1
|
Sheikh M, Saiyyad A, Aliunui A, Jirvankar PS. The evolving landscape of oncolytic virus immunotherapy: combinatorial strategies and novel engineering approaches. Med Oncol 2025; 42:190. [PMID: 40314865 DOI: 10.1007/s12032-025-02746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Oncolytic viruses (OVs) are a promising class of cancer therapy, exploiting their abilities to selectively infect and kill cancer cells while stimulating antitumor immune responses. The current assessment explores the changing horizons of OV immunotherapy, focusing on recent advances in technology plans to improve OV projects and combined approaches to improve curative efficacy. We discuss how OVs induce direct oncolysis and promote the release of tumor-associated antigens, leading to the activation of both innate and adaptive immunity. Special attention shall be given to programs for arm OVs to express curative genes, modify the tumor microenvironment and overcome immunosuppression. Moreover, we assess the synergies of uniting OVs with other immunotherapeutic techniques, such as immune checkpoint inhibitors and cell therapy, to improve tolerant outcomes. The present assessment provides an understanding of the relevant declaration of the OV analysis, highlighting the main obstacles and the future directions for the development of other capable and targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Mujibullah Sheikh
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India.
| | - Arshiya Saiyyad
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| | - Aimé Aliunui
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| | - Pranita S Jirvankar
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
2
|
Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med 2025; 222:e20240445. [PMID: 39907686 PMCID: PMC11797014 DOI: 10.1084/jem.20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Regulatory T (Treg) cells are known to impede antitumor immunity, yet the regulatory mechanisms and functional roles of these cells remain poorly understood. In this study, through the characterization of multiple cancer models, we identified a substantial presence of peripherally induced Treg cells in the tumor microenvironment (TME). Depletion of these cells triggered antitumor responses and provided potent therapeutic effects by increasing functional CD8+ T cells. Fate-mapping and transfer experiments revealed that IFN-γ-expressing T helper (Th) 1 cells differentiated into Treg cells in response to TGF-β signaling in tumors. Pseudotime trajectory analysis further revealed the terminal differentiation of Th1-like Treg cells from Th1 cells in the TME. Tumor-resident Treg cells highly expressed T-bet, which was essential for their functions in the TME. Additionally, CD39 was highly expressed by T-bet+ Treg cells in both mouse and human tumors, and was necessary for Treg cell-mediated suppression of CD8+ T cell responses. Our study elucidated the developmental pathway of intratumoral Treg cells and highlighted novel strategies for targeting them in cancer patients.
Collapse
Affiliation(s)
- Sang-Nee Tan
- School of Medicine, Westlake University, Hangzhou, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Yazheng Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Meng Lin
- School of Medicine, Westlake University, Hangzhou, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Genyu Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
3
|
Wei Q, Foyn H, Landskron J, Wang S, Rye IH, Skånland SS, Russnes HEG, Klaveness J, Ahmad R, Taskén K. Identification of a group of 9-amino-acridines that selectively downregulate regulatory T cell functions through FoxP3. iScience 2025; 28:111931. [PMID: 40034859 PMCID: PMC11872463 DOI: 10.1016/j.isci.2025.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are responsible for immune homeostasis by suppressing excessive anti-self-immunity. Tregs facilitate tumor growth by inhibiting anti-tumor immunity. Here, we explored the targeting of FoxP3 as a basis for new immunotherapies. In a high-throughput phenotypic screening of a drug repurposing library using human primary T cells, we identified quinacrine as a FoxP3 downregulator. In silico searches based on the structure of quinacrine, testing of sub-libraries of analogs in vitro, and validation identified a subset of 9-amino-acridines that selectively abrogated Treg suppressive functions. Mechanistically, these acridines interfered with the DNA-binding activity of FoxP3 and inhibited FoxP3-regulated downstream gene regulation. Release from Treg suppression by 9-amino-acridines increased anti-tumor immune responses both in cancer patient samples and in mice in a syngeneic tumor model. Our study highlights the feasibility of screening for small molecular inhibitors of FoxP3 as an approach to pursuing Treg-based immunotherapy.
Collapse
Affiliation(s)
- Qian Wei
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Håvard Foyn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Johannes Landskron
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Shixiong Wang
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Inga Hansine Rye
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway
| | - Hege Elisabeth Giercksky Russnes
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo, 0371 Oslo, Norway
| | - Rafi Ahmad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Biotechnology, University of Inland Norway, 2317 Hamar, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
4
|
Czajkowski M, Wierzbicki PM, Dolny M, Matuszewski M, Hakenberg OW. Inflammation in Penile Squamous Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2025; 26:2785. [PMID: 40141426 PMCID: PMC11943298 DOI: 10.3390/ijms26062785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammation appears to play a crucial role in the development and progression of penile cancer (PeCa). Two molecular pathways of PeCa are currently described: HPV-dependent and HPV-independent. The tumor immune microenvironment (TIME) of PeCa is characterized by the presence of tumor-associated macrophages, cancer-associated fibroblasts, and tumor-infiltrating lymphocytes. The components of the TIME produce pro-inflammatory cytokines and chemokines, which have been found to be overexpressed in PeCa tissues and are associated with tumor progression and unfavorable prognoses. Additionally, the nuclear factor kappa B (NF-κB) pathway and secreted phosphoprotein 1 (SPP1) have been implicated in PeCa pathogenesis. Elevated C-reactive protein (CRP) levels and the neutrophil-to-lymphocyte ratio (NLR) have been identified as potential prognostic biomarkers in PeCa. This overview presents the complex contribution of the inflammatory process and collates projects aimed at modulating TIME in PeCa.
Collapse
Affiliation(s)
- Mateusz Czajkowski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Piotr M. Wierzbicki
- Department of Histology, Medical University of Gdańsk, Dębinki, 80-211 Gdansk, Poland;
| | - Maciej Dolny
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Marcin Matuszewski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Oliver W. Hakenberg
- Department of Urology, University Medical Center Rostock, 18055 Rostock, Germany;
- Department of Urology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
5
|
Guo R, Wang P. The complex role of regulatory cells in breast cancer: implication for immunopathogenesis and immunotherapy. Breast Cancer 2025; 32:227-241. [PMID: 39589625 DOI: 10.1007/s12282-024-01654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Breast cancers (BCs) are frequently linked to an immunosuppressive microenvironment that facilitates tumor evasion of anti-cancer immunity. The cells that suppress the immune system such as regulatory B cells (Bregs), regulatory T cells (Tregs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), play a crucial role in immune resistance. Also, tumor progression and immune evasion of cancers are facilitated by cytokines and factors released by tumor cells or immunosuppressive cells. Targeting these regulatory cells therapeutically, whether through elimination, inactivation, or reprogramming, has resulted in hopeful anti-tumor reactions. Yet, the substantial diversity and adaptability of these cells, both in terms of appearance and function, as well as their variation over time and depending on where they are in the body, have posed significant challenges for using them as reliable biomarkers and creating focused therapies that could target their creation, growth, and various tumor-promoting roles. The immunotherapy approaches in BC and their effectiveness in treating certain subtypes are still in their initial phases. In this review, we thoroughly outlined the characteristics, roles, and possible treatment options for these immune-suppressing cells in the tumor environment.
Collapse
Affiliation(s)
- RuiJuan Guo
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Shandong Province, Yantai City, People's Republic of China
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Shandong Province, Yantai City, People's Republic of China.
| |
Collapse
|
6
|
Dhar S, Sarkar T, Bose S, Pati S, Chakraborty D, Roy D, Panda AK, Guin A, Mukherjee S, Jana K, Sarkar DK, Sa G. FOXP3 Transcriptionally Activates Fatty Acid Scavenger Receptor CD36 in Tumour-Induced Treg Cells. Immunology 2025; 174:296-309. [PMID: 39736083 DOI: 10.1111/imm.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
The host immune system is adapted in a variety of ways by tumour microenvironment and growing tumour interacts to promote immune escape. One of these adaptations is manipulating the metabolic processes of cells in the tumour microenvironment. The growing tumour aggressively utilise glucose, its primary energy source available in tumour site, and produce lactate by Warburg effect. In such a hostile environment, tumour-infiltrating immune cells are unable to survive metabolically. Tumour-infiltrating CD4+ Treg cells, on the other hand, adapted to an alternative energy-generating system, switching from the highly-competitive glucose to the fatty-acid metabolic pathway, by down-regulating glucose-metabolising genes and up-regulating fatty-acid metabolising genes. Tregs with high-levels of the fatty acid scavenger receptor CD36, a key component of the fatty-acid metabolic pathway, aided this metabolic shift. Treg cell formation was hampered when the fatty-acid metabolic pathway was disrupted, showing that it is necessary for Treg cell development. FOXP3, the Treg lineage-specific transcription factor, regulates fatty-acid metabolism by inducing CD36 transcription. A high-fat diet enhanced Treg development while suppressing anti-tumour immunity, whereas a low-fat diet suppressed Treg development. The altered metabolism of tumour-infiltrating Treg cells enables their rapid generation and survival in the hostile tumour microenvironment, aiding cancer progression. Fascinatingly, mice fed with a low-fat diet showed a positive prognosis with chemotherapy than mice fed with a high-fat diet. Thus, a maximum efficacy of chemotherapy might be achieved by altering diet composition during chemotherapy, providing a promising indication for future cancer treatment.
