1
|
Purkayastha DS, Mallick AA, Das G, Purkayastha SS. Inguinal hernia mesh infections: Chronic challenges, atypical pathogens and lessons in sterilisation. Trop Doct 2025; 55:134-138. [PMID: 39801280 DOI: 10.1177/00494755241313152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Chronic mesh infections after inguinal hernia repair present significant clinical challenges due to biofilm-mediated resistance, involvement of multidrug-resistant and atypical pathogens, and gaps in preventive strategies. Our case series of four patients highlights critical research gaps, including the overlooked role of atypical pathogens such as Mycobacterium tuberculosis, diagnostic challenges in detecting slow-growing or resistant organisms and perioperative sterilisation lapses, especially inconsistent Glutaraldehyde use during late-day operations. Many patients suffered with persistent sinuses and recurrent hernias months after surgery. Microbiological analyses identified Pseudomonas aeruginosa, Klebsiella pneumoniae, Mycobacterium tuberculosis and mixed flora. Complete mesh removal and culture-directed antimicrobial therapy resolved all cases within 8-12 months. Our study underscores the need for robust sterilisation protocols, advanced diagnostic measures and biofilm-resistant biomaterials.
Collapse
Affiliation(s)
- Debaraj S Purkayastha
- Junior Resident, Department of General Surgery, IPGMER and SSKM Hospital, Kolkata, India
| | - Anowar A Mallick
- Associate Professor, Department of General Surgery, IPGMER and SSKM Hospital, Kolkata, India
| | - Gautam Das
- Professor, Department of General Surgery, IPGMER, and SSKM Hospital, Kolkata, India
| | - Satakshi S Purkayastha
- Junior Resident, Department of General Medicine, Silchar Medical College and Hospital, Assam, India
| |
Collapse
|
2
|
Liaqat I, Ibtisam R, Hussain MI, Muhammad N, Andleeb S, Naseem S, Ali A, Latif AA, Ali S, Aftab MN, Bibi A, Khalid A. Medicinal Plants Exhibited Promising Potential to Inhibit Biofilm Formation by Catheter-Associated Bacteria in UTI Patients from Lahore, Pakistan. J Oleo Sci 2025; 74:221-232. [PMID: 39880641 DOI: 10.5650/jos.ess24212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa. T. ammi essential oil and T. foenum-graecum methanolic extract combination exhibited the highest antibacterial activity (ZOI; 32.0) against S. aureus. N. sativa essential oil (EO) showed highest ZOI (31.0; p ≤ 0.05) against Proteus mirabilis at 100 µgmL -1 . Among 18 CAB isolated, 13 showed mature biofilm formation on 5 th day. All plant extracts demonstrated more than 80% antibiofilm and biofilm inhibition activity. A concentrationdependent increase was observed with plant extracts against CAB during antibacterial, antibiofilm, and biofilm inhibition activities. The study suggests that EO and methanolic extract (ME) of tested plants possess promising antibiofilm and biofilm inhibitory potential against CABs. To our knowledge, this is the first study to report antibacterial, antibiofilm, and biofilm inhibitory potential of T. ammi and N. sativa seed EO, as well as T. foenum-graecum, N. sativa, T. vulgaris, T. arjuna, and I. carnea ME against CAB from medical setting.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University
| | - Ramsha Ibtisam
- Department of Human Nutrition and Diabetes, Riphah International University
| | | | - Noor Muhammad
- Microbiology Lab, Department of Zoology, Government College University
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir
| | - Sajida Naseem
- Department of Zoology, Division of Science and Technology, University of Education
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University
| | | | - Sikander Ali
- Ikram ul Haq Institute of Industrial Biotechnology, Government College University
| | | | - Asia Bibi
- Department of Zoology, The Women University
| | - Awais Khalid
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz, University
| |
Collapse
|
3
|
Her E, Han S, Ha SD. Development of poly(lactic acid)-based natural antimicrobial film incorporated with caprylic acid against Salmonella biofilm contamination in the meat industry. Int J Food Microbiol 2024; 425:110871. [PMID: 39178662 DOI: 10.1016/j.ijfoodmicro.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Using a solvent-casting method, a poly(lactic acid) (PLA) film incorporated with caprylic acid (CA) was developed as an active packaging against Salmonella enterica ser. Typhimurium and S. enteritidis to reduce the risk of microbial contamination during distribution and storage of meat. According to the minimum inhibitory concentration (MIC) test results of the natural antimicrobial, CA was introduced at 0.6, 1.2, 2.4, and 4.8 % (v/v) into neat PLA. The biofilm inhibitory effect and antimicrobial efficacy of CA-PLA film against both Salmonella strains, as well as the intermolecular interactions and barrier properties of CA-PLA film, were evaluated. Biofilm formation was reduced to below the detection limit (<1.0 log CFU/cm2) for both S. typhimurium and S. enteritidis when co-cultured overnight with 4.8 % CA-PLA film. The 4.8 % CA-PLA film achieved maximum log reductions of 2.58 and 1.65 CFU/g for S. typhimurium and 2.59 and 1.76 CFU/g for S. enteritidis on inoculated chicken breast and beef stored at 25 °C overnight, respectively, without any quality (color and texture) losses. CA maintained its typical chemical structure in the film, as confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. Furthermore, film surface morphology observations by field emission scanning electron microscopy (FESEM) showed that CA-PLA film was smoother than neat PLA film. No significant (P > 0.05) changes were observed for water vapor permeability and oxygen permeability by the addition of CA into PLA film, suggesting that CA-PLA film is a promising strategy for active packaging to control Salmonella contamination in the meat industry.
Collapse
Affiliation(s)
- Eun Her
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sangha Han
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
4
|
Bogadi S, Rao P, KU V, Kuppusamy G, Madhunapantula SV, Subramaniyan V, Satyanarayana Reddy Karri VV, Aswathanarayan JB. Management of biofilm-associated infections in diabetic wounds – from bench to bedside. PURE APPL CHEM 2024; 96:1351-1374. [DOI: 10.1515/pac-2023-1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Abstract
Biofilms are complex bacterial colonies embedded in an extracellular matrix. These pose a major obstacle to wound healing and are noticeable in chronic wounds. It protects the bacteria from the host’s immune system and conventional antibiotic treatments. The biofilm’s protective matrix prevents essential nutrients and oxygen from diffusing into the surrounding healthy tissue. In addition, microbes living in biofilms naturally have increased resistance to antibiotics, which reduces the effectiveness of traditional therapies. As such, biofilms serve as persistent reservoirs of infection, which further disrupts the normal course of wound healing. In this review, the current formulation strategies such as hydrogels, polymeric nanoparticles, and nanofibers that are used in wound healing to counteract biofilms have been comprehensively discussed. The formulations have been meticulously designed and developed to disturb the biofilm matrix, prevent the growth of microorganisms, and increase the potency of antimicrobials and antibiotics. The mechanism of action, advantages and limitations associated with the existing formulation strategies have been reviewed. The formulation strategies that have been translated into clinical applications and patented are also discussed in this paper.
Collapse
Affiliation(s)
- Subhasri Bogadi
- Department of Pharmaceutics , JSS College of Pharmacy, JSS Academy of Higher Education & Research , Ooty , Tamil Nadu – 643001 , India
| | - Pooja Rao
- Department of Microbiology , JSS Academy of Higher Education & Research , Mysuru , Karnataka – 570015 , India
| | - Vasudha KU
- Department of Microbiology , JSS Academy of Higher Education & Research , Mysuru , Karnataka – 570015 , India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics , JSS College of Pharmacy, JSS Academy of Higher Education & Research , Ooty , Tamil Nadu – 643001 , India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry , JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER) , Mysore – 570015 , Karnataka , India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University , Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan , Malaysia
| | | | - Jamuna Bai Aswathanarayan
- Department of Microbiology , JSS Academy of Higher Education & Research , Mysuru , Karnataka – 570015 , India
| |
Collapse
|
5
|
Berking BB, Rijpkema SJ, Zhang BHE, Sait A, Amatdjais-Groenen H, Wilson DA. Biofilm Disruption from within: Light-Activated Molecular Drill-Functionalized Polymersomes Bridge the Gap between Membrane Damage and Quorum Sensing-Mediated Cell Death. ACS Biomater Sci Eng 2024; 10:5881-5891. [PMID: 39176452 PMCID: PMC11388143 DOI: 10.1021/acsbiomaterials.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Bacterial biofilms represent an escalating global health concern with the proliferation of drug resistance and hospital-acquired infections annually. Numerous strategies are under exploration to combat biofilms and preempt the development of antibacterial resistance. Among these, mechanical disruption of biofilms and enclosed bacteria presents a promising avenue, aiming to induce membrane permeabilization and consequent lethal damage. Herein, we introduce a hemithioindigo (HTI) motor activated by visible light, capable of disrupting sessile bacteria when integrated into a polymeric vesicle carrier. Under visible light, bacteria exhibited a notable outer membrane permeability, reduced membrane fluidity, and diminished viability following mechanical drilling. Moreover, various genetic responses pertaining to the cell envelope were examined via qRT-PCR, alongside the activation of a self-lysis mechanism associated with phage stress, which was coupled with increases in quorum sensing, demonstrating a potential self-lysis cascade from within. The multifaceted mechanisms of action, coupled with the energy efficiency of mechanical damage, underscore the potential of this system in addressing the challenges posed by pathogenic biofilms.
