowered serum BCAAs most likely by rescuing BCAA breakdown in both liver and white adipose tissues. Importantly, the restored BCAA metabolism following RYGB was independent of caloric intake. Fasting insulin and HOMA-IR were decreased as expected, and serum valine was strongly associated with insulin resistance. While gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are postulated to mediate various surgery-induced metabolic benefits, mice lacking these hormonal signals (GLP-1R/Y2R double KO) were still able to effectively lower plasma BCAAs and improve glucose tolerance, similar to mice with intact GLP-1 and PYY signaling. On the other hand, mice deficient in fibroblast growth factor 21 (FGF21), another candidate hormone implicated in enhanced glucoregulatory action following RYGB, failed to decrease plasma BCAAs and normalize hepatic BCAA degradation following surgery. This is the first study using an animal model to successfully recapitulate the RYGB-led reduction of circulating BCAAs observed in humans. Our findings unmasked a critical role of FGF21 in mediating the rescue of BCAA metabolism following surgery. It would be interesting to explore the possibility of whether RYGB-induced improvement in glucose homeostasis is partly through decreased BCAAs.
Collapse
Affiliation(s)
- Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alyssa Kramer
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Marie Mattern
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - R. Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Christopher D. Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
29
|
Nie L, Yan Q, Zhang S, Cao Y, Zhou X. Duodenal Mucosa: A New Target for the Treatment of Type 2 Diabetes. Endocr Pract 2023; 29:53-59. [PMID: 36309189 DOI: 10.1016/j.eprac.2022.10.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE After a high-fat and high-sugar diet, the duodenal mucosa of rodents proliferate and trigger the signal of insulin resistance, which may be the cause of type 2 diabetes (T2D). In response to this phenomenon, researchers have designed the duodenal mucosal resurfacing (DMR) procedure, mainly through the hydrothermal ablation procedure, to restore the normal mucosal surface, thereby correcting this abnormal metabolic signal. This article aims to understand the changes in duodenum before and after the onset or treatment of T2D, and the potential mechanisms of DMR procedure. METHODS A literature search of PubMed and Web of Science was conducted using appropriate keywords. RESULTS Both animal and clinical studies have shown that the villus thickness, intestinal cells, glucose transporters, enteric nerves, and gut microbiota and their metabolites in the duodenum undergo corresponding changes before and after the onset or treatment of T2D. These changes may be related to the pathogenesis of T2D. DMR procedure may produce beneficial glycemic and hepatic metabolic effects by regulating these changes. CONCLUSION The duodenum is an important metabolic signaling center, and limiting nutrient exposure to this critical region will have powerful metabolic benefits. The DMR procedure may regulate glycemic and hepatic parameters through various mechanisms, which needs to be further confirmed by a large number of animal and clinical studies.
Collapse
Affiliation(s)
- LiJuan Nie
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - QianHua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shu Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - YuTian Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - XiQiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Giannini C, Mastromauro C, Scapaticci S, Gentile C, Chiarelli F. Role of bile acids in overweight and obese children and adolescents. Front Endocrinol (Lausanne) 2022; 13:1011994. [PMID: 36531484 PMCID: PMC9747777 DOI: 10.3389/fendo.2022.1011994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Bile acids (BAs) are amphipathic molecules synthetized in the liver. They are primarily involved in the digestion of nutrients. Apart from their role in dietary lipid absorption, BAs have progressively emerged as key regulators of systemic metabolism and inflammation. In the last decade, it became evident that BAs are particularly important for the regulation of glucose, lipid, and energy metabolism. Indeed, the interest in role of BA in metabolism homeostasis is further increased due to the global public health increase in obesity and related complications and a large number of research postulating that there is a close mutual relationship between BA and metabolic disorders. This strong relationship seems to derive from the role of BAs as signaling molecules involved in the regulation of a wide spectrum of metabolic pathways. These actions are mediated by different receptors, particularly nuclear farnesoid X receptor (FXR) and Takeda G protein coupled receptor 5 (TGR5), which are probably the major effectors of BA actions. These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in BA, lipid and carbohydrate metabolism, energy expenditure, and inflammation. The large correlation between BAs and metabolic disorders offers the possibility that modulation of BAs could be used as a therapeutic approach for the treatment of metabolic diseases, including obesity itself. The aim of this review is to describe the main physiological and metabolic actions of BA, focusing on its signaling pathways, which are important in the regulation of metabolism and might provide new BA -based treatments for metabolic diseases.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | | |
Collapse
|
31
|
Gut Microbiota Profile in Adults Undergoing Bariatric Surgery: A Systematic Review. Nutrients 2022; 14:nu14234979. [PMID: 36501007 PMCID: PMC9738914 DOI: 10.3390/nu14234979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
Gut microbiota (GM) after bariatric surgery (BS) has been considered as a factor associated with metabolic improvements and weight loss. In this systematic review, we evaluate changes in the GM, characterized by 16S rRNA and metagenomics techniques, in obese adults who received BS. The PubMed, Scopus, Web of Science, and LILACS databases were searched. Two independent reviewers analyzed articles published in the last ten years, using Rayyan QCRI. The initial search resulted in 1275 documents, and 18 clinical trials were included after the exclusion criteria were applied. The predominance of intestinal bacteria phyla varied among studies; however, most of them reported a greater amount of Bacteroidetes (B), Proteobacteria (P), and diversity (D) after BS. Firmicutes (F), B, and the (F/B) ratio was inconsistent, increasing or decreasing after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) were conducted, compared to before surgery. There was a reduction in the relative proportion of F. Moreover, a higher proportion of Actinobacteria (A) was observed after RYGB was conducted. However, the same was not identified when SG procedures were applied. Genera abundance and bacteria predominance varied according to the surgical procedure, with limited data regarding the impact on phyla. The present study was approved by PROSPERO, under registration number CRD42020209509.
Collapse
|
32
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
33
|
Kapralou AN, Chrousos GP. Metabolic effects of truncal vagotomy when combined with bariatric-metabolic surgery. Metabolism 2022; 135:155263. [PMID: 35835160 DOI: 10.1016/j.metabol.2022.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Bariatric-metabolic surgery (BMS) in patients with obesity frequently leads to remission of concurrent type 2 diabetes mellitus (T2DM), even before body weight loss takes place. This is probably based on the correction of a dysmetabolic cycle in the gastrointestinal physiology of T2DM that includes increased vagus-dependent exocrine pancreatic secretion (EPS) and, hence, amplified digestion and nutrient absorption. The resultant chronic exposure of tissues to high plasma levels of glucose, fatty acids and amino acids causes tissue resistance to the actions of insulin and, at a later stage, β-cell dysfunction and reduction of insulin release. We hypothesize that the addition of a surgical truncal vagotomy (TV) may improve and solidify the beneficial results of BMS on T2DM by stably decreasing EPS, - hence reducing the digestion and absorption of nutrients -, and increasing incretin secretion as a result of increased delivery of unabsorbed nutrients to the distal intestine. This hypothesis is supported by surgical data from gastrointestinal malignancies and peptic ulcer operations that include TV, as well as by vagal blockade studies. We suggest that TV may result in a stable reduction of EPS, and that its combination with the appropriate type of BΜS, may enhance and sustain the salutary effects of the latter on T2DM.
Collapse
Affiliation(s)
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
34
|
Yoost JL, Ruley M, Smith K, Santanam N, Cyphert HA. Diagnostic Value of Bile Acids and Fibroblast Growth Factor 21 in Women with Polycystic Ovary Syndrome. WOMEN'S HEALTH REPORTS 2022; 3:803-812. [PMID: 36204478 PMCID: PMC9531890 DOI: 10.1089/whr.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/21/2022]
Abstract
Objective: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by a reduction in fertility and metabolic dysfunction. Unfortunately, due to a lack of clear presentation, it is often a long process of diagnosis. In this study, we investigated bile acids as potential biomarkers. Materials and Methods: Subjects were recruited and stratified into groups based on body mass index and PCOS status. Biometric data and plasma were acquired to understand bile acid profiles and related markers. Results: Taurocholic acid (TCA) and taurodeoxycholic acid were elevated in PCOS subjects with obesity in comparison to controls without PCOS. Fibroblast growth factor 21 (FGF-21), a metabolic regulator implemented in bile acid metabolism, was elevated in PCOS patients and was positively correlated with TCA changes. Conclusions: We present evidence suggesting that bile acids may be novel diagnostic targets in obese patients with PCOS while further studies need to delineate the interplay between FGF-21, bile acids, and testosterone in the early detection of PCOS.
