1
|
Higashi Y, Ikuno K, Saito T, Saido TC, Miyasaka T, Kakuda N, Funamoto S. High Affinity Staining for Histological Immunoreactivity revealed phosphorylated tau within amyloid-cored plaques in the brain of AD model mice. Biochem Biophys Res Commun 2025; 771:152025. [PMID: 40393159 DOI: 10.1016/j.bbrc.2025.152025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The historical pathology of the brain in Alzheimer's disease (AD) is characterized by the amyloid cascade hypothesis, in which amyloid β protein accumulates in the extracellular parenchyma as senile plaque and triggers phosphorylation of microtubule-associated protein tau for forming neurofibrillary tangle in the human neurons. Whether these protein existences differed in the brain parenchyma, the relationship of these proteins of accumulation mechanisms is unknown. In the case of brain pathological analysis, the level of phosphorylation for tau has been decreased in the paraffin-embedded sections compared with biochemical analysis. Here, we have established and developed a method to highlight phosphorylated proteins including tau with frozen sections, as the HIGh Affinity Staining Histological Immunoreactivity (HIGASHI) method. Using this HIGASHI method, hyper-phosphorylated tau could be detected in the mossy fiber on the frozen brain sections of wild-type mice under hypothermia conditions. Here, we attempted the HIGASHI method to detect senile plaque and phosphorylated tau in the AD model mouse brains. Phosphorylated tau was found in the center of senile plaques in the mice brain parenchyma. Additionally, these senile plaques colocalized with microglia cells in the center of senile plaques. Interestingly, senile plaques have been made in the tau knock-out mice brains expressing human amyloid precursor protein. Thus, senile plaques have been composed of Aβ and phosphorylated tau in the brain, but tau isn't necessary for bearing senile plaques.
Collapse
Affiliation(s)
- Yuto Higashi
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Kanta Ikuno
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8602, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tomohiro Miyasaka
- Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Laboratory of Physiology and Anatomy, Nihon University, School of Pharmacy, Funabashi, Chiba, 274-8555, Japan.
| | - Nobuto Kakuda
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Satoru Funamoto
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan; Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
2
|
Spencer B, Schueler A, Sung D, Rissman RA. Differential roles of human tau isoforms in the modulation of inflammation and development of neuropathology. Neurobiol Dis 2025; 211:106942. [PMID: 40348205 DOI: 10.1016/j.nbd.2025.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/24/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
Alzheimer's disease (AD) is the most common tauopathy characterized by progressive accumulation of Aß and tau neuropathology. Tau is expressed in two major isoforms containing either 3 or 4C-terminal repeats, 3R and 4R. Despite tau isoforms occurring in roughly equimolar ratios in AD, the majority of research focus in developed mouse and in vitro models focus only on 4Rtau. To generate a more complete model of AD tauopathy and understand specific tau isoform-mediated neuropathology and neurodegeneration, we generated a transgenic mouse line expressing both 3Rtau and 4Rtau and determined how this impacted the timing and severity of neuropathological and behavioral changes. METHODS 3Rtau-tg and 4Rtau-tg mice were crossed to generate 3R/4Rtau-tg bigenic mice. At 3, 6, and 9 months of age, mice were assessed for behavior, neuropathology and RNA expression. RESULTS 3R/4Rtau bigenic mice expressed increased tau and phosphorylated tau in the hippocampus and cortex compared to single (3R or 4R) transgenic cohorts as early as 3-months of age and this was accompanied with increased astrogliosis and microglial activation. Bigenic mice had significantly greater behavioral deficits compared to either single transgenic littermates in spatial learning and memory as well as nest building, indicative of depression and/or cognitive deficits. CONCLUSION This new mouse model of tauopathy more completely recapitulates the pattern, severity and accumulation of tau and associated neuropathology and behavioral changes observed in human tauopathies such as AD. 3R/4Rtau-tg bigenic mice should supplant existing single transgenic tau models for general validation of therapeutic targets and investigations of novel therapies on tauopathy endpoints.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, San Diego, CA, USA
| | - Aaron Schueler
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, San Diego, CA, USA
| | - Daniel Sung
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, San Diego, CA, USA
| | - Robert A Rissman
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, San Diego, CA, USA.
| |
Collapse
|
3
|
Wu F, Li W, Lu H, Li L. Recent Advances in Mass Spectrometry-Based Studies of Post-translational Modifications in Alzheimer's Disease. Mol Cell Proteomics 2025:101003. [PMID: 40449795 DOI: 10.1016/j.mcpro.2025.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/18/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline. There are over 10 million new cases of AD each year worldwide, implying one new case every 3.2 seconds. Post-translational modifications (PTMs) such as phosphorylation, glycosylation, and citrullination have emerged as key modulators of protein function in AD, influencing protein aggregation, clearance, and toxicity. Mass spectrometry (MS) has become an indispensable tool for detecting and quantifying these PTMs, offering valuable insights into their role in AD pathogenesis. This review explores recent advancements in MS-based studies of PTMs in AD, with emphasis on MS techniques like data-dependent acquisition (DDA) and data-independent acquisition (DIA), as well as enrichment methods used to characterize PTMs. The applications of these MS-based approaches to the study of various PTMs are highlighted, which have significantly accelerated the biomarker discovery process, providing new avenues for early diagnosis and therapeutic targeting. Advances in biological understanding and analytical techniques, while addressing the challenges and future directions, will be discussed.