Collapse
Affiliation(s)
- Subhanki Dhar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sayantan Bose
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Dia Roy
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Abir K Panda
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Aharna Guin
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
7
|
Dadey RE, Cui J, Rajasundaram D, Yano H, Liu C, Cohen JA, Liu AW, Kaplan DH, Workman CJ, Vignali DAA. Regulatory T cells in the tumor microenvironment display a unique chromatin accessibility profile. Immunohorizons 2025; 9:vlae014. [PMID: 39965167 PMCID: PMC11841976 DOI: 10.1093/immhor/vlae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 02/20/2025] Open
Abstract
Regulatory T cells (Tregs) are a suppressive CD4+ T cell population that limit the antitumor immune response. In this study, we analyzed the chromatin accessibility of Tregs in the murine tumor microenvironment (TME) to identify tumor-specific accessible peaks and if these are altered over time in the tumor microenvironment, with or without anti-PD-1 immunotherapy. We found that despite little change in chromatin accessibility of Tregs in the tumor over time, Tregs have a distinct chromatin accessibility signature in the TME compared with Tregs in the periphery. This distinct tumor Treg chromatin accessibility profile highlights reduced accessibility at loci important for an CD4+ conventional T cell (CD4+ Foxp3-) effector phenotype. Analysis of chromatin accessibility in Tregs from B16 and MC38 tumor models indicated that Tregs from skin-resident tumors are most similar to naïve skin resident Tregs but still bear key differences attributable to the TME. We also found that Tregs do not alter their transcriptome or chromatin accessibility following immunotherapy. We conclude that although chromatin accessibility in Tregs is somewhat similar to their tissue residency, the TME may drive a unique chromatin accessibility profile. Treg chromatin accessibility in the tumor appears remarkably stable and unaltered by tumor type, over time, or following immunotherapy.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dhivyaa Rajasundaram
- Division of Health Informatics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Jonathan A Cohen
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrew W Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daniel H Kaplan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Oyende Y, Taus LJ, Fatatis A. IL-1β in Neoplastic Disease and the Role of Its Tumor-Derived Form in the Progression and Treatment of Metastatic Prostate Cancer. Cancers (Basel) 2025; 17:290. [PMID: 39858071 PMCID: PMC11763358 DOI: 10.3390/cancers17020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since its discovery, IL-1β has taken center stage as a key mediator of a very broad spectrum of diseases revolving around immuno-mediated and inflammatory events. Predictably, the pleiotropic nature of this cytokine in human pathology has led to the development of targeted therapeutics with multiple treatment indications in the clinic. Following the accumulated findings of IL-1β's central modulatory role in the immune system and the implication of inflammatory pathways in cancer, the use of IL-1β antagonists was first proposed and then also pursued for oncology disorders. However, this approach has consistently relied on the perceived need of interfering with IL-1β synthesized and secreted by immune cells. Herein, we discuss the importance of IL-1β derived from cancer cells which impacts primary tumors, particularly metastatic lesions, separately from and in addition to its more recognized role in immune-mediated inflammatory events. To this end, we focus on the instrumental contribution of IL-1β in the establishment and progression of advanced prostate adenocarcinoma. Special emphasis is placed on the potential role that the standard-of-care treatment strategies for prostate cancer patients have in unleashing IL-1β expression and production at metastatic sites. We conclude by reviewing the therapeutics currently used for blocking IL-1β signaling and propose a rationale for their concomitant use with standard-of-care treatments to improve the clinical outcomes of advanced prostate cancer.
Collapse
Affiliation(s)
- Yetunde Oyende
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
| | - Luke J. Taus
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Kounatidou NE, Vitkos E, Palioura S. Ocular surface squamous neoplasia: Update on genetics, epigenetics and opportunities for targeted therapy. Ocul Surf 2025; 35:1-14. [PMID: 39608452 DOI: 10.1016/j.jtos.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The purpose of this review is to explore the molecular foundations of ocular surface squamous neoplasia (OSSN), focusing on the genetic and epigenetic aspects. While current management strategies include surgical excision and medical therapies, the understanding of OSSN's molecular basis remains limited, hindering the development of targeted treatments. METHODS A comprehensive MEDLINE search was conducted for literature published between January 1993 and October 2023. Only studies with original data on molecular, genetic, or epigenetic mechanisms, such as mutations, gene expression, and genetic predispositions were included. Articles were excluded if they focused solely on clinical management without addressing these factors, or if they were reviews, editorials, or opinion pieces. RESULTS The search yielded a total of 108 articles, out of which 39 articles met the criteria for further analysis. Investigations into OSSN have identified key DNA mutations in the TP53, HGF, EGFR, TERT, and CDKN2A genes, indicating common oncogenic pathways shared with other squamous cell carcinomas (SCCs). Significant epigenetic changes were identified, including DNA methylation, histone modifications, and altered miRNA expression patterns. Epigenetic dysregulation of critical tumor suppressors and oncoproteins, further highlight the complex genetic landscape of OSSN. CONCLUSION The molecular alterations identified in OSSN not only enhance our understanding of its biology but also have potential as novel biomarkers for early detection, prognostic evaluation, and as therapeutic targets. The identification of genetic and epigenetic markers in OSSN signifies progress towards personalized medicine approaches. Further studies and collaborative efforts are essential to validate these molecular markers and translate them into clinical practice, potentially revolutionizing OSSN management and improving patient outcomes.
Collapse
Affiliation(s)
| | - Evangelos Vitkos
- Department of Oral and Maxillofacial Surgery, Klinikum Dortmund, Dortmund, Germany
| | - Sotiria Palioura
- Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
| |
Collapse
|
10
|
Lei Y, Liu J, Bai Y, Zheng C, Wang D. Peptides as Versatile Regulators in Cancer Immunotherapy: Recent Advances, Challenges, and Future Prospects. Pharmaceutics 2025; 17:46. [PMID: 39861694 PMCID: PMC11768547 DOI: 10.3390/pharmaceutics17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications. The diverse functionality of peptides has made them attractive as a therapeutic modality, and the global market for peptide-based therapeutics is witnessing significant growth. Peptides can act as immunotherapeutic agents for the treatment of many malignant cancers. However, a systematic understanding of the interactions between different peptides and the host's immune system remains unclear. This review describes in detail the roles of peptides in regulating the function of the immune system for cancer immunotherapy. Initially, we systematically elaborate on the relevant mechanisms of cancer immunotherapy. Subsequently, we categorize peptide-based nanomaterials into the following three categories: peptide-based vaccines, anti-cancer peptides, and peptide-based delivery systems. We carefully analyzed the roles of these peptides in overcoming the current barriers in immunotherapy, including multiple strategies to enhance the immunogenicity of peptide vaccines, the synergistic effect of anti-cancer peptides in combination with other immune agents, and peptide assemblies functioning as immune stimulators or vehicles to deliver immune agents. Furthermore, we introduce the current status of peptide-based immunotherapy in clinical applications and discuss the weaknesses and future prospects of peptide-based materials for cancer immunotherapy. Overall, this review aims to enhance comprehension of the potential applications of peptide-based materials in cancer immunotherapy and lay the groundwork for future research and clinical applications.
Collapse
Affiliation(s)
- Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Buzaglo GBB, Telles GD, Araújo RB, Junior GDS, Ruberti OM, Ferreira MLV, Derchain SFM, Vechin FC, Conceição MS. The Therapeutic Potential of Physical Exercise in Cancer: The Role of Chemokines. Int J Mol Sci 2024; 25:13740. [PMID: 39769501 PMCID: PMC11678861 DOI: 10.3390/ijms252413740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 01/11/2025] Open
Abstract
The global increase in cancer cases and mortality has been associated with inflammatory processes, in which chemokines play crucial roles. These molecules, a subfamily of cytokines, are essential for the migration, adhesion, interaction, and positioning of immune cells throughout the body. Chemokines primarily originate in response to pathogenic stimuli and inflammatory cytokines. They are expressed by lymphocytes in the bloodstream and are divided into four classes (CC, CXC, XC, and CX3C), playing multifaceted roles in the tumor environment (TME). In the TME, chemokines regulate immune behavior by recruiting cells such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which promote tumor survival. Additionally, they directly influence tumor behavior, promoting pathological angiogenesis, invasion, and metastasis. On the other hand, chemokines can also induce antitumor responses by mobilizing CD8+ T cells and natural killer (NK) cells to the tumor, reducing pro-inflammatory chemokines and enhancing essential antitumor responses. Given the complex interaction between chemokines, the immune system, angiogenic factors, and metastasis, it becomes evident how important it is to target these pathways in therapeutic interventions to counteract cancer progression. In this context, physical exercise emerges as a promising strategy due to its role modulating the expression of anti-inflammatory chemokines and enhancing the antitumor response. Aerobic and resistance exercises have been associated with a beneficial inflammatory profile in cancer, increased infiltration of CD8+ T cells in the TME, and improvement of intratumoral vasculature. This creates an environment less favorable to tumor growth and supports the circulation of antitumor immune cells and chemokines. Therefore, understanding the impact of exercise on the expression of chemokines can provide valuable insights for therapeutic interventions in cancer treatment and prevention.