Collapse
Affiliation(s)
- Jennie L. Yoost
- Department of Obstetrics and Gynecology, Marshall University, Huntington, West Virginia, USA
| | - Morgan Ruley
- Department of Obstetrics and Gynecology, Marshall University, Huntington, West Virginia, USA
| | - Kia Smith
- Department of Biological Sciences, Marshall University, Huntington, West Virginia, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Holly A. Cyphert
- Department of Biological Sciences, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
35
|
Li S, Qu X, Zhang L, Wang N, Chen M, Zhao X, Wang J, Lv H, Qi Y, Zhang L, Liu J, Shi Y. Serum Total Bile Acids in Relation to Gastrointestinal Cancer Risk: A Retrospective Study. Front Oncol 2022; 12:859716. [PMID: 35756666 PMCID: PMC9213662 DOI: 10.3389/fonc.2022.859716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bile acids (BAs) have been proposed to promote gastrointestinal cells carcinogenesis. However, studies on serum total bile acid (TBA) levels and gastrointestinal cancers (GICs) risk are rare. Methods We conducted a retrospective case-control study from 2015 to 2019 at the First Affiliated Hospital of Air Force Military Medical University, in which 4,256 GICs cases and 1,333 controls were recruited. Patients' demographic, clinical and laboratory data were collected. The odds ratios (ORs) with 95% confidence intervals (CIs) were estimated using binary logistic regression models. Results Positive associations were observed between serum TBA levels and risks of esophageal cancer (EC), gastric cancer (GC) and colorectal cancer (CRC). Overall, ORs of EC, GC and CRC risk rose with the TBA levels increasing. After adjustment for potential confounders, the OR of TBA-positive for EC risk was 4.89 (95% CI: 3.20-7.49), followed by GC (OR: 3.92, 95% CI: 2.53-6.08), and CRC (OR: 3.32, 95% CI: 2.04-5.11). Patients aged 60 years or older have a higher risk of GICs, especially for EC patients. Males are associated with a higher risk of GC, while females are associated with a higher risk of CRC. Preoperative serum TBA positive and negative was significantly different in the presence or absence of hematogenous metastasis among EC patients (P=0.014), and lymph node metastasis among GC patients (P=0.018). Conclusions This retrospective study showed positive associations between serum TBA level and GICs risk, and a higher serum TBA level constitutes a risk factor for GICs.
Collapse
Affiliation(s)
- Songbo Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiaodong Qu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Luyao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Na Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Min Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xingyu Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jie Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.,School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Huanhuan Lv
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.,School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Ying Qi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.,School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Lifeng Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Junye Liu
- Department of Radiation Protective Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
36
|
Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord 2022; 27:449-461. [PMID: 33895917 PMCID: PMC8933374 DOI: 10.1007/s40519-021-01194-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
Bariatric surgery determines a rearrangement of the gastrointestinal tract that influences nutrient handling and plays a role in the metabolic changes observed after surgery. Most of the changes depend on the accelerated gastric emptying observed in Roux-en-Y gastric bypass (RYGB) and, to a lesser extent, in sleeve gastrectomy (SG). The rapid delivery of meal into the jejunum, particularly after RYGB, contributes to the prompt appearance of glucose in peripheral circulation. Glucose increase is the principal determinant of GLP-1 increase with the consequent stimulation of insulin secretion, the latter balanced by a paradoxical glucagon increase that stimulates EGP to prevent hypoglycaemia. Protein digestion and amino acid absorption appear accelerated after RYGB but not after SG. After RYGB, the adaptation of the gut to the new condition participates to the metabolic change. The intestinal transit is delayed, the gut microbioma is changed, the epithelium becomes hypertrophic and increases the expression of glucose transporter and of the number of cell secreting hormones. These changes are not observed after SG. After RYGB-less after SG-bile acids (BA) increase, influencing glucose metabolism probably modulating FXR and TGR5 with an effect on insulin sensitivity. Muscle, hepatic and adipose tissue insulin sensitivity improve, and the gut reinforces the recovery of IS by enhancing glucose uptake and through the effect of the BA. The intestinal changes observed after RYGB result in a light malabsorption of lipid but not of carbohydrate and protein. In conclusion, functional and morphological adaptations of the gut after RYGB and SG activate inter-organs cross-talk that modulates the metabolic changes observed after surgery.Level of evidence Level V, narrative literature review.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy. .,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Maria Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
37
|
Mendonça F, Soares R, Carvalho D, Freitas P. The Impact of Bariatric Surgery on Bone Health: State of the Art and New Recognized Links. Horm Metab Res 2022; 54:131-144. [PMID: 35276738 DOI: 10.1055/a-1767-5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bariatric surgery (BS) is the most effective therapy for severe obesity, which improves several comorbidities (such as diabetes, hypertension, dyslipidemia, among others) and results in marked weight loss. Despite these consensual beneficial effects, sleeve gastrectomy and Roux-en-Y gastric bypass (the two main bariatric techniques) have also been associated with changes in bone metabolism and progressive bone loss. The objective of this literature review is to examine the impact of bariatric surgery on bone and its main metabolic links, and to analyze the latest findings regarding the risk of fracture among patients submitted to bariatric surgery.