Collapse
Affiliation(s)
- Feixuan Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biophysics Graduate Program, University of Wisconsin-Madison, WI 53706, USA; Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
4
|
Xu T, Su T, Soye BJD, Kandi S, Huang CF, Wilkins JT, Castellani RJ, Kafader JO, Patrie SM, Vassar R, Kelleher NL. The Proteoform Landscape of Tau from the Human Brain. J Proteome Res 2025. [PMID: 40395051 DOI: 10.1021/acs.jproteome.5c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Tau is a microtubule-associated protein (MAP) and is critical for maintaining the cytoskeleton of neurons. Tau and its post-translational modifications (PTMs) have been studied for decades, yet the exact composition of intact tau and its truncation products present in the human brain has evaded study at the proteoform level. Here, we show that tau proteoform profiling and exact characterization are possible using immunoprecipitation (IP) and the new approach of individual ion mass spectrometry (I2MS). We provide a first glimpse of the tau proteoform landscape present in the CHAPS-soluble extracts from the temporal cortex of a control subject and a donor with Alzheimer's disease (AD). Profiling and identification of four isoforms (0N3R, 1N3R, 0N4R, and 1N4R), truncated products (e.g., 72-172 derived from the 0N3R/0N4R isoforms), and intact tau proteoforms harboring PTMs include phosphorylation, methylation, and acetylation. The specific tau proteoform identification typically employs proton transfer charge reduction (PTCR) and electron transfer dissociation (ETD) with spectral readout by individual ion tandem mass spectrometry (I2MS2). A precise understanding of the tau proteoform landscape over the course of neurodegeneration is critical to understand AD pathology vs related dementias. The assay approach reported here will advance AD research, gives a sense of what is technologically possible for new biomarker discovery and will assist the development of therapeutics using the most exact kind of compositional information on tau.
Collapse
Affiliation(s)
- Tian Xu
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Taojunfeng Su
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin J Des Soye
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Soumya Kandi
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - John T Wilkins
- Departments of Medicine (Cardiology) and Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jared O Kafader
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert Vassar
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Xu H, Wang G, Jiang Z, Han Y, Zhao W, Zhang H, Liu H, Liu H, Li Z, Ji F. Ultrasmall Nanoparticles Mitigate Tau Hyperphosphorylation to Restore Synaptic Integrity and Boost Cognitive Function in Alzheimer's Disease. Adv Healthc Mater 2025:e2500941. [PMID: 40376857 DOI: 10.1002/adhm.202500941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Indexed: 05/18/2025]
Abstract
Tau hyperphosphorylation represents a critical pathological hallmark of Alzheimer's disease (AD), a prevalent neurodegenerative disorder characterized by progressive cognitive decline. The ubiquitin-specific proteases 14 (USP14) impairs proteasomal function and accelerates hyperphosphorylated Tau accumulation, making it an attractive therapeutic target for modulating the ubiquitin-proteasome pathway in AD treatment. In this study, it is reported that wogonoside-functionalized ultrasmall Cu2-xSe nanoparticles (CSPW NPs) significantly reduce hyperphosphorylated Tau accumulation and alleviate AD symptoms. The therapeutic mechanism involves activation of the ubiquitin-proteasome pathway through USP14 inhibition by CSPW NPs, thereby preventing hyperphosphorylated Tau accumulation. Furthermore, after cell membrane coating (CSPW@CM NPs), these nanoparticles efficiently cross the blood-brain barrier with focused ultrasound assistance and accumulate in the brain to target neurons. Within neurons, they inhibit USP14, reduce phosphorylated Tau deposition, enhance microtubule stability, mitigate synaptic loss, restore synaptic integrity, and ultimately alleviate cognitive dysfunction in AD mice. The findings highlight the substantial potential of USP14 modulation for mitigating Tau hyperphosphorylation in the treatment of AD and related tauopathies.