Collapse
Affiliation(s)
- Bela B Berking
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| | - Sjoerd J Rijpkema
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| | - Bai H E Zhang
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| | - Arbaaz Sait
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| | - Helene Amatdjais-Groenen
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| | - Daniela A Wilson
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University, Nijmegen 6500 HC, The Netherlands
| |
Collapse
|
6
|
Bontekoning N, Huizing NJ, Timmer AS, Groenen H, de Jonge SW, Boermeester MA. Topical antimicrobial treatment of mesh for the reduction of surgical site infections after hernia repair: a systematic review and meta-analysis. Hernia 2024; 28:691-700. [PMID: 38722398 PMCID: PMC11249405 DOI: 10.1007/s10029-024-02987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Use of mesh is essential in hernia repair. A common complication after hernia repair is surgical site infection (SSI), which poses a risk in spreading to the mesh, possibly causing mesh infection. Topical antimicrobial pretreatment of mesh may potentially reduce SSI risk in hernia repair and has shown promising results in in vitro and in vivo studies. Clinical evidence, however, is more important. This systematic review aims to provide an overview of available clinical evidence for antimicrobial pretreated mesh in hernia repair surgery to reduce SSI. METHODS We report in accordance with PRISMA guidelines. CENTRAL, EMBASE, CINAHL and PubMed were searched up to October 2023 for studies that investigated the use of antimicrobial pretreated mesh on SSI incidence in adults undergoing hernia repair. The primary outcome was SSI incidence. We also collected data on pathogen involvement, hernia recurrence, and mesh infection. A meta-analysis on SSI risk and GRADE-assessment was performed of eligible studies. RESULTS We identified 11 eligible studies (n = 2660 patients); 5 randomized trials and 6 cohort studies. Investigated interventions included pre-coated mesh, antibiotic carriers, mesh soaked or irrigated with antibiotic or antiseptic solution. Meta-analysis showed no significant reduction in SSI for antibiotic pretreated polypropylene mesh (RR 0.76 [95% CI 0.27; 2.09]; I2 50%). CONCLUSION Data on topical mesh pretreatment to reduce SSI risk after hernia repair is limited. Very low certainty evidence from randomized trials in hernia repair surgery shows no significant benefit for antibiotic mesh pretreatment for SSI reduction, but data are imprecise due to optimal information size not being met.
Collapse
Affiliation(s)
- Nathan Bontekoning
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Nathalie J Huizing
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Allard S Timmer
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Hannah Groenen
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Stijn W de Jonge
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Marja A Boermeester
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Singer RW. Real-World Evidence of the Impact of a Novel Surgical Irrigant on Surgical Site Infections in Primary Total Knee Arthroplasty Performed at an Ambulatory Surgery Center. Surg Infect (Larchmt) 2024; 25:240-246. [PMID: 38588520 PMCID: PMC11001957 DOI: 10.1089/sur.2023.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Background: Total knee arthroplasty (TKA) is one of the most common inpatient and outpatient surgical procedures performed in the United States and is predicted to increase 401% by 2040. Surgical site infections (SSIs) at an incidence rate of approximately 2% are costly post-operative complications in TKA. Intra-operative surgical irrigants are used to decrease contaminating microbial bioburden within the surgical site to prevent SSI. The primary objective of this retrospective study was to evaluate the impact of a novel surgical irrigant called XPERIENCE® Advanced Surgical Irrigation (XP; Next Science, Jacksonville, FL) on SSI incidence in primary TKA performed at an ambulatory surgery center (ASC). Patients and Methods: Primary TKAs were performed at a free-standing ASC. The novel surgical irrigant was used intra-operatively to rinse away debris and micro-organisms from the surgical site. Retrospective data collation included SSI rates, complication rates, and re-admissions due to SSI within 90 days of index surgery. Results: Among the 524 primary TKA surgeries, one peri-prosthetic joint infection (PJI) was diagnosed within 90 days of index surgery and one superficial incisional SSI was diagnosed within 30 days of index surgery. The PJI was attributed to an exogenously acquired upper respiratory tract infection rather than due to the failure of intra-operative regimes. The 0.19% PJI incidence rate indicated significant efficacy of XP in decreasing PJI. An overall complication rate of 7.82% was noted with none of the complications associated with usage of the novel surgical irrigant. Conclusions: XPERIENCE is a promising intra-operative antimicrobial irrigant that can be easily incorporated into a broader infection prevention strategy.
Collapse
Affiliation(s)
- Ronald W. Singer
- Edgewater Surgery Center, Fort Mill, South Carolina, USA
- OrthoCarolina, Charlotte, North Carolina, USA
| |
Collapse
|
8
|
Ghosh S, Patra D, Mukherjee R, Biswas S, Haldar J. Multifunctional Suture Coating for Combating Surgical Site Infections and Mitigating Associated Complications. ACS APPLIED BIO MATERIALS 2024; 7:1158-1168. [PMID: 38197266 DOI: 10.1021/acsabm.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Despite advancements in preventive measures and hospital protocols, surgical site infections (SSIs) remain a significant concern following surgeries. Sutures, commonly used for wound closure, can serve as a platform for microbial adherence and contamination, leading to extensive debridement and recurrent antibiotic therapy. The emergence of drug resistance and the formation of biofilms on sutures have further complicated the management of SSIs. Drug-eluting sutures incorporating biocides like triclosan have limitations due to uncontrolled release and associated toxicity. Therefore, there is a need for alternative approaches to impart antimicrobial properties to sutures. In this study, we present a one-step covalent cross-linking method to coat surgical sutures with an antimicrobial small molecule, quaternary benzophenone-based antimicrobial (QSM). Additionally, the sutures are dip-coated with ibuprofen, a nonsteroidal anti-inflammatory drug with analgesic properties. The coated sutures maintained their morphological and tensile properties after in vivo implantation. The antimicrobial coating demonstrated efficacy against a broad-spectrum pathogens, including drug-resistant bacteria and fungi. The optimized formulation retained its biodegradability in vivo. Furthermore, the coated sutures exhibited ∼3 log reduction in methicillin-resistant Staphylococcus aureus (MRSA) burden in a subcutaneous implantation mouse model. Overall, this multifunctional coating provides antimicrobial properties to surgical sutures while preserving their mechanical integrity and biodegradability. These coated sutures have the potential to address the challenge of SSIs and contribute to improved surgical outcomes.
Collapse
Affiliation(s)
- Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka India
| | - Dipanjana Patra
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka India
| | - Sucheta Biswas
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka India
| |
Collapse
|
9
|
Bucataru A, Balasoiu M, Ghenea AE, Zlatian OM, Vulcanescu DD, Horhat FG, Bagiu IC, Sorop VB, Sorop MI, Oprisoni A, Boeriu E, Mogoanta SS. Factors Contributing to Surgical Site Infections: A Comprehensive Systematic Review of Etiology and Risk Factors. Clin Pract 2023; 14:52-68. [PMID: 38248430 PMCID: PMC10801486 DOI: 10.3390/clinpract14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Surgical site infections persist as a substantial concern within the realm of hospital-acquired infections. This enduring issue is further compounded by the mounting challenge of antibiotic resistance, a surge in surgical interventions, and the presence of comorbidities among patients. Thus, a comprehensive exploration of all discernible risk factors, as well as proactive preventive and prophylactic strategies, becomes imperative. Moreover, the prevalence of multidrug-resistant microorganisms has reached alarming proportions. Consequently, there is an acute need to investigate and scrutinize all potential therapeutic interventions to counter this burgeoning threat. Consequently, the primary objective of this review is to meticulously assess the origins and risk elements intertwined with surgical site infections across a diverse spectrum of surgical procedures. As the medical landscape continues to evolve, this critical analysis seeks to provide a nuanced understanding of the multi-faceted factors contributing to surgical site infections, with the overarching aim of facilitating more effective management and mitigation strategies. By exploring these dimensions comprehensively, we endeavor to enhance patient safety and the quality of surgical care in this era of evolving healthcare challenges.
Collapse
Affiliation(s)
- Alexandra Bucataru
- Doctoral School Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Infectious Disease Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania
| | - Maria Balasoiu
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.B.); (A.E.G.); (O.M.Z.)
| | - Alice Elena Ghenea
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.B.); (A.E.G.); (O.M.Z.)
| | - Ovidiu Mircea Zlatian
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.B.); (A.E.G.); (O.M.Z.)
| | - Dan Dumitru Vulcanescu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Florin George Horhat
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Iulia Cristina Bagiu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Virgiliu Bogdan Sorop
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Madalina Ioana Sorop
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Andrada Oprisoni
- Department of Pediatrics, Discipline of Pediatric Oncology and Hematology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.O.); (E.B.)
| | - Estera Boeriu
- Department of Pediatrics, Discipline of Pediatric Oncology and Hematology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.O.); (E.B.)
| | - Stelian Stefanita Mogoanta
- Third General Surgery Department, Clinical Emergency County Hospital, 200642 Craiova, Romania;
- Department of General Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
10
|
Fiore M, Corrente A, Di Franco S, Alfieri A, Pace MC, Martora F, Petrou S, Mauriello C, Leone S. Antimicrobial approach of abdominal post-surgical infections. World J Gastrointest Surg 2023; 15:2674-2692. [PMID: 38222012 PMCID: PMC10784838 DOI: 10.4240/wjgs.v15.i12.2674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023] Open
Abstract
Abdominal surgical site infections (SSIs) are infections that occur after abdominal surgery. They can be superficial, involving the skin tissue only, or more profound, involving deeper skin tissues including organs and implanted materials. Currently, SSIs are large global health problem with an incidence that varies significantly depending on the United Nations' Human Development Index. The purpose of this review is to provide a practical update on the latest available literature on SSIs, focusing on causative pathogens and treatment with an overview of the ongoing studies of new therapeutic strategies.