Collapse
Affiliation(s)
- Fernando Mendonça
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Raquel Soares
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Paula Freitas
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
38
|
de Lucena AVS, Cordeiro GG, Leão LHA, Kreimer F, de Siqueira LT, da Conti Oliveira Sousa G, de Lucena LHS, Ferraz ÁAB. Cholecystectomy Concomitant with Bariatric Surgery: Safety and Metabolic Effects. Obes Surg 2022; 32:1093-1102. [PMID: 35064462 DOI: 10.1007/s11695-022-05889-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Obesity and fast weight loss in the postoperative period of bariatric surgery increase significantly the risk of cholelithiasis. Moreover, emerging evidence has pointed out the role of bile acids as possible metabolism and weight loss enhancers. This study aims to analyze the influence of cholecystectomy (CL) concomitant with bariatric surgery on weight loss, metabolic repercussions, and postoperative morbidity. STUDY DESIGN Retrospective cohort study. A total of 363 medical records were analyzed between 2002 and 2017, with 255 patients divided into four groups: with concomitant CL: sleeve gastrectomy (SG + CL group) and Roux-en-Y gastric bypass (GB + CL group); without concomitant CL: sleeve gastrectomy (SG group) and RYGB (GB group). RESULTS CL concomitant with bariatric surgery is not related to worse long-term metabolic outcomes when compared to isolated bariatric surgery. In the postoperative follow-up of the isolated bariatric surgeries, 18 (16.5%) patients underwent cholecystectomy. There was no statistical difference between the groups regarding post-surgical complications. CONCLUSION CL did not lead to worse metabolic outcomes and was also not related to a higher incidence of postoperative complications. Cholelithiasis and cholecystitis are important concerns in the postoperative period of bariatric surgery and a careful evaluation of the concomitant procedure should be performed.
Collapse
Affiliation(s)
| | - Gabriel Guerra Cordeiro
- Medical School, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, PE, 50670-901, Brazil.
| | | | - Flávio Kreimer
- Department of Surgery, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
39
|
Fu J, Yu M, Xu W, Yu S. Research Progress of Bile Acids in Cancer. Front Oncol 2022; 11:778258. [PMID: 35127481 PMCID: PMC8810494 DOI: 10.3389/fonc.2021.778258] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
Bile acids (BAs) were originally known as detergents to facilitate the digestion and absorption of lipids. And our current knowledge of BAs has been extended to potential carcinogenic or cancer suppressor factors due to constant research. In fact, BAs were regarded as a tumor promoters as early as the 1940s. Differential bile acid signals emitted by various bile acid profiles can produce distinct pathophysiological traits, thereby participating in the occurrence and development of tumors. Nevertheless, in recent years, more and more studies have noticed the value of BAs as therapeutic targets. And several studies have applied BAs as a therapeutic agent for various diseases including cancer. Based on the above evidence, we acknowledge that the role of BAs in cancer has yet to be exploited, although considerable efforts have been made to probe the functions of BAs. In this review, we describe the characteristics of BAs as a double-edged sword in cancer, hoping to provide references for future cancer treatments.
Collapse
Affiliation(s)
- Junhao Fu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shian Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shian Yu,
| |
Collapse
|
40
|
Akalestou E, Miras AD, Rutter GA, le Roux CW. Mechanisms of Weight Loss After Obesity Surgery. Endocr Rev 2022; 43:19-34. [PMID: 34363458 PMCID: PMC8755990 DOI: 10.1210/endrev/bnab022] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Obesity surgery remains the most effective treatment for obesity and its complications. Weight loss was initially attributed to decreased energy absorption from the gut but has since been linked to reduced appetitive behavior and potentially increased energy expenditure. Implicated mechanisms associating rearrangement of the gastrointestinal tract with these metabolic outcomes include central appetite control, release of gut peptides, change in microbiota, and bile acids. However, the exact combination and timing of signals remain largely unknown. In this review, we survey recent research investigating these mechanisms, and seek to provide insights on unanswered questions over how weight loss is achieved following bariatric surgery which may eventually lead to safer, nonsurgical weight-loss interventions or combinations of medications with surgery.