Collapse
Affiliation(s)
- Hanbing Xu
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Gang Wang
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Weiming Zhao
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Huayue Liu
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
- Ambulatory Surgery Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Fuhai Ji
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
6
|
Foncea A, Franchini N, Tobar I, Thienel S, Retamal IN, Cancino GI, Cornejo F. Ptprd deficiency promotes tau hyperphosphorylation and impairs cognitive function in aged mice. Biol Res 2025; 58:26. [PMID: 40329347 PMCID: PMC12054186 DOI: 10.1186/s40659-025-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Tau phosphorylation is a tightly regulated process that ensures proper neuronal function. Indeed, hyperphosphorylation of tau closely contributes to neuronal dysfunction leading to neurodegenerative diseases, including tauopathies, which are characterized by excessive and aberrant tau phosphorylation and cognitive decline. Therefore, it is important to understand how to regulate its phosphorylation. In this regard, the protein tyrosine phosphatase receptor delta (PTPRD) has been genetically implicated in tau pathology in humans, but the mechanisms underlying its role in tau regulation remain unclear. This study investigates the impact of Ptprd deficiency on tau phosphorylation, cognitive function, neuroinflammation, and synaptic markers in aging mice. RESULTS Mice lacking Ptprd showed increased tau phosphorylation at multiple sites associated with its pathological aggregation. This effect was accompanied by the activation of the tau-related kinase Abl1, particularly in the hippocampus. Behavioral assessments revealed significant impairments in learning and memory, demonstrating the functional impact of these alterations. Moreover, Ptprd knockout mice showed increased microgliosis in both the entorhinal cortex and the hippocampus, suggesting a pro-inflammatory response. Furthermore, the synaptic protein PSD95 was also reduced in the cortex, indicating potential synaptic dysfunction. CONCLUSIONS The loss of Ptprd leads to increased tau phosphorylation, cognitive impairments, microgliosis, and synaptic alterations in older mice. Our findings also suggest that Ptprd plays a critical role in maintaining tau homeostasis through the Abl1 kinase. This indicates a new potential therapeutic approach for tauopathies, where PTPRD could serve a protective role against tau-related pathologies and may act as a key modulator in disease progression.
Collapse
Affiliation(s)
- Analía Foncea
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nayhara Franchini
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Isidora Tobar
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Sebastián Thienel
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Ignacio N Retamal
- Centro de Oncología de Precisión, Escuela de Medicina, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Gonzalo I Cancino
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Francisca Cornejo
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
7
|
Liao CH, Shih YC, Huang HY, Chen JW, Hsu SI, Lai CN, Fu RH, Tsai CW. Carnosic Acid Attenuated the Motor Impairment by Bisphenol A is Related to the Regulation of Autophagy Through Parkin in In Vitro and In Vivo. Mol Neurobiol 2025:10.1007/s12035-025-04990-7. [PMID: 40317414 DOI: 10.1007/s12035-025-04990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound linked to impairments in motor function and the manifestation of anxiety-like behaviors. The present study investigated the effects of carnosic acid (CA) on BPA-induced motor deficits and explored the role of parkin in the autophagic mechanism. First, C57BL/6 J male mice were orally administered with CA (5 mg/kg and 20 mg/kg) or RE (80 mg/kg rosemary extract) to test the motor function and anxiety-like behaviors in BPA (50 μg/kg) treatment. The results showed that CA and RE ameliorate BPA-induced motor impairments and anxiety-like behaviors. Moreover, CA and RE attenuated BPA-induced phosphorylation of tau and α-synuclein while restoring the expression levels of autophagy-related proteins, including parkin, PINK1, PI3K, Atg7, Beclin1, and LC3B-II. Then, SH-SY5Y cells were treated with 20 nM BPA and 1 μM CA or 0.5 μg/mL RE for 18 h. The results showed that treatment of CA and RE with BPA activated the parkin pathway and reduced the levels of Ser396p-tau and p-α-synuclein. Moreover, treatment of CA or RE with BPA restored the parkin signaling, resulting in the upregulation of autophagy-related proteins. However, wortmannin treatment attenuated this restorative effect of CA or RE. Additionally, transfection with parkin siRNA in cells reversed the ability of CA or RE to counteract BPA-induced reductions in autophagy-related proteins and increased the accumulation of misfolded proteins. Therefore, the results indicated that CA and RE improved motor impairments and reduced the accumulation of misfolding proteins induced by BPA, potentially through regulating autophagy by parkin.
Collapse
Affiliation(s)
- Chun-Huei Liao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ya-Chen Shih
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Hsi-Yun Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Jing-Wei Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Shao-I Hsu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chiao-Ni Lai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Liu W, Rao X, Sun W, Chen X, Yu L, Zhang J, Chen J, Zheng X. The neuroinflammatory role of microRNAs in Alzheimer's disease: pathological insights to therapeutic potential. Mol Cell Biochem 2025; 480:2689-2706. [PMID: 39567427 DOI: 10.1007/s11010-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia, contributing to around 60-80% of cases. The main pathophysiology of AD is characterized by an abnormal accumulation of protein aggregates extracellularly (beta-amyloid plaques) and intracellularly (neurofibrillary tangles of hyperphosphorylated tau). However, an increasing number of studies have also suggested neuroinflammation may have a crucial role in precipitating the cascade reactions that result in the development of AD neuropathology. In particular, several studies indicate microRNAs (miRNAs) can act as regulatory factors for neuroinflammation in AD, with potential to affect the occurrence and/or progression of AD inflammation by targeting the expression of multiple genes. Therefore, miRNAs may have potential as therapeutic targets for AD, which requires more research. This article will review the existing studies on miRNAs that have been identified to regulate neuroinflammation, aiming to gain further insights into the specific regulatory processes of miRNAs, highlight the diagnostic and therapeutic potential of miRNAs as biomarkers in AD, as well as current challenges, and suggest the further work to bridge the gap in knowledge to utilize miRNAs as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Wen Sun
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaorong Zheng
- Blood Purification Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| |
Collapse
|
9
|
Zhou J, Sun X, Wang K, Shen M, Yu J, Yao Q, Hong H, Tang C, Wang Q. What Information do Systemic Pathological Changes Bring to the Diagnosis and Treatment of Alzheimer's Disease? Neurosci Bull 2025:10.1007/s12264-025-01399-z. [PMID: 40257662 DOI: 10.1007/s12264-025-01399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Alzheimer's disease (AD) is regarded as a neurodegenerative disease, and it has been proposed that AD may be a systemic disease. Studies have reported associations between non-neurological diseases and AD. The correlations between AD pathology and systemic (non-neurological) pathological changes are intricate, and the mechanisms underlying these correlations and their causality are unclear. In this article, we review the association between AD and disorders of other systems. In addition, we summarize the possible mechanisms associated with AD and disorders of other systems, mainly from the perspective of AD pathology. Regarding the relationship between AD and systemic pathological changes, we aim to provide a new outlook on the early warning signs and treatment of AD, such as establishing a diagnostic and screening system based on more accessible peripheral samples.