Collapse
Affiliation(s)
- Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Antonio Corrente
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Aniello Alfieri
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Francesca Martora
- Unit of Virology and Microbiology, “Umberto I” Hospital, Nocera Inferiore 84018, Italy
| | - Stephen Petrou
- Department of Emergency Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Claudio Mauriello
- Department of General Surgery, “Santa Maria delle Grazie” Hospital, Pozzuoli 80078, Italy
| | - Sebastiano Leone
- Division of Infectious Diseases, “San Giuseppe Moscati” Hospital, Avellino 83100, Italy
| |
Collapse
|
11
|
Maisat W, Yuki K. Volatile anesthetic isoflurane exposure facilitates Enterococcus biofilm infection. FASEB J 2023; 37:e23186. [PMID: 37665578 PMCID: PMC10495085 DOI: 10.1096/fj.202301128r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Enterococcus faecalis (E. faecalis) is one of the major pathogenic bacteria responsible for surgical site infections. Biofilm infections are major hospital-acquired infections. Previous studies suggested that ions could regulate biofilm formation in microbes. Volatile anesthetics, frequently administered in surgical setting, target ion channels. Here, we investigated the role of ion channels/transporters and volatile anesthetics in the biofilm formation by E. faecalis MMH594 strain and its ion transporter mutants. We found that a chloride transporter mutant significantly reduced biofilm formation compared to the parental strain. Downregulation of teichoic acid biosynthesis in the chloride transporter mutant impaired biofilm matrix formation and cellular adhesion, leading to mitigated biofilm formation. Among anesthetics, isoflurane exposure enhanced biofilm formation in vitro and in vivo. The upregulation of de novo purine biosynthesis pathway by isoflurane exposure potentially enhanced biofilm formation, an essential process for DNA, RNA, and ATP synthesis. We also demonstrated that isoflurane exposure to E. faecalis increased cyclic-di-AMP and extracellular DNA production, consistent with the increased purine biosynthesis. We further showed that isoflurane enhanced the enzymatic activity of phosphoribosyl pyrophosphate synthetase (PRPP-S). With the hypothesis that isoflurane directly bound to PRPP-S, we predicted isoflurane binding site on it using rigid docking. Our study provides a better understanding of the underlying mechanisms of E. faecalis biofilm formation and highlights the potential impact of an ion transporter and volatile anesthetic on this process. These findings may lead to the development of novel strategies for preventing E. faecalis biofilm formation and improving patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
12
|
Meredith K, Forbes LE. Antimicrobial Activity of Silver-Containing Surgical Dressings in an In vitro Direct Inoculation Simulated Wound Fluid Model Against a Range of Gram-Positive and Gram-Negative Bacteria. Surg Infect (Larchmt) 2023; 24:637-644. [PMID: 37585605 PMCID: PMC10516230 DOI: 10.1089/sur.2023.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Background: Surgical site infections can lead to serious complications and present a huge economic burden. Established wound infections can be difficult to eradicate so preventative measures, including antimicrobial dressings, are advantageous. Materials and Methods: The antimicrobial activity of an ionic silver, ethylenediaminetetraacetic acid (EDTA) and benzethonium chloride-containing (ISEB) surgical cover dressing (SCD) was compared with two other silver-containing SCDs (silver sulfate and ionic silver carboxymethylcellulose [CMC]) and a non-silver-containing CMC SCD control using an in vitro model. The dressings were tested against a range of gram-positive and gram-negative bacteria found in wound environments, including antibiotic resistant strains, using a direct inoculation simulated wound fluid (SWF) model. Dressings were fully hydrated with SWF and inoculated with a final concentration of 1 × 106 colony forming units (CFU) per 10 microliter of the challenge organisms. Dressings were incubated at 35°C ± 3°C for up to seven days; total viable counts (TVCs) were performed to determine bacterial bioburden. Results: All challenge organism levels remained high for the CMC SCD control and silver sulfate SCD throughout the test period. A greater than 95% reduction in TVCs was observed by four hours for all challenge organisms for the ISEB SCD, with non-detectable levels (<70 CFU per dressing) reached within 24 hours and sustained throughout the test period. Antimicrobial activity was less rapid with ionic silver CMC SCD, with 9 of 11 challenge organisms reaching undetectable levels within 6 to 72 hours. Conclusions: A more rapid antimicrobial activity was observed for the ISEB SCD compared with other dressings tested within this in vitro model.
Collapse
Affiliation(s)
- Kate Meredith
- Convatec Limited, Deeside, Flintshire, United Kingdom
| | | |
Collapse
|
13
|
Aguilera-Correa JJ, Nohynek L, Alakomi HL, Esteban J, Oksman-Caldentey KM, Puupponen-Pimiä R, Kinnari TJ, Perez-Tanoira R. Reduction of methicillin-resistant Staphylococcus aureus biofilm growth and development using arctic berry extracts. Front Cell Infect Microbiol 2023; 13:1176755. [PMID: 37424779 PMCID: PMC10327478 DOI: 10.3389/fcimb.2023.1176755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Surgical site infection remains a devastating and feared complication of surgery caused mainly by Staphylococcus aureus (S. aureus). More specifically, methicillin-resistant S. aureus (MRSA) infection poses a serious threat to global health. Therefore, developing new antibacterial agents to address drug resistance are urgently needed. Compounds derived from natural berries have shown a strong antimicrobial potential. Methods This study aimed to evaluate the effect of various extracts from two arctic berries, cloudberry (Rubus chamaemorus) and raspberry (Rubus idaeus), on the development of an MRSA biofilm and as treatment on a mature MRSA biofilm. Furthermore, we evaluated the ability of two cloudberry seed-coat fractions, hydrothermal extract and ethanol extract, and the wet-milled hydrothermal extract of a raspberry press cake to inhibit and treat biofilm development in a wound-like medium. To do so, we used a model strain and two clinical strains isolated from infected patients. Results All berry extracts prevented biofilm development of the three MRSA strains, except the raspberry press cake hydrothermal extract, which produced a diminished anti-staphylococcal effect. Discussion The studied arctic berry extracts can be used as a treatment for a mature MRSA biofilm, however some limitations in their use exist.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., Industrial Biotechnology and Food, Espoo, Finland
| | - Hanna-Leena Alakomi
- VTT Technical Research Centre of Finland Ltd., Industrial Biotechnology and Food, Espoo, Finland
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Riitta Puupponen-Pimiä
- VTT Technical Research Centre of Finland Ltd., Industrial Biotechnology and Food, Espoo, Finland
| | - Teemu J. Kinnari
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ramon Perez-Tanoira
- Department of Clinical Microbiology, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Health Sciences, Faculty of Medicine, University of Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
14
|
Monstrey SJ, Govaers K, Lejuste P, Lepelletier D, Ribeiro de Oliveira P. Evaluation of the role of povidone‑iodine in the prevention of surgical site infections. Surg Open Sci 2023; 13:9-17. [PMID: 37034245 PMCID: PMC10074992 DOI: 10.1016/j.sopen.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Background The occurrence of surgical site infections (SSIs) is associated with increased risk of mortality, development of other infections, and the need for reintervention, posing a significant health burden. The aim of this review was to examine the current data and guidelines around the use of antiseptic povidone‑iodine (PVP-I) for the prevention of SSIs at each stage of surgical intervention. Methods A literature search for selected key words was performed using PubMed. Additional papers were identified based on author expertise. Results Scientific evidence demonstrates that PVP-I can be used at every stage of surgical intervention: preoperative, intraoperative, and postoperative. PVP-I is one of the most widely used antiseptics on healthy skin and mucous membranes for preoperative surgical site preparation and is associated with a low SSI rate. For intraoperative irrigation, aqueous PVP-I is the recommended agent and has been demonstrated to decrease SSIs in a range of surgical settings, and for postoperative wound healing, there is a growing body of evidence to support the use of PVP-I. Conclusions There is a need for more stringent study designs in clinical trials to enable meaningful comparisons between antiseptic agents, particularly for preoperative skin preparation. The use of a single agent (PVP-I) at each stage of surgical intervention could potentially provide advantages, including economic benefits, over agents that can only be used at discrete stages of the surgical procedure. Key message Evidence supports the use of PVP-I at all stages of surgical intervention, from preoperative measures (including skin preparation, preoperative washing, and nasal decolonization) to intraoperative irrigation, through to postoperative wound management. However, there is a need for more stringent study designs in clinical trials to enable meaningful comparisons between antiseptic agents, particularly for preoperative skin preparation.