Collapse
Affiliation(s)
- Glenda B. B. Buzaglo
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Guilherme D. Telles
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (G.D.T.); (F.C.V.)
| | - Rafaela B. Araújo
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Gilmar D. S. Junior
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Olivia M. Ruberti
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Marina L. V. Ferreira
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Sophie F. M. Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-881, Brazil;
| | - Felipe C. Vechin
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (G.D.T.); (F.C.V.)
| | - Miguel S. Conceição
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| |
Collapse
|
12
|
Cardenas MA, Prokhnevska N, Sobierajska E, Gregorova P, Medina CB, Valanparambil RM, Greenwald R, DelBalzo L, Bilen MA, Joshi SS, Narayan VM, Master VA, Sanda MG, Kissick HT. Differentiation fate of a stem-like CD4 T cell controls immunity to cancer. Nature 2024; 636:224-232. [PMID: 39443797 DOI: 10.1038/s41586-024-08076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The T cell response to cancer controls disease progression and response to immunotherapy1-3. Despite extensive knowledge regarding CD8 T cells, how CD4 T cells contribute to this process is less well understood. Here we identified a population of PD1+TCF1+ CD4 T cells with stem-like properties that are capable of self-renewal and differentiation into canonical CD4 effector cells. Primarily residing in tumour-draining lymph nodes (TDLNs), these tumour-specific CD4 T cells are restricted by T regulatory (Treg) cells to a stem-like fate that predominantly generated induced Treg (iTreg) cells, limiting effector CD8 T cell responses to the tumour. By contrast, upon Treg depletion, stem-like CD4 T cells differentiated into T helper 1 (TH1) cells, and via IFNγ production induced robust effector differentiation from TCF1+ CD8 T cells in TDLNs, a state we defined as 'active'. Notably, enforcing TBET expression in transferred stem-like CD4 T cells was sufficient to overcome the established restricted T cell state. Despite the presence of Treg cells, endogenous stem-like CD4 T cells actively generated TH1 cells, which were required to restore TDLN effector CD8 T cell differentiation, enhance tumour control and rescue response to immunotherapy. In agreement, TH1 differentiation in patients with kidney cancer predicted successful immunotherapy responses and improved progression-free survival. Together, these findings identify a stem-like CD4 T cell population that through alternative differentiation fates controls the switch between restricted and active T cell states with implications for cancer immunotherapies.
Collapse
Affiliation(s)
- Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Petra Gregorova
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Rachel Greenwald
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luke DelBalzo
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shreyas S Joshi
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Vikram M Narayan
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Viraj A Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Martin G Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Nesbitt C, Van Der Walt A, Butzkueven H, Devitt B, Jokubaitis VG. Multiple sclerosis and cancer: Navigating a dual diagnosis. Mult Scler 2024; 30:1714-1736. [PMID: 39347791 DOI: 10.1177/13524585241274523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Healthcare breakthroughs are extending the lives of multiple sclerosis (MS) patients and cancer survivors, creating a growing cohort of individuals navigating a dual diagnosis. Determining the relationship between MS and cancer risk remains challenging, with inconclusive findings confounded by age, risk exposures, comorbidities, genetics and the ongoing introduction of new MS disease-modifying therapies (DMTs) across study periods.This research places significant emphasis on cancer survival, with less attention given to the impact on MS outcomes. Our review explores the existing literature on MS, cancer risk and the intersection of DMTs and cancer treatments. We aim to navigate the complexities of managing MS in cancer survivors to optimise outcomes for both conditions. Continuous research and the formulation of treatment guidelines are essential for guiding future care. Collaboration between neuro-immunology and oncology is crucial, with a need to establish databases for retrospective and ultimately prospective analysis of outcomes in these rapidly evolving fields.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Bianca Devitt
- Department of Oncology, Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
- Oncology Clinical Trials Unit, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Inés SM, Celia MO, Lasarte JJ, Teresa L. Optimizing protocols for human regulatory T isolation, expansion, and characterization. Methods Cell Biol 2024; 191:59-77. [PMID: 39824564 DOI: 10.1016/bs.mcb.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Affiliation(s)
- Sánchez-Moreno Inés
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Martín-Otal Celia
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Juan José Lasarte
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Lozano Teresa
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
| |
Collapse
|
16
|
Miao W, Jain V, Han M, Jin YJ, Beasley GM, Starczysnowski DT, Gregory SG, Zhang JY. Inhibition of UBE2N in regulatory T-cells boosts immunity against cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619436. [PMID: 39484562 PMCID: PMC11526935 DOI: 10.1101/2024.10.22.619436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulatory T (Treg) cells prevent autoimmunity and facilitate cancer immune evasion. Depletion of Tregs is a promising cancer therapy, but risks of autoimmune reactions hamper its clinical translation. Here, we demonstrate that temporally induced deletion of Ube2n in Tregs (Ube2n Treg-KO ) of adult mice results in a robust expansion and activation of cytotoxic CD8 + T-cells in response to cancer cell challenges, producing a long-lasting survival benefit without autoimmune complications. The anti-tumor effect persists following adoptive T-cell transfer to T-cell-deficient Rag1-knockout mice. Single-cell transcriptomic analysis revealed that UBE2N deletion shifted immunosuppressive Tregs to effector-like T-cells. This shift is characterized by the downregulation of c-Myc target genes, resembling that observed in tumor-infiltrating Tregs of melanoma patients. Further analyses confirm that UBE2N maintains c-Myc protein stability via suppression of K48-Ubiquitin-mediated proteasomal degradation. Taken together, our studies uncover a hitherto unexplored and potentially druggable UBE2N/c-Myc signaling axis to eradicate Treg-enabled cancer immune escape.
Collapse
|
17
|
Li P, Yang Y, Wang Y, Zheng J, Chen F, Jiang M, Chou CK, Cong W, Li Z, Chen X. Anti-TNFR2 Antibody-Conjugated PLGA Nanoparticles for Targeted Delivery of Adriamycin in Mouse Colon Cancer. RESEARCH (WASHINGTON, D.C.) 2024; 7:0444. [PMID: 39247806 PMCID: PMC11377996 DOI: 10.34133/research.0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024]
Abstract
High levels of tumor necrosis factor receptor type II (TNFR2) are preferentially expressed by immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs), especially those present in the tumor microenvironment, as initially reported by us. There is compelling evidence that targeting TNFR2 markedly enhances antitumor immune responses. Furthermore, a broad spectrum of human cancers also expresses TNFR2, while its expression by normal tissue is very limited. We thus hypothesized that TNFR2 may be harnessed for tumor-targeted delivery of chemotherapeutic agents. In this study, we performed a proof-of-concept study by constructing a TNFR2-targeted PEGylated poly(dl-lactic-co-glycolic acid) (PLGA-PEG) nanodrug delivery system [designated as TNFR2-PLGA-ADR (Adriamycin)]. The results of in vitro study showed that this TNFR2-targeted delivery system had the properties in cellular binding and cytotoxicity toward mouse colon cancer cells. Further, upon intravenous injection, TNFR2-PLGA-ADR could efficiently accumulate in MC38 and CT26 mouse colon tumor tissues and preferentially bind with tumor-infiltrating Tregs. Compared with ADR and ISO-PLGA-ADR, the in vivo antitumor effect of TNFR2-PLGA-ADR was markedly enhanced, which was associated with a decrease of TNFR2+ Tregs and an increase of IFNγ+CD8+ cytotoxic T lymphocytes in the tumor tissue. Therefore, our results clearly show that targeting TNFR2 is a promising strategy for designing tumor-specific chemoimmunotherapeutic agent delivery system.
Collapse
Affiliation(s)
- Ping Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Yifei Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Jingbin Zheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Fengyang Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Mengmeng Jiang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongjin Li
- Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
18
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
19
|
Yu J, Wang Q, Wang L, Zong D, He X. PD-1 inhibitor combined with SBRT, GM-CSF, and thymosin alpha-1 in metastatic breast cancer: A case report and literature review. Medicine (Baltimore) 2024; 103:e39271. [PMID: 39183403 PMCID: PMC11346870 DOI: 10.1097/md.0000000000039271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
RATIONALE Triple-negative breast cancer is characterized by a worse prognosis compared with other breast cancer subtypes, especially in the case of pretreated metastatic triple-negative breast cancer (mTNBC). Because of the limited treatment options and suboptimal response rates, there is a pressing need to explore novel treatment protocols. PATIENT CONCERNS A 48-year-old female patient diagnosed with mTNBC who had not responded to multiple lines of therapy (including surgery, chemotherapy, and radiotherapy) but demonstrated significant efficacy and abscopal effects after enrolling in our clinical trial. DIAGNOSES Triple-negative breast cancer with lung metastases. INTERVENTIONS The clinical trial combined stereotactic body radiotherapy, immunotherapy, granulocyte-macrophage colony-stimulating factor, and thymosin alpha-1 to treat previously treated metastatic solid cancers. OUTCOMES This combined treatment regimen implemented in this clinical trial yielded the patient's notable efficacy, accompanied by abscopal effects. The target lesion and the 3 observed lesions achieved a partial response according to the RECIST v1.1 criteria. reevaluation scans after 2 cycles of immunotherapy indicated a regression rate of -78.97% for the target lesion and -56.73% for the observed lesions. Hematological indexes were stable, and there was no apparent myelosuppression. Also, the tumor marker CA-199 exhibited a downward trend. During the course of treatment, the patient experienced a grade 2 skin reaction, which improved after receiving antiallergic treatment. No further adverse effects were observed. LESSONS This treatment regimen may offer a promising treatment strategy for patients with mTNBC and other metastatic solid cancers.