Collapse
Affiliation(s)
- Jinyue Zhou
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui, 32300, China
| | - Keren Wang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China
| | - Min Shen
- Reference Laboratory, Medical System Biotechnology Co., Ltd, Ningbo, 315104, China
| | - Jingbo Yu
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Qi Yao
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Hang Hong
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Chunlan Tang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Qinwen Wang
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
10
|
Wu SR, Nowakowski TJ. Exploring human brain development and disease using assembloids. Neuron 2025; 113:1133-1150. [PMID: 40107269 PMCID: PMC12022838 DOI: 10.1016/j.neuron.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
How the human brain develops and what goes awry in neurological disorders represent two long-lasting questions in neuroscience. Owing to the limited access to primary human brain tissue, insights into these questions have been largely gained through animal models. However, there are fundamental differences between developing mouse and human brain, and neural organoids derived from human pluripotent stem cells (hPSCs) have recently emerged as a robust experimental system that mimics self-organizing and multicellular features of early human brain development. Controlled integration of multiple organoids into assembloids has begun to unravel principles of cell-cell interactions. Moreover, patient-derived or genetically engineered hPSCs provide opportunities to investigate phenotypic correlates of neurodevelopmental disorders and to develop therapeutic hypotheses. Here, we outline the advances in technologies that facilitate studies by using assembloids and summarize their applications in brain development and disease modeling. Lastly, we discuss the major roadblocks of the current system and potential solutions.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Fan X, Okada K, Lin H, Ori-McKenney KM, McKenney RJ. A pathological phosphorylation pattern enhances tau cooperativity on microtubules and facilitates tau filament assembly. RESEARCH SQUARE 2025:rs.3.rs-6247226. [PMID: 40297677 PMCID: PMC12036459 DOI: 10.21203/rs.3.rs-6247226/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Phosphorylation plays a crucial role in both normal and disease processes involving the microtubule-associated protein tau. Physiologically, phosphorylation regulates tau's subcellular localization within neurons and is involved in fetal development and animal hibernation. However, abnormal phosphorylation of tau is linked to the formation of neurofibrillary tangles (NFTs) in various human tauopathies. Interestingly, the patterns of tau phosphorylation are similar in both normal and abnormal processes, leaving unclear whether phosphorylated tau retains its functional role in normal processes. The relationship between tau phosphorylation and NFT assembly in tauopathies is also still debated. To address these questions, we investigated the effects of tau phosphorylation on microtubule binding, cooperative protein envelope formation, and NFT filament assembly relevant to tauopathies. Consistent with previous results, our findings show that tau phosphorylation decreases tau's overall affinity for microtubules, but we reveal that phosphorylation more dramatically impacts the cooperativity between tau molecules during tau envelope formation along microtubules. Additionally, we observed that the specific pattern of phosphorylation, rather than overall phosphorylation level, strongly impacts the assembly of tau filaments in vitro. Our results reveal new insights into how tau phosphorylation impacts tau's physiological roles on microtubules and its pathoconversion into NFTs.
Collapse
Affiliation(s)
- Xiangyu Fan
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| | - Henry Lin
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| | - Kassandra M. Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| |
Collapse
|
12
|
Tian ZY, Jiang B, Jin M, Yu XK, Chen QL, Wang JH. Alzheimer's disease and insomnia: a bibliometric study and visualization analysis. Front Aging Neurosci 2025; 17:1542607. [PMID: 40264463 PMCID: PMC12011777 DOI: 10.3389/fnagi.2025.1542607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Background Alzheimer's disease (AD) is the fastest-growing neurodegenerative disorder globally, with patient numbers expected to rise to 130 million by 2050. Insomnia, a prevalent comorbidity, exhibits a bidirectional relationship with AD: insomnia accelerates AD pathology, while AD worsens sleep disorders. This relationship has emerged as a key area of research. Current mechanisms involve oxidative stress, inflammatory responses, and glymphatic system dysfunction, yet a comprehensive review of these processes remains absent. Objective To conduct a visual analysis of the relationship between Alzheimer's disease and insomnia using CiteSpace. Methods Literature on "insomnia" and "Alzheimer's disease" published between January 1, 2000, and October 31, 2024, was retrieved from the Web of Science Core Collection. CiteSpace and VOSviewer software were used to analyze institutions, authors, and keywords. Results A total of 1,907 articles were analyzed, revealing a consistent upward trend in publication volume. The United States and the Mayo Clinic were identified as leading contributors, producing 704 and 57 publications, respectively. Boeve Bradley F the most prolific author contributed 30 publications. Collaboration was actively observed among countries, institutions, and authors. High-frequency keywords identified were "Parkinson's disease," "cognitive impairment," and "sleep behavior disorder." Emerging research areas are likely to focus on "sleep quality" and the "glymphatic system." Conclusion This study is the first to apply bibliometric analysis to identify three key trends in AD and insomnia research: the dominance of the United States and Mayo Clinic, strong international collaboration, and a focus on critical areas such as cognitive impairment, the glymphatic system, and sleep interventions. Insomnia may accelerate AD progression via multiple pathways, indicating that enhancing sleep quality could provide new strategies for early intervention. Future research should prioritize advancing the clinical translation of sleep interventions and investigating the mechanisms of the glymphatic system.
Collapse
Affiliation(s)
- Zi-Yue Tian
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Meng Jin
- The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xiao-Kun Yu
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Qi-Lin Chen
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- KweiChow Moutai Hospital, Zunyi, Guizhou, China
| | - Jia-Hui Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
13
|
Abbas K, Mustafa M, Alam M, Habib S, Ahmad W, Adnan M, Hassan MI, Usmani N. Multi-target approach to Alzheimer's disease prevention and treatment: antioxidant, anti-inflammatory, and amyloid- modulating mechanisms. Neurogenetics 2025; 26:39. [PMID: 40167826 DOI: 10.1007/s10048-025-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaque accumulation, neurofibrillary tangles, neuroinflammation, and progressive cognitive decline, posing a significant global health challenge. Growing evidence suggests that dietary polyphenols may reduce the risk and progression of AD through multifaceted neuroprotective mechanisms. Polyphenols regulate amyloid proteostasis by inhibiting β/γ-secretase activity, preventing Aβ aggregation, and enhancing clearance pathways. Their strong antioxidant properties neutralize reactive oxygen species, chelate redox-active metals, and activate cytoprotective enzymes via Nrf2 signaling. This review examines the potential therapeutic targets, signaling pathways, and molecular mechanisms by which dietary polyphenols exert neuroprotective effects in AD, focusing on their roles in modulating amyloid proteostasis, oxidative stress, neuroinflammation, and cerebrovascular health. Polyphenols mitigate neuroinflammation by suppressing NF-κB signaling and upregulating brain-derived neurotrophic factor, supporting neuroplasticity and neurogenesis. They also enhance cerebrovascular health by improving cerebral blood flow, maintaining blood-brain barrier integrity, and modulating angiogenesis. This review examines the molecular and cellular pathways through which polyphenols exert neuroprotective effects, focusing on their antioxidant, anti-inflammatory, and amyloid-modulating roles. We also discuss their influence on key AD pathologies, including Aβ deposition, tau hyperphosphorylation, oxidative stress, and neuroinflammation. Insights from clinical and preclinical studies highlight the potential of polyphenols in preventing or slowing AD progression. Future research should explore personalized dietary strategies that integrate genetic and lifestyle factors to optimize the neuroprotective effects of polyphenols.
Collapse
Affiliation(s)
- Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'Il, Ha'il, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Allahyartorkaman M, Chan TH, Chen EHL, Ng ST, Chen YA, Wen JK, Ho MR, Yen HY, Kuan YS, Kuo MH, Chen RPY. Phosphorylation-Induced Self-Coacervation versus RNA-Assisted Complex Coacervation of Tau Proteins. J Am Chem Soc 2025; 147:10172-10187. [PMID: 40074668 PMCID: PMC11951079 DOI: 10.1021/jacs.4c14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
In this study, the role of phosphorylation in the liquid-liquid phase separation (LLPS) of tau, the underlying driving forces, and the potential implications of this separation on protein conformation and subsequent protein aggregation were investigated. We compared in vivo-produced phosphorylated tau (p-tau) and nonphosphorylated tau under different coacervation conditions without adding crowding agents. Our findings revealed that spontaneous phase separation occurs exclusively in p-tau, triggered by a temperature shift from 4 °C to room temperature, and is driven by electrostatic and hydrophobic interactions. The p-tau self-acervation is reversible with temperature changes. Native mass spectrometry detects only two to nine phosphate groups per p-tau molecule, highlighting the impact of phosphorylation on tau's structural flexibility. Cross-linking mass spectrometry showed fewer long-range contacts in p-tau, suggesting a looser conformation induced by phosphorylation. Phosphorylation-induced LLPS and RNA-induced LLPS occurred at different timeframes. However, neither tau nor p-tau formed fibrils without the addition of dextran sulfate or RNA as inducers. Using human kidney epithelial cells expressing the tau R domain fused with fluorescent proteins as reporter cells, we observed aggregates in the nuclear envelope (NE) only in the cells treated with LLPS-state p-tau, which correlates with NE occurrences reported in Alzheimer's disease brain sections. These findings provide deeper insights into the impact of phosphorylation on tau aggregation through an intermediate condensation phase, offering novel perspectives on neurodegenerative disease mechanisms.
Collapse
Affiliation(s)
- Mohammadreza Allahyartorkaman
- Taiwan
International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
| | - Ting-Hsuan Chan
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Eric H.-L. Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
| | - See-Ting Ng
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
| | - Yi-An Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
| | - Jung-Kun Wen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
| | - Meng-Ru Ho
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
| | - Hsin-Yung Yen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
| | - Yung-Shu Kuan
- Institute
of Biochemical Sciences, National Taiwan
University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Min-Hao Kuo
- Department
of Biochemistry and Molecular Biology, Michigan
State University, 603 Wilson Road, Room 401, East Lansing, Michigan 48824, United States
| | - Rita P.-Y. Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
- Neuroscience
Program of Academia Sinica, Academia Sinica, No. 128, Sec. 2, Academia Road,
Nankang, Taipei 115, Taiwan
| |
Collapse
|
15
|
Monaco M, Torazza C, Fedele E, Grilli M. The Impact of the Exposome on Alzheimer's Disease: The Influence of Nutrition. Int J Mol Sci 2025; 26:3015. [PMID: 40243652 PMCID: PMC11988514 DOI: 10.3390/ijms26073015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, memory loss, and behavioural changes. While genetic predispositions and pathological processes have been the traditional focus, this review highlights the fundamental role of environmental factors, particularly nutrition, within the exposome framework in modulating the risk and progression of AD. The exposome, which includes the totality of environmental exposures in an individual's lifetime, provides a comprehensive approach to understanding the complex aetiology of AD. In this review, we explore the impact of dietary factors and cyclic nucleotide pathways (cAMP/cGMP) on AD, emphasizing the potential of dietary interventions as therapeutic strategies. We investigate key aspects of how nutrition affects the accumulation of β-amyloid, the aggregation of tau proteins, and neuroinflammation. We also examine the impact of specific nutrients on cognitive performance and the risk of AD. Additionally, we discuss the potential of nutraceuticals with anti-phosphodiesterase activity and the role of various animal models of AD (such as 5xFAD, 3xTg-AD, Tg2576, and APP/PS1 mice) in demonstrating the effects of dietary interventions on disease onset and progression.
Collapse
Affiliation(s)
- Martina Monaco
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Massimo Grilli
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
16
|
El Hajjar L, Boll E, Cantrelle FX, Bridot C, Landrieu I, Smet-Nocca C. Effect of PHF-1 hyperphosphorylation on the seeding activity of C-terminal Tau fragments. Sci Rep 2025; 15:9975. [PMID: 40121258 PMCID: PMC11929799 DOI: 10.1038/s41598-025-91867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Tau proteins as neurofibrillary tangles are one of the molecular hallmarks of Alzheimer's disease (AD) and play a central role in tauopathies, a group of age-related neurodegenerative disorders. The filament cores from diverse tauopathies share a common region of tau consisting of the R3-R4 microtubule-binding repeats and part of the C-terminal domain, but present a structural polymorphism. Unlike the fibril structure, the PTM signature of tau found in neuronal inclusions, more particularly hyperphosphorylation, is variable between individuals with the same tauopathy, giving rise to diverse strains with different seeding properties that could modulate the aggressiveness of tau pathology. Here, we investigate the conformation, function and seeding activity of two tau fragments and their GSK3β-phosphorylated variants. The R2Ct and R3Ct fragments encompass the aggregation-prone region of tau starting at the R2 and R3 repeats, respectively, and the full C-terminal domain including the PHF-1 epitope (S396, S400, S404), which undergoes a triple phosphorylation upon GSK3β activity. We found that the R3Ct fragment shows both a greater loss of function and pathological activity in seeding of aggregation than the R2Ct fragment which imposes a cross-seeding barrier. PHF-1 hyperphosphorylation induces a local conformational change with a propensity to adopt a β-sheet conformation in the region spanning residues 392-402, and exacerbates the seeding ability of fragments to induce aggregation by overcoming a cross-seeding barrier between tau variants.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Emmanuelle Boll
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France.
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France.
- Inserm U1167/Institut Pasteur de Lille, 1 rue Professeur Calmette, BP245, Lille, 59019, France.
| |
Collapse
|
17
|
Langer Horvat L, Španić Popovački E, Babić Leko M, Zubčić K, Mustapić M, Hof PR, Šimić G. Biochemical characterization of Tau protein changes and amyloid dynamics in a novel non-transgenic rat model of tauopathy. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02909-z. [PMID: 40095078 DOI: 10.1007/s00702-025-02909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
In this study, we further characterized a non-transgenic model of tauopathy by examining tau protein changes using ELISA and Western blot upon inoculation of human tau oligomers (TO) and human tau synthetic pre-formed fibrils (TF) into the medial entorhinal cortex of Wistar rats. Our analyses showed that inoculation with TO did not significantly alter the ratio of phosphorylated tau at AT8 epitopes (pSer202/pThr205) to total tau protein in the hippocampus and entorhinal cortex, but only resulted in a decrease of phosphorylation at AT100 epitopes (pThr212/pSer214). As we previously observed an increase in AT8 immunostaining in both regions, this suggests method-dependent conformational alterations. In contrast, eleven months after inoculation, TF caused significant AT8 and PHF-1 (pSer396/pSer404) epitope-specific changes in tau phosphorylation in the hippocampus, but not in the entorhinal cortex, reflecting a more advanced stage of Alzheimer's disease (AD)-like changes compared to TO. Importantly, amyloid plaques appeared as early as four months post-inoculation with TO, preceding significant phosphorylation changes of tau, thus indicating that amyloid probably facilitates early tau seeding and spreading. This was corroborated by the observed dynamic changes in Aβ1-42 levels in cerebrospinal fluid, with initial decreases followed by increases, similar to patterns seen in transgenic mouse models of AD and in AD patients. Altogether, these findings lead us to conclude that changes in tau protein induce amyloid changes and vice versa, which is actually what defines AD as a unique neurodegenerative disease.
Collapse
Affiliation(s)
- Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, 10000, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, 10000, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, 10000, Croatia
- Department of Medical Biology, University of Split Faculty of Science, Split, 21000, Croatia
| | - Klara Zubčić
- Department of Laboratory Diagnostics, Dubrava University Hospital, Zagreb, 10000, Croatia
| | - Maja Mustapić
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, 10000, Croatia.
| |
Collapse
|
18
|
Xiao L, Mei Z, Chen J, Zhao K, Zhang H, Sharma S, Liao A, Liu C. Targeted Degradation Technology Based on the Autophagy-Lysosomal Pathway: A Promising Strategy for Treating Preeclampsia. Am J Reprod Immunol 2025; 93:e70066. [PMID: 40047433 DOI: 10.1111/aji.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/09/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, targeted protein degradation (TPD) strategies leveraging the autophagy-lysosomal pathway (ALP) have transcended the limitations of conventional drug molecules, emerging as a highly promising approach for selectively eliminating disease-related proteins via the cell's intrinsic degradation machinery. These TPD methods, such as autophagosome-tethering compounds (ATTEC), autophagy-targeting chimera (AUTAC), AUTOphagy-TArgeting chimera (AUTOTAC), and chaperone-mediated autophagy (CMA) targeting chimera, exhibit efficacy in degrading misfolded protein aggregates associated with neurodegenerative disorders. Moreover, the excessive accumulation of misfolded proteins or protein complexes in the placenta has been identified as a significant contributor to preeclampsia (PE). Given the lack of effective treatments for PE, the application of autophagy-mediated TPD technology presents a novel therapeutic avenue. This review draws parallels between misfolded protein aggregates in neurodegenerative diseases and placenta-derived PE, integrating a substantial number of full-text studies. By harnessing TPD technologies grounded in the ALP, these autophagic degraders offer a pioneering approach for targeted therapy in PE by dismantling potential targets. Presently, there is limited exploration of ALP technology for identifying target proteins in the placenta. Nonetheless, we have proposed several potential target proteins, laying the groundwork for future therapeutic endeavors.
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilin Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Surendra Sharma
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Baldensperger T, Preissler M, Becker CFW. Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases. RSC Chem Biol 2025; 6:129-149. [PMID: 39722676 PMCID: PMC11667106 DOI: 10.1039/d4cb00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate. In some cases, such as cataract development and diabetes, clear links between nPTMs, aging, and disease progression have been established. In neurodegenerative diseases such as Alzheimer's and Parkinson's disease, a key question is whether accumulation of nPTMs is a cause or consequence of protein aggregation. This review focuses on major nPTMs found on proteins with central roles in neurodegenerative diseases such as α-synuclein, β-amyloid, and tau. We summarize current knowledge on the formation of these modifications and discuss their potential impact on disease onset and progression. Additionally, we examine what is known to date about how nPTMs impair cellular detoxification, repair, and degradation systems. Finally, we critically discuss the available methodologies to systematically investigate nPTMs at the molecular level and outline suitable approaches to study their effects on protein aggregation. We aim to foster more research into the role of nPTMs in neurodegeneration by adapting methodologies that have proven successful in studying enzymatic posttranslational modifications. Specifically, we advocate for site-specific incorporation of these modifications into target proteins using advanced chemical and molecular biology techniques.
Collapse
Affiliation(s)
- Tim Baldensperger
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Miriam Preissler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Währinger Str. 42 1090 Vienna Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
20
|
Pattanaik S, Prusty SK, Sahu PK. Exploring DPP IV inhibitors for Alzheimer's disease: Bridging diabetes and neurodegeneration. Brain Res 2025; 1848:149342. [PMID: 39566568 DOI: 10.1016/j.brainres.2024.149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by neurofibrillary tangles (NFTs), senile plaques from Aβ deposits, neuronal inflammation, oxidative stress, and impaired neuronal transmission involving acetylcholine and glutamate. Diabetes patients are at a higher risk of developing AD-like pathology due to shared pathological and molecular mechanisms, including insulin resistance, oxidative stress, formation of advanced glycation end products (AGEs), and overactive immune systems. Current treatments of AD typically address only one aspect of the disease, rather than treating it as a multifactorial process. Targeting cerebral glucose-insulin metabolism has emerged as a promising strategy for AD management. Numerous studies show positive correlations between anti-diabetic drugs and AD management. Among these, DPP IV inhibitors have demonstrated significant therapeutic benefits against AD in experimental settings. DPP IV inhibitors have been shown to significantly reduce Aβ oligomerization, phosphorylated tau (p-tau), oxidative stress, and inflammatory markers, presenting a potentially effective approach for targeting AD-like pathology. Although preclinical data are promising, clinical trials are needed to validate these findings and establish the safety and efficacy of DPP IV inhibitors as a therapeutic intervention for AD. This could represent a novel approach for addressing both the metabolic and neurodegenerative aspects of AD.
Collapse
Affiliation(s)
- Swagata Pattanaik
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Shakti Ketan Prusty
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Pratap Kumar Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
21
|
Capuano AW, Sarsani V, Tasaki S, Mehta RI, Li J, Ahima R, Arnold S, Bennett DA, Petyuk V, Liang L, Arvanitakis Z. Brain phosphoproteomic analysis identifies diabetes-related substrates in Alzheimer's disease pathology in older adults. Alzheimers Dement 2025; 21:e14460. [PMID: 39732516 PMCID: PMC11848201 DOI: 10.1002/alz.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION Type 2 diabetes increases the risk of Alzheimer's disease (AD) dementia. Insulin signaling dysfunction exacerbates tau protein phosphorylation, a hallmark of AD pathology. However, the comprehensive impact of diabetes on patterns of AD-related phosphoprotein in the human brain remains underexplored. METHODS We performed tandem mass tag-based phosphoproteome profiling in post mortem human brain prefrontal cortex samples from 191 deceased older adults with and without diabetes and pathologic AD. RESULTS Among 7874 quantified phosphosites, microtubule-associated protein tau (MAPT) phosphorylated at T529 and T534 (isoform 8 T212 and T217) were more abundant in AD and showed differential associations with diabetes. Network analysis of co-abundance patterns uncovered synergistic interactions between AD and diabetes, with one module exhibiting higher MAPT phosphorylation (15 MAPT phosphosites) and another displaying lower MAP1B phosphorylation (22 MAP1B phosphosites). DISCUSSION This study offers phosphoproteomics insights into AD in diabetes, shedding light on mechanisms that can inform the development of therapeutics for dementia. HIGHLIGHTS The risk of Alzheimer's disease (AD) dementia is increased among older adults living with diabetes. The patterns of AD-related phosphoprotein in the human brain in older adults are differential among older adults living with diabetes. Microtubule-associated protein tau phosphorylated at T529 and T534 (isoform 8 T212 and T217) showed differential associations with diabetes. Phosphosite co-abundance networks of synergistic interactions between AD and diabetes were identified.
Collapse
Affiliation(s)
- Ana W. Capuano
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Vishal Sarsani
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Shinya Tasaki
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Rupal I. Mehta
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Jun Li
- Division of Preventive MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Rexford Ahima
- Division of EndocrinologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Steven Arnold
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Vladislav Petyuk
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Liming Liang
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of BiostatisticsHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
22
|
Fan X, Okada K, Lin H, Ori-McKenney KM, McKenney RJ. A pathological phosphorylation pattern enhances tau cooperativity on microtubules and facilitates tau filament assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635117. [PMID: 39974960 PMCID: PMC11838361 DOI: 10.1101/2025.01.29.635117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Phosphorylation plays a crucial role in both normal and disease processes involving the microtubule-associated protein tau. Physiologically, phosphorylation regulates tau's subcellular localization within neurons and is involved in fetal development and animal hibernation. However, abnormal phosphorylation of tau is linked to the formation of neurofibrillary tangles (NFTs) in various human tauopathies. Interestingly, the patterns of tau phosphorylation are similar in both normal and abnormal processes, leaving unclear whether phosphorylated tau retains its functional role in normal processes. The relationship between tau phosphorylation and NFT assembly in tauopathies is also still debated. To address these questions, we investigated the effects of tau phosphorylation on microtubule binding, cooperative protein envelope formation, and NFT filament assembly relevant to tauopathies. Consistent with previous results, our findings show that tau phosphorylation decreases tau's overall affinity for microtubules, but we reveal that phosphorylation more dramatically impacts the cooperativity between tau molecules during tau envelope formation along microtubules. Additionally, we observed that the specific pattern of phosphorylation, rather than overall phosphorylation level