Collapse
Affiliation(s)
- Stan J. Monstrey
- Burn Care Center, Plastic Surgery Department, University Hospital Ghent, Ghent, Belgium
| | - Kris Govaers
- Division of Orthopaedic Surgery, az Sint-Blasius, Dendermonde, Belgium
| | - Patrice Lejuste
- Department of Oral and Maxillofacial Surgery, Grand Hôpital de Charleroi, Charleroi, Belgium
| | | | | |
Collapse
|
15
|
Scheuermann-Poley C, Wiessner A, Kikhney J, Gatzer R, Müller M, Stichling M, Moter A, Willy C. Fluorescence In Situ Hybridization as Diagnostic Tool for Implant-associated Infections: A Pilot Study on Added Value. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4994. [PMID: 37360245 PMCID: PMC10287136 DOI: 10.1097/gox.0000000000004994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Implant-associated infections are a devastating complication in surgery. Especially in infections with biofilm-forming microorganisms, the identification of the causing microorganism remains a challenge. However, the classification as biofilm is not possible with conventional polymerase chain reaction or culture-based diagnostics. The aim of this study was to evaluate the additional value of fluorescence in situ hybridization (FISH) and nucleic acid amplification technique (FISHseq) to discuss a diagnostic benefit of the culture-independent methods and to map spatial organization of pathogens and microbial biofilms in wounds. Methods In total, 118 tissue samples from 60 patients with clinically suspected implant-associated infections (n = 32 joint replacements, n = 24 open reduction and internal fixation, n = 4 projectiles) were analyzed using classic microbiological culture and culture-independent FISH in combination with polymerase chain reaction and sequencing (FISHseq). Results In 56 of 60 wounds, FISHseq achieved an added value. FISHseq confirmed the result of cultural microbiological examinations in 41 of the 60 wounds. In 12 wounds, one or more additional pathogens were detected by FISHseq. FISHseq could show that the bacteria initially detected by culture corresponded to a contamination in three wounds and could exclude that the identified commensal pathogens were a contamination in four other wounds. In five wounds, a nonplanktonic bacterial life form was detected. Conclusions The study revealed that FISHseq gives additional diagnostic information, including therapy-relevant findings that were missed by culture. In addition, nonplanktonic bacterial life forms could also be detected with FISHseq, albeit less frequently than previously indicated.
Collapse
Affiliation(s)
- Catharina Scheuermann-Poley
- From the Trauma & Orthopedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Centre Septic Defect Wounds, Federal Armed Forces of Germany, Bundeswehr (Military) Academic Hospital, Berlin, Germany
| | - Alexandra Wiessner
- Biofilmcenter, Institute for Microbiology, Infectious Diseases, and Immunology, Charité – University Medicine Berlin and MoKi Analytics GmbH, Berlin, Germany
| | - Judith Kikhney
- Biofilmcenter, Institute for Microbiology, Infectious Diseases, and Immunology, Charité – University Medicine Berlin and MoKi Analytics GmbH, Berlin, Germany
| | - Renate Gatzer
- Department of Microbiology, Federal Armed Forces of Germany, Bundeswehr (Military) Academic Hospital, Berlin, Germany
| | - Martin Müller
- Department of Microbiology, Federal Armed Forces of Germany, Bundeswehr (Military) Academic Hospital, Berlin, Germany
| | - Marcus Stichling
- From the Trauma & Orthopedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Centre Septic Defect Wounds, Federal Armed Forces of Germany, Bundeswehr (Military) Academic Hospital, Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Institute for Microbiology, Infectious Diseases, and Immunology, Charité – University Medicine Berlin and MoKi Analytics GmbH, Berlin, Germany
| | - Christian Willy
- From the Trauma & Orthopedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Centre Septic Defect Wounds, Federal Armed Forces of Germany, Bundeswehr (Military) Academic Hospital, Berlin, Germany
| |
Collapse
|
16
|
Smith JJ, Chou PY, Filliquist B, Marcellin-Little DJ, Kapatkin AS. Number of previous surgeries and antibiotic resistance decreases the success of local administration of antibiotic-impregnated poloxamer 407 hydrogel when managing orthopedic surgical site infections in dogs. J Am Vet Med Assoc 2023:1-7. [PMID: 37127278 DOI: 10.2460/javma.23.02.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE To report the outcome of locally administered antibiotic-impregnated poloxamer 407 (P407) hydrogel in dogs diagnosed with orthopedic surgical site infections (SSIs) and to identify risk factors for treatment failure. ANIMALS 34 client-owned dogs diagnosed with an orthopedic surgical site infection treated with local antibiotic-impregnated P407 hydrogel. PROCEDURES Medical records were reviewed of dogs receiving antibiotic-impregnated P407 hydrogel for an active orthopedic SSI between March 2018 and December 2020. The rate of successful infection clearance was calculated. Risk factors for failed treatment were evaluated with statistical analyses. RESULTS 34 dogs met the inclusion criteria. Vancomycin-impregnated P407 hydrogel (20 mg/mL) was implanted in all dogs. The rate of infection clearance was 77%. Each unit increase in the number of surgeries performed at a site before gel implantation decrease the chance of successful infection clearance by 25% (P = .005; unit OR, 0.25; 95% CI, 0.08 to 0.81). Presence of multidrug or methicillin resistance increased risk for treatment failure by 7.69 times (P = .042; OR, 0.13; 95% CI, 0.01 to 1.14). No adverse events related to gel administration were seen. CLINICAL RELEVANCE Treatment outcomes were negatively impacted by the presence of multidrug or methicillin resistance and by an increased number of surgeries before gel implantation. Local administration of antibiotic-impregnated P407 hydrogel had a high success rate with no adverse effects in this population. Local antibiotic gel administration may improve treatment outcomes in dogs with complicated SSI.
Collapse
Affiliation(s)
- Jessica J Smith
- 1William R. Prichard Veterinary Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Po-Yen Chou
- 2Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Barbro Filliquist
- 2Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Denis J Marcellin-Little
- 2Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Amy S Kapatkin
- 2Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
17
|
Lustri WR, Lazarini SC, Simei Aquaroni NA, Resende FA, Aleixo NA, Pereira DH, Lustri BC, Moreira CG, Ribeiro CM, Pavan FR, Nakahata DH, Gonçalves AM, Nascimento-Júnior NM, Corbi PP. A new complex of silver(I) with probenecid: Synthesis, characterization, and studies of antibacterial and extended spectrum β-lactamases (ESBL) inhibition activities. J Inorg Biochem 2023; 243:112201. [PMID: 37003189 DOI: 10.1016/j.jinorgbio.2023.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
This article describes the in vitro antibacterial and β-lactamase inhibition of a novel silver(I) complex with the sulfonamide probenecid (Ag-PROB). The formula Ag2C26H36N2O8S2·2H2O for the Ag-PROB complex was proposed based on elemental analysis. High-resolution mass spectrometric studies revealed the existence of the complex in its dimeric form. Infrared, nuclear magnetic resonance spectroscopies and Density Functional Theory calculations indicated a bidentate coordination of probenecid to the silver ions by the oxygen atoms of the carboxylate. In vitro antibacterial activities of Ag-PROB showed significant growth inhibitory activity over Mycobacterium tuberculosis, S. aureus, and P. aeruginosa PA01biofilm-producers, B. cereus, and E. coli. The Ag-PROB complex was active over multi-drug resistant of uropathogenic E. coli extended spectrum β-lactamases (ESBL) producing (EC958 and BR43), enterohemorrhagic E. coli (O157:H7) and enteroaggregative E. coli (O104:H4). Ag-PROB was able to inhibit CTX-M-15 and TEM-1B ESBL classes, at concentrations below the minimum inhibitory concentration for Ag-PROB, in the presence of ampicillin (AMP) concentration in which EC958 and BR43 bacteria were resistant in the absence of Ag-PROB. These results indicate that, in addition to ESBL inhibition, there is a synergistic antibacterial effect between AMP and the Ag-PROB. Molecular docking results revealed potential key residues involved in interactions between Ag-PROB, CTX-M-15 and TEM1B, suggesting the molecular mechanism of the ESBL inhibition. The obtained results added to the absence of mutagenic activity and low cytotoxic activity over non-tumor cell of the Ag-PROB complex open a new perspective for future in vivo tests demonstrating its potential of use as an antibacterial agent.
Collapse
|
18
|
Fortes BN, Scheunemann G, de Azevedo Melo AS, Ishida K. Caspofungin alone or combined with polymyxin B are effective against mixed biofilm of Aspergillus fumigatus and carbapenem-resistant Pseudomonas aeruginosa. Res Microbiol 2023; 174:103993. [PMID: 36184018 DOI: 10.1016/j.resmic.2022.103993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa biofilms are associated to the recalcitrant and persistent infections due to resistance to antimicrobials. Here, we evaluated the effect of antimicrobials on single and mixed biofilms of A. fumigatus and P. aeruginosa (carbapenem-resistant and susceptible strains) determining total biomass by crystal violet, cell viability by colony forming unit count, and microscopy. Polymyxin B (PMB) had the best action on P. aeruginosa biofilms inhibiting the biomass (2-4 μg/mL) and it was efficient reducing the viable bacterial cells. Amphotericin B (AMB) and caspofungin (CAS) were the best antifungal at inhibiting A. fumigatus biofilms and reducing fungal viability at concentration ≥1 and ≥ 16 μg/mL, respectively. In addition, CAS was able to significantly reduce P. aeruginosa viability in mixed biofilms. CAS combined with PMB also significantly reduced the mixed biofilm biomass and fungal and bacterial viability mainly against carbapenem-resistant bacterium. The light and fluorescence microscopy showed alterations on hyphae morphology and confirmed the increase of fungal and bacterial death cells after combined therapy of mixed biofilms. Taken together, our work showed that CAS alone and its combination with PMB showed better potential in reducing mixed biofilm biomass and fungal and bacterial viability, even for the carbapenem-resistant P. aeruginosa strain.