Collapse
Affiliation(s)
- Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore.,University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland.,Diabetes Research Group, School of Biomedical Science, Ulster University, Belfast, UK
| |
Collapse
|
41
|
Xiao X, Zhang J, Ji S, Qin C, Wu Y, Zou Y, Yang J, Zhao Y, Yang Q, Liu F. Lower bile acids as an independent risk factor for renal outcomes in patients with type 2 diabetes mellitus and biopsy-proven diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:1026995. [PMID: 36277729 PMCID: PMC9585231 DOI: 10.3389/fendo.2022.1026995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Abnormalities of glucolipid metabolism are critical mechanisms involved in the progression of diabetic kidney disease (DKD). Bile acids have an essential role in regulating glucolipid metabolism. This study investigated the clinicopathological characteristics of DKD patients with different bile acid levels and explored the relationship between bile acids and renal outcomes of DKD patients. METHODS We retrospectively reviewed and evaluated the histopathological features and clinical features of our cohort of 184 patients with type 2 diabetes mellitus and biopsy-proven DKD. Patients were divided into the lower bile acids group (≤2.8 mmol/L) and higher bile acids group (>2.8 mmol/L) based on the cutoff value of bile acids obtained using the time-dependent receiver-operating characteristic curve. Renal outcomes were defined as end-stage renal disease (ESRD). The influence of bile acids on renal outcomes and correlations between bile acids and clinicopathological indicators were evaluated. RESULTS Bile acids were positively correlated with age (r = 0.152; P = 0.040) and serum albumin (r = 0.148; P = 0.045) and negatively correlated with total cholesterol (r = -0.151; P = 0.041) and glomerular class (r = -0.164; P =0.027). During follow-up, 64 of 184 patients (34.78%) experienced progression to ESRD. Lower levels of proteinuria, serum albumin, and bile acids were independently associated with an increased risk of ESRD (hazard ratio, R=5.319; 95% confidence interval, 1.208-23.425). CONCLUSIONS Bile acids are an independent risk factor for adverse renal outcomes of DKD patients. The serum level of bile acids should be maintained at more than 2.8 mmol/L in DKD patients. Bile acid analogs or their downstream signaling pathway agonists may offer a promising strategy for treating DKD.
Collapse
Affiliation(s)
- Xiang Xiao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Department of Nephrology, The first affiliated hospital of Chengdu Medical college, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuming Ji
- Department of Project Design and Statistics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunmei Qin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Jia Yang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yuancheng Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Yang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Fang Liu,
| |
Collapse
|
42
|
Zhang W, Shi B, Li S, Liu Z, Li S, Dong S, Cheng Y, Zhu J, Zhang G, Zhong M. Sleeve gastrectomy improves lipid dysmetabolism by downregulating the USP20-HSPA2 axis in diet-induced obese mice. Front Endocrinol (Lausanne) 2022; 13:1041027. [PMID: 36636478 PMCID: PMC9831654 DOI: 10.3389/fendo.2022.1041027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Obesity is a metabolic disease accompanied by abnormalities in lipid metabolism that can cause hyperlipidemia, non-alcoholic fatty liver disease, and artery atherosclerosis. Sleeve gastrectomy (SG) is a type of bariatric surgery that can effectively treat obesity and improve lipid metabolism. However, its specific underlying mechanism remains elusive. METHODS We performed SG, and sham surgery on two groups of diet-induced obese mice. Histology and lipid analysis were used to evaluate operation effect. Immunohistochemistry, immunoblotting, real-time quantitative PCR, immunoprecipitation, immunofluorescence and mass spectrometry were used to reveal the potential mechanisms of SG. RESULTS Compared to the sham group, the SG group displayed a downregulation of deubiquitinase ubiquitin-specific peptidase 20 (USP20). Moreover, USP20 could promote lipid accumulation in vitro. Co-immunoprecipitation and mass spectrometry analyses showed that heat-shock protein family A member 2 (HSPA2) potentially acts as a substrate of USP20. HSPA2 was also downregulated in the SG group and could promote lipid accumulation in vitro. Further research showed that USP20 targeted and stabilized HSPA2 via the ubiquitin-proteasome pathway. CONCLUSION The downregulation of the USP20-HSPA2 axis in diet-induced obese mice following SG improved lipid dysmetabolism, indicating that USP20-HSPA2 axis was a noninvasive therapeutic target to be investigated in the future.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Shi
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shirui Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zenglin Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Songhan Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- *Correspondence: Mingwei Zhong,
| |
Collapse
|
43
|
Zhou S, Chen W, Bai X, Chen J, Xu Q, Dong L, Chen W, Qu Q, He X. Upregulation of hypothalamic POMC neurons after biliary diversion in GK rats. Front Endocrinol (Lausanne) 2022; 13:999928. [PMID: 36277690 PMCID: PMC9585246 DOI: 10.3389/fendo.2022.999928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bile acids are important signaling molecules that might activate hypothalamic neurons. This study aimed to investigate possible changes in hypothalamic pro-opiomelanocortin (POMC) neurons after biliary diversion in diabetic rats. METHODS Ten GK rats were randomly divided into the biliary diversion (BD) and sham groups. The glucose metabolism, hypothalamic POMC expression, serum bile acid profiles, and ileal bile acid-specific receptors of the two groups were analyzed. RESULTS Biliary diversion improved blood glucose (P = 0.001) and glucose tolerance (P = 0.001). RNA-Seq of the hypothalamus showed significantly upregulated expression of the POMC gene (log2-fold change = 4.1, P < 0.001), which also showed increased expression at the protein (P = 0.030) and mRNA (P = 0.004) levels. The POMC-derived neuropeptide α-melanocyte stimulating hormone (α-MSH) was also increased in the hypothalamus (2.21 ± 0.11 ng/g, P = 0.006). In addition, increased taurocholic acid (TCA) (108.05 ± 20.62 ng/mL, P = 0.003) and taurodeoxycholic acid (TDCA) (45.58 ± 2.74 ng/mL, P < 0.001) were found in the BD group and induced the enhanced secretion of fibroblast growth factor-15 (FGF15, 74.28 ± 3.44 pg/ml, P = 0.001) by activating farnesoid X receptor (FXR) that was over-expressed in the ileum. CONCLUSIONS Hypothalamic POMC neurons were upregulated after BD, and the increased TCA, TDCA, and the downstream gut-derived hormone FGF15 might activate POMC neurons.
Collapse
Affiliation(s)
- Shengnan Zhou
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Weijie Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xuesong Bai
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jiemin Chen
- Gastroenterology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Liangbo Dong
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wei Chen
- Clinical Nutrition Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qiang Qu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiaodong He
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
- *Correspondence: Xiaodong He,
| |
Collapse
|
44
|
Nugent JL, Singh A, Wirth KM, Oppler SH, Hocum Stone L, Janecek JL, Sheka AC, Kizy S, Moore MEG, Staley C, Hering BJ, Ramachandran S, Ikramuddin S, Graham ML. A nonhuman primate model of vertical sleeve gastrectomy facilitates mechanistic and translational research in human obesity. iScience 2021; 24:103421. [PMID: 34877488 PMCID: PMC8633018 DOI: 10.1016/j.isci.2021.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The obesity epidemic significantly contributes to overall morbidity and mortality. Bariatric surgery is the gold standard treatment for obesity and metabolic dysfunction, yet the mechanisms by which it exerts metabolic benefit remain unclear. Here, we demonstrate a model of vertical sleeve gastrectomy (VSG) in nonhuman primates (NHP) that mimics the complexity and outcomes in humans. We also show that VSG confers weight loss and durable metabolic benefit, where equivalent caloric intake in shams resulted in significant weight gain following surgery. Furthermore, we show that VSG is associated with early, weight-independent increases in bile acids, short-chain fatty acids, and reduced visceral adipose tissue (VAT) inflammation with a polarization of VAT-resident immunocytes toward highly regulatory myeloid cells and Tregs. These data demonstrate that this strongly translational NHP model can be used to interrogate factors driving successful intervention to unravel the interplay between physiologic systems and improve therapies for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Julia L Nugent
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Amar Singh
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | - Keith M Wirth
- Department of Surgery, University of Minnesota, MN, USA
| | - Scott Hunter Oppler
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Jody L Janecek
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Adam C Sheka
- Department of Surgery, University of Minnesota, MN, USA
| | - Scott Kizy
- Department of Surgery, University of Minnesota, MN, USA
| | - Meghan E G Moore
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, MN, USA.,BioTechnology Institute, University of Minnesota, MN, USA
| | - Bernhard J Hering
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | - Sabarinathan Ramachandran
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | | | - Melanie L Graham
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
45
|
Wang Z, Chen WD, Wang YD. Nuclear receptors: a bridge linking the gut microbiome and the host. Mol Med 2021; 27:144. [PMID: 34740314 PMCID: PMC8570027 DOI: 10.1186/s10020-021-00407-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiome is the totality of microorganisms, bacteria, viruses, protozoa, and fungi within the gastrointestinal tract. The gut microbiome plays key roles in various physiological and pathological processes through regulating varieties of metabolic factors such as short-chain fatty acids, bile acids and amino acids. Nuclear receptors, as metabolic mediators, act as a series of intermediates between the microbiome and the host and help the microbiome regulate diverse processes in the host. Recently, nuclear receptors such as farnesoid X receptor, peroxisome proliferator-activated receptors, aryl hydrocarbon receptor and vitamin D receptor have been identified as key regulators of the microbiome-host crosstalk. These nuclear receptors regulate metabolic processes, immune activity, autophagy, non-alcoholic and alcoholic fatty liver disease, inflammatory bowel disease, cancer, obesity, and type-2 diabetes. Conclusion In this review, we have summarized the functions of the nuclear receptors in the gut microbiome-host axis in different physiological and pathological conditions, indicating that the nuclear receptors may be the good targets for treatment of different diseases through the crosstalk with the gut microbiome.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China. .,School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation, The People' Hospital of Hebi, Henan University, Henan, People's Republic of China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
46
|
Yang C, Brecht J, Weiß C, Reissfelder C, Otto M, Buchwald JN, Vassilev G. Serum Glucagon, Bile Acids, and FGF-19: Metabolic Behavior Patterns After Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. Obes Surg 2021; 31:4939-4946. [PMID: 34471996 DOI: 10.1007/s11695-021-05677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic/bariatric surgery is a highly effective treatment for obesity and metabolic diseases. Serum glucagon, bile acids, and FGF-19 are key effectors of various metabolic processes and may play central roles in bariatric surgical outcomes. It is unclear whether these factors behave similarly after Roux-en-Y gastric bypass (RYGB) vs vertical sleeve gastrectomy (VSG). METHODS Serum glucagon, bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA]), and FGF-19 were analyzed in samples of fasting blood collected before bariatric surgery, on postoperative days 2 and 10, and at 3- and 6-month follow-up. RESULTS From September 2016 to July 2017, patients with obesity underwent RYGB or VSG; 42 patients (RYGB n = 21; VSG n = 21) were included in the analysis. In the RYGB group, glucagon, CA, and CDCA increased continuously after surgery (p = 0.0003, p = 0.0009, p = 0.0001, respectively); after an initial decrease (p = 0.04), DCA increased significantly (p = 0.0386). Serum FGF-19 was unchanged. In the VSG group, glucagon increased on day 2 (p = 0.0080), but decreased over the 6-month study course (p = 0.0025). Primary BAs (CA and CDCA) decreased immediately after surgery (p = 0.0016, p = 0.0091) and then rose (p = 0.0350, p = 0.0350); DCA followed the curve of the primary BAs until it fell off at 6 months (p = 0.0005). VSG group serum FGF-19 trended upward. CONCLUSION RYGB and VSG involve different surgical techniques and final anatomical configurations. Between postoperative day 2 and 6-month follow-up, RYGB and VSG resulted in divergent patterns of change in serum glucagon, bile acids, and FGF-19.
Collapse
Affiliation(s)
- Cui Yang
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Julia Brecht
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mirko Otto
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jane N Buchwald
- Division of Scientific Research Writing, Medwrite Medical Communications, Maiden Rock, WI, 54750, USA
| | - Georgi Vassilev
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
47
|
Xue H, Huang L, Tu J, Ding L, Huang W. Bile acids and metabolic surgery. LIVER RESEARCH 2021; 5:164-170. [PMID: 39957846 PMCID: PMC11791848 DOI: 10.1016/j.livres.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/04/2021] [Accepted: 05/05/2021] [Indexed: 02/16/2023]
Abstract
The epidemic of obesity and its co-mortalities has reached an alarming level worldwide. Currently, metabolic surgeries, especially the Roux-en-Y gastric bypass and vertical sleeve gastrectomy, are the most effective and sustainable treatments for obesity, type 2 diabetes, non-alcoholic steatohepatitis, as well as other metabolic diseases. However, the invasive nature of the surgeries limits their broad applications to the general public. Therefore, developing alternative non-invasive approaches to mimic metabolic surgery is an important direction of the field. Recent studies have identified several potential metabolic surgery-induced downstream endocrine mediators, among which bile acids are key candidate signaling molecules. Bile acids are profoundly altered by metabolic surgery, which contributes to the metabolic effects of the surgery. In this review, we focus on the most recent studies on the roles of bile acids and bile acid receptors farnesoid X receptor and Takeda G protein-coupled receptor 5 in mediating the metabolic effects of metabolic surgery. We conclude that targeting bile acid pathways may be a promising pharmacological approach to mimic the beneficial effects of metabolic surgery.
Collapse
Affiliation(s)
- Hui Xue
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Huang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
48
|
Jin ZL, Liu W. Progress in treatment of type 2 diabetes by bariatric surgery. World J Diabetes 2021; 12:1187-1199. [PMID: 34512886 PMCID: PMC8394224 DOI: 10.4239/wjd.v12.i8.1187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of type 2 diabetes (T2D) is increasing at an alarming rate worldwide. Bariatric surgical procedures, such as the vertical sleeve gastrectomy and Roux-en-Y gastric bypass, are the most efficient approaches to obtain substantial and durable remission of T2D. The benefits of bariatric surgery are realized through the consequent increased satiety and alterations in gastrointestinal hormones, bile acids, and the intestinal microbiota. A comprehensive understanding of the mechanisms by which various bariatric surgical procedures exert their benefits on T2D could contribute to the design of better non-surgical treatments for T2D. In this review, we describe the classification and evolution of bariatric surgery and explore the multiple mechanisms underlying the effect of bariatric surgery on insulin resistance. Based upon our summarization of the current knowledge on the underlying mechanisms, we speculate that the gut might act as a new target for improving T2D. Our ultimate goal with this review is to provide a better understanding of T2D pathophysiology in order to support development of T2D treatments that are less invasive and more scalable.
Collapse
Affiliation(s)
- Zhang-Liu Jin
- Department of General Surgery & Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei Liu
- Department of General Surgery & Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
49
|
Mueller A, Palilla S, Carter J. Optimal Surgical Treatment for Type 2 Diabetes: Sleeve Gastrectomy or Gastric Bypass? Adv Surg 2021; 55:1-8. [PMID: 34389085 DOI: 10.1016/j.yasu.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Amanda Mueller
- Department of Surgery, University of California - San Francisco, 513 Parnassus Avenue, HSW1601, San Francisco, CA 94143, USA
| | - Sarah Palilla
- Department of Surgery, University of California - San Francisco, 513 Parnassus Avenue, HSW1601, San Francisco, CA 94143, USA
| | - Jonathan Carter
- Department of Surgery, University of California - San Francisco, 513 Parnassus Avenue, HSW1601, San Francisco, CA 94143, USA.
| |
Collapse
|
50
|
Abstract
Bariatric surgery is often the preferred method to resolve obesity and diabetes, with ∼800,000 cases worldwide yearly and high outcome variability. The ability to predict the long-term body mass index (BMI) change following surgery has important implications for individuals and the health care system in general. Given the tight connection between eating habits, sugar consumption, BMI, and the gut microbiome, we tested whether the microbiome before any treatment is associated with different treatment outcomes, as well as other intakes (high-density lipoproteins [HDL], triglycerides, etc.). A projection of the gut microbiome composition of obese (sampled before and after bariatric surgery) and lean patients into principal components was performed, and the relation between this projection and surgery outcome was studied. The projection revealed three different microbiome profiles belonging to lean, obese, and obese individuals who underwent bariatric surgery, with the postsurgery microbiome more different from the lean microbiome than the obese microbiome. The same projection allowed for a prediction of BMI loss following bariatric surgery, using only the presurgery microbiome. The microbial changes following surgery were an increase in the relative abundance of Proteobacteria and Fusobacteria and a decrease in Firmicutes. The gut microbiome can be decomposed into main components depicting the patient's development and predicting in advance the outcome. Those may be translated into the better clinical management of obese individuals planning to undergo metabolic surgery. IMPORTANCE BMI and diabetes can affect the gut microbiome composition. Bariatric surgery has large variabilities in the outcome. The microbiome was previously shown to be a good predictor for multiple diseases. We analyzed here the gut microbiome before and after bariatric surgery and showed the following. (i) The microbiome before surgery can be used to predict surgery outcomes. (ii) The postsurgery microbiome drifts further away from the lean microbiome than the microbiome of the presurgery obese patients. These results can lead to a microbiome-based presurgery decision whether to perform surgery.
Collapse
|