Collapse
Affiliation(s)
- Jiamin Yu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Department of Radiotherapy, Xuzhou Cancer Hospital, Xuzhou, China
| | - Lijun Wang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Dan Zong
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Martinez S, Sentis S, Poulard C, Trédan O, Le Romancer M. Role of PRMT1 and PRMT5 in Breast Cancer. Int J Mol Sci 2024; 25:8854. [PMID: 39201539 PMCID: PMC11354362 DOI: 10.3390/ijms25168854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.
Collapse
Affiliation(s)
- Sébastien Martinez
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Stéphanie Sentis
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Olivier Trédan
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Oncology Department, Centre Leon Bérard, F-69008 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| |
Collapse
|
21
|
Aubert N, Purcarea M, Novarino J, Schopp J, Audibert A, Li W, Fornier M, Cagnet L, Naturel M, Casrouge A, Dieu-Nosjean MC, Blanchard N, Dietrich G, Peirs C, Marodon G. Enkephalin-mediated modulation of basal somatic sensitivity by regulatory T cells in mice. eLife 2024; 13:RP91359. [PMID: 39110619 PMCID: PMC11305673 DOI: 10.7554/elife.91359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.
Collapse
Affiliation(s)
- Nicolas Aubert
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Madeleine Purcarea
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Julien Novarino
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Julien Schopp
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-DolClermont FerrandFrance
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM, CNRS, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Wangtianrui Li
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie Fornier
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Léonie Cagnet
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie Naturel
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Armanda Casrouge
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie-Caroline Dieu-Nosjean
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM, CNRS, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Gilles Dietrich
- Institut de Recherche sur la Santé Digestive (IRSD), Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-DolClermont FerrandFrance
| | - Gilles Marodon
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| |
Collapse
|
22
|
Ou G, Tian Z, Su M, Yu M, Gong J, Chen Y. Identification of gemcitabine resistance-related AHNAK2 gene associated with prognosis and immune infiltration in pancreatic cancer. Heliyon 2024; 10:e33687. [PMID: 39040243 PMCID: PMC11261888 DOI: 10.1016/j.heliyon.2024.e33687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Gemcitabine is a basic chemotherapy drug for pancreatic cancer (PC), but resistance is common and causes tumor recurrence and metastasis. Therefore, it is significant to explore gemcitabine resistance-related molecules for individualized treatment and prognosis assessment of PC. Methods In this study, transcriptome sequencing and TCGA database analysis were performed, and a differentiated gene AHNAK2 was screened. MEXPRESS database, tissue microarray analysis, and CIBERSORT and TIMER databases were used to correlate AHNAK2 expression with clinicopathological features and prognosis and immune infiltration of PC. Enrichment analysis was used to investigate the significant biological processes associated with AHNAK2. Results AHNAK2 was highly expressed in gemcitabine-resistant cells. High expression of AHNAK2 increased the risk of poor overall survival (OS) and progression-free survival (PFS) in PC. Clinicopathologic analysis revealed that AHNAK2 correlated with KRAS, TP53 mutations, histologic type, short OS, N stage, and elevated CA199 levels in PC. Knockdown of AHNAK2 inhibited the ability of cell proliferation and colony formation and enhanced the toxic effect of gemcitabine in PC. Meanwhile, the knockdown of AHNAK2 expression enhanced cell-ECM adhesion, inhibited cell-cell adhesion, and downregulated the KRAS/p53 signaling pathway in PC. Furthermore, AHNAK2 was correlated with immune infiltration, especially B cells and macrophages. Conclusions Our study unveils for the first time the pivotal role of AHNAK2 in PC, particularly its association with gemcitabine resistance, clinical prognosis, and immune infiltration. AHNAK2 not only drives the proliferation and drug resistance of PC cells by potentially activating the KRAS/p53 pathway but also significantly impacts cell-cell and cell- ECM adhesion. Additionally, AHNAK2 plays a crucial role in modulating the tumor immune microenvironment. These insights underscore AHNAK2's unique potential as a novel therapeutic target for overcoming gemcitabine resistance, offering new perspectives for PC treatment strategies.
Collapse
Affiliation(s)
- Guangsheng Ou
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510600, PR China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Miao Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Jin Gong
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| |
Collapse
|
23
|
Miraki Feriz A, Khosrojerdi A, Erfanian N, Azarkar S, Sajjadi SM, Shojaei MJ, Vaferi MJ, Safarpour H, Racanelli V. Targeting the dynamic transcriptional landscape of Treg subpopulations in pancreatic ductal adenocarcinoma: Insights from single-cell RNA sequencing analysis with a focus on CTLA4 and TIGIT. Immunobiology 2024; 229:152822. [PMID: 38852289 DOI: 10.1016/j.imbio.2024.152822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that represents a significant challenge in cancer research and clinical management. In this study, we reanalyzed a published single-cell RNA sequencing (scRNA-seq) dataset from PDAC and adjacent tissues to investigate the heterogeneity of tumor and normal tissue, specifically focusing on the regulatory T cells (Tregs) and their interactions with other cells in the tumor microenvironment (TME). Treg cells were identified and clustered into natural Tregs (nTreg) and induced Tregs (iTreg) based on the expression of specific genes. It was found that the number of iTregs was higher in the tumor than in healthy tissues, while the number of n Tregs was higher in healthy tissues. Differential gene expression analysis was performed, and biological process analysis revealed that the Tregs in PDAC were mostly involved in protein targeting and translation pathways. In addition, ligand-receptor pairs between Tregs and other cell types were identified, and the critical communication pathways between Tregs and endothelial and ductal cells were revealed, which could potentially contribute to the immunosuppressive TME of PDAC. These findings provide insights into the role of Tregs in PDAC and their interactions with other cell types in the TME, highlighting potential targets for immunotherapy, such as the inhibitory immune checkpoint receptors CTLA4 and TIGIT, which are known to be expressed on Tregs and have been shown to play a role in suppressing anti-tumor immune responses.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | | | - Mohammad Javad Vaferi
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), 38122, Trento, Italy.
| |
Collapse
|
24
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Dixon M, Phan TA, Dallon JC, Tian JP. Mathematical model for IL-2-based cancer immunotherapy. Math Biosci 2024; 372:109187. [PMID: 38575057 PMCID: PMC11193449 DOI: 10.1016/j.mbs.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
A basic mathematical model for IL-2-based cancer immunotherapy is proposed and studied. Our analysis shows that the outcome of therapy is mainly determined by three parameters, the relative death rate of CD4+ T cells, the relative death rate of CD8+ T cells, and the dose of IL-2 treatment. Minimal equilibrium tumor size can be reached with a large dose of IL-2 in the case that CD4+ T cells die out. However, in cases where CD4+ and CD8+ T cells persist, the final tumor size is independent of the IL-2 dose and is given by the relative death rate of CD4+ T cells. Two groups of in silico clinical trials show some short-term behaviors of IL-2 treatment. IL-2 administration can slow the proliferation of CD4+ T cells, while high doses for a short period of time over several days transiently increase the population of CD8+ T cells during treatment before it recedes to its equilibrium. IL-2 administration for a short period of time over many days suppresses the tumor population for a longer time before approaching its steady-state levels. This implies that intermittent administration of IL-2 may be a good strategy for controlling tumor size.
Collapse
Affiliation(s)
- Megan Dixon
- Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.
| | - Tuan Anh Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA.
| | - J C Dallon
- Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.
| | - Jianjun Paul Tian
- Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88001, USA.
| |
Collapse
|
26
|
Pozzi S, Satchi-Fainaro R. The role of CCL2/CCR2 axis in cancer and inflammation: The next frontier in nanomedicine. Adv Drug Deliv Rev 2024; 209:115318. [PMID: 38643840 DOI: 10.1016/j.addr.2024.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The communication between cells and their microenvironment represents an intrinsic and essential attribute that takes place in several biological processes, including tissue homeostasis and tissue repair. Among these interactions, inflammation is certainly a central biological response that occurs through cytokines and the crosstalk with their respective receptors. In particular, the interaction between CCL2 and its main receptor, CCR2, plays a pivotal role in both harmful and protective inflammatory states, including cancer-mediated inflammation. The activation of the CCL2/CCR2 axis was shown to dictate the migration of macrophages with immune-suppressive phenotype and to aggravate the progression of different cancer types. In addition, this interaction mediates metastasis formation, further limiting the potential therapeutic outcome of anti-cancer drugs. Attempts to inhibit pharmacologically the CCL2/CCR2 axis have yet to show its anti-cancer efficacy as a single agent, but it sheds light on its role as a powerful tool to selectively alleviate pro-tumorigenic and anti-repair inflammation. In this review, we will elucidate the role of CCL2/CCR2 axis in promoting cancer inflammation by activating the host pro-tumorigenic phenotype. Moreover, we will provide some insight into the potential therapeutic benefit of targeting the CCL2/CCR2 axis for cancer and inflammation using novel delivery systems, aiming to sensitize non-responders to currently approved immunotherapies and offer new combinatory approaches.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
27
|
Xinyi X, Gong Y. The role of ATP-binding cassette subfamily G member 1 in tumor progression. Cancer Med 2024; 13:e7285. [PMID: 38896016 PMCID: PMC11187935 DOI: 10.1002/cam4.7285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND ATP-binding cassette subfamily G member 1 is mostly known as a transporter for intracellular cholesterol efflux, and a number of studies indicate that ABCG1 also functions actively in tumor initiation and progression. This review aimed to provide an overall review of how ABCG1 acts in tumor progression. METHOD A comprehensive searching about ABCG1 and tumor was conducted up to November 2023 using proper keywords through databases including PubMed and Web of Science. RESULT Overall, ABCG1 plays a crucial role in the development of multiple tumorigenesis. ABCG1 enhances tumor-promoting ability through conferring stem-like properties to cancer cells and mediates chemoresistance in multiple cancers. Additionally, ABCG1 may act as a kinase to phosphorylate downstream molecules and induces tumor growth. In tumor microenvironment, ABCG1 plays a substantial role in immunity response through macrophages to create a tumor-favoring circumstance. CONCLUSION High expression of ABCG1 is usually associated with poor prognosis, which means ABCG1 may be a potential biomarker for early diagnosis and prognosis of various cancers. ABCG1-targeted therapy may provide a novel treatment for cancer patients.
Collapse
Affiliation(s)
- Xu Xinyi
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Yang Gong
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyFudan University Shanghai Medical SchoolShanghaiChina
| |
Collapse
|
28
|
Nikolouzakis TK, Chrysos E, Docea AO, Fragkiadaki P, Souglakos J, Tsiaoussis J, Tsatsakis A. Current and Future Trends of Colorectal Cancer Treatment: Exploring Advances in Immunotherapy. Cancers (Basel) 2024; 16:1995. [PMID: 38893120 PMCID: PMC11171065 DOI: 10.3390/cancers16111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer of the colon and rectum (CRC) has been identified among the three most prevalent types of cancer and cancer-related deaths for both sexes. Even though significant progress in surgical and chemotherapeutic techniques has markedly improved disease-free and overall survival rates in contrast to those three decades ago, recent years have seen a stagnation in these improvements. This underscores the need for new therapies aiming to augment patient outcomes. A number of emerging strategies, such as immune checkpoint inhibitors (ICIs) and adoptive cell therapy (ACT), have exhibited promising outcomes not only in preclinical but also in clinical settings. Additionally, a thorough appreciation of the underlying biology has expanded the scope of research into potential therapeutic interventions. For instance, the pivotal role of altered telomere length in early CRC carcinogenesis, leading to chromosomal instability and telomere dysfunction, presents a promising avenue for future treatments. Thus, this review explores the advancements in CRC immunotherapy and telomere-targeted therapies, examining potential synergies and how these novel treatment modalities intersect to potentially enhance each other's efficacy, paving the way for promising future therapeutic advancements.
Collapse
Affiliation(s)
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece; (T.K.N.); (E.C.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| |
Collapse
|
29
|
Hashimoto M, Kojima Y, Sakamoto T, Ozato Y, Nakano Y, Abe T, Hosoda K, Saito H, Higuchi S, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Hata T, Nagayama S, Kagawa K, Goto Y, Utou M, Gamachi A, Imamura K, Kuze Y, Zenkoh J, Suzuki A, Takahashi K, Niida A, Hirose H, Hayashi S, Koseki J, Fukuchi S, Murakami K, Yoshizumi T, Kadomatsu K, Tobo T, Oda Y, Uemura M, Eguchi H, Doki Y, Mori M, Oshima M, Shibata T, Suzuki Y, Shimamura T, Mimori K. Spatial and single-cell colocalisation analysis reveals MDK-mediated immunosuppressive environment with regulatory T cells in colorectal carcinogenesis. EBioMedicine 2024; 103:105102. [PMID: 38614865 PMCID: PMC11121171 DOI: 10.1016/j.ebiom.2024.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.
Collapse
Affiliation(s)
- Masahiro Hashimoto
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yasuhiro Kojima
- Division of Computational Bioscience, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan.
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Tadashi Abe
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Kiyotaka Hosoda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of General Surgical Science, Gastroenterological Surgery, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Satoshi Higuchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Satoshi Nagayama
- Department of Surgery, Uji-Tokushukai Medical Center, Uji, 611-0041, Japan
| | - Koichi Kagawa
- Department of Gastroenterology, Shin Beppu Hospital, Beppu, 874-8538, Japan
| | - Yasuhiro Goto
- Department of Gastroenterology, Shin Beppu Hospital, Beppu, 874-8538, Japan
| | - Mitsuaki Utou
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Ayako Gamachi
- Department of Pathology, Oita Oka Hospital, Oita, 870-0192, Japan
| | - Kiyomi Imamura
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yuta Kuze
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Junko Zenkoh
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Ayako Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Kazuki Takahashi
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shuto Hayashi
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jun Koseki
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Satoshi Fukuchi
- Department of Gastroenterological Medicine, Almeida Memorial Hospital, Oita, 870-1195, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Hospital, Yufu, 879-5593, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Masaki Mori
- Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Computational and Systems Biology, Medical Research Insitute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-0034, Japan.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan.
| |
Collapse
|
30
|
Santos DL, São Marcos BDF, de Sousa GF, Cruz LCDO, Barros BRDS, Nogueira MCDBL, Oliveira THDA, Silva AJD, Santos VEP, de Melo CML, de Freitas AC. Immunological Response against Breast Lineage Cells Transfected with Human Papillomavirus (HPV). Viruses 2024; 16:717. [PMID: 38793599 PMCID: PMC11125976 DOI: 10.3390/v16050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus's activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host's immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes.
Collapse
Affiliation(s)
- Daffany Luana Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Georon Ferreira de Sousa
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Leonardo Carvalho de Oliveira Cruz
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Bárbara Rafaela da Silva Barros
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Mariane Cajuba de Britto Lira Nogueira
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Vitória Academic Center, Federal University of Pernambuco, Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | | | - Anna Jessica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Cristiane Moutinho Lagos de Melo
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| |
Collapse
|
31
|
Jiang Y, Zhang Y, Liu C, Liu J, Xue W, Wang Z, Li X. Tumor-activated IL-2 mRNA delivered by lipid nanoparticles for cancer immunotherapy. J Control Release 2024; 368:663-675. [PMID: 38492862 DOI: 10.1016/j.jconrel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Interleukin-2 (IL-2) exhibits the unique capacity to modulate immune functions, potentially exerting antitumor effects by stimulating immune responses, making it highly promising for immunotherapy. However, the clinical use of recombinant IL-2 protein faces significant limitations due to its short half-life and systemic toxicity. To overcome these challenges and fully exploit IL-2's potential in tumor immunotherapy, this study reports the development of a tumor-activated IL-2 mRNA, delivered via lipid nanoparticles (LNPs). Initially, ionizable lipid U-101 derived nanoparticles (U-101-LNP) were prepared using microfluidic technology. Subsequent in vitro and in vivo delivery tests demonstrated that U-101-LNP achieved more effective transfection than the approved ALC-0315-LNP. Following this, IL-2F mRNAs, encoding fusion proteins comprising IL-2, a linker, and CD25 (IL-2Rα), were designed and synthesized through in vitro transcription. A cleavable linker, consisting of the peptide sequence SGRSEN↓IRTA, was selected for cleavage by matrix metalloproteinase-14 (MMP-14). IL-2F mRNA was then encapsulated in U-101-LNP to create U-101-LNP/IL-2F mRNA complexes. After optimization, assessments of expression efficiency, masking, and release characteristics revealed that IL-2F with linker C4 demonstrated superior performance. Finally, the antitumor activity of IL-2F mRNA was evaluated. The results indicated that U-101-LNP/IL-2F mRNA achieved the strongest antitumor effect, with an inhibition rate of 70.3%. Immunohistochemistry observations revealed significant expressions of IL-2, IFN-γ, and CD8, suggesting an up-regulation of immunomodulation in tumor tissues. This effect could be ascribed to the expression of IL-2F, followed by the cleavage of the linker under the action of MMP-14 in tumor tissue, which sustainably releases IL-2. H&E staining of tissues treated with U-101-LNP/IL-2F mRNA showed no abnormalities. Further evaluations indicated that the U-101-LNP/IL-2F mRNA group maintained proper levels of inflammatory factors without obvious alterations in liver and renal functions. Taken together, the U-101-LNP/IL-2F mRNA formulation demonstrated effective antitumor activity and safety, which suggests potential applicability in clinical immunotherapy.
Collapse
Affiliation(s)
- Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenliang Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
32
|
Wang X, Liu X, Dai H, Jia J. Association of lymphocyte subsets with the efficacy and prognosis of PD‑1 inhibitor therapy in advanced gastric cancer: results from a monocentric retrospective study. BMC Gastroenterol 2024; 24:113. [PMID: 38491354 PMCID: PMC10943815 DOI: 10.1186/s12876-024-03168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/09/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE This retrospective study aimed to investigate the changes in peripheral blood lymphocyte subsets before and after immunotherapy in patients with advanced gastric cancer and their relationship n with the therapeutic efficacy and clinical prognosis. METHODS Peripheral blood lymphocyte subsets, including CD4 + T cells, CD8 + T cells, CD4+/CD8 + ratio, NK cells, Treg cells, and B cells, were collected from 195 patients with advanced gastric cancer who were admitted to the First Hospital of Shanxi Medical University with immunotherapy from January 2020 to October 2021, at the time of diagnosis of advanced gastric cancer, before immunotherapy and after 3 cycles of immunotherapy. T-tests were used to examine the factors influencing the patients' peripheral blood lymphocyte subsets and the changes after immunotherapy. To examine the relationship between lymphocyte subsets and treatment outcomes, ROC curves were plotted using a logistic regression. Kaplan-Meier curve was drawn, and the Log Rank test was carried out to compare the differences in PFS between the different groups. Cox proportional hazards regression model was used to analyze the factors affecting PFS after calibration of other variables. RESULTS The proportion of peripheral blood lymphocyte subsets in patients with advanced gastric cancer was affected by age and PD-L1 level. Compared to the baseline, the treatment effective group had higher proportions of CD4 + T cells, a higher CD4+/CD8 + ratio, NK cells and Treg cells, and lower proportions of CD8 + T cells and B cells in the peripheral blood after three cycles of immunotherapy. In the treatment-naive group, there were no significant differences in the lymphocyte subsets. With cut-off values of 30.60% and 18.00%, baseline CD4 + T cell and NK cell ratios were independent predictors of immunotherapy efficacy and PFS. Treg cell ratio, gender, PD-L1 levels, and MMR status all predicted PFS independently. CONCLUSION The proportion of peripheral blood lymphocyte subsets was modified in patients who responded to PD-1 inhibitors. Different lymphocyte subpopulation levels can be used as biomarkers to predict immunotherapy efficacy and clinical prognosis in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Xinyan Wang
- The First Clinical Medical College of Shanxi Medical University, No.56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
- Department of Oncology, The First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoling Liu
- Department of Special Medical, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Huwei Dai
- The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
33
|
Ou J, Zheng L, Chen Y, Fu Q, Tan L, Liang E, Huang L, Pan Y, Ke J, Chen Z, Cheng K. Heterocyclic-Modified Imidazoquinoline Derivatives: Selective TLR7 Agonist Regulates Tumor Microenvironment against Melanoma. J Med Chem 2024; 67:3321-3338. [PMID: 38363069 DOI: 10.1021/acs.jmedchem.3c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Immunotherapy targeting the toll-like receptor 7 (TLR7) is a promising strategy for cancer treatment. Herein, we describe the design and synthesis of a series of imidazoquinoline-based TLR7 agonists and assess NF-κB pathway activation using HEK-Blue hTLR7 cells to identify the most potent small-molecule TLR7 agonist, SMU-L11 (EC50 = 0.024 ± 0.002 μM). In vitro experiments demonstrated that SMU-L11 specifically activated TLR7, resulting in recruitment of the MyD88 adaptor protein and activation of the NF-κB and MAPK signaling pathways. Moreover, SMU-L11 was found to exert immune-enhancing effects by significantly inducing the secretion of proinflammatory cytokines in murine dendritic cells, macrophages, and human peripheral blood mononuclear cells while promoting M1 macrophage polarization. In vivo studies using a B16-F10 mouse tumor model showed that SMU-L11 significantly enhanced immune cell activation and augmented CD4+ T and CD8+ T-cell proliferation, directly killing tumor cells and inhibiting tumor growth.
Collapse
Affiliation(s)
- Jiaxin Ou
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lu Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanlin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuyue Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahua Ke
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Ran X, Zheng J, Chen L, Xia Z, Wang Y, Sun C, Guo C, Lin P, Liu F, Wang C, Zhou J, Sun C, Liu Q, Ma J, Qin Z, Zhu X, Xie Q. Single-Cell Transcriptomics Reveals the Heterogeneity of the Immune Landscape of IDH-Wild-Type High-Grade Gliomas. Cancer Immunol Res 2024; 12:232-246. [PMID: 38091354 PMCID: PMC10835213 DOI: 10.1158/2326-6066.cir-23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/21/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
Isocitrate dehydrogenase (IDH)-wild-type (WT) high-grade gliomas, especially glioblastomas, are highly aggressive and have an immunosuppressive tumor microenvironment. Although tumor-infiltrating immune cells are known to play a critical role in glioma genesis, their heterogeneity and intercellular interactions remain poorly understood. In this study, we constructed a single-cell transcriptome landscape of immune cells from tumor tissue and matching peripheral blood mononuclear cells (PBMC) from IDH-WT high-grade glioma patients. Our analysis identified two subsets of tumor-associated macrophages (TAM) in tumors with the highest protumorigenesis signatures, highlighting their potential role in glioma progression. We also investigated the T-cell trajectory and identified the aryl hydrocarbon receptor (AHR) as a regulator of T-cell dysfunction, providing a potential target for glioma immunotherapy. We further demonstrated that knockout of AHR decreased chimeric antigen receptor (CAR) T-cell exhaustion and improved CAR T-cell antitumor efficacy both in vitro and in vivo. Finally, we explored intercellular communication mediated by ligand-receptor interactions within the tumor microenvironment and PBMCs and revealed the unique cellular interactions present in the tumor microenvironment. Taken together, our study provides a comprehensive immune landscape of IDH-WT high-grade gliomas and offers potential drug targets for glioma immunotherapy.
Collapse
Affiliation(s)
- Xiaojuan Ran
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Jian Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linchao Chen
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Xia
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Yin Wang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Chengfang Sun
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Guo
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Peng Lin
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianguo Zhou
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qichang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianzhu Ma
- Institute of AI Industrial Research, Tsinghua University, Beijing, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangdong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi Xie
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Cao Y, Liu YL, Lu XY, Kai HL, Han Y, Zheng YL. Integrative analysis from multi-center studies identifies a weighted gene co-expression network analysis-based Tregs signature in ovarian cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:736-750. [PMID: 37713585 DOI: 10.1002/tox.23948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 09/17/2023]
Abstract
Ovarian cancer (OC) is a malignancy associated with poor prognosis and has been linked to regulatory T cells (Tregs) in the immune microenvironment. Nevertheless, the association between Tregs-related genes (TRGs) and OC prognosis remains incompletely understood. The xCell algorithm was used to analyze Tregs scores across multiple cohorts. Weighted gene co-expression network analysis (WGCNA) was utilized to identify potential TRGs and molecular subtypes. Furthermore, we used nine machine learning algorithms to create risk models with prognostic indicators for patients. Reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining were used to demonstrate the immunosuppressive ability of Tregs and the expression of key TRGs in clinical samples. Our study found that higher Tregs scores were significantly correlated with poorer overall survival. Recurrent patients exhibited increased Tregs infiltration and reduced CD8+ T cell. Moreover, molecular subtyping using seven key TRGs revealed that subtype B exhibited higher enrichment of multiple oncogenic pathways and had a worse prognosis. Notably, subtype B exhibited high Tregs levels, suggesting immune suppression. In addition, we validated machine learning-derived prognostic models across multiple platform cohorts to better distinguish patient survival and predict immunotherapy efficacy. Finally, the differential expression of key TRGs was validated using clinical samples. Our study provides novel insights into the role of Tregs in the immune microenvironment of OC. We identified potential therapeutic targets derived from Tregs (CD24, FHL2, GPM6A, HOXD8, NAP1L5, REN, and TOX3) for personalized treatment and created a machining learning-based prognostic model for OC patients, which could be useful in clinical practice.
Collapse
Affiliation(s)
- Yang Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Ying-Lei Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Xiao-Yan Lu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Hai-Li Kai
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Yun Han
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Yan-Li Zheng
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| |
Collapse
|
37
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
38
|
Mukherjee S, Chakraborty S, Basak U, Pati S, Dutta A, Dutta S, Roy D, Banerjee S, Ray A, Sa G, Das T. Breast cancer stem cells generate immune-suppressive T regulatory cells by secreting TGFβ to evade immune-elimination. Discov Oncol 2023; 14:220. [PMID: 38038865 PMCID: PMC10692020 DOI: 10.1007/s12672-023-00787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/06/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer stem cells (CSCs), being the primary contributors in tumor initiation, metastasis, and relapse, ought to have seminal roles in evasion of immune surveillance. Tumor-promoting CD4+CD25+FOXP3+ T-regulatory cells (Tregs) have been described to abolish host defense mechanisms by impeding the activities of other immune cells including effector T cells. However, whether CSCs can convert effector T cells to immune-suppressive Treg subset, and if yes, the mechanism underlying CSC-induced Treg generation, are limitedly studied. In this regard, we observed a positive correlation between breast CSC and Treg signature markers in both in-silico and immunohistochemical analyses. Mirroring the conditions during tumor initiation, low number of CSCs could successfully generate CD4+CD25+FOXP3+ Treg cells from infiltrating CD4+ T lymphocytes in a contact-independent manner. Suppressing the proliferation potential as well as IFNγ production capacity of effector T cells, these Treg cells might be inhibiting antitumor immunity, thereby hindering immune-elimination of CSCs during tumor initiation. Furthermore, unlike non-stem cancer cells (NSCCs), CSCs escaped doxorubicin-induced apoptosis, thus constituting major surviving population after three rounds of chemotherapy. These drug-survived CSCs were also able to generate CD4+CD25+FOXP3+ Treg cells. Our search for the underlying mechanism further unveiled the role of CSC-shed immune-suppressive cytokine TGFβ, which was further increased by chemotherapy, in generating tumor Treg cells. In conclusion, during initiation as well as after chemotherapy, when NSCCs are not present in the tumor microenvironment, CSCs, albeit present in low numbers, generate immunosuppressive CD4+CD25+FOXP3+ Treg cells in a contact-independent manner by shedding high levels of immune-suppressive Treg-polarizing cytokine TGFβ, thus escaping immune-elimination and initiating the tumor or causing tumor relapse.
Collapse
Affiliation(s)
- Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Dia Roy
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Arpan Ray
- Department of Pathology, ESI-PGIMSR, Medical College Hospital and ODC (EZ), Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
39
|
Flynn AL, Gans J, Escobedo J, Zhu C, Florescu AM, Shankara S, Madden SL, Kim PS, Pao LI. RGS1 Modulates Autophagic and Metabolic Programs and Is a Critical Mediator of Human Regulatory T Cell Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1656-1668. [PMID: 37850953 DOI: 10.4049/jimmunol.2200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Regulatory T cells (Tregs) are critical mediators of immune tolerance and play a diametric role in cancer and autoimmunity. Tumor-infiltrating Tregs are often associated with poor prognosis in solid tumors because their enrichment in the tumor microenvironment contributes to immunosuppression. Conversely, dysregulation in the Treg compartment can disrupt self-tolerance, leading to autoimmunity. In the present study, we describe what is, to our knowledge, a novel regulator of Tregs, the GTPase activator regulator of G protein 1 (RGS1), demonstrating that RGS1-deficient human Tregs show downregulation of Treg-associated genes and are less immunosuppressive. These RGS1-deficient Tregs exhibit perturbations to the FOXP3-c-MYC transcriptional axis and downstream metabolic and autophagy programs by shifting their energy demands toward glycolysis and rendering them less autophagic. Taken together, RGS1 may serve as an apical node of Treg function by regulating the FOXP3-c-MYC transcriptional axis, thereby providing a therapeutic rationale for targeting RGS1 for treatment of cancer and autoimmune diseases.
Collapse
Affiliation(s)
| | - Joseph Gans
- Department of Translational Sciences, Sanofi, Cambridge, MA
| | | | - Cheng Zhu
- Department of Translational Sciences, Sanofi, Cambridge, MA
| | | | | | | | - Peter S Kim
- Department of Oncology, Sanofi, Cambridge, MA
| | - Lily I Pao
- Department of Oncology, Sanofi, Cambridge, MA
| |
Collapse
|
40
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
41
|
Riaz F, Huang Z, Pan F. Targeting post-translational modifications of Foxp3: a new paradigm for regulatory T cell-specific therapy. Front Immunol 2023; 14:1280741. [PMID: 37936703 PMCID: PMC10626496 DOI: 10.3389/fimmu.2023.1280741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.
Collapse
Affiliation(s)
| | | | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
42
|
Wei H, Naruse C, Takakura D, Sugihara K, Pan X, Ikeda A, Kawasaki N, Asano M. Beta-1,4-galactosyltransferase-3 deficiency suppresses the growth of immunogenic tumors in mice. Front Immunol 2023; 14:1272537. [PMID: 37901252 PMCID: PMC10600447 DOI: 10.3389/fimmu.2023.1272537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background Beta-1,4-galactosyltransferase-3 (B4GALT3) belongs to the family of beta-1,4-galactosyltransferases (B4GALTs) and is responsible for the transfer of UDP-galactose to terminal N-acetylglucosamine. B4GALT3 is differentially expressed in tumors and adjacent normal tissues, and is correlated with clinical prognosis in several cancers, including neuroblastoma, cervical cancer, and bladder cancer. However, the exact role of B4GALT3 in the tumor immune microenvironment (TIME) remains unclear. Here, we aimed to elucidate the function of B4GALT3 in the TIME. Methods To study the functions of B4GALT3 in cancer immunity, either weakly or strongly immunogenic tumor cells were subcutaneously transplanted into wild-type (WT) and B4galt3 knockout (KO) mice. Bone marrow transplantation and CD8+ T cell depletion experiments were conducted to elucidate the role of immune cells in suppressing tumor growth in B4galt3 KO mice. The cell types and gene expression in the tumor region and infiltrating CD8+ T cells were analyzed using flow cytometry and RNA sequencing. N-glycosylated proteins from WT and B4galt3 KO mice were compared using the liquid chromatography tandem mass spectrometry (LC-MS/MS)-based glycoproteomic approach. Results B4galt3 KO mice exhibited suppressed growth of strongly immunogenic tumors with a notable increase in CD8+ T cell infiltration within tumors. Notably, B4galt3 deficiency led to changes in N-glycan modification of several proteins, including integrin alpha L (ITGAL), involved in T cell activity and proliferation. In vitro experiments suggested that B4galt3 KO CD8+ T cells were more susceptible to activation and displayed increased downstream phosphorylation of FAK linked to ITGAL. Conclusion Our study demonstrates that B4galt3 deficiency can potentially boost anti-tumor immune responses, largely through enhancing the influx of CD8+ T cells. B4GALT3 might be suppressing cancer immunity by synthesizing the glycan structure of molecules on the CD8+ T cell surface, as evidenced by the changes in the glycan structure of ITGAL in immune cells. Importantly, B4galt3 KO mice showed no adverse effects on growth, development, or reproduction, underscoring the potential of B4GALT3 as a promising and safe therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Heng Wei
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Takakura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kazushi Sugihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xuchi Pan
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ikeda
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nana Kawasaki
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Song N, Paust HJ, Asada N, Peters A, Kaffke A, Krebs CF, Panzer U, Riedel JH. Targeting Monocyte Derived CCL17 Attenuates Murine Crescentic Glomerulonephritis by Affecting Renal CCR4+ Regulatory T-Cell Recruitment. Am J Nephrol 2023; 55:214-224. [PMID: 37742620 DOI: 10.1159/000534151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION The chemokine receptor CCR4 is expressed by diverse CD4+ T cell subsets including regulatory T cells (Tregs) but its functional importance for leukocyte recruitment and the relevance of its two corresponding chemokines CCL17 and CCL22 have not been studied in immune-mediated crescentic glomerulonephritis (cGN). METHODS Utilizing the single-cell RNA sequencing (scRNAseq) data in analyzing leukocytes isolated from both human and murine nephritic kidneys, we identified CCL17 as a potential therapeutic target in immune-mediated renal disease. Using a mouse model of murine cGN, we then delineated the effects of targeting CCL17 by neutralizing antibodies and in Ccl17 gene-deficient mice. RESULTS Unsupervised scRNAseq analyses identified the CCL17-CCR4 axis as a mechanism potentially involved in renal T-cell migration. Analyses of functional kidney impairment and histopathological kidney damage revealed an attenuation of crescentic GN in anti-CCL17 antibody-treated mice which was corroborated using in Ccl17 gene-deficient mice. Immunohistochemical analyses revealed that these changes were accompanied by an affected renal Treg recruitment in both experimental approaches. CONCLUSION The chemokine receptor CCR4 and its corresponding chemokine CCL17 are expressed in human and murine cGN and targeting the CCR4-CCL17 axis by neutralizing antibodies as well as Ccl17 gene deficiency led to increased renal Treg recruitment and reduced histological and functional kidney damage in murine cGN.
Collapse
Affiliation(s)
- Ning Song
- Division of Translational Immunology, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- Division of Translational Immunology, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nariaki Asada
- Division of Translational Immunology, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anett Peters
- Division of Translational Immunology, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Kaffke
- Division of Translational Immunology, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- Division of Translational Immunology, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Riedel
- Division of Translational Immunology, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Chakraborty S, Mukherjee S, Basak U, Pati S, Dutta A, Dutta S, Dhar S, Sarkar T, Guin A, Sa G, Das T. Immune evasion by cancer stem cells ensures tumor initiation and failure of immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:384-405. [DOI: 10.37349/ei.2023.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 01/04/2025]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells that drive the formation and progression of tumors. However, during tumor initiation, how CSCs communicate with neighbouring immune cells to overcome the powerful immune surveillance barrier in order to form, spread, and maintain the tumor, remains poorly understood. It is, therefore, absolutely necessary to understand how a small number of tumor-initiating cells (TICs) survive immune attack during (a) the “elimination phase” of “tumor immune-editing”, (b) the establishment of regional or distant tumor after metastasis, and (c) recurrence after therapy. Mounting evidence suggests that CSCs suppress the immune system through a variety of distinct mechanisms that ensure the survival of not only CSCs but also non-stem cancer cells (NSCCs), which eventually form the tumor mass. In this review article, the mechanisms via which CSCs change the immune landscape of the tissue of origin, which contains macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes, in favour of tumorigenesis were discussed. The failure of cancer immunotherapy might also be explained by such interaction between CSCs and immune cells. This review will shed light on the critical role of CSCs in tumor immune evasion and emphasize the importance of CSC-targeted immunotherapy as a cutting-edge technique for battling cancer by restricting communication between immune cells and CSCs.
Collapse
Affiliation(s)
- Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhanki Dhar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Aharna Guin
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| |
Collapse
|
45
|
Zhang J, Wang S, Zhang D, He X, Wang X, Han H, Qin Y. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front Immunol 2023; 14:1230893. [PMID: 37600822 PMCID: PMC10435760 DOI: 10.3389/fimmu.2023.1230893] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has developed rapidly in solid tumors, especially in the areas of blocking inhibitory immune checkpoints and adoptive T-cell transfer for immune regulation. Many patients benefit from immunotherapy. However, the response rate of immunotherapy in the overall population are relatively low, which depends on the characteristics of the tumor and individualized patient differences. Moreover, the occurrence of drug resistance and adverse reactions largely limit the development of immunotherapy. Recently, the emergence of nanodrug delivery systems (NDDS) seems to improve the efficacy of immunotherapy by encapsulating drug carriers in nanoparticles to precisely reach the tumor site with high stability and biocompatibility, prolonging the drug cycle of action and greatly reducing the occurrence of toxic side effects. In this paper, we mainly review the advantages of NDDS and the mechanisms that enhance conventional immunotherapy in solid tumors, and summarize the recent advances in NDDS-based therapeutic strategies, which will provide valuable ideas for the development of novel tumor immunotherapy regimen.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daidi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Wang
- Academy of Medical Science, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Dong L, Qian YP, Li SX, Pan H. Development of a machine learning-based signature utilizing inflammatory response genes for predicting prognosis and immune microenvironment in ovarian cancer. Open Med (Wars) 2023; 18:20230734. [PMID: 37273921 PMCID: PMC10238811 DOI: 10.1515/med-2023-0734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
Ovarian cancer (OC) represents a significant health challenge, characterized by a particularly unfavorable prognosis for affected women. Accumulating evidence supports the notion that inflammation-related factors impacting the normal ovarian epithelium may contribute to the development of OC. However, the precise role of inflammatory response-related genes (IRRGs) in OC remains largely unknown. To address this gap, we performed an integration of mRNA expression profiles from 7 cohorts and conducted univariate Cox regression analysis to screen 26 IRRGs. By utilizing these IRRGs, we categorized patients into subtypes exhibiting diverse inflammatory responses, with subtype B displaying the most prominent immune infiltration. Notably, the elevated abundance of Treg cells within subtype B contributed to immune suppression, resulting in an unfavorable prognosis for these patients. Furthermore, we validated the distribution ratios of stromal cells, inflammatory cells, and tumor cells using whole-slide digitized histological slides. We also elucidated differences in the activation of biological pathways among subtypes. In addition, machine learning algorithms were employed to predict the likelihood of survival in OC patients based on the expression of prognostic IRRGs. Through rigorous testing of over 100 combinations, we identified CXCL10 as a crucial IRRG. Single-cell analysis and vitro experiments further confirmed the potential secretion of CXCL10 by macrophages and its involvement in lymphangiogenesis within the tumor microenvironment. Overall, the study provides new insights into the role of IRRGs in OC and may have important implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Li Dong
- Department of Obstetrics and Gynaecology, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, No. 7 People’s Hospital, Changzhou, China
| | - Ya-ping Qian
- Department of Obstetrics and Gynaecology, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, No. 7 People’s Hospital, Changzhou, China
| | - Shu-xiu Li
- Department of Obstetrics and Gynaecology, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, No. 7 People’s Hospital, Changzhou, China
| | - Hao Pan
- Department of Cardiology, The Affiliated Changzhou, No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
47
|
Yamamoto J, Ohuchi K, Amagai R, Roh Y, Endo J, Chiba H, Tamabuchi E, Kambayashi Y, Hashimoto A, Asano Y, Fujimura T. CD25 expression could be a prognostic marker of bexarotene monotherapy for cutaneous T-cell lymphomas. SKIN HEALTH AND DISEASE 2023; 3:e222. [PMID: 37275413 PMCID: PMC10233073 DOI: 10.1002/ski2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
Bexarotene is often administered to phototherapy-resistant early cutaneous T-cell lymphoma (CTCL) patients as one of the first-line therapies in real-world practice. Since bexarotene reduces the expression of CCR4 in CTCL cells and CCL22 to decrease serum CCL22 levels, bexarotene inhibits the migration of CTCL cells, as well as other CCR4+ cells, such as cytotoxic T cells and regulatory T cells, in the lesional skin of CTCL. In this report, the efficacy of bexarotene in 28 cases of CTCL, as well as its correlations with immunohistochemical profiles of tumour-infiltrating leucocytes (TILs), was retrospectively investigated. The overall response rate at 1 and 4 months for the total cohort was 70.8% (95% CI, 50.6%-86.3%) and 47.8% (95% CI, 29.2%-67.0%), respectively. The disease control rate for the total cohort at 4 months was 65.2% (95% CI, 44.8%-81.3%). The mean event-free survival for all patients was 4.1 months (0.3-68.5 months). In addition, the immunoreactive cells were calculated using digital microscopy, suggesting that the ratio of CD25+ cells among TILs was significantly increased in patients who responded to bexarotene (p = 0.0209), whereas there were no significant differences in the ratios of CD8+ cells, granulysin+ cells, and Foxp3+ cells among TILs between responder and non-responder patients. Collectively, the ratio of CD25 expression among TILs might be a predictive biomarker for the efficacy of bexarotene.
Collapse
Affiliation(s)
- Jun Yamamoto
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kentaro Ohuchi
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Ryo Amagai
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yuna Roh
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Junko Endo
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hiromu Chiba
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Erika Tamabuchi
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yumi Kambayashi
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akira Hashimoto
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshihide Asano
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Taku Fujimura
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
48
|
Ayed K, Nabi L, Akrout R, Mrizak H, Gorrab A, Bacha D, Boussen H, Gati A. Obesity and cancer: focus on leptin. Mol Biol Rep 2023:10.1007/s11033-023-08525-y. [PMID: 37227675 DOI: 10.1007/s11033-023-08525-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Over the past decades, obesity has grown to epidemic proportions worldwide. It has been associated with an increased risk for different types of cancer. In addition, obesity has been associated with a poor prognosis, an increased risk of metastasis and mortality, and resistance to anti-cancer therapies. The pathophysiological mechanisms underlying the obesity-cancer connection have not yet been fully elucidated. However, this connection could result, at least in part, from the action of adipokines, whose levels are increased in obesity. Among these adipokines, evidence suggests leptin's critical role in linking obesity to cancer. In this review, we first summarize the current state of the literature regarding the implication of leptin in tumorigenic processes. Next, we focus on the effects of leptin on the anti-tumor immune response. Then, we discuss the influence of leptin on the efficiency of antineoplastic treatments and the development of tumor resistance. Finally, we highlight the use of leptin as a potential target for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Khouloud Ayed
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lamis Nabi
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rym Akrout
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hela Mrizak
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amal Gorrab
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dhouha Bacha
- Anatomopathology Department, Mongi Slim Hospital, Tunis, Tunisia
| | - Hamouda Boussen
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Ariana, Tunisia
| | - Asma Gati
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
49
|
Qiu J, Shi W, Zhang J, Gao Q, Feng L, Zhuang Z. Peripheral CD4 +CD25 hiCD127 low regulatory T cells are increased in patients with gastrointestinal cancer. BMC Gastroenterol 2023; 23:168. [PMID: 37210494 DOI: 10.1186/s12876-023-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play an important role in regulation of immune response and immunologic tolerance in cancer. Gastrointestinal cancer is still a leading cause of cancer-related death in the world. This study aimed to detect Tregs in patients with gastrointestinal cancer. METHODS In this study, 45 gastric cancer patients, 50 colorectal cancer patients and 50 healthy controls were enrolled. Flow cytometry was used to detect CD4+CD25hiCD127low Tregs, CD4+CD25hi, and CD4+ cells in peripheral blood. Cytokine interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1) in peripheral blood and in the supernatant of Tregs cultures were measured by enzyme linked immunosorbent assay. RESULTS Compared with healthy controls, the levels of CD4+CD25hiCD127low Tregs and CD4+CD25hi cells increased significantly in patients with gastrointestinal cancer. Patients with gastrointestinal cancer also showed a significantly increased levels of IL-10 and TGF-β1 in both peripheral blood and CD4+CD25hiCD127low Tregs culture medium. CONCLUSION The present study firstly demonstrated that gastrointestinal patients have a compromised immune status where the CD4+CD25hiCD127low Tregs, as well as levels of IL-10 and TGF-β1 are elevated. The data offered new information for understanding the immunological features of gastrointestinal patients, as well as provided new insights into approaches to develop new immunotherapies for patients with gastrointestinal cancer.
Collapse
Affiliation(s)
- Junlan Qiu
- Department of Oncology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China.
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jin Zhang
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Lin Feng
- Department of Oncology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| |
Collapse
|
50
|
Wang N, Ren D, Zhang L, Han N, Zhao Y, Yang X. Effects of sheep whey protein combined with Fu brick tea polysaccharides and stachyose on immune function and intestinal metabolites of cyclophosphamide-treated mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3402-3413. [PMID: 36722467 DOI: 10.1002/jsfa.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Sheep whey protein (SWP), Fu brick tea polysaccharides (FBTP) and stachyose (STA) have been shown to improve immunity, but little is known about the regulatory effect of SWP, FBTP, STA and their combined formula (CF) on immune function and intestinal metabolism of immunosuppressed mice induced by cyclophosphamide (CTX). RESULTS Administration of SWP, FBTP, STA or CF restored the levels of body weight, immune organ index, immune organ morphology, cytokines and immunoglobulins in CTX immunosuppressed mice. Interestingly, CF improved all the mentioned parameters more effective than administration of SWP, FBTP or STA alone. In addition, CF was more effective to increase the levels of intestinal immune-related gene expression than FBTP, SWP or STA alone in immunosuppressed mice, suggesting that CF exhibited excellent intestinal immune regulation function. CF also significantly improved cecal concentrations of short-chain fatty acids of CTX-treated mice. Furthermore, metabolomics analysis demonstrated that CF recovered the levels of 28 metabolites associated with the CTX treatment to the levels of normal mice. CONCLUSION Conclusively, these findings suggested that CF as a functional food combination of SWP, FBTP and STA could promote the immune function against human diseases, which providing theoretical support for the co-ingestion of SWP and functional sugars as a feasible strategy for improving the body immunity in the future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ning Han
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|