Collapse
Affiliation(s)
- Bruna Nakanishi Fortes
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| | - Gaby Scheunemann
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| | - Analy Salles de Azevedo Melo
- Department of Medicine, Federal University of São Paulo, Botucatu Street, 720 - 04039-032, São Paulo/SP, Brazil.
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| |
Collapse
|
19
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
20
|
Dadi NCT, Radochová B, Vargová J, Bujdáková H. Impact of Healthcare-Associated Infections Connected to Medical Devices-An Update. Microorganisms 2021; 9:2332. [PMID: 34835457 PMCID: PMC8618630 DOI: 10.3390/microorganisms9112332] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
Healthcare-associated infections (HAIs) are caused by nosocomial pathogens. HAIs have an immense impact not only on developing countries but also on highly developed parts of world. They are predominantly device-associated infections that are caused by the planktonic form of microorganisms as well as those organized in biofilms. This review elucidates the impact of HAIs, focusing on device-associated infections such as central line-associated bloodstream infection including catheter infection, catheter-associated urinary tract infection, ventilator-associated pneumonia, and surgical site infections. The most relevant microorganisms are mentioned in terms of their frequency of infection on medical devices. Standard care bundles, conventional therapy, and novel approaches against device-associated infections are briefly mentioned as well. This review concisely summarizes relevant and up-to-date information on HAIs and HAI-associated microorganisms and also provides a description of several useful approaches for tackling HAIs.
Collapse
Affiliation(s)
| | - Barbora Radochová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (N.C.T.D.); (J.V.)
| | | | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (N.C.T.D.); (J.V.)
| |
Collapse
|
21
|
Pezzanite LM, Chow L, Johnson V, Griffenhagen GM, Goodrich L, Dow S. Toll-like receptor activation of equine mesenchymal stromal cells to enhance antibacterial activity and immunomodulatory cytokine secretion. Vet Surg 2021; 50:858-871. [PMID: 33797775 DOI: 10.1111/vsu.13628] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate effects of Toll-like and nucleotide-binding oligomerization domain (NOD)-like receptor (TLR, NLR) ligand stimulation of equine mesenchymal stromal cells (MSCs) on antibacterial and immunomodulatory properties in vitro. STUDY DESIGN Controlled laboratory study. SAMPLE POPULATION Equine bone-marrow-derived MSCs (three horses). METHODS MSCs were stimulated with TLR (polyinosinic:polycytidylic acid [pIC] and lipopolysaccharide [LPS]) and NLR agonists (γ-d-Glu-mDAP [IE-DAP]) for 2 h, and plated at 1 × 105 cells/well 24 h. MSC-conditioned media (MSC-CM) were collected and assessed for antimicrobial peptide cathelicidin/LL-37 production, bactericidal action against multidrug-resistant planktonic and biofilm Staphylococcus aureus and neutrophil phagocytosis. Bacterial growth was measured by plating bacteria and counting viable colonies, reading culture absorbance, and live-dead staining with confocal microscopy imaging. Following initial comparison of activating stimuli, TLR3-agonist pIC protocols (cell density during activation and plating, culture time, %serum) were further optimized for bactericidal activity and secretion of interleukin-8 (IL-8), monocyte-chemoattractant-protein (MCP-1), and cathelicidin/LL37. RESULTS MSCs stimulation with pIC (p = .004) and IE-DAP (p = .03) promoted increased bactericidal activity, evidenced by reduced viable planktonic colony counts. PIC stimulation (2 × 106 cells/ml, 2 h, 10 μg/ml) further suppressed biofilm formation (p = .001), enhanced neutrophil bacterial phagocytosis (p = .009), increased MCP-1 secretion (p < .0001), and enhanced cathelicidin/LL-37 production, which was apparent when serum concentration in media was reduced to 1% (p = .01) and 2.5% (p = .05). CONCLUSION TLR-3 pIC MSCs activation was most effective to enhance antibacterial and cytokine responses, which were affected by serum reduction. CLINICAL SIGNIFICANCE In vitro TLR-3 activation of equine MSCs tested here may be a strategy to improve antibacterial properties of MSCs to treat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Colorado, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Colorado, USA
| | - Valerie Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Colorado, USA
| | - Gregg M Griffenhagen
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Colorado, USA
| | - Laurie Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Colorado, USA
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Colorado, USA
| |
Collapse
|
22
|
Surgical Site Infections and Perioperative Optimization of Host Immunity by Selection of Anesthetics. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5576959. [PMID: 33763473 PMCID: PMC7963902 DOI: 10.1155/2021/5576959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Surgical site infections are significant health care issues, and efforts to mitigate their occurrence have been ongoing worldwide, mainly focusing to reduce the spillage of microbes to the otherwise sterile tissues. Optimization of host immunity has been also recognized including temperature regulation (normothermia), adequate oxygenation, and glucose management. A number of papers have described the role of anesthetics in host immunity. The role of anesthetics in postoperative outcomes including surgical site infections has been also studied. We will review the current literature and propose the importance of anesthetic selection to potentially mitigate surgical site infections.
Collapse
|
23
|
Prabha S, Sowndarya J, Ram PJVS, Rubini D, Hari BNV, Aruni W, Nithyanand P. Chitosan-Coated Surgical Sutures Prevent Adherence and Biofilms of Mixed Microbial Communities. Curr Microbiol 2021; 78:502-512. [PMID: 33389059 DOI: 10.1007/s00284-020-02306-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Sutures are widely used materials for closing the surgical wounds, and being an inert material, sutures are often colonized with drug-resistant polymicrobial biofilms. Surgical site infection (SSI) is a hospital-acquired infection caused by bacteria and fungi specifically in the sutured sites. Although most of the currently available sutures possess antibacterial property, their ability to prevent biofilm colonization by polymicrobial communities is underexplored. So, the present study shows that extracted chitosan (EC) from crab shells prevented the adherence of Staphylococcus epidermidis and Candida albicans, the predominant members that exist as mixed species at the site of SSI. In comparison with a commercial chitosan, EC showed profound inhibition of slime formation and mixed species biofilm inhibition. Intriguingly, EC-coated sutures could inhibit the growth of both bacterial and fungal pathogens when comparing with a commercial triclosan-coated suture which was active only against the bacterial pathogen. Scanning electron microscopy results revealed inhibition of C. albicans hyphal formation by the EC-coated sutures that is a crucial virulence factor responsible for tissue invasiveness. Collectively, the results of the present study showed that EC from crab shells (discarded material as a recalcitrant biowaste) could be used as an alternative to combat drug-resistant biofilms which are the prime cause for SSIs.
Collapse
Affiliation(s)
- Subramani Prabha
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Jothipandiyan Sowndarya
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Parepalli Janaki Venkata Sai Ram
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - B Narayanan Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Wilson Aruni
- US Department of Veteran Affairs, Loma Linda, VA, USA
- California University of Science and Medicine, San Bernardino, California, USA
- Sathyabama Institute of Science and Technology, Chennai, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India.
| |
Collapse
|
24
|
Rifampin-Releasing Triple-Layer Cross-Linked Fresh Water Fish Collagen Sponges as Wound Dressings. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3841861. [PMID: 33123572 PMCID: PMC7586155 DOI: 10.1155/2020/3841861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Objectives Surgical wounds resulting from biofilm-producing microorganisms represent a major healthcare problem that requires new and innovative treatment methods. Rifampin is one of a small number of antibiotics that is able to penetrate such biofilms, and its local administration has the potential to serve as an ideal surgical site infection protection and/or treatment agent. This paper presents two types (homogeneous and sandwich structured) of rifampin-releasing carbodiimide-cross-linked fresh water fish collagen wound dressings. Methods The dressings were prepared by means of the double-lyophilization method and sterilized via gamma irradiation so as to allow for testing in a form that is able to serve for direct clinical use. The mechanical properties were studied via the uniaxial tensile testing method. The in vivo rifampin-release properties were tested by means of a series of incubations in phosphate-buffered saline. The microbiological activity was tested against methicillin-resistant staphylococcus aureus (MRSA) employing disc diffusion tests, and the in vivo pharmacokinetics was tested using a rat model. A histological examination was conducted for the study of the biocompatibility of the dressings. Results The sandwich-structured dressing demonstrated better mechanical properties due to its exhibiting ability to bear a higher load than the homogeneous sponges, a property that was further improved via the addition of rifampin. The sponges retarded the release of rifampin in vitro, which translated into at least 22 hours of rifampin release in the rat model. This was significantly longer than was achieved via the administration of a subcutaneous rifampin solution. Microbiological activity was proven by the results of the disc diffusion tests. Both sponges exhibited excellent biocompatibility as the cells penetrated into the scaffold, and virtually no signs of local irritation were observed. Conclusions We present a novel rifampin-releasing sandwich-structured fresh water fish collagen wound dressing that has the potential to serve as an ideal surgical site infection protection and/or treatment agent.
Collapse
|
25
|
LC-QTOF-MS and 1H NMR Metabolomics Verifies Potential Use of Greater Omentum for Klebsiella pneumoniae Biofilm Eradication in Rats. Pathogens 2020; 9:pathogens9050399. [PMID: 32455691 PMCID: PMC7281169 DOI: 10.3390/pathogens9050399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Bacterial wound infections are a common problem associated with surgical interventions. In particular, biofilm-forming bacteria are hard to eradicate, and alternative methods of treatment based on covering wounds with vascularized flaps of tissue are being developed. The greater omentum is a complex organ covering the intestines in the abdomen, which support wound recovery following surgical procedures and exhibit natural antimicrobial activity that could improve biofilm eradication. We investigated changes in rats’ metabolome following Klebsiella pneumoniae infections, as well as the greater omentum’s ability for Klebsiella pneumoniae biofilm eradication. Rats received either sterile implants or implants covered with Klebsiella pneumoniae biofilm (placed in the peritoneum or greater omentum). Metabolic profiles were monitored at days 0, 2, and 5 after surgery using combined proton nuclear magnetic resonance (1H NMR) and high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC–QTOF-MS) measurements of urine samples followed by chemometric analysis. Obtained results indicated that grafting of the sterile implant to the greater omentum did not cause major disturbances in rats’ metabolism, whereas the sterile implant located in the peritoneum triggered metabolic perturbations related to tricarboxylic acid (TCA) cycle, as well as choline, tryptophan, and hippurate metabolism. Presence of implants colonized with Klebsiella pneumoniae biofilm resulted in similar levels of metabolic perturbations in both locations. Our findings confirmed that surgical procedures utilizing the greater omentum may have a practical use in wound healing and tissue regeneration in the future.
Collapse
|
26
|
Daulton E, Wicaksono A, Bechar J, Covington JA, Hardwicke J. The Detection of Wound Infection by Ion Mobility Chemical Analysis. BIOSENSORS-BASEL 2020; 10:bios10030019. [PMID: 32121452 PMCID: PMC7146168 DOI: 10.3390/bios10030019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022]
Abstract
Surgical site infection represents a large burden of care in the National Health Service. Current methods for diagnosis include a subjective clinical assessment and wound swab culture that may take several days to return a result. Both techniques are potentially unreliable and result in delays in using targeted antibiotics. Volatile organic compounds (VOCs) are produced by micro-organisms such as those present in an infected wound. This study describes the use of a device to differentiate VOCs produced by an infected wound vs. colonised wound. Malodourous wound dressings were collected from patients, these were a mix of post-operative wounds and vascular leg ulcers. Wound microbiology swabs were taken and antibiotics commenced as clinically appropriate. A control group of soiled, but not malodorous wound dressings were collected from patients who had a split skin graft (SSG) donor site. The analyser used was a G.A.S. GC-IMS. The results from the samples had a sensitivity of 100% and a specificity of 88%, with a positive predictive value of 90%. An area under the curve (AUC) of 91% demonstrates an excellent ability to discriminate those with an infected wound from those without. VOC detection using GC-IMS has the potential to serve as a diagnostic tool for the differentiation of infected and non-infected wounds and facilitate the treatment of wound infections that is cost effective, non-invasive, acceptable to patients, portable, and reliable.
Collapse
Affiliation(s)
- Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (E.D.); (A.W.)
| | - Alfian Wicaksono
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (E.D.); (A.W.)
| | - Janak Bechar
- Warwick Medical School, University of Warwick, Medical School Building, Coventry CV4 7HL, UK; (J.B.); (J.H.)
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (E.D.); (A.W.)
- Correspondence:
| | - Joseph Hardwicke
- Warwick Medical School, University of Warwick, Medical School Building, Coventry CV4 7HL, UK; (J.B.); (J.H.)
- Department of Plastic Surgery, University Hospitals of Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK
| |
Collapse
|
27
|
Kim A, Jung JH, Lee YJ, Park JW, Pyon JK. Minimally invasive salvage of infected breast tissue expanders: A continuous closed irrigation technique based on surface biofilm disruption. J Plast Reconstr Aesthet Surg 2019; 73:295-302. [PMID: 31515192 DOI: 10.1016/j.bjps.2019.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/03/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Removal of the infected device has been the general treatment for device-associated infection in antibiotic failure. There have been anecdotal attempts to salvage infected medical devices by introducing a continuous closed irrigation system. OBJECTIVE This study examines whether continuous closed irrigation of an infected device is a successful alternative to removal in patients with recalcitrant device-associated infection. METHODS Patients who were diagnosed with recalcitrant periexpander infections during the course of expander-implant breast reconstruction from 2010 to 2018 were enrolled in a retrospective case-control study. Patients who failed antibiotics before 2017 underwent expander removal, but patients since 2017 underwent continuous closed irrigation of the infected expanders. Treatment details and clinical outcomes were compared. Rationale for expander irrigation was based on review of the current literature on biofilm research. RESULTS During the study period, 21 out of the 1176 patients were diagnosed with periexpander infection recalcitrant to antibiotic therapy. Among the 21 patients, 16 underwent expander removal and five underwent expander irrigation. Clinical outcomes were comparable in terms of resolution of infection signs. The irrigation group showed fewer patients who abandoned reconstruction after infection treatment (removal = 11/16, irrigation = 1/5). Literature review revealed that expander irrigation might have induced hydrodynamic disruption of the biofilm structure. CONCLUSION Expander irrigation was less invasive than removal and effective in suppressing severe recalcitrant periexpander infection. Continuous closed irrigation of infected expander devices may be a successful antibiofilm strategy in treating device-associated infections in select patients.
Collapse
Affiliation(s)
- Ara Kim
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon, Gangnam, Seoul, Republic of Korea
| | - Jae Hoon Jung
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon, Gangnam, Seoul, Republic of Korea
| | - Young Jae Lee
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon, Gangnam, Seoul, Republic of Korea
| | - Jin-Woo Park
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon, Gangnam, Seoul, Republic of Korea
| | - Jai-Kyong Pyon
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon, Gangnam, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Johnson-Jahangir H, Agrawal N. Perioperative Antibiotic Use in Cutaneous Surgery. Dermatol Clin 2019; 37:329-340. [DOI: 10.1016/j.det.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Boudjemaa R, Briandet R, Fontaine-Aupart MP, Steenkeste K. How do fluorescence spectroscopy and multimodal fluorescence imaging help to dissect the enhanced efficiency of the vancomycin-rifampin combination against Staphylococcus aureus infections? Photochem Photobiol Sci 2018; 16:1391-1399. [PMID: 28664201 DOI: 10.1039/c7pp00079k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is one of the most frequent pathogens responsible for biofilm-associated infections. Among current clinical antibiotics, very few enable long-term successful treatment. Thus, it becomes necessary to better understand antibiotic failures and successes in treating infections in order to master the use of proper antibiotic therapies. In this context, we took benefit from a set of fluorescence spectroscopy and imaging methods, with the support of conventional microbiological tools to better understand the vancomycin-rifampin combination (in)efficiency against S. aureus biofilms. It was shown that both antibiotics interacted by forming a complex. This latter allowed a faster penetration of the drugs before dissociating from each other to interact with their respective biological targets. However, sufficiently high concentrations of free vancomycin should be maintained, either by increasing the vancomycin concentration or by applying repetitive doses of the two drugs, in order to eradicate rifampin-resistant mutants.
Collapse
Affiliation(s)
- Rym Boudjemaa
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | | | | | | |
Collapse
|
30
|
Al-Jumaili A, Kumar A, Bazaka K, Jacob MV. Plant Secondary Metabolite-Derived Polymers: A Potential Approach to Develop Antimicrobial Films. Polymers (Basel) 2018; 10:E515. [PMID: 30966549 PMCID: PMC6415405 DOI: 10.3390/polym10050515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
The persistent issue of bacterial and fungal colonization of artificial implantable materials and the decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one such strategy where inherently biologically active renewable resources, i.e., plant secondary metabolites (PSMs) and their naturally occurring combinations (i.e., essential oils) are used for surface functionalization and synthesis of polymer thin films. With a distinct mode of antibacterial activity, broad spectrum of action, and diversity of available chemistries, plant secondary metabolites present an attractive alternative to conventional antibiotics. However, their conversion from liquid to solid phase without a significant loss of activity is not trivial. Using selected examples, this article shows how plasma techniques provide a sufficiently flexible and chemically reactive environment to enable the synthesis of biologically-active polymer coatings from volatile renewable resources.
Collapse
Affiliation(s)
- Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Physics Department, College of Science, Ramadi, Anbar University, Ramadi 11, Iraq.
| | - Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
31
|
Hong B, Winkel A, Ertl P, Stumpp SN, Schwabe K, Stiesch M, Krauss JK. Bacterial colonisation of suture material after routine neurosurgical procedures: relevance for wound infection. Acta Neurochir (Wien) 2018; 160:497-503. [PMID: 29189910 DOI: 10.1007/s00701-017-3404-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Wound healing impairment is a serious problem in surgical disciplines which may be associated with chronic morbidity, increased cost and patient discomfort. Here we aimed to investigate the relevance of bacterial colonisation on suture material using polymerase chain reaction (PCR) to detect and taxonomically classify bacterial DNA in patients with and without wound healing problems after routine neurosurgical procedures. METHODS Repeat surgery was performed in 25 patients with wound healing impairment and in 38 patients with well-healed wounds. To determine the presence of bacteria, a 16S rDNA-based PCR detection method was applied. Fragments of 500 bp were amplified using universal primers which target hypervariable regions within the bacterial 16S rRNA gene. Amplicons were separated from each other by single-strand conformation polymorphism (SSCP) analysis, and finally classified using Sanger sequencing. RESULTS PCR/SSCP detected DNA of various bacteria species on suture material in 10/38 patients with well-healed wounds and in 12/25 patients with wound healing impairment including Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes and Escherichia coli. Microbiological cultures showed bacterial growth in almost all patients with wound healing impairment and positive results in PCR/SSCP (10/12), while this was the case in only one patient with a well-healed wound (1/10). CONCLUSIONS Colonisation of suture material with bacteria occurs in a relevant portion of patients with and without wound healing impairment after routine neurosurgical procedures. Suture material may provide a nidus for bacteria and subsequent biofilm formation. Most likely, however, such colonisation of sutures is not a general primer for subsequent wound infection.
Collapse
Affiliation(s)
- Bujung Hong
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Material Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Philipp Ertl
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Sascha Nico Stumpp
- Department of Prosthetic Dentistry and Biomedical Material Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Material Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
32
|
Sabir N, Ikram A, Zaman G, Satti L, Gardezi A, Ahmed A, Ahmed P. Bacterial biofilm-based catheter-associated urinary tract infections: Causative pathogens and antibiotic resistance. Am J Infect Control 2017. [PMID: 28629757 DOI: 10.1016/j.ajic.2017.05.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND We sought to determine the incidence of bacterial biofilm-based catheter-associated urinary tract infections, identify variables affecting biofilm formation, and identify etiologic bacterial pathogens and antibiotic-resistance patterns associated with biofilm-based catheter-associated urinary tract infections (CAUTIs) in our setup. METHODS Patients who developed at least 2 symptoms of urinary tract infection after at least 2 days of indwelling urinary catheters were included. Urine was collected aseptically from catheter tubing and processed per standard microbiologic practices. Bacterial pathogens were identified on the basis of gram staining, colony morphology, and biochemical reactions. The detection of the biofilm was done using the tube adherence method. Drug susceptibility testing was done using the Kirby-Bauer disc diffusion method. FINDINGS Biofilm was detected in 73.4% isolates, whereas 26.6% of isolates were nonbiofilm producers. Mean duration of catheterization after which biofilm was detected was 5.01 ± 1.31 days. A latex catheter was used in 69.5% of patients, whereas a silicone catheter was used in 30.4% of patients. Escherichia coli was found to be the most common pathogen isolated (52.3%), whereas Enterobacter cloacae exhibited the highest biofilm production (87.5%) among isolated pathogens. Among biofilm producers, the highest resistance was observed with ampicillin (100%). Fosfomycin exhibited the lowest resistance (17.2%). Significant association with biofilm was detected for gender, duration of catheterization, and type of catheter. CONCLUSION Biofilm-based CAUTI is an emerging problem. E coli was the most frequent isolate. High antibiotic resistance was observed in biofilm-producing strains. Using the variables affecting biofilm formation, tailored intervention strategies can be implemented to reduce biofilm-based CAUTIs.
Collapse
Affiliation(s)
- Nargis Sabir
- Armed Forces Institute of Pathology, National University of Medical Sciences, Islamabad, Pakistan.
| | - Aamer Ikram
- Armed Forces Institute of Pathology, National University of Medical Sciences, Islamabad, Pakistan
| | - Gohar Zaman
- Armed Forces Institute of Pathology, National University of Medical Sciences, Islamabad, Pakistan
| | - Luqman Satti
- Armed Forces Institute of Pathology, National University of Medical Sciences, Islamabad, Pakistan
| | - Adeel Gardezi
- Armed Forces Institute of Pathology, National University of Medical Sciences, Islamabad, Pakistan
| | - Abeera Ahmed
- Armed Forces Institute of Pathology, National University of Medical Sciences, Islamabad, Pakistan
| | - Parvez Ahmed
- Armed Forces Institute of Pathology, National University of Medical Sciences, Islamabad, Pakistan
| |
Collapse
|
33
|
Al-Jumaili A, Bazaka K, Jacob MV. Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films. NANOMATERIALS 2017; 7:nano7090270. [PMID: 28902134 PMCID: PMC5618381 DOI: 10.3390/nano7090270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023]
Abstract
Bacterial colonisation of biomedical devices demands novel antibacterial coatings. Plasma-enabled treatment is an established technique for selective modification of physicochemical characteristics of the surface and deposition of polymer thin films. We investigated the retention of inherent antibacterial activity in geranium based plasma polymer thin films. Attachment and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was significantly reduced on the surfaces of samples fabricated at 10 W radio frequency (RF) power, compared to that of control or films fabricated at higher input power. This was attributed to lower contact angle and retention of original chemical functionality in the polymer films fabricated under low input power conditions. The topography of all surfaces was uniform and smooth, with surface roughness of 0.18 and 0.69 nm for films fabricated at 10 W and 100 W, respectively. Hardness and elastic modules of films increased with input power. Independent of input power, films were optically transparent within the visible wavelength range, with the main absorption at ~290 nm and optical band gap of ~3.6 eV. These results suggest that geranium extract-derived polymers may potentially be used as antibacterial coatings for contact lenses.
Collapse
Affiliation(s)
- Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
34
|
Ashrafi M, Bates M, Baguneid M, Alonso-Rasgado T, Rautemaa-Richardson R, Bayat A. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections. Wound Repair Regen 2017; 25:574-590. [DOI: 10.1111/wrr.12563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | | | - Mohamed Baguneid
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | - Riina Rautemaa-Richardson
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| |
Collapse
|
35
|
Johnson V, Webb T, Norman A, Coy J, Kurihara J, Regan D, Dow S. Activated Mesenchymal Stem Cells Interact with Antibiotics and Host Innate Immune Responses to Control Chronic Bacterial Infections. Sci Rep 2017; 7:9575. [PMID: 28851894 PMCID: PMC5575141 DOI: 10.1038/s41598-017-08311-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic bacterial infections associated with biofilm formation are often difficult to resolve without extended courses of antibiotic therapy. Mesenchymal stem cells (MSC) exert antibacterial activity in vitro and in acute bacterial infection models, but their activity in chronic infection with biofilm models has not been previously investigated. Therefore, we studied the effects of MSC administration in mouse and dog models of chronic infections associated with biofilms. Mice with chronic Staphylococcus aureus implant infections were treated by i.v. administration of activated or non-activated MSC, with or without antibiotic therapy. The most effective treatment protocol was identified as activated MSC co-administered with antibiotic therapy. Activated MSC were found to accumulate in the wound margins several days after i.v. administration. Macrophages in infected tissues assumed an M2 phenotype, compared to untreated infections which contained predominately M1 macrophages. Bacterial killing by MSC was found to be mediated in part by secretion of cathelicidin and was significantly increased by antibiotics. Studies in pet dogs with spontaneous chronic multi drug-resistant wound infections demonstrated clearance of bacteria and wound healing following repeated i.v. administration of activated allogeneic canine MSC. Thus, systemic therapy with activated MSC may be an effective new, non-antimicrobial approach to treatment of chronic, drug-resistant infections.
Collapse
Affiliation(s)
- Valerie Johnson
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Tracy Webb
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Annalis Norman
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Jonathan Coy
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Jade Kurihara
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Daniel Regan
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Steven Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA.
| |
Collapse
|
36
|
Leaper D, Wilson P, Assadian O, Edmiston C, Kiernan M, Miller A, Bond-Smith G, Yap J. The role of antimicrobial sutures in preventing surgical site infection. Ann R Coll Surg Engl 2017; 99:439-443. [PMID: 28660816 PMCID: PMC5696981 DOI: 10.1308/rcsann.2017.0071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Healthcare associated infections (HCAIs) are falling following widespread and enforced introduction of guidelines, particularly those that have addressed antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus or emergent pathogens such as Clostridium difficile, but no such decline has been seen in the incidence of surgical site infection (SSI), either in the UK, the EU or the US. SSI is one of the HCAIs, which are all avoidable complications of a surgical patient's pathway through both nosocomial and community care. METHODS This report is based on a meeting held at The Royal College of Surgeons of England on 21 July 2016. Using PubMed, members of the panel reviewed the current use of antiseptics and antimicrobial sutures in their specialties to prevent SSI. FINDINGS The group agreed that wider use of antiseptics in surgical practice may help in reducing reliance on antibiotics in infection prevention and control, especially in the perioperative period of open elective colorectal, hepatobiliary and cardiac operative procedures. The wider use of antiseptics includes preoperative showering, promotion of hand hygiene, (including the appropriate use of surgical gloves), preoperative skin preparation (including management of hair removal), antimicrobial sutures and the management of dehisced surgical wounds after infection. The meeting placed emphasis on the level I evidence that supports the use of antimicrobial sutures, particularly in surgical procedures after which the SSI rate is high (colorectal and hepatobiliary surgery) or when a SSI can be life threatening even when the rate of SSI is low (cardiac surgery).
Collapse
Affiliation(s)
- D Leaper
- University of Newcastle upon Tyne , UK
| | - P Wilson
- University College of London Hospitals NHS Foundation Trust , UK
| | | | | | | | - A Miller
- University Hospitals of Leicester NHS Trust , UK
| | | | - J Yap
- Barts Health NHS Trust , UK
| |
Collapse
|
37
|
Scheuermann-Poley C, Wagner C, Hoffmann J, Moter A, Willy C. Bedeutung des Biofilms für die Infektbehandlung in der Unfallchirurgie. Unfallchirurg 2017; 120:461-471. [DOI: 10.1007/s00113-017-0361-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Roberts CD, Leaper DJ, Assadian O. The Role of Topical Antiseptic Agents Within Antimicrobial Stewardship Strategies for Prevention and Treatment of Surgical Site and Chronic Open Wound Infection. Adv Wound Care (New Rochelle) 2017; 6:63-71. [PMID: 28224049 PMCID: PMC5286547 DOI: 10.1089/wound.2016.0701] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023] Open
Abstract
Scope and Significance: The topical use of antiseptics for wound care has a role in an antimicrobial stewardship strategy. However, the details of this role need clarification. Further clinical research into the use of topical antiseptics in wound care would lower the risk of furthering antibiotic resistance and contribute to more effective antibiotic use. As part of this research, experimental and surveillance data are needed on the resistance and tolerance patterns associated with topical antiseptic use in wound infections. Objective: The development of antibiotic resistance presents global challenges in terms of patient harm and increased healthcare costs. The treatment of "at risk" and infected wounds contributes to this conundrum. Synergies between antibiotics and antiseptics and their appropriate combined use need exploration. Approach: A review of available evidence on the appropriateness of antiseptics as a fundamental component of antimicrobial stewardship strategies has been undertaken. Innovation: Opening up new ways of thinking and identifying gaps of knowledge will lead to optimizing justification of antimicrobial choices and combinations. This may lead to changes in practice in terms of solutions for the prevention and treatment of wound infection. Conclusion: Antiseptics are an integral part of antimicrobial stewardship strategies for the prevention and treatment of surgical site and chronic open wound infections.
Collapse
Affiliation(s)
| | - David J. Leaper
- Institute for Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| | - Ojan Assadian
- Department for Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
39
|
Abstract
Patients admitted to critical care units are at high risk for increased morbidity and mortality from skin and deep wound infections. Despite considerable progress, wound healing remains a challenge to many clinicians. Nurses working in critical care environments need to understand the anatomic and physiologic basis for wound healing, distinguish wound inflammation from wound infection, recognize the presence of biofilms, and implement evidence-based wound care in order to promote successful outcomes in this patient population.
Collapse
Affiliation(s)
- Jean E Cefalu
- Nursing Department, School of Nursing, Louisiana State University Health Sciences Center, 1900 Gravier Street, Suite 4A6, New Orleans, LA 70112, USA.
| | - Kendra M Barrier
- School of Nursing, Louisiana State University Health Sciences Center, 1900 Gravier Street, Suite 4C1, New Orleans, LA 70112, USA
| | - Alison H Davis
- School of Nursing, Louisiana State University Health Sciences Center, 1900 Gravier Street, Suite 506, New Orleans, LA 70112, USA
| |
Collapse
|
40
|
Swearingen MC, DiBartola AC, Dusane D, Granger J, Stoodley P. 16S rRNA analysis provides evidence of biofilms on all components of three infected periprosthetic knees including permanent braided suture. Pathog Dis 2016; 74:ftw083. [PMID: 27549423 PMCID: PMC5985479 DOI: 10.1093/femspd/ftw083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/01/2015] [Accepted: 08/16/2016] [Indexed: 01/19/2023] Open
Abstract
Bacterial biofilms are the main etiological agent of periprosthetic joint infections (PJI); however, it is unclear if biofilms colonize one or multiple components. Because biofilms can colonize a variety of surfaces, we hypothesized that biofilms would be present on all components. 16S ribosomal RNA (rRNA) gene sequencing analysis was used to identify bacteria recovered from individual components and non-absorbable suture material recovered from three PJI total knee revision cases. Bray-Curtis non-metric multidimensional scaling analysis revealed no significant differences in similarity when factoring component, material type, or suture versus non-suture material, but did reveal significant differences in organism profile between patients (P < 0.001) and negative controls (P < 0.001). Confocal microscopy and a novel agar encasement culturing method also confirmed biofilm growth on a subset of components. While 16S sequencing suggested that the microbiology was more complex than revealed by culture contaminating, bacterial DNA generates a risk of false positives. This report highlights that biofilm bacteria may colonize all infected prosthetic components including braided suture material, and provides further evidence that clinical culture can fail to sufficiently identify the full pathogen profile in PJI cases.
Collapse
Affiliation(s)
- Matthew C Swearingen
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Biomedical Research Tower, 460 West 12th Avenue, Room 760, Columbus, OH 43210, USA
| | - Alex C DiBartola
- School of Medicine, The Ohio State University, Mailing Hall, 370 West 9th Avenue, Columbus, OH 43210, USA
| | - Devendra Dusane
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Biomedical Research Tower, 460 West 12th Avenue, Room 760, Columbus, OH 43210, USA
| | - Jeffrey Granger
- Department of Orthopaedics, The Ohio State University, 543 Taylor Avenue, Columbus, OH 43203, USA
| | - Paul Stoodley
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Biomedical Research Tower, 460 West 12th Avenue, Room 760, Columbus, OH 43210, USA Department of Orthopaedics, The Ohio State University, 543 Taylor Avenue, Columbus, OH 43203, USA Engineering Sciences Unit, National Center for Advanced Tribology, University of Southampton, UK
| |
Collapse
|
41
|
Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, Houri H. Evaluation of Biofilm Formation Among Klebsiella pneumoniae Isolates and Molecular Characterization by ERIC-PCR. Jundishapur J Microbiol 2016; 9:e30682. [PMID: 27099694 PMCID: PMC4834130 DOI: 10.5812/jjm.30682] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background: Klebsiella pneumoniae is among the most frequently recovered etiologic agents from nosocomial infections. This opportunistic pathogen can generate a thick layer of biofilm as one of its important virulence factors, enabling the bacteria to attach to living or abiotic surfaces, which contributes to drug resistance. Objectives: The resistance of biofilm-mediated infections to effective chemotherapy has adverse effects on patient outcomes and survival. Therefore, the aim of the present study was to evaluate the biofilm-formation capacity of clinical K. pneumoniae isolates and to perform a molecular characterization using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) to determine the dominant biofilm-producing genotype. Patients and Methods: In the present study, 94 K. pneumoniae isolates were obtained from two hospitals in Tehran, Iran. Biofilm formation was assayed by a modified procedure, then ERIC-PCR was carried out. Results: The distributions of the clinical specimens used in this study were 61.7% from urine, 18.1% from wounds, 11.7% from sputum, and 8.5% from blood. Among these isolates, 33% formed fully established biofilms, 52.1% were categorized as moderately biofilm-producing, 8.5% formed weak biofilms, and 6.4% were non-biofilm-producers. Genotyping of K. pneumoniae revealed 31 different ERIC types. Biofilm-formation ability in a special ERIC type was not observed. Conclusions: Our results indicated that an enormous proportion of K. pneumoniae isolated from sputum and surgical-wound swabs produced fully established biofilms. It is reasonable to assume the existence of a relationship between the site of infection and the formation of biofilm. A high level of genetic diversity among the K. pneumoniae strains was observed.
Collapse
Affiliation(s)
- Kimia Seifi
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hossein Kazemian
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Hamid Heidari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Fereshteh Rezagholizadeh
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Yasaman Saee
- Department of Microbiology, Islamic Azad University, Pharmaceutical Branch, Tehran, IR Iran
| | - Fariba Shirvani
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hamidreza Houri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Hamidreza Houri, Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-9126662543, Fax: +98-2123872556, E-mail:
| |
Collapse
|
42
|
Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 2015; 64:323-334. [PMID: 25670813 DOI: 10.1099/jmm.0.000032] [Citation(s) in RCA: 463] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/23/2015] [Indexed: 01/30/2023] Open
Abstract
Biofilms are of great importance in infection control and healthcare-associated infections owing to their inherent tolerance and 'resistance' to antimicrobial therapies. Biofilms have been shown to develop on medical device surfaces, and dispersal of single and clustered cells implies a significant risk of microbial dissemination within the host and increased risk of infection. Although routine microbiological testing assists with the diagnosis of a clinical infection, there is no 'gold standard' available to reveal the presence of microbial biofilm from samples collected within clinical settings. Furthermore, such limiting factors as viable but non-culturable micro-organisms and small-colony variants often prevent successful detection. In order to increase the chances of detection and provide a more accurate diagnosis, a combination of microbiological culture techniques and molecular methods should be employed. Measures such as antimicrobial coating and surface alterations of medical devices provide promising opportunities in the prevention of biofilm formation on medical devices.
Collapse
Affiliation(s)
- Steven L Percival
- Scapa Healthcare, Manchester, UK.,Surface Science Research Centre, University of Liverpool, Liverpool, UK.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Louise Suleman
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|