1
|
Cantu-Jungles TM, Agamennone V, Van den Broek TJ, Schuren FHJ, Hamaker B. Systematically-designed mixtures outperform single fibers for gut microbiota support. Gut Microbes 2025; 17:2442521. [PMID: 39704614 DOI: 10.1080/19490976.2024.2442521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Dietary fiber interventions to modulate the gut microbiota have largely relied on isolated fibers or specific fiber sources. We hypothesized that fibers systematically blended could promote more health-related bacterial groups. Initially, pooled in vitro fecal fermentations were used to design dietary fiber mixtures to support complementary microbial groups related to health. Then, microbial responses were compared for the designed mixtures versus their single fiber components in vitro using fecal samples from a separate cohort of 10 healthy adults. The designed fiber mixtures outperformed individual fibers in supporting bacterial taxa across donors resulting in superior alpha diversity and unexpected higher SCFA production. Moreover, unique shifts in community structure and specific taxa were observed for fiber mixtures that were not observed for single fibers, suggesting a synergistic effect when certain fibers are put together. Fiber mixture responses were remarkably more consistent than individual fibers across donors in promoting several taxa, especially butyrate producers from the Clostridium cluster XIVa. This is the first demonstration of synergistic fiber interactions for superior support of a diverse group of important beneficial microbes consistent across people, and unexpectedly high SCFA production. Overall, harnessing the synergistic potential of designed fiber mixtures represents a promising and more efficacious avenue for future prebiotic development.
Collapse
Affiliation(s)
- T M Cantu-Jungles
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - V Agamennone
- Microbiology and Systems Biology Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - T J Van den Broek
- Microbiology and Systems Biology Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - F H J Schuren
- Microbiology and Systems Biology Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Budzinski L, Kang GU, Riedel R, Sempert T, Lietz L, Maier R, Büttner J, Bochow B, Tordai MT, Shah A, Abbas A, Momtaz T, Krause JL, Kempkens R, Lehman K, Heinz GA, Benken AE, Bartsch S, Necke K, Hoffmann U, Mashreghi MF, Biesen R, Kallinich T, Alexander T, Jessen B, Weidinger C, Siegmund B, Radbruch A, Schirbel A, Moser B, Chang HD. Single-cell microbiota phenotyping reveals distinct disease and therapy-associated signatures in Crohn's disease. Gut Microbes 2025; 17:2452250. [PMID: 39815413 PMCID: PMC11740678 DOI: 10.1080/19490976.2025.2452250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
IgA-coated fractions of the intestinal microbiota of Crohn's disease (CD) patients have been shown to contain taxa that hallmark the compositional dysbiosis in CD microbiomes. However, the correlation between other cellular properties of intestinal bacteria and disease has not been explored further, especially for features that are not directly driven by the host immune-system, e.g. the expression of surface sugars by bacteria. By sorting and sequencing IgA-coated and lectin-stained fractions from CD patients microbiota and healthy controls, we found that lectin-stained bacteria were distinct from IgA-coated bacteria, but still displayed specific differences between CD and healthy controls. To exploit the discriminatory potential of both, immunoglobulin coated bacteria and the altered surface sugar expression of bacteria in CD, we developed a multiplexed single cell-based analysis approach for intestinal microbiota. By multi-parameter microbiota flow cytometry (mMFC) we characterized the intestinal microbiota of 55 CD patients and 44 healthy controls for 11-parameters in total, comprising host-immunoglobulin coating and the presence of distinct surface sugar moieties. The data were analyzed by machine-learning to assess disease-specific marker patterns in the microbiota phenotype. mMFC captured detailed characteristics of CD microbiota and identified patterns to classify CD patients. In addition, we identified phenotypic signatures in the CD microbiota which not only reflected remission after 6 weeks of anti-TNF treatment, but were also able to predict remission before the start of an adalimumab treatment course in a pilot study. We here present the proof-of-concept demonstrating that multi-parameter single-cell bacterial phenotyping by mMFC could be a novel tool with high translational potential to expand current microbiome investigations by phenotyping of bacteria to identify disease- and therapy-associated cellular alterations and to reveal novel target properties of bacteria for functional assays and therapeutic approaches.
Collapse
Affiliation(s)
- Lisa Budzinski
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Gi-Ung Kang
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - René Riedel
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Bioinformatics and Computational Biology, Department of Cardiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Toni Sempert
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Leonie Lietz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - René Maier
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Janine Büttner
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Bochow
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcell T. Tordai
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aayushi Shah
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Amro Abbas
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Tanisha Momtaz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Jannike L. Krause
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Robin Kempkens
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Katrin Lehman
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Gitta A. Heinz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Anne E. Benken
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefanie Bartsch
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen Necke
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Hoffmann
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tilmann Kallinich
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Alexander
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bosse Jessen
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program
| | - Andreas Radbruch
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Anja Schirbel
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin Moser
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DRK Kliniken Berlin, Clinic for internal medicine – Gastroenterology, Haematology and Oncology, Nephrology, Centre for chronic gastrointestinal inflammations, Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Yao J, Ning B, Ding J. The gut microbiota: an emerging modulator of drug resistance in hepatocellular carcinoma. Gut Microbes 2025; 17:2473504. [PMID: 40042184 PMCID: PMC11901387 DOI: 10.1080/19490976.2025.2473504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/08/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Liver cancer is usually diagnosed at an advanced stage and is the third most common cause of cancer-related death worldwide. In addition to the lack of effective treatment options, resistance to therapeutic drugs is a major clinical challenge. The gut microbiota has recently been recognized as one of the key factors regulating host health. The microbiota and its metabolites can directly or indirectly regulate gene expression in the liver, leading to gut-liver axis dysregulation, which is closely related to liver cancer occurrence and the treatment response. Gut microbiota disturbance may participate in tumor progression and drug resistance through metabolite production, gene transfer, immune regulation, and other mechanisms. However, systematic reviews on the role of the gut microbiota in drug resistance in liver cancer are lacking. Herein, we review the relationships between the gut microbiota and the occurrence and drug resistance of hepatocellular carcinoma, summarize the emerging mechanisms underlying gut microbiota-mediated drug resistance, and propose new personalized treatment options to overcome this resistance.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Beifang Ning
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Geng P, Zhao N, Zhou Y, Harris RS, Ge Y. Faecalibacterium prausnitzii regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice. Gut Microbes 2025; 17:2455503. [PMID: 39841201 DOI: 10.1080/19490976.2025.2455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. Faecalibacterium prausnitzii is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct F. prausnitzii strains might lead to functional differences in the gut microbiome. Here, we isolated and characterized a novel F. prausnitzii strain (UT1) that belongs to the most prevalent but underappreciated phylogenetic clade in the global human population. Genome analysis showed that this butyrate-producing isolate carries multiple putative mobile genetic elements, a clade-specific defense system, and a range of carbohydrate catabolic enzymes. Multiomic approaches were used to profile the impact of UT1 on the gut microbiome and associated metabolic activity of C57BL/6 mice at homeostasis. Both 16S rRNA and metagenomic sequencing demonstrated that oral administration of UT1 resulted in profound microbial compositional changes including a significant enrichment of Lactobacillus, Bifidobacterium, and Turicibacter. Functional profiling of the fecal metagenomes revealed a markedly higher abundance of carbohydrate-active enzymes (CAZymes) in UT1-gavaged mice. Accordingly, UT1-conditioned microbiota possessed the elevated capability of utilizing starch in vitro and exhibited a lower availability of microbiota-accessible carbohydrates in the gut. Further analysis uncovered a functional network wherein UT1 reduced the abundance of mucin-degrading CAZymes and microbes, which correlated with a concomitant reduction of fecal mucin glycans. Collectively, our results reveal a crucial role of UT1 in facilitating the carbohydrate metabolism of the gut microbiome and expand our understanding of the genetic and phenotypic diversity of F. prausnitzii.
Collapse
Affiliation(s)
- Peiling Geng
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ni Zhao
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
5
|
Steinert RE, Rehman A, Sadabad MS, Milanese A, Wittwer-Schegg J, Burton JP, Spooren A. Microbial micronutrient sharing, gut redox balance and keystone taxa as a basis for a new perspective to solutions targeting health from the gut. Gut Microbes 2025; 17:2477816. [PMID: 40090884 PMCID: PMC11913388 DOI: 10.1080/19490976.2025.2477816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025] Open
Abstract
In health, the gut microbiome functions as a stable ecosystem maintaining overall balance and ensuring its own survival against environmental stressors through complex microbial interaction. This balance and protection from stressors is maintained through interactions both within the bacterial ecosystem as well as with its host. As a consequence, the gut microbiome plays a critical role in various physiological processes including maintaining the structure and function of the gut barrier, educating the gut immune system, and modulating the gut motor, digestive/absorptive, as well as neuroendocrine system all of which are crucial for human health and disease pathogenesis. Pre- and probiotics, widely available and clinically established, offer various health benefits primarily by beneficially modulating the gut microbiome. However, their clinical outcomes can vary significantly due to differences in host physiology, diets, individual microbiome compositions, and other environmental factors. This perspective paper highlights emerging scientific insights into the importance of microbial micronutrient sharing, gut redox balance, keystone species, and the gut barrier in maintaining a diverse and functional microbial ecosystem, and their relevance to human health. We propose a novel approach that targets microbial ecosystems and keystone taxa performance by supplying microbial micronutrients in the form of colon-delivered vitamins, and precision prebiotics [e.g. human milk oligosaccharides (HMOs) or synthetic glycans] as components of precisely tailored ingredient combinations to optimize human health. Such a strategy may effectively support and stabilize microbial ecosystems, providing a more robust and consistent approach across various individuals and environmental conditions, thus, overcoming the limitations of current single biotic solutions.
Collapse
Affiliation(s)
- Robert E Steinert
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Ateequr Rehman
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
| | | | - Alessio Milanese
- Data Science, Science & Research, Dsm-Firmenich, Delft, Netherlands
| | | | - Jeremy P Burton
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada
| | - Anneleen Spooren
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
| |
Collapse
|
6
|
Prashar N, Mohammed SB, Raja NS, Mohideen HS. Rerouting therapeutic peptides and unlocking their potential against SARS-CoV2. 3 Biotech 2025; 15:116. [PMID: 40191455 PMCID: PMC11971104 DOI: 10.1007/s13205-025-04270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic highlighted the potential of peptide-based therapies as an alternative to traditional pharmaceutical treatments for SARS-CoV-2 and its variants. Our review explores the role of therapeutic peptides in modulating immune responses, inhibiting viral entry, and disrupting replication. Despite challenges such as stability, bioavailability, and the rapid mutation of the virus, ongoing research and clinical trials show that peptide-based treatments are increasingly becoming integral to future viral outbreak responses. Advancements in computational modelling methods in combination with artificial intelligence will enable mass screening of therapeutic peptides and thereby, comprehending a peptide repurposing strategy similar to the small molecule repurposing. These findings suggest that peptide-based therapies play a critical and promising role in future pandemic preparedness and outbreak management.
Collapse
Affiliation(s)
- Namrata Prashar
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Saharuddin Bin Mohammed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - N. S. Raja
- Deparmtent of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Habeeb Shaik Mohideen
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
7
|
Serre R, Gabro A, Andraud M, Simon JM, Spano JP, Maingon P, Chargari C. Brachytherapy: Perspectives for combined treatments with immunotherapy. Clin Transl Radiat Oncol 2025; 52:100924. [PMID: 40226301 PMCID: PMC11992541 DOI: 10.1016/j.ctro.2025.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Combining brachytherapy with immunotherapies, particularly immune checkpoint inhibitors (ICIs), is a promising approach for potentiating both local control of the tumor and fully exploiting the synergies between pharmaceutic immunomodulation and radiotherapy. Compared to other radiotherapy techniques, BT has a potential to better spare lymphatic drainage areas and gut microbiota, thus reducing the immunosuppressive effects of radiation therapy. In addition, it delivers a broad range of doses due to inherent dose inhomogeneity within the implanted volume. This variability increases the probability that immune infiltrates would be activated, particularly since the optimal dose for immune activation is not yet firmly established. Even if preclinical models show that radiotherapy can stimulate immune responses, it can also induce toxic effects on immune effectors and combination trials show conflicting outcomes. There is a need for refining radiation modalities to enhance immune potentiation. The dosimetric specificities of BT may offer various advantages and should be explored further. Scarce clinical data on combining brachytherapy with ICIs in advanced cancer suggest potential benefits, with case reports of complete local responses and abscopal effects. However, validation requires a large number of patients in randomized clinical trials for which ideal design is discussed. In parallel with ongoing clinical developments, there is a need to refine preclinical models in order to better analyze the specific biological effects involved in BT, in light of immunomodulatory systemic treatments.
Collapse
Affiliation(s)
- Raphaël Serre
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Alexandra Gabro
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Mickael Andraud
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Jean-Marc Simon
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Jean-Philippe Spano
- Medical Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Philippe Maingon
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Cyrus Chargari
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| |
Collapse
|
8
|
Ndeh DA, Nakjang S, Kwiatkowski KJ, Sawyers C, Koropatkin NM, Hirt RP, Bolam DN. A Bacteroides thetaiotaomicron genetic locus encodes activities consistent with mucin O-glycoprotein processing and N-acetylgalactosamine metabolism. Nat Commun 2025; 16:3485. [PMID: 40216766 PMCID: PMC11992087 DOI: 10.1038/s41467-025-58660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The gut microbiota is a key modulator of human health and the status of major diseases including cancer, diabetes and inflammatory bowel disease. Central to microbiota survival is the ability to metabolise complex dietary and host-derived glycans, including intestinal mucins. The prominent human gut microbe Bacteroides thetaiotaomicron (B. theta) is a versatile and highly efficient complex glycan degrader thanks to the expansion of gene clusters termed polysaccharide utilisation loci (PULs). While the mechanism of action for several singular dietary glycan-induced PULs have been elucidated, studies on the unusually high number of mucin-inducible PULs in B. theta significantly lag behind. Here we show that a mucin inducible PUL BT4240-50 encodes activities consistent with the processing and metabolism of mucin O-glycoproteins and their core sugar N-acetylgalactosamine (GalNAc). PUL BT4240-50 was also shown to be important for competitive growth on mucins in vitro, encoding a kinase (BT4240) critical for GalNAc metabolism. Additionally, BT4240-kinase was shown to be essential for glycosaminoglycan metabolism, extending the PULs function beyond mucins. These data advance our understanding of glycoprotein metabolism at mucosal surfaces, highlighting GalNAc as a key metabolite for competitive microbial survival in the human gut.
Collapse
Affiliation(s)
- Didier A Ndeh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Sirintra Nakjang
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Kurt J Kwiatkowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claire Sawyers
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Hirt
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - David N Bolam
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
9
|
Moya Uribe IA, Terauchi H, Bell JA, Zanetti A, Jantre S, Huebner M, Arshad SH, Ewart SL, Mansfield LS. Fecal microbiota transplants (FMT) of three distinct human communities to germ-free mice exacerbated inflammation and decreased lung function in their offspring. mBio 2025:e0376424. [PMID: 40207915 DOI: 10.1128/mbio.03764-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/21/2025] [Indexed: 04/11/2025] Open
Abstract
Despite explosive rise in allergies, little is known about early life gut microbiota effects on postnatal respiratory function. We hypothesized that Enterobacteriaceae-dominant gut microbiota from eczemic infants increases Type 2 inflammation and decreases lung function in transplanted mice, while Bacteroidaceae-dominant gut microbiota from non-eczemic infants is protective. Fecal microbiota transplants (FMT) from eczemic infants "Infant A" and non-eczemic infants "Infant B" were successfully transplanted into germ-free C57BL/6 mice, passing to offspring unchanged. Infant A and B, Adult C-human-derived (positive control), and Mouse (negative control) microbiotas all in C57BL/6 mice were tested for effects on airway function in nonallergic (phosphate-buffered saline [PBS]) and allergic (house dust mite [HDM]) conditions. Baseline lung mechanics in mice with human microbiotas (HUmicrobiota) were significantly impaired compared to Mouse microbiota controls (MOmicrobiota) with or without HDM; respiratory system resistance (Rrs) was increased (P < 0.05-P < 0.01), and respiratory system compliance (Crs) was decreased (P < 0.05-P < 0.01). HUMicrobiota mice showed a statistically significant impairment compared to MOmicrobiota mice in lung parameters Rrs, Ers, Rn, and G at baseline, and at multiple methacholine (MCh) doses with baseline removed. Impairment manifested as increased small airway resistance and tissue resistance. HDM significantly elevated IL-4, eosinophils, lung inflammation, and mucus cell metaplasia, and decreased macrophages and lung function (P < 0.05) in mice of all microbiotas, yet each HUmicrobiota produced distinct features. Infant B and Adult C mice had elevated basal levels of total IgE compared to MOmicrobiota and Infant A mice (P < 0.05). In HUmicrobiota mice given HDM, only Adult C had elevated IL-5 and IL-13 (P < 0.05), only Adult C and Infant B mice had elevated neutrophils (P < 0.05), and only Infant A had elevated lymphocytes (P < 0.01). IMPORTANCE Fecal microbiota transplants (FMT) of three distinct human communities to germ-free mice exacerbated inflammation and decreased lung function in their offspring. Taxa formerly described to induce an allergic response (agonists) and pro-inflammatory taxa were abundant in HUmicrobiotas compared to MOmicrobiota controls, while taxa formerly described to reduce allergic responses (antagonists) and anti-inflammatory taxa were numerous in MOmicrobiotas and low in HUmicrobiotas. Thus, we largely rejected our hypotheses because data supported multiple pro-inflammatory allergy agonists functioning in a community-wide fashion to impair lung function in the absence of antagonistic anti-inflammatory taxa. Structure of HUmicrobiotas played a key role in determining varied allergic responses and resulting lung impairment, yet, strikingly, all mice with HUmicrobiotas had impaired lung function even in the absence of allergens. Using a comparative approach, we showed that composition of gut microbiota can alter innate/immune regulation in the gut-lung axis to increase baseline lung function responses and the risk of allergic sensitization.
Collapse
Affiliation(s)
- Ivon A Moya Uribe
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, Michigan, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
- Michigan State University, East Lansing, Michigan, USA
- Comparative Medicine Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Hinako Terauchi
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, Michigan, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
- Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Julia A Bell
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, Michigan, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
- Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Alexander Zanetti
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, Michigan, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sanket Jantre
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, USA
| | - Marianne Huebner
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, USA
| | - S Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Susan L Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
- Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Linda S Mansfield
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, Michigan, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
- Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Tseng CH, Wong S, Yu J, Lee YY, Terauchi J, Lai HC, Luo JC, Kao CY, Yu SL, Liou JM, Wu DC, Hou MC, Wu MS, Wu JJ, Sung JJY, El-Omar EM, Wu CY. Development of live biotherapeutic products: a position statement of Asia-Pacific Microbiota Consortium. Gut 2025; 74:706-713. [PMID: 40011030 DOI: 10.1136/gutjnl-2024-334501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Live biotherapeutic products (LBPs) are biological products composed of living micro-organisms, developed to prevent, treat, or cure diseases. Examples include cultured strains of Akkermansia muciniphila and Christensenella minuta, as well as treatments using purified Firmicutes spores for recurrent Clostridioides difficile infections. There is a need for guidelines over the increasing interest in developing LBPs. A panel of microbiome experts from Asia-Pacific countries articulates their perspectives on key considerations for LBP development. DESIGN Experts in microbiome research, microbiology, gastroenterology, internal medicine and biotherapeutics industry were invited to form a panel. During the 2023 Inauguration Conference of the Asia-Pacific Microbiota Consortium, an organised, iterative roundtable discussion was conducted to build expert consensus on critical issues surrounding the development of LBP. RESULTS The consensus statements were organised into three main aspects: (a) rationales of LBP development, (b) preclinical studies and (c) preparation for clinical studies. The panel strongly recommended to prioritise human-derived and food-sourced strains for development, with indications based on clinical need and efficacy shown in studies. Preclinical evaluation should involve thorough screening, genotyping and phenotyping, as well as comprehensive in vitro and animal studies to assess functional mechanisms and microbiological safety. Rigorous cell banking practices and genetic monitoring are essential to ensure product consistency and safety throughout the manufacturing process. Clinical trials, including postmarketing surveillance, must be carefully designed and closely monitored, with robust safety and risk management protocols in place. CONCLUSIONS The development of LBP should be approached with a strong emphasis on microbiological evaluation, clinical relevance, scientific mechanisms and safety at every stage. These measures are essential to ensure the safety, effectiveness and long-term success of the product.
Collapse
Affiliation(s)
| | - Sunny Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, and The State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Jun Terauchi
- Japan Microbiome Consortium (JMBC), Osaka, Japan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Jiing-Chyuan Luo
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng Yen Kao
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Joseph J Y Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Emad M El-Omar
- UNSW Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Chun-Ying Wu
- Microbiota Research Center, Health Innovation Center, and Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Kritikos A, Bernasconi E, Choi Y, Scherz V, Pagani JL, Greub G, Bertelli C, Guery B. Lung and gut microbiota profiling in intensive care unit patients: a prospective pilot study. BMC Infect Dis 2025; 25:468. [PMID: 40188054 PMCID: PMC11972518 DOI: 10.1186/s12879-025-10825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The gut and lung microbiomes play crucial roles in host defense and mayserve as predictive markersfor clinical outcomes in critically ill patients. Despite this, the simultaneous dynamics of lung and gut microbiomes during critical illness remain unclear. This study aims to assess the longitudinal changes in lung and gut microbiota among mechanically ventilated ICU patients with and without infection and to identify microbial features predictive of clinical outcomes, including the development of ventilator associated pneumonia (VAP). METHODS In this prospective observational study, we analyzed 73 endotracheal aspirates (ETA) and 93 rectal swabs collected from 38 ICU patients over multiple timepoints (intubation, infection onset, post-antibiotic, and extubation/discharge). Patients were categorized into three groups: (1) VAP, (2) other infections, and (3) uninfected controls. Lung and gut microbiota were characterized using 16S rRNA gene sequencing. Primary outcomes included microbial diversity and community composition; secondary outcomes included ICU length of stay and ventilator-free days. RESULTS Alpha diversity declined more significantly in infected patients than in controls during the ICU stay, with the most pronounced changes in lung microbiota. We found an enrichment of Enterobacteriaceae and other Proteobacteria in the lung microbiome of pneumonia patients, while the gut microbiota remained relatively stable. Relative abundances of key taxa such as Mogibacterium were associated with mechanical ventilation duration. CONCLUSIONS This study reveals that distinct microbial patterns in both lung and gut microbiota are associated with infection and clinical outcomes in critically ill patients. Understanding these dynamics is crucial for developing targeted microbiota interventions, potentially improving outcomes such as VAP prevention and management. TRIAL REGISTRATION Ethics Committee of Canton Vaud, Switzerland (2017-01820).
Collapse
Affiliation(s)
- Antonios Kritikos
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Infectious Diseases, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Bernasconi
- Department of Respiratory Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yangji Choi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valentin Scherz
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Luc Pagani
- Intensive Care Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoit Guery
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Sawhney SS, Thänert R, Thänert A, Hall-Moore C, Ndao IM, Mahmud B, Warner BB, Tarr PI, Dantas G. Gut microbiome evolution from infancy to 8 years of age. Nat Med 2025:10.1038/s41591-025-03610-0. [PMID: 40175737 DOI: 10.1038/s41591-025-03610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025]
Abstract
The human gut microbiome is most dynamic in early life. Although sweeping changes in taxonomic architecture are well described, it remains unknown how, and to what extent, individual strains colonize and persist and how selective pressures define their genomic architecture. In this study, we combined shotgun sequencing of 1,203 stool samples from 26 mothers and their twins (52 infants), sampled from childbirth to 8 years after birth, with culture-enhanced, deep short-read and long-read stool sequencing from a subset of 10 twins (20 infants) to define transmission, persistence and evolutionary trajectories of gut species from infancy to middle childhood. We constructed 3,995 strain-resolved metagenome-assembled genomes across 399 taxa, and we found that 27.4% persist within individuals. We identified 726 strains shared within families, with Bacteroidales, Oscillospiraceae and Lachnospiraceae, but not Bifidobacteriaceae, vertically transferred. Lastly, we identified weaning as a critical inflection point that accelerates bacterial mutation rates and separates functional profiles of genes accruing mutations.
Collapse
Affiliation(s)
- Sanjam S Sawhney
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Thänert
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Thänert
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Feng J, Tang S, Yang X, Zhang M, Li Z, Zhang S, Han Y, Li Y, Monnier PP, Yu G, Zheng P, Zhang C, Xu K, Qin X. Landscapes of gut microbiome and blood metabolomic signatures in relapsing remitting multiple sclerosis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1042-1056. [PMID: 39821830 DOI: 10.1007/s11427-024-2653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/17/2024] [Indexed: 01/19/2025]
Abstract
Although disturbances in the gut microbiome have been implicated in multiple sclerosis (MS), little is known about the changes and interactions between the gut microbiome and blood metabolome, and how these changes affect disease-modifying therapy (DMT) in preventing the progression of MS. In this study, the structure and composition of the gut microbiota were evaluated using 16S rRNA gene sequencing and an untargeted metabolomics approach was used to compare the serum metabolite profiles from patients with relapsing-remitting MS (RRMS) and healthy controls (HCs). Results indicated that RRMS was characterized by phase-dependent α-phylogenetic diversity and significant disturbances in serum glycerophospholipid metabolism. Notably, α-phylogenetic diversity was significantly decreased in RRMS patients during the chronic phase (CMS) compared with those in the acute phase (AMS). A distinctive combination of two elevated genera (Slackia, Lactobacillus) and five glycerophospholipid metabolism-associated metabolites (four increased: GPCho(22:5/20:3), PC(18:2(9Z,12Z)/16:0), PE(16:0/18:2(9Z,12Z)), PE(18:1(11Z)/18:2(9Z,12Z)); one decreased: PS(15:0/22:1(13Z))) in RRMS patients when comparing to HCs. Moreover, a biomarker panel consisting of four microbial genera (three decreased: Lysinibacillus, Parabacteroides, UBA1819; one increased: Lachnoanaerobaculum) and two glycerophospholipid metabolism-associated metabolites (one increased: PE(P-16:0/22:6); one decreased: CL(i-12:0/i-16:0/i-17:0/i-12:0)) effectively discriminated CMS patients from AMS patients, which indicate correlation with higher disability. Additionally, DMTs appeared to attenuate MS progression by reducing UBA1819 and upregulating CL(i-12:0/i-16:0/i-17:0/i-12:0). These findings expand our understanding of the microbiome and metabolome roles in RRMS and may contribute to identifying novel diagnostic biomarkers and promising therapeutic targets.
Collapse
Affiliation(s)
- Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shi Tang
- Department of Neurology, The People's Hospital of Tongliang District, Chongqing, 402560, China
| | - Xiaolin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengjie Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhizhong Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shaoru Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Gang Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cunjin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Aranda-Díaz A, Willis L, Nguyen TH, Ho PY, Vila J, Thomsen T, Chavez T, Yan R, Yu FB, Neff N, DeFelice BC, Sanchez A, Estrela S, Huang KC. Assembly of stool-derived bacterial communities follows "early-bird" resource utilization dynamics. Cell Syst 2025:101240. [PMID: 40157357 DOI: 10.1016/j.cels.2025.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/19/2024] [Accepted: 02/24/2025] [Indexed: 04/01/2025]
Abstract
Diet can impact host health through changes to the gut microbiota, yet we lack mechanistic understanding linking nutrient availability and microbiota composition. Here, we use thousands of microbial communities cultured in vitro from human stool to develop a predictive model of community composition upon addition of single nutrients from central carbon metabolism to a complex medium. Among these communities, membership was largely determined by the donor stool, whereas relative abundances were determined by the supplemental carbon source. The absolute abundance of most taxa was independent of the supplementing nutrient due to the ability of a few organisms to quickly exhaust their niche in the complex medium and then exploit and monopolize the supplemental carbon source. Relative abundances of dominant taxa could be predicted from the nutritional preferences and growth dynamics of species in isolation, and exceptions were consistent with strain-level variation in growth capabilities. Our study reveals that assembly of this community of gut commensals can be explained by nutrient utilization dynamics that provide a predictive framework for manipulating community composition through nutritional perturbations.
Collapse
Affiliation(s)
- Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Po-Yi Ho
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jean Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Tani Thomsen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Taylor Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rose Yan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Alvaro Sanchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Sylvie Estrela
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Hu W, Wang Y, Han J, Zhang W, Chen J, Li X, Wang L. Microfluidic organ-on-a-chip models for the gut-liver axis: from structural mimicry to functional insights. Biomater Sci 2025; 13:1624-1656. [PMID: 40019226 DOI: 10.1039/d4bm01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The gut-liver axis plays a crucial role in maintaining metabolic balance and overall human health. It orchestrates various processes, such as blood flow, nutrient transfer, metabolite processing, and immune cell communication between the two organs. Traditional methods, such as animal models and two-dimensional (2D) cell cultures, are insufficient in fully replicating the intricate functions of the gut-liver axis. The emergence of microfluidic technology has revolutionized this field, facilitating the development of organ-on-a-chip (OOC) systems. These systems are capable of mimicking the complex structures and dynamic environments of the gut and liver in vitro and incorporating sensors for real-time monitoring. In this article, we review the latest progress in gut-on-a-chip (GOC) and liver-on-a-chip (LOC) systems, as well as the integrated gut-liver-on-a-chip (GLOC) models. Our focus lies in the simulation of physiological parameters, three-dimensional (3D) structural mimicry, microbiome integration, and multicellular co-culture. All these aspects are essential for constructing accurate in vitro models of the gut and liver. Furthermore, we explore the current applications of OOC technology in the study of the gut and liver, including its use in disease modeling, toxicity testing, and drug screening. Finally, we discuss the challenges that remain and outline potential future directions for advancing GOC and LOC development in vitro.
Collapse
Affiliation(s)
- Wanlin Hu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Yushen Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
16
|
Xue N, Feng Q, Zhu Y, Cheng C, Wang F, Liu D, Su S, Xu J, Hu J, Tao J. Full-length 16S rRNA sequencing revealed an altered microbiome diversity and composition of the jejunum and cecum in chicken infected with Eimeria necatrix. Vet Parasitol 2025; 336:110458. [PMID: 40139087 DOI: 10.1016/j.vetpar.2025.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Avian coccidiosis is an intestinal parasitic disease introduced by Eimeria spp., causing a major economic loss in the world poultry industry. Eimeria necatrix is the most pathogenic species that causes acute coccidiosis in chickens, leading to high mortality. Studies have shown that disruption of the gut environment due to Eimeria infection causes an imbalance in intestinal homeostasis. However, changes in the intestinal microbiota of chickens infected with E. necatrix remain unclear. In the present study, we performed full-length 16S ribosomal RNA amplicon sequencing to assess the effects of E. necatrix infection on jejunal and cecal microbiota at 4 and 10 days post-infection (dpi). The results showed that in both the infected and not infected groups at both time points, the most abundant phyla were Firmicutes, Proteobacteria and Bacteroidetes in the jejunum, and Firmicutes, Bacteroidetes and Proteobacteria in the cecum. The most common genera in the jejunum were Lactobacillus, Limosilactobacillus and Ligilactobacillus at 4 dpi, and Lactobacillus, Limosilactobacillus and Enterococcus in the infected group, and Lactobacillus, Limosilactobacillus and Streptococcus in the control group at 10 dpi. In the cecum, the most common genera were Phocaeicola, Lactobacillus and Alistipes at 4 dpi, and Lactobacillus, Phocaeicola and Alistipes in the infected group, and Lactobacillus, Phocaeicola and Bacteroides in the control group at 10 dpi. A total of 1528 species was annotated, and differences in relative abundance at the species level were analyzed using Lefse method. The results showed that the relative abundance of 23 species, including Acetilactobacillus jinshanensis, Anaerotruncus colihominis, Bacteroides heparinolyticus, Bacteroides ndongoniae, Bariatricus comes, Bifidobacterium gallinarum, Blautia coccoides, Butyricimonas paravirosa, Caproiciproducens galactitolivorans, Clostridioides difficile, Enterococcus cecorum, Escherichia coli, Intestinimonas timonensis, Lachnoanaerobaculum umeaense, Lactobacillus acetotolerans, Ligilactobacillus aviarius, Ligilactobacillus aviarius _B, Limosilactobacillus oris, Limosilactobacillus vaginalis, Megamonas funiformis, Plesiomonas shigelloides, Streptococcus pneumoniae, and Veillonella denticariosi, were significantly different between the infected and not infected groups. Our data reveal that E. necatrix infenction disrupts the integrity of gut microbiota, potentially promoting the establishment and growth of pathogenic bacteria; some species such as Bariatricus comes and Ligilactobacillus aviarius_B may be associated with the pathogenicity of the coccidian parasite and recovery of coccidiosis.
Collapse
Affiliation(s)
- Nianyu Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Qianqian Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Yu Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Cheng Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Feiyan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Junjie Hu
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China.
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
Ruiz-Moreno AJ, Del Castillo-Izquierdo Á, Tamargo-Rubio I, Fu J. MicrobeRX: a tool for enzymatic-reaction-based metabolite prediction in the gut microbiome. MICROBIOME 2025; 13:78. [PMID: 40108657 PMCID: PMC11921629 DOI: 10.1186/s40168-025-02070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The gut microbiome functions as a metabolic organ, producing numerous enzymes that influence host health; however, their substrates and metabolites remain largely unknown. RESULTS We present MicrobeRX, an enzyme-based metabolite prediction tool that employs 5487 human reactions and 4030 unique microbial reactions from 6286 genome-scale models, as well as 3650 drug metabolic reactions from the DrugBank database (v.5.1.12). MicrobeRX includes additional analysis modules for metabolite visualization and enzymatic and taxonomic analyses. When we applied MicrobeRX to 1083 orally administered drugs that have been approved in at least one jurisdiction at some point in time (DrugBank), it predicted metabolites with physicochemical properties and structures similar to metabolites found in biosamples (from MiMeDB). It also outperformed another existing metabolite prediction tool (BioTransformer 3.0) in terms of predictive potential, molecular diversity, reduction of redundant predictions, and enzyme annotation. CONCLUSIONS Our analysis revealed both unique and overlapping metabolic capabilities in human and microbial metabolism and chemo- and taxa-specific microbial biotransformations. MicrobeRX bridges the genomic and chemical spaces of the gut microbiome, making it a valuable tool for unlocking the chemical potential of the gut microbiome in human health, the food and pharmaceutical industries, and environmental safety. Video Abstract.
Collapse
Affiliation(s)
- Angel J Ruiz-Moreno
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
- Department of Pediatrics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
| | - Ángela Del Castillo-Izquierdo
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Isabel Tamargo-Rubio
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
- Department of Pediatrics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
| |
Collapse
|
18
|
Shi H, Li J. MAGs-based genomic comparison of gut significantly enriched microbes in obese individuals pre- and post-bariatric surgery across diverse locations. Front Cell Infect Microbiol 2025; 15:1485048. [PMID: 40171165 PMCID: PMC11958714 DOI: 10.3389/fcimb.2025.1485048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Obesity, a pressing global health issue, is intricately associated with distinct gut microbiota profiles. Bariatric surgeries, such as Laparoscopic Sleeve Gastrectomy (LSG), Sleeve Gastrectomy (SG), and Roux-en-Y Gastric Bypass (RYGB), induce substantial weight loss and reshape gut microbiota composition and functionality, yet their comparative impacts remain underexplored. Methods This study integrated four published metagenomic datasets, encompassing 500 samples, and employed a unified bioinformatics workflow for analysis. We assessed gut microbiota α-diversity, identified species biomarkers using three differential analysis approaches, and constructed high-quality Metagenome-Assembled Genomes (MAGs). Comparative genomic, functional profiling and KEGG pathway analyses were performed, alongside estimation of microbial growth rates via Peak-to-Trough Ratios (PTRs). Results RYGB exhibited the most pronounced enhancement of gut microbiota α-diversity compared to LSG and SG. Cross-cohort analysis identified 39 species biomarkers: 27 enriched in the non-obesity group (NonOB_Enrich) and 12 in the obesity group (OB_Enrich). Among the MAGs, 177 were NonOB_Enrich and 14 were OB_Enrich. NonOB_Enrich MAGs displayed enriched carbohydrate degradation profiles (e.g., GH105, GH2, GH23, GH43, and GT0 families) and higher gene diversity in fatty acid biosynthesis and secondary metabolite pathways, alongside significant enrichment in amino acid metabolism (KEGG analysis). Post-surgery, Akkermansia muciniphila and Bacteroides uniformis showed elevated growth rates based on PTRs. Discussion These findings underscore RYGB's superior impact on gut microbiota diversity and highlight distinct microbial functional adaptations linked to weight loss, offering insights for targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Jia Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Sun X, Zhai J. Research Status and Trends of Gut Microbiota and Intestinal Diseases Based on Bibliometrics. Microorganisms 2025; 13:673. [PMID: 40142565 PMCID: PMC11946491 DOI: 10.3390/microorganisms13030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Gut microbiota plays an important role in gut health, and its dysbiosis is closely related to the pathogenesis of various intestinal diseases. The field of gut microbiota and intestinal diseases has not yet been systematically quantified through bibliometric methods. This study conducted bibliometric analysis to delineate the evolution of research on gut microbiota and intestinal diseases. Data were sourced from the Web of Science Core Collection database from 2009 to 2023 and were scientometrically analyzed using CiteSpace. We have found that the number of annual publications has been steadily increasing and showing an upward trend. China and the Chinese Academy of Sciences are the country and institution with the most contributions, respectively. Frontiers in Microbiology and Nutrients are the journals with the most publications, while Plos One and Nature are the journals with the most citations. The field has shifted from focusing on traditional descriptive analysis of gut microbiota composition to exploring the causal relationship between gut microbiota and intestinal diseases. The research hotspots and trends mainly include the correlation between specific intestinal diseases and gut microbiota diversity, the mechanism of gut microbiota involvement in intestinal diseases, the exploration of important gut microbiota related to intestinal diseases, and the relationship between gut microbiota and human gut health. This study provides a comprehensive knowledge map of gut microbiota and intestinal diseases, highlights key research areas, and outlines potential future directions.
Collapse
Affiliation(s)
- Xiao Sun
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
| | - Jiancheng Zhai
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
20
|
Li L, Li T, Liang X, Zhu L, Fang Y, Dong L, Zheng Y, Xu X, Li M, Cai T, Zhao F, Xin M, Shao M, Guan Y, Liu M, Li F, Zhang C, Wang Q, Sun W, Zheng Y. A decrease in Flavonifractor plautii and its product, phytosphingosine, predisposes individuals with phlegm-dampness constitution to metabolic disorders. Cell Discov 2025; 11:25. [PMID: 40097405 PMCID: PMC11914097 DOI: 10.1038/s41421-025-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
According to traditional Chinese medicine (TCM) constitutional theory, individuals with phlegm-dampness constitution (PDC) are at increased risk for metabolic disorders. Previous studies have indicated that PDC individuals exhibit gene expression changes associated with metabolic disorders, even individuals with normal metabolic indices. However, the biological mechanisms underlying these changes remain unclear. The gut microbiota has recently emerged as a promising avenue for elucidating TCM principles. Here, we revealed that individuals with PDC have distinct gut microbiota and serum metabolite profiles. A decrease in phytosphingosine was associated with increased PDC scores and metabolic disorder severity. Subsequent experiments demonstrated that Flavonifractor plautii can biosynthesize phytosphingosine, which was also negatively correlated with the PDC score. Interestingly, both F. plautii and phytosphingosine levels decreased in PDC subjects with normal metabolic indices. Fecal transplantation from these individuals accelerated the development of metabolic disorders in mice. However, supplementation with F. plautii and phytosphingosine ameliorated metabolic disorders by increasing phytosphingosine levels in the gut‒hepatic axis. Mechanistic investigations confirmed that phytosphingosine can directly bind to hepatic peroxisome proliferator-activated receptor α (PPARα) and activate its nuclear transcription activity, thereby regulating downstream gene expression related to glucose‒lipid metabolism. Our research indicates that the decrease in F. plautii and its product, phytosphingosine, contributes to gene expression changes related to metabolic disorders in PDC individuals and increases their susceptibility to metabolic disorders. These findings suggest that diagnosing PDC may be beneficial for identifying at-risk populations among apparently healthy individuals, thereby advancing the broader field of metabolic disorder prevention and TCM integration.
Collapse
Affiliation(s)
- Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yi Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Mingrui Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Fufangyu Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Xin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Mingyan Shao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Guan
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyi Liu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Fangli Li
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China.
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
21
|
Ullah S, Feng F, Zhao M, Zhang J, Shao Q. Comparative Effects of Dietary Supplementations with Microencapsulated Sodium Butyrate, Glycerol Monolaurate and Tributyrin on Growth, Immunity, and Gut Health in Black Sea Bream. Animals (Basel) 2025; 15:810. [PMID: 40150339 PMCID: PMC11939239 DOI: 10.3390/ani15060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigates the effects of three dietary additives-microencapsulated sodium butyrate (MSB), glycerol monolaurate (GML), and tributyrin (TB)-on the growth performance, various physiological parameters, gene expression, intestinal morphology, and microflora in Acanthopagrus schlegelii (black sea bream). The experiment utilized a 43.5% soybean meal (SBM) inclusion diet with four isonitrogenous and isoenergetic formulations: a control diet, and diets supplemented with MSB (0.24%), GML (0.04%), or TB (0.22%). The growth trial spanned eight weeks, and triplicate tanks were randomly assigned to each diet, with each tank containing 30 fish, each having an initial weight of 1.55 ± 0.01 g. Key outcomes included measurements of weight gain, specific growth rate, digestive enzyme activity, serum immune markers, antioxidant status, and intestinal morphology and, gut microbiota. Additionally, gene expression and microbiota analysis were conducted on intestinal tissues to assess the impact of these additives on gut health and immune response. The findings revealed that all three additives enhanced growth performance and improved intestinal health and gut microbiota but GML exhibited the most pronounced effects on intestinal barrier function and immune modulation, gene expression, and microflora, followed by MSB and TB. This study provides a comprehensive comparison of MSB, GML, and TB as feed additives for black sea bream, offering insights into their potential for improving fish health and optimizing aquaculture feed formulations.
Collapse
Affiliation(s)
- Sami Ullah
- Zhejiang University Zhongyuan Institute, Zhengzhou 450001, China; (S.U.); (F.F.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Fengqin Feng
- Zhejiang University Zhongyuan Institute, Zhengzhou 450001, China; (S.U.); (F.F.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingjun Shao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 PMCID: PMC11894537 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
23
|
Bariod L, Fuentes E, Millet M, Jacquiod S, White J, Moreau J, Monceau K. Direct and indirect effects of pesticide exposure on the gut microbiota of a farmland raptor. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136857. [PMID: 39708601 DOI: 10.1016/j.jhazmat.2024.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Recent studies in humans have shown that certain pesticides could affect the composition and functions of the gut microbiota, an essential modulator of vertebrate physiology, leading to potential dysbiosis. However, this relationship remains largely unknown in wild birds despite the implications of pesticides in the current decline of farmland species. The present study sought to fill this gap by providing data on the association between pesticide concentrations in blood and gut microbiota characteristics in relation to individual traits in a farmland raptor, the Montagu's harrier (Circus pygargus). Results showed that females with higher body condition and higher pesticide load exhibited greater gut bacterial richness and diversity, while the relationship was opposite in males with higher body condition. In terms of taxonomic composition, Proteobacteria emerged as the dominant phylum across all nestlings. Differences in the abundance of specific phyla and genera were observed according to pesticide load, with higher levels of Bacteroidota and Leifsonia, but lower levels of Bulkholderia, in nestlings with higher pesticide concentrations in their blood. This study highlights differences in microbiota and contamination by several pesticides according to the phenotypic characteristics of a wild raptor, and shows that farmland birds can represent relevant biosentinels for assessing the health/proper functioning of ecosystems (One Health approach).
Collapse
Affiliation(s)
- Léa Bariod
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, Villiers en Bois 79360, France.
| | - Elva Fuentes
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, Villiers en Bois 79360, France.
| | - Maurice Millet
- Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087 Strasbourg cedex 2, France.
| | - Samuel Jacquiod
- Agroécologie, Institut Agro Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
| | - Joël White
- Centre de Recherche sur la Biodiversité et l'Environnement, UMR 5300, CNRS-IRD-UT3-INPT 5174, 118 Route de Narbonne, Toulouse F-31062, France; Ecole Nationale Supérieure de Formation de l'Enseignement Agricole, Castanet-Tolosan, 31320, France.
| | - Jérôme Moreau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, Villiers en Bois 79360, France; Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, Dijon 21000, France.
| | - Karine Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, Villiers en Bois 79360, France; LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, Villiers-en-Bois 79360, France.
| |
Collapse
|
24
|
Chen L, Wu LL, Yu CY, Xu ZC, Huang H. Bibliometric analysis of the intestinal microbiota and demyelinating diseases, particularly multiple sclerosis, since 2014. Front Neurosci 2025; 19:1506566. [PMID: 40109663 PMCID: PMC11919904 DOI: 10.3389/fnins.2025.1506566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Background The gut-brain axis (GBA) represents a complex, bidirectional communication network that connects the central nervous system (CNS) and the gastrointestinal system. Our study aimed to explore the correlation between the intestinal microbiota and demyelinating diseases from a bibliometric perspective, focusing on research since 2014. Methods A comprehensive search was carried out on the Web of Science Core Collection (WoSCC) to locate studies on the intestinal microbiota and demyelinating diseases, with a focus on publications from 1 January 2014 to 29 March 2024. We visualized and analyzed the data using VOSviewer, CiteSpace, and Charticulator. Results We gathered 429 scholarly articles on the intestinal microbiota and demyelinating disorders published in the past 10 years. Research concerning the intestinal microbiota and demyelinating diseases has demonstrated a consistent increase in frequency over time. The USA has the highest number of publications, while Canada has the highest average number of citations, reaching as high as 3,429, which is greater than that of the USA. Moreover, the journal with the highest number of publications was Frontiers in Immunology, with 33 publications and 1,494 citations. The majority of the scholars focused on "multiple sclerosis" and "gut microbiota," which are the primary keywords in the field of the intestinal microbiota and demyelinating diseases. Conclusion This study conducted a comprehensive analysis of existing research investigating the correlation between the intestinal microbiota and demyelinating diseases. Using advanced bibliometric tools such as VOSviewer and CiteSpace, this study analyzed the intricate relationship between the intestinal microbiota and the pathogenesis of demyelinating conditions. In addition, the study used literature statistical analysis to identify research hotspots and future directions in the field.
Collapse
Affiliation(s)
- Ling Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Le-Le Wu
- Department of Neurology, Xinqiao Hospital and the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zu-Cai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Zhang W, Zong Y, Zhang J, Ai J, He H, Li L, Peng S, Zhou H, Wang D, Wang Q. Mechanistic insights into the viral microorganism inactivation during lime stabilization for wastewater sludges. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136884. [PMID: 39689559 DOI: 10.1016/j.jhazmat.2024.136884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The pathogens inactivation in wastewater sludges is vitally important for safely managing solid wastes and protecting public and environmental health especially in the emergency. Reports have shown the effectiveness of lime to kill virus pathogens in sludges, but mechanism of virus inactivation and related human diseases is unclear. This study evaluated representative limes of CaO/CaO2 on actual viral microorganism inactivation by viral metagenomic sequencing technology. As results, the CaO2 treatment enhanced the sludge hydrolysis and enveloped viral pathogens suppression via EPS structure destruction by oxidative radical generations; while CaO suppressed most of none-enveloped plant related viral pathogens. Most of the viromes of plant virus including Virgaviridae and Nodaviridae were inactivated by CaO, but the human virus-Feirsviridae and plant virus-Solemoviridae were occurred after lime stabilization compared to untreated sludge, with abundances of 1 %-37 % and 21 %-32 % in CaO-treated (CaO-T) and CaO2-treated (CaO2-T) samples, respectively. In addition, metatranscriptome analysis revealed distinct gene expression patterns between the CaO-T and CaO2-T sludges, in which lipopolysaccharide biosynthesis (LPS) and aminoacyl-tRNA synthetases (ARSs) in CaO-T, the formation of ribosome in CaO2-T were crucial to RNA virus regrowth in sludge. These findings suggested neither of CaO and CaO2 could completely suppress pathogens in sludge, and the effect of representative limes of CaO and CaO2 on the viral pathogen diversity, abundance, and metabolic function of the core microbiome on virus suppression and regrowth were ignored. Therefore, combined processes were recommended to provide possible alternatives for sludge safe management in pandemic emergencies.
Collapse
Affiliation(s)
- Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxi Zong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jianbo Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Hang He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Sainan Peng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- College of Environmental and Resource Science of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
26
|
Chen Y, Zhang Y, Dai M, Qiu C, Sun Q, Fan T, Guo Y, Zhao L, Jiang Y. γ-Linolenic acid derived from Lactobacillus plantarum MM89 induces ferroptosis in colorectal cancer. Food Funct 2025; 16:1760-1771. [PMID: 39924991 DOI: 10.1039/d4fo04790g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide; however, current treatment options are inadequate, necessitating the exploration of new therapeutic strategies. The microbiota significantly influences the tumor microenvironment, suggesting that probiotics may serve as promising candidates for cancer treatment. We previously identified a novel probiotic, Lactobacillus plantarum MM89 (L. plantarum MM89), which was found to regulate the immune microenvironment. However, its specific role in CRC remained unclear. In this study, we employed an azoxymethane/dextran sodium sulfate-induced carcinogenesis mouse model to evaluate the therapeutic effects of L. plantarum MM89 in vivo. Transcriptome analysis was conducted to elucidate the mechanisms of action of L. plantarum MM89. Ferroptosis induction in tumor cells was assessed through cell viability assays and C11-BODIPY staining. Liquid chromatography/mass spectrometry was used to identify metabolites derived from L. plantarum MM89. MitoTracker and MitoTracker CMXRos staining and ATP content measurements were performed to assess mitochondrial damage. L. plantarum MM89 significantly inhibited tumor growth in vivo and alleviated intestinal inflammation at non-tumor foci. Transcriptome analysis and immunohistochemistry revealed that L. plantarum MM89 enhanced arachidonic acid metabolism. Small molecules present in the L. plantarum MM89 supernatant induced ferroptosis in cancer cells, as indicated by cell viability and C11-BODIPY assays. Furthermore, γ-linolenic acid (γ-LA) derived from L. plantarum MM89 was shown to induce ferroptosis via mitochondrial damage. In conclusion, γ-LA derived from L. plantarum MM89 triggers ferroptosis in tumor cells by inducing mitochondrial damage, highlighting its potential as a novel therapeutic agent for CRC treatment.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Yijie Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
| | - Mengmeng Dai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Cheng Qiu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Qinsheng Sun
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuan Guo
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| | - Yuyang Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Zheng T, Meng C, Lv Z, Wu C, Zhou X, Mao W. The Critical Role of Faecalibacterium prausnitzii in Cardiovascular Diseases. Rev Cardiovasc Med 2025; 26:26740. [PMID: 40160596 PMCID: PMC11951488 DOI: 10.31083/rcm26740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 04/02/2025] Open
Abstract
Due to the continued aging of the global population, cardiovascular diseases (CVDs) remain the main cause of death worldwide, with millions of fatalities from diseases, including stroke and coronary artery disease, reported annually. Thus, novel therapeutic approaches and targets are urgently required for diagnosing and treating CVDs. Recent studies emphasize the vital part of gut microbiota in both CVD prevention and management. Among these, Faecalibacterium prausnitzii (F. prausnitzii) has emerged as a promising probiotic capable of improving intestinal health. Although preliminary investigations demonstrate that F. prausnitzii positively enhances cardiovascular health, research specifically connecting this strain to CVD outcomes remains limited. Based on current research and assessment of possible clinical applications, this paper aimed to investigate the positive effects on cardiovascular health using F. prausnitzii and its metabolites. Targeting gut flora is expected to become a mainstay in CVD treatment as research develops.
Collapse
Affiliation(s)
- Tiantian Zheng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Chenchen Meng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Zhengtian Lv
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Chenxia Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
- Department of Cardiology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310030 Hangzhou, Zhejiang, China
| | - Xinbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 310006 Hangzhou, Zhejiang, China
| | - Wei Mao
- Department of Cardiology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310030 Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, 310030 Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Fu C, Pan X, Wu J, Cai J, Huang Z, van Harmelen F, Zhao W, Jiang X, He T. KG4NH: A Comprehensive Knowledge Graph for Question Answering in Dietary Nutrition and Human Health. IEEE J Biomed Health Inform 2025; 29:1793-1804. [PMID: 38039180 DOI: 10.1109/jbhi.2023.3338356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
It is commonly known that food nutrition is closely related to human health. The complex interactions between food nutrients and diseases, influenced by gut microbial metabolism, present challenges in systematizing and practically applying knowledge. To address this, we propose a method for extracting triples from a vast amount of literature, which is used to construct a comprehensive knowledge graph on nutrition and human health. Concurrently, we develop a query-based question answering system over our knowledge graph, proficiently addressing three types of questions. The results show that our proposed model outperforms other state-of-art methods, achieving a precision of 0.92, a recall of 0.81, and an F1 score of 0.86 in the nutrition and disease relation extraction task. Meanwhile, our question answering system achieves an accuracy of 0.68 and an F1 score of 0.61 on our benchmark dataset, showcasing competitiveness in practical scenarios. Furthermore, we design five independent experiments to assess the quality of the data structure in the knowledge graph, ensuring results characterized by high accuracy and interpretability. In conclusion, the construction of our knowledge graph shows significant promise in facilitating diet recommendations, enhancing patient care applications, and informing decision-making in clinical research.
Collapse
|
29
|
Peñalver Bernabé B, Oliveira ML, Wolf PG, McLeod A, Gabel K, Cares K, Robinson N, DiPiazza B, Varady K, Tussing-Humphreys L. Intermittent Fasting: Implications for Obesity-Related Colorectal Tumorigenesis. Endocrinol Metab Clin North Am 2025; 54:61-83. [PMID: 39919878 DOI: 10.1016/j.ecl.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Obesity is associated with metabolic and immune perturbations (ie, insulin resistance, increased inflammation, and oxidative stress), circadian rhythm dysregulation, and gut microbial changes that can promote colorectal tumorigenesis. Colorectal cancer (CRC) is the third most incident cancer in the United States. This narrative review examines the effects of intermittend fasting on factors influencing colon tumorigenesis, such as body weight, metabolic and immune markers, circadian rythm, and the gut microbiota in humans. Findings suggest that intermittent fasting regimens can lead to weight loss and shifts in metabolic markers, which could be preventive for CRC but effects on the gut microbiota composition and functions still remains elusive.
Collapse
Affiliation(s)
- Beatriz Peñalver Bernabé
- Department of Biomedical Engineering, University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, USA; Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| | - Patricia G Wolf
- Department of Nutrition Science, Purdue University, 700 Mitch Daniels Boulevard, West Lafayette, IN, USA; Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Andrew McLeod
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; Department of Nutrition Science, Purdue University, 700 Mitch Daniels Boulevard, West Lafayette, IN, USA
| | - Kate Cares
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Nadia Robinson
- College of Nursing, University of Illinois Chicago, 845 South Damen Avenue, MC 802, Chicago, IL, USA
| | - Brittany DiPiazza
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
30
|
Guo L, Lan Q, Zhou M, Liu F. From gut to kidney: microbiota modulates stone risk through inflammation-a mediated Mendelian randomization study. Mamm Genome 2025; 36:250-261. [PMID: 39718578 DOI: 10.1007/s00335-024-10094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
The gut microbiota (GM) can affect the immune system, which can lead to a variety of diseases, as confirmed by many studies. However, the exact mechanism by which GM affects kidney stone incidence through the immune system remains unclear. This study used a two-step, two-sample Mendelian randomization (MR) analysis by inverse variance weighting (IVW) method as well as Bayesian weighting (BWMR) to find out how the gut microbiota and inflammatory cytokines contribute to kidney stones, followed by a mediated MR analysis to exploreHow inflammatory cytokines are involved in the connection with the gut microbiota and kidney stones. MR analysis revealed that seven intestinal flora were protective against kidney stones, including family. Actinomycetaceae, family.Clostridiaceae1, genus.Clostridiumsensustricto1, genus. Hungatella, genus.LachnospiraceaeUCG001, genus.LachnospiraceaeUCG008 and order. Actinomycetales, while four intestinal flora, including genus. Haemophilus, genus. RuminococcaceaeUCG010, order.Rhodospirillales and phylum.Actinobacteria may increase the risk of kidney stones. In addition, it was confirmed that seven Inflammatory cytokines DNER, IL-18, IL-1α, SLAMF1, STAMPB, CST5 and FGF-5 in association with kidney stones. Notably, the mediating MR indicated the causal effect of phylum. Actinobacteria and order. Rhodospirillales gut group on kidney stones was mainly modulated by IL-18 levels, with mediating effects accounting for 15.8% and 12.8% of the total effect, respectively. The present study demonstrates this phylum. Actinobacteria and order. Rhodospirillales flora have an important role in reducing the risk of kidney stones and act mainly by modulating IL-18 levels.
Collapse
Affiliation(s)
- Long Guo
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qing Lan
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Min Zhou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Liu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
31
|
Yang J, Lin J, Chen X, Li C, Wang Y, Xie J. Tailored strategies based on polysaccharide structural and functional properties for nutrients delivery in inflammatory bowel disease. Carbohydr Polym 2025; 351:123129. [PMID: 39779033 DOI: 10.1016/j.carbpol.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Many food nutrients suffer from a series of limitations such as poor water solubility, low stability and inadequate bioavailability. These challenges can be effectively improved by food-based delivery systems (FDSs). FDSs are a series of functional carriers developed based on food-borne macromolecules. Natural polysaccharides are widely used in FDSs due to their good bioactivity, functional properties, and biocompatibility. The complex structural and physicochemical properties of polysaccharides have led to the extremely diverse development of FDSs based on polysaccharides. This review summarizes the application of natural polysaccharides from different sources in the development of different types of FDSs and their functional properties. It also emphasizes the feasibility and theoretical strategies to tailor satisfactory properties (shape, size, surface charge and targeting properties) of polysaccharides-based oral delivery systems (PODS) based on the diverse structural characteristics (e.g., solubility, ion type, molecular weight) and bioactivities of polysaccharides. PODS are designed to meet the diverse requirements in term of stability, toxicity, adhesion, cellular uptake, retention time and release behavior. This review also discusses the advantages of PODS in addressing nutrient deficiencies in gastrointestinal environment, with a focus on their role in nutritional interventions for inflammatory bowel disease. This review contributed to the development for novel PODS with specific demand.
Collapse
Affiliation(s)
- Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Jieqiong Lin
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
32
|
Laptev GY, Tiurina DG, Yildirim EA, Gorfunkel EP, Ilina LA, Filippova VA, Dubrovin AV, Dubrovina AS, Brazhnik EA, Novikova NI, Melikidi VK, Sokolova KA, Ponomareva ES, Zaikin VA, Griffin DK, Romanov MN. Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers. J Zhejiang Univ Sci B 2025; 26:185-199. [PMID: 40015937 PMCID: PMC11867781 DOI: 10.1631/jzus.b2300767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2025]
Abstract
Drugs and pesticide residues in broiler feed can compromise the therapeutic and production benefits of antibiotic (ANT) application and affect gene expression. In this study, we analyzed the expression of 13 key pancreatic genes and blood physiology parameters after administering one maximum residue limit of herbicide glyphosate (GLY), two ANTs, and one anticoccidial drug (AD). A total of 260 Ross 308 broilers aged 1-40 d were divided into the following four groups of 65 birds each: control group, which was fed the main diet (MD), and three experimental groups, which were fed MD supplemented with GLY, GLY+ANTs (enrofloxacin and colistin methanesulfonate), and GLY+AD (ammonium maduramicin), respectively. The results showed that the addition of GLY, GLY+ANTs, and GLY+AD caused significant changes in the expression of several genes of physiological and economic importance. In particular, genes related to inflammation and apoptosis (interleukin 6 (IL6), prostaglandin-endoperoxide synthase 2 (PTGS2), and caspase 6 (CASP6)) were downregulated by up to 99.1%, and those related to antioxidant protection (catalase (CAT), superoxide dismutase 1 (SOD1) and peroxiredoxin 6 (PRDX6)) by up to 98.6%, compared to controls. There was also a significant decline in the values of immunological characteristics in the blood serum observed in the experimental groups, and certain changes in gene expression were concordant with changes in the functioning of the pancreas and blood. The changes revealed in gene expression and blood indices in response to GLY, ANTs, and AD provide insights into the possible mechanisms of action of these agents at the molecular level. Specifically, these changes may be indicative of physiological mechanisms to overcome the negative effects of GLY, GLY+ANTs, and GLY+AD in broilers.
Collapse
Affiliation(s)
- Georgi Yu Laptev
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Daria G Tiurina
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Elena A Yildirim
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia.
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia.
| | - Elena P Gorfunkel
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Larisa A Ilina
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia
| | - Valentina A Filippova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia
| | - Andrei V Dubrovin
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Alisa S Dubrovina
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Evgeni A Brazhnik
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Natalia I Novikova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Veronika K Melikidi
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Kseniya A Sokolova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Ekaterina S Ponomareva
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Vasiliy A Zaikin
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Darren K Griffin
- School of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Michael N Romanov
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia. ,
- School of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK. ,
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand. ,
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Oblast 142132, Russia. ,
| |
Collapse
|
33
|
Yin X, Xiao M, Sun J, Feng J, Xia S, Li F, Liu X, Li J. Trajectory of gut microbiota before and after pediatric cardiopulmonary bypass surgery. Front Cell Infect Microbiol 2025; 14:1470925. [PMID: 40018264 PMCID: PMC11865025 DOI: 10.3389/fcimb.2024.1470925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/30/2024] [Indexed: 03/01/2025] Open
Abstract
Background Varied congenital heart disease (CHD) may induce gut microbiota dysbiosis due to intestinal hypoperfusion or/and hypoxemia. Microbiota dysbiosis has been found in preoperative infants and cardiopulmonary bypass (CPB) exacerbated it further. However, the trajectory of gut microbiota from pre- to early post-CPB and one-year later remains unexplored. We examined this trajectory in the two most common CHDs, i.e., left-to-right shunt (ventricular septal defect, VSD) vs. right-to-left shunt (tetralogy of Fallot, TOF). Methods We enrolled 13 infants with VSD and 11 with TOF, and collected fecal samples at pre- and early post-CPB. 10 and 12 age- and gender-matched healthy control infants were enrolled respectively. We also enrolled 13 and 9 gender- and CHD diagnosis- and operation-matched one-year post-CPB patients, and 8 age- and gender-matched healthy control children. 16S rRNA sequencing of fecal samples were performed. Results Compared to the control groups, both VSD and TOF pre-CPB groups had significantly increased Enterobacteriaceae and Shigella, and decreased Bifidobacterium (Ps ≤ 0.049). No significant change in microbial community diversity was observed between pre- and early post-CPB periods (Ps≥0.227). Compared with early post-CPB, one-year post-CPB groups had significantly increased short-chain fatty acids-producing microbes (Ps ≤ 0.025), and their microbial communities were close to that of the control group (Ps≥0.102). There was no significant difference in microbial communities between VSD and TOF groups in any of 3 periods (Ps≥0.055). Conclusion In children with VSD or TOF, gut microbiota dysbiosis existed preoperatively and were not significantly altered by CPB. One-year post-CPB, microbiota significantly improved towards normal. Similar microbial communities were found between children with VSD and TOF throughout the perioperative and long-term postoperative periods.
Collapse
Affiliation(s)
- Xi Yin
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Minhua Xiao
- Department of Nutrition, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Jing Sun
- Department of Nutrition, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Jinqing Feng
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Shuliang Xia
- Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Fengxiang Li
- Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Xihong Liu
- Department of Nutrition, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
34
|
Zhao J, Tian H, Kong X, Dang D, Liu K, Su C, Lian H, Gao T, Fu T, Zhang L, Li W, Zhang W. Microbiomic and Metabolomic Insights into the Mechanisms of Alfalfa Polysaccharides and Seaweed Polysaccharides in Alleviating Diarrhea in Pre-Weaning Holstein Calves. Animals (Basel) 2025; 15:485. [PMID: 40002967 PMCID: PMC11851682 DOI: 10.3390/ani15040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Neonatal calves' diarrhea, which can be severe enough to cause death, has a significant impact on the global cattle industry. In this study, alfalfa polysaccharides and seaweed polysaccharides were found to significantly improve the diarrhea condition in neonatal calves. To explore the underlying mechanisms, further microbiomic and metabolomic analyses were conducted. This study investigated the impact of alfalfa polysaccharides and seaweed polysaccharides on growth performance, serum metabolites, gut microbiota, and metabolomics in neonatal Holstein calves. A total of 24 newborn calves were randomly assigned to three groups, with 8 calves per treatment group. The control (CON) group was fed a basal diet, the alfalfa polysaccharide (AP) group received a basal diet supplemented with alfalfa polysaccharides (4 g/calf/day), and the seaweed polysaccharide group (SP) received a basal diet supplemented with seaweed polysaccharides (4 g/calf/day). These polysaccharides were plant extracts. Compared to the CON group, the results indicated that SP significantly enhanced the body weight, height, chest circumference, and average daily gain of Holstein calves (p < 0.05), while also reducing the diarrhea rate and improving manure scoring (p < 0.05). Compared to the CON, AP also reduced the diarrhea rate (p < 0.05). In terms of serum biochemistry, supplementation with AP and SP increased serum alkaline phosphatase (ALP) and insulin-like growth factor 1 (IGF-1) levels compared to the CON group (p < 0.05). Both AP and SP elevated serum catalase (CAT) and Total Antioxidant Capacity (T-AOC) levels, indicating enhanced antioxidant status (p < 0.05). Regarding immune responses, supplementation with AP and SP significantly increased serum complement component 3 (C3) and immunoglobulin M (IgM) levels, while significantly reducing pro-inflammatory cytokines interleukin-18 (IL-18), tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ) compared to the CON group (p < 0.05). Microbiota analysis revealed that AP modulated the abundance of Firmicutes, while SP influenced the abundance of Prevotella and Succiniclasticum. AP and SP differentially influenced intestinal metabolites compared to the CON group, leading to enrichment in pathways related to immunity, antibacterial, and anti-inflammatory functions. These pathways included the biosynthesis of alkaloids from ornithine, lysine, and nicotinic acid, glucocorticoid and mineralocorticoid receptor canothersis/antagonists, secondary metabolite biosynthesis, and alkaloid biosynthesis from histidine and purine, thus alleviating intestinal inflammation. Therefore, by supplementing with AP and SP, the diarrhea rate in calves was reduced, and the immune function of Holstein calves was enhanced, while simultaneously promoting a higher relative abundance of beneficial gut bacteria and suppressing the relative abundance of pathogenic bacteria. Additionally, gut pathways associated with immune response and inflammation were modulated by AP and SP. This study provided valuable insights and theoretical underpinnings for the use of AP and SP in preventing diarrhea in neonatal calves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wenqing Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.Z.); (H.T.); (X.K.); (D.D.); (K.L.); (C.S.); (H.L.); (T.G.); (T.F.); (L.Z.)
| | - Wei Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.Z.); (H.T.); (X.K.); (D.D.); (K.L.); (C.S.); (H.L.); (T.G.); (T.F.); (L.Z.)
| |
Collapse
|
35
|
Reheman A, Wang Z, Gao R, He J, Huang J, Shi C, Qi M, Feng X. Effect of Ascites Syndrome on Diversity of Cecal Microbiota of Broiler Chickens. Vet Sci 2025; 12:126. [PMID: 40005886 PMCID: PMC11860267 DOI: 10.3390/vetsci12020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Ascites syndrome (AS) is a metabolic disease that seriously affects the growth and development of broiler chickens. Intestinal microbiota play a significant role in the growth of broiler chickens. Therefore, further research on the relationship between AS and intestinal microbiota will help to better understand the impact of AS on broiler growth. In this study, 0.2% sodium chloride was added to the drinking water, which induced AS in broiler chickens, and we detected the influence of AS on the growth performance and cecal microbiota of broiler chickens. The results showed that AS significantly reduced the cecal microbial diversity of broiler chickens and affected the cecal microbial composition at the phylum and genus levels (p = 0.05). Further, LEfSe analysis revealed that AS significantly increased the abundance of Bacteroidetes (p = 0.035) while simultaneously reducing the abundance of Actinobacteria (p = 0.031) in the cecum. Additionally, the differential metabolites associated with polycyclic aromatic hydrocarbon degradation were significantly diminished. The findings suggest that AS may further impact the growth rate of broiler chickens by altering cecal microorganisms.
Collapse
Affiliation(s)
- Aikebaier Reheman
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (A.R.); (M.Q.)
| | - Zhichao Wang
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar 843300, China; (Z.W.); (R.G.); (J.H.)
| | - Ruihuan Gao
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar 843300, China; (Z.W.); (R.G.); (J.H.)
| | - Jiang He
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar 843300, China; (Z.W.); (R.G.); (J.H.)
| | - Juncheng Huang
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China; (J.H.); (C.S.)
| | - Changqing Shi
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China; (J.H.); (C.S.)
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (A.R.); (M.Q.)
| | - Xinwei Feng
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (A.R.); (M.Q.)
| |
Collapse
|
36
|
Lista S, Munafò A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-País M, Crespo-Escobar P, López-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A. Gut microbiota in Alzheimer's disease: Understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 2025; 104:102659. [PMID: 39800223 DOI: 10.1016/j.arr.2025.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks. Additionally, we examine other pathophysiological mechanisms by which GM may influence AD risk, including the production of short-chain fatty acids, secondary bile acids, and tryptophan metabolites. The role of the vagus nerve in gut-brain communication is also addressed. We highlight potential therapeutic implications of targeting GM in AD, focusing on antibiotics, probiotics, prebiotics, postbiotics, phytochemicals, and fecal microbiota transplantation. While preclinical studies showed promise, clinical evidence remains limited and inconsistent. We critically assess clinical trials, emphasizing challenges in translating GM-based therapies to AD patients. The reviewed evidence underscores the need for further research to elucidate precise molecular mechanisms linking GM to AD and determine whether GM dysbiosis is a contributing factor or consequence of AD pathology. Future studies should focus on large-scale clinical trials to validate GM-based interventions' efficacy and safety in AD.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Antonio Munafò
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | | | | | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - María Merino-País
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Rome 00133, Italy.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| |
Collapse
|
37
|
Litchman E. Climate change effects on the human gut microbiome: complex mechanisms and global inequities. Lancet Planet Health 2025; 9:e134-e144. [PMID: 39986317 DOI: 10.1016/s2542-5196(24)00332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 02/24/2025]
Abstract
Ongoing global climate change is affecting all aspects of life on Earth, including human health. The gut microbiota is an important determinant of health in humans and other organisms, but how climate change affects gut microbiota remains largely unexplored. In this Review, I discuss how the changing climate might affect gut microbiota by altering the quantity and quality of food, as well as environmental microbiomes, such as enteric pathogen pressure and host physiology. Climate change-induced variability in food supply, shifts in elemental and macromolecular composition of plant and animal food, the proliferation of enteric pathogens, and the direct effects of high temperatures on gut physiology might alter gut microbiota in undesirable ways, increasing the health burden of climate change. The importance of different pathways might depend on many geographical, economic, and ecological factors. Microbiomes of populations in low-income countries might be disproportionally affected through greater climate change effects and poor mitigation on diet, pathogen burden, and host physiology.
Collapse
Affiliation(s)
- Elena Litchman
- Kellogg Biological Station and Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA.
| |
Collapse
|
38
|
da Silva RS, de Paiva IHR, Mendonça IP, de Souza JRB, Lucena-Silva N, Peixoto CA. Anorexigenic and anti-inflammatory signaling pathways of semaglutide via the microbiota-gut--brain axis in obese mice. Inflammopharmacology 2025; 33:845-864. [PMID: 39586940 DOI: 10.1007/s10787-024-01603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
Our study focused on a mouse model of obesity induced by a high-fat diet (HFD). We administered Semaglutide intraperitoneally (Ozempic ®-0.05 mg/Kg-translational dose) every seven days for six weeks. HFD-fed mice had higher blood glucose, lipid profile, and insulin resistance. Moreover, mice fed HFD showed high gut levels of TLR4, NF-kB, TNF-α, IL-1β, and nitrotyrosine and low levels of occludin, indicating intestinal inflammation and permeability, culminating in higher serum levels of IL-1β and LPS. Treatment with semaglutide counteracted the dyslipidemia and insulin resistance, reducing gut and serum inflammatory markers. Structural changes in gut microbiome were determined by 16S rRNA sequencing. Semaglutide reduced the relative abundance of Firmicutes and augmented that of Bacteroidetes. Meanwhile, semaglutide dramatically changed the overall composition and promoted the growth of acetate-producing bacteria (Bacteroides acidifaciens and Blautia coccoides), increasing hypothalamic acetate levels. Semaglutide intervention increased the number of hypothalamic GLP-1R+ neurons that mediate endogenous action on feeding and energy. In addition, semaglutide treatment reversed the hypothalamic neuroinflammation HDF-induced decreasing TLR4/MyD88/NF-κB signaling and JNK and AMPK levels, improving the hypothalamic insulin resistance. Also, semaglutide modulated the intestinal microbiota, promoting the growth of acetate-producing bacteria, inducing high levels of hypothalamic acetate, and increasing GPR43+ /POMC+ neurons. In the ARC, acetate activated the GPR43 and its downstream PI3K-Akt pathway, which activates POMC neurons by repressing the FoxO-1. Thus, among the multifactorial effectors of hypothalamic energy homeostasis, possibly higher levels of acetate derived from the intestinal microbiota contribute to reducing food intake.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil.
| |
Collapse
|
39
|
Wang J, Wu Y, Yang J, Ying S, Luo H, Zha L, Li Q. Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice. Food Res Int 2025; 201:115634. [PMID: 39849761 DOI: 10.1016/j.foodres.2024.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/30/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206). After 4 weeks, HFD-fed mice were further allotted to HFD, GDM, GDM + XOS, GDM + Akk, GDM + XOS + Akk, GDM + PGF, GDM + PGF + XOS, GDM + PGF + Akk, and GDM + PGF + XOS + Akk groups (n ≥ 19). GDM was induced by intraperitoneally injecting streptozotocin and PGF was established by intragastrically administrating antibiotic cocktails. XOS (500 mg/kg·BW) or/and Akk (4 × 108 CFU) were gavaged once a day for 10 days. Fasting blood glucose (FBG), insulin, oral glucose tolerance test (OGTT) and insulin signaling pathway were determined. Gut microbiota were detected by 16S rRNA sequencing and absolute quantities of Akk by qRT-PCR. Intestinal tissues were stained by Hematoxylin-Eosin and Periodic acid-Schiff-Alcian blue staining. Occludin and Zonula occludens-1 (ZO-1) in intestine, Natural killer group 2 member D (NKG2D) on intestinal epithelial lymphocytes (IELs) and NKG2D ligands (NKG2DL) on intestinal epithelial cells (IECs) were detected by Western blotting. In GDM mice, XOS, Akk and XOS + Akk reduced (p < 0.05) the area under the curve of OGTT (AUC), insulin and homeostasis model assessment of insulin resistance (HOMA-IR), and increased (p < 0.05) protein kinase B (Akt) phosphorylation in liver and insulin receptor substrate 1 (IRS-1) phosphorylation in muscle. Furthermore, XOS + Akk reduced (p < 0.05) FBG and increased (p < 0.05) Akt phosphorylation in muscle and IRS-1 phosphorylation in liver. XOS, Akk and XOS + Akk reshaped gut microbiota with XOS + Akk exhibiting the greatest effectiveness. XOS increased (p < 0.05) Akk and clearance of gut microbiota abolished such effect. XOS, Akk and XOS + Akk reduced (p < 0.05) the small intestine Chiu's score and the colon Dieleman's scores, increased (p < 0.05) ZO-1 and Occludin, and reduced (p < 0.05) NKG2D on IELs and NKG2DLs (H60, MULT-1, Rae-1ε) on IECs. Moreover, XOS + Akk reduced (p < 0.05) MULT-1 in duodenum. Collectively, XOS and Akk synergistically ameliorate IR by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in GDM mice.
Collapse
Affiliation(s)
- Jiexian Wang
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Yanhua Wu
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Junyi Yang
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Shihao Ying
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Qing Li
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
40
|
Chen C, Wang J, Cheng M, Xie H, Li W, Zhang C. Muribaculum intestinale-derived 3-hydroxybutyric acid from Heterophyllin B attenuated pulmonary fibrosis through IDO1-mediated ferroptosis. Pharmacol Res 2025; 212:107587. [PMID: 39778639 DOI: 10.1016/j.phrs.2025.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Pulmonary fibrosis (PF) is a fatal disease with increasing incidence, poor prognosis, and unclear pathogenesis. Our previous research demonstrated the beneficial effects of the natural cyclopeptide Heterophyllin B (HB) in PF. However, the precise mechanism by which HB exerts its effects in PF remains unclear. Our study revealed HB's beneficial effects in alleviating PF symptoms and restoring the intestinal mucosal barrier. Subsequently, the microbiota-dependent antifibrotic efficacy of HB was verified using various delivery routes, antibiotic treatments, and faecal microbiota transplantation. Functionally, 16S rRNA sequencing, untargeted metabolomics, and co-incubation experiments revealed that the antifibrotic efficacy of HB was primarily contingent on the enrichment of Muribaculum intestinale and its metabolite, 3-hydroxybutyric acid. Mechanistically, indoleamine 2,3- dioxygenase 1 (IDO1)-mediated ferroptosis was identified as a pivotal process in initiating PF, and the anti-fibrotic efficacy of HB relies on suppressing IDO1-mediated ferroptosis. Conversely, IDO1 deficiency alleviated the symptoms of bleomycin-induced PF and ferroptosis in mice. Coincidentally, both IDO1 overexpression and ferroptosis were observed in the pulmonary tissue of patients with idiopathic PF. Collectively, this study revealed that HB alleviates PF by eliminating intestinal microecology and metabolism and highlights the feasibility of targeting IDO1 for PF treatment.
Collapse
Affiliation(s)
- Ce Chen
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jialin Wang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Mengqin Cheng
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Haifeng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
41
|
Wijaya MT, Fang JT, Liu GH, Yeh YM, Chen NH, Lin CM, Wu KY, Huang CM, Lee SH, Lee TMC. Better objective sleep quality is associated with higher gut microbiota richness in older adults. GeroScience 2025:10.1007/s11357-025-01524-w. [PMID: 39888583 DOI: 10.1007/s11357-025-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/11/2025] [Indexed: 02/01/2025] Open
Abstract
Aging is associated with disrupted sleep patterns, such as fragmented sleep and reduced efficiency, leading to negative health outcomes. There is evidence of a bidirectional relationship between sleep and gut microbiota, which plays a key role in the gut-brain axis and overall health. However, studies on this relationship in older adults have limited generalizability and show conflicting results, highlighting the need for further research. This study aimed to investigate the associations between sleep quality and gut microbiota composition in healthy Chinese older adults using subjective and objective sleep measures to capture various aspects of sleep quality and explore potential impacts on emotional well-being and cognitive performance. Subjective sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire, while objective sleep quality was measured with actigraphy. Gut microbiota sequencing was performed on stool samples. The results show a robust positive association between gut microbiota richness and objective sleep quality in older adults, independent of subjective sleep quality and demographics, lifestyle, and health covariates. However, no significant link was found between gut microbiota richness and subjective sleep quality. Specific taxa like Bacteroidetes, Ruminococcus, Collinsella, Veillonella, and Holdemania were tentatively linked to sleep quality. These findings emphasize the connection between sleep quality and gut microbiota composition in older adults with potential research and clinical implications, improving our understanding of the mechanisms underlying the sleep-gut microbiota relationship and guiding the development of interventions for improving both sleep quality and gut health in older adults.
Collapse
Affiliation(s)
- Maria Teresa Wijaya
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ji-Tseng Fang
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Geng-Hao Liu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, at Linkou, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Sleep Center, Taoyuan Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan
- Chang Gung Microbiota Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Ning-Hung Chen
- Sleep Center, Respiratory Therapy, Pulmonary and Critical Care Medicine, at Taoyuan, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ming Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuain-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong, Hong Kong.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
42
|
Vega AA, Shah PP, Rouchka EC, Clem BF, Dean CR, Woodrum N, Tanwani P, Siskind LJ, Beverly LJ. E. coli Biomolecules Increase Glycolysis and Invasive Potential in Lung Adenocarcinoma. Cancers (Basel) 2025; 17:380. [PMID: 39941749 PMCID: PMC11815989 DOI: 10.3390/cancers17030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction: Recent studies have discovered that lung cancer subtypes possess distinct microbiome profiles within their tumor microenvironment. Additionally, the tumor-associated microbiome exhibits altered bacterial pathways, suggesting that certain bacterial families are more capable of facilitating tumor progression than others. We hypothesize that there exists a crosstalk between lung adenocarcinoma (LUAD) cells and bacterial cells. Methods and Materials: RNA sequencing (RNA-seq) was performed on LUAD cell lines to explore the paracrine signaling effects of bacterial biomolecules. Based on our RNA-seq data, we investigated glycolysis by measuring glucose uptake and lactate production, invasive potential through invasion assays, and epithelial-to-mesenchymal transition (EMT) markers. Since lipopolysaccharides (LPS), abundant on the cell walls of Gram-negative bacteria, can activate toll-like receptor 4 (TLR4), we inhibited TLR4 with C34 to assess its relationship with the observed phenotypic changes. To identify the bacterial biomolecules responsible for these changes, we treated the media with RNAse enzyme, charcoal or dialyzed away molecules larger than 3 kDa. Results and Discussion: RNA-seq revealed 948 genes upregulated in the presence of E. coli biomolecules. Among these, we observed increased expression of Hexokinase II (HKII), JUN proto-oncogene, and Snail Family Transcriptional Repressor 1. We verified the elevation of glycolytic enzymes through Western blot and saw elevation of 2-deoxyglucose uptake and lactate production in LUAD cell lines incubated in E. coli biomolecules. In addition to E. coli elevating glycolysis in LUAD cell lines, E. coli exposure enhanced invasive potential as demonstrated by Boyden chamber assays. Notably, inhibition of TLR4 did not reduce the impact of E. coli biomolecules on glycolysis or the invasive potential of LUAD. Modulating the E. coli-supplemented media with RNAse enzyme or dextran-coated charcoal or using a spin column to remove biomolecules smaller than 3 kDa resulted in changes in HKII and Claudin protein expression. These findings suggest a direct relationship between E. coli and LUAD, wherein several cancer hallmarks are upregulated. Future studies should further investigate these bacterial biomolecules and their role in the tumor microenvironment to fully understand the impact of microbial shifts on cancer progression.
Collapse
Affiliation(s)
- Alexis A. Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA (E.C.R.); (B.F.C.)
| | - Parag P. Shah
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA (E.C.R.); (B.F.C.)
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Brian F. Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA (E.C.R.); (B.F.C.)
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Calista R. Dean
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Natassja Woodrum
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Preeti Tanwani
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Leah J. Siskind
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Levi J. Beverly
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| |
Collapse
|
43
|
Yoshimura S, Tsukahara T, Takahashi T, Miura H, Morishima S, Kise M, Shin J, Yahara Y, Inoue R. Causal Association Between the Mucosal and Luminal Microbiotas from the Gastrointestinal Tract of Weaned Piglets Using Bayesian Network. Microorganisms 2025; 13:256. [PMID: 40005623 PMCID: PMC11858346 DOI: 10.3390/microorganisms13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this study was to investigate the microbiota composition and its potential interactions across seven gut locations (stomachs, jejuna, ilea, ceca, proximal colons, distal colons, and recta) in weaned pigs to identify key influencing microbiotas. To compare between microbiota compositions, 16S rRNA gene amplicon sequencing was performed. Six 70-day-old healthy crossbred (Duroc × Large White × Landrace) piglets were introduced as donors. A Bayesian network (BN) was used to examine the directional interactions among the microbiotas evaluated (seven mucosal and seven digesta microbiotas). Based on edge connectivity frequency, the microbiota in jejunal mucosa was the central hub node, influencing other microbiotas, especially the mucosal microbiotas of the ileum, cecum, distal colon, and rectum. The jejunal mucosa was dominated by Prevotella and lactobacilli, both recognized for their contributions to pig health. Among Prevotella, Prevotella copri and Prevotella sp. were predominant in jejunal mucosa (4.6% and 2.9%, respectively). Lactobacilli, including eight distinct species, were distributed throughout the gastrointestinal tract. Notably, Ligilactobacillus salivarius and Lactobacillus amylovorus, known as immune-enhancing bacteria, were abundant in jejunal mucosa (1.0% and 0.8%) and digestas (0.9% and 19.2%), respectively. The BN identified rectal mucosa and digestas as two terminal nodes, influenced by upstream microbiotas in the gastrointestinal tract. This finding supports the link between fecal microbiota and pig productivity, as the fecal microbiota, closely resembling the rectal microbiota, reflects the conditions of the microbiota throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Shu Yoshimura
- Marubeni Nisshin Feed Co., Ltd., Tochigi 329-2763, Japan; (S.Y.); (M.K.); (J.S.); (Y.Y.)
| | | | - Toru Takahashi
- Kyoto Institute of Nutrition & Pathology, Kyoto 610-0231, Japan;
| | - Hiroto Miura
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata 573-0101, Japan; (H.M.); (S.M.); (R.I.)
| | - So Morishima
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata 573-0101, Japan; (H.M.); (S.M.); (R.I.)
| | - Masaaki Kise
- Marubeni Nisshin Feed Co., Ltd., Tochigi 329-2763, Japan; (S.Y.); (M.K.); (J.S.); (Y.Y.)
| | - Jiye Shin
- Marubeni Nisshin Feed Co., Ltd., Tochigi 329-2763, Japan; (S.Y.); (M.K.); (J.S.); (Y.Y.)
| | - Yoshihiro Yahara
- Marubeni Nisshin Feed Co., Ltd., Tochigi 329-2763, Japan; (S.Y.); (M.K.); (J.S.); (Y.Y.)
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata 573-0101, Japan; (H.M.); (S.M.); (R.I.)
| |
Collapse
|
44
|
Liu X, Ding H, Zhang X, Ta N, Zhao J, Zhang Q, Liu H, Sun M, Zhang X. Dynamic changes in the gastrointestinal microbial communities of Gangba sheep and analysis of their functions in plant biomass degradation at high altitude. MICROBIOME 2025; 13:17. [PMID: 39838419 PMCID: PMC11748513 DOI: 10.1186/s40168-024-02022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND While Gangba sheep being well known for their unique flavour and nutritional value, harsh environmental factors negatively affect their growth and development, leading to poor productivity. The gastrointestinal tract microbiota plays an important role in host nutrient absorption and metabolism. The identification of dynamic changes in the gastrointestinal microbial communities and their functions is an important step towards improving animal production performance and health. RESULTS A comprehensive multi-omics survey of the microbial communities of the Gangba sheep gastrointestinal tract was performed under three distinct feeding strategies: natural grazing, semi-grazing with supplementation, and barn feeding. The dynamic changes, cross-kingdom partnerships and functional potential profiles were analysed and the results revealed that the feeding strategies had a greater impact on the microbial communities than the site of the gastrointestinal tract. The different microbial associations among the groups were revealed by co-occurrence networks based on the amplicon sequence variants (ASVs). Moreover, a Gangba sheep gastrointestinal microbial genomic catalogue was constructed for the first time, including 1146 metagenome-assembled genomes (MAGs) with completeness > 50% and contamination < 10%, among which, 504 bacterial and 15 archaeal MAGs were of high quality with completeness > 80% and contamination < 10%. About 40% of the high-quality MAGs displaying enzyme activity were related to the microbial species that contribute to plant biomass degradation. Most of these enzymes were expressed in rumen metatranscriptome datasets, especially in Prevotella spp. and Ruminococcus spp., suggesting that gastrointestinal microbial communities in ruminants play major roles in the digestion of plant biomass to provide nutrition and energy for the host. CONCLUSIONS These findings suggest that feeding strategies are the primary cause of changes in the gastrointestinal microbiome. Diversification of livestock feed might be an effective strategy to maintain the diversity and ecological multifunctionality of microbial communities in the gastrointestinal tract. Additionally, the catalogue of microbial genomes and the encoded biomass-degrading enzymes identified here provide insights into the potential microbial functions of the gastrointestinal tract of Gangba sheep at high altitudes. This paves the way for microbial interventions to improve the growth performance, productivity and product quality of ruminant livestock. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - He Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Xiaoxue Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Na Ta
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jinmei Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Qian Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Huiyun Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Mengjiao Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Xiaoqing Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China.
- Institute of Practaculture Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 85000, China.
| |
Collapse
|
45
|
Zhang C, Yu Y, Yue L, Chen Y, Chen Y, Liu Y, Guo C, Su Q, Xiang Z. Gut microbiota profiles of sympatric snub-nosed monkeys and macaques in Qinghai-Tibetan Plateau show influence of phylogeny over diet. Commun Biol 2025; 8:95. [PMID: 39833341 PMCID: PMC11747120 DOI: 10.1038/s42003-025-07538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The unique environment of the Qinghai-Tibetan Plateau provides a great opportunity to study how primate intestinal microorganisms adapt to ecosystems. The 16S rRNA gene amplicon and metagenome analysis were conducted to investigate the correlation between gut microbiota in primates and other sympatric animal species living between 3600 and 4500 m asl. Results showed that within the same geographical environment, Macaca mulatta and Rhinopithecus bieti exhibited a gut microbiome composition similar to that of Tibetan people, influenced by genetic evolution of host, while significantly differing from other distantly related animals. The gut microbiota of plateau species has developed similar strategies to facilitate their hosts' adaptation to specific environments, including broadening its dietary niche and enhancing energy absorption. These findings will enhance our comprehension of the significance of primate gut microbiota in adapting to specific habitats.
Collapse
Affiliation(s)
- Chen Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Yu
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ling Yue
- Panzhihua Animal Disease Prevention and Control Center, Panzhihua, Sichuan, China
| | - Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yixin Chen
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Liu
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Cheng Guo
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Zuofu Xiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
46
|
Jeyaram K, Lahti L, Tims S, Heilig HGHJ, van Gelder AH, de Vos WM, Smidt H, Zoetendal EG. Fermented foods affect the seasonal stability of gut bacteria in an Indian rural population. Nat Commun 2025; 16:771. [PMID: 39824829 PMCID: PMC11748640 DOI: 10.1038/s41467-025-56014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
The effect of fermented foods on healthy human gut microbiota structure and function, particularly its seasonal preference and frequent long-term consumption, has been largely uncharacterised. Here, we assess the gut microbiota and metabolite composition of 78 healthy Indian agrarian individuals who differ in the intake of fermented milk and soybean products by seasonal sampling during hot-humid summer, autumn and dry winter. Here we show that, seasonal shifts between the Prevotella- and Bifidobacterium/Ruminococcus-driven community types, or ecological states, and associated fatty acid derivatives, with a bimodal change in Bacteroidota community structure during summer, particularly in fermented milk consumers. Our results associate long-term fermented food consumption with reduced gut microbiota diversity and bacterial load. We identify taxonomic groups that drive the seasonal fluctuation and associated shifts between the two ecological states in gut microbiota. This understanding may pave the way towards developing strategies to sustain a healthy and resilient gut microbiota through dietary interventions.
Collapse
Affiliation(s)
- Kumaraswamy Jeyaram
- Biotechnology Research and Innovation Council - Institute of Bioresources and Sustainable Development (BRIC-IBSD), Regional Centre, Tadong, Gangtok, 737102, Sikkim, India.
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands.
| | - Leo Lahti
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Computing, University of Turku, FI-20014, Turku, Finland
| | - Sebastian Tims
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Danone Nutricia Research, 3584, CT, Utrecht, The Netherlands
| | - Hans G H J Heilig
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Antonie H van Gelder
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| |
Collapse
|
47
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Role of Epigallocatechin Gallate in Selected Malignant Neoplasms in Women. Nutrients 2025; 17:212. [PMID: 39861342 PMCID: PMC11767294 DOI: 10.3390/nu17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Tea is a significant source of flavonoids in the diet. Due to different production processes, the amount of bioactive compounds in unfermented (green) and (semi-)fermented tea differs. Importantly, green tea has a similar composition of phenolic compounds to fresh, unprocessed tea leaves. It consists primarily of monomeric flavan-3-ols, known as catechins, of which epigallocatechin gallate (EGCG) is the most abundant. Thanks to its antioxidant, antiproliferative, and antiangiogenic properties, EGCG has attracted the scientific community's attention to its potential use in preventing and/or combating cancer. In this review article, we summarize the literature reports found in the Google Scholar and PubMed databases on the anticancer effect of EGCG on selected malignant neoplasms in women, i.e., breast, cervical, endometrial, and ovarian cancers, which have been published over the last two decades. It needs to be emphasized that EGCG concentrations reported as effective against cancer cells are typically higher than those found in plasma after polyphenol administration. Moreover, the low bioavailability and absorption of EGCG appear to be the main reasons for the differences in the effects between in vitro and in vivo studies. In this context, we also decided to look at possible solutions to these problems, consisting of combining the polyphenol with other bioactive components or using nanotechnology. Despite the promising results of the studies conducted so far, mainly in vitro and on animal models, there is no doubt that further, broad-based activities are necessary to unequivocally assess the potential use of EGCG in oncological treatment to combat cancer in women.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland;
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| |
Collapse
|
48
|
Szymczak-Pajor I, Drzewoski J, Kozłowska M, Krekora J, Śliwińska A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals (Basel) 2025; 18:55. [PMID: 39861118 PMCID: PMC11768994 DOI: 10.3390/ph18010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications. The drug primarily inhibits hepatic gluconeogenesis and increases the sensitivity of target cells (hepatocytes, adipocytes and myocytes) to insulin; however, increasing evidence suggests that it may also influence the gut. As T2DM patients exhibit gut dysbiosis, the intestinal microbiome has gained interest as a key target for metabolic diseases. Interestingly, changes in the gut microbiome were also observed in T2DM patients treated with metformin compared to those who were not. Therefore, the aim of this review is to present the current state of knowledge regarding the association of the gut microbiome with the antihyperglycemic effect of metformin. Numerous studies indicate that the reduction in glucose concentration observed in T2DM patients treated with metformin is due in part to changes in the biodiversity of the gut microbiota. These changes contribute to improved intestinal barrier integrity, increased production of short-chain fatty acids (SCFAs), regulation of bile acid metabolism, and enhanced glucose absorption. Therefore, in addition to the well-recognized reduction of gluconeogenesis, metformin also appears to exert its glucose-lowering effect by influencing gut microbiome biodiversity. However, we are only beginning to understand how metformin acts on specific microorganisms in the intestine, and further research is needed to understand its role in regulating glucose metabolism, including the impact of this remarkable drug on specific microorganisms in the gut.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Małgorzata Kozłowska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Jan Krekora
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
49
|
Battistolli M, Varponi I, Romoli O, Sandrelli F. The circadian clock gene period regulates the composition and daily bacterial load of the gut microbiome in Drosophila melanogaster. Sci Rep 2025; 15:1016. [PMID: 39762344 PMCID: PMC11704212 DOI: 10.1038/s41598-024-84455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
While Drosophila melanogaster serves as a crucial model for investigating both the circadian clock and gut microbiome, our understanding of their relationship in this organism is still limited. Recent analyses suggested that the Drosophila gut microbiome modulates the host circadian transcriptome to minimize rapid oscillations in response to changing environments. Here, we examined the composition and abundance of the gut microbiota in wild-type and arrhythmic per01 flies, under 12 h:12 h light: dark (12:12 LD) and constant darkness (DD) conditions. The gut microbiota of wild-type and per01 flies showed differences in composition, suggesting that the D. melanogaster circadian gene per has a role in shaping the gut microbiome. In 12:12 LD and DD conditions, per01 mutants showed significant daily variations in gut bacterial quantity, unlike wild-type flies. This suggests that per is involved in maintaining the daily stability of gut microbiome load in D. melanogaster. Expanding these analyses to other fly strains with disrupted circadian clocks will clarify whether these effects originate from a circadian function of per or from its possible pleiotropic effects. Finally, some gut bacteria exhibited significant 24 h fluctuations in their relative abundance, which appeared independent from the fly circadian clock, suggesting that certain gut commensal bacteria in Drosophila may possess a host-independent circadian clock.
Collapse
Affiliation(s)
| | - Irene Varponi
- Department of Biology, University of Padova, Padova, Italy
| | - Ottavia Romoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNAi, F-75015, Paris, France.
| | | |
Collapse
|
50
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W, Li X. Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol 2025; 15:1509117. [PMID: 39831120 PMCID: PMC11739165 DOI: 10.3389/fmicb.2024.1509117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiota actually shares the host's physical space and affects the host's physiological functions and health indicators through a complex network of interactions with the host. However, its role as a determinant of host health and disease is often underestimated. With the emergence of new technologies including next-generation sequencing (NGS) and advanced techniques such as microbial community sequencing, people have begun to explore the interaction mechanisms between microorganisms and hosts at various omics levels such as genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of multi-omics integrated analysis methods based on the microbiome, an increasing number of complex statistical analysis methods have also been proposed. In this review, we summarized the multi-omics research analysis methods currently used to study the interaction between the microbiome and the host. We analyzed the advantages and limitations of various methods and briefly introduced their application progress.
Collapse
Affiliation(s)
- Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mingyu Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jinyi Han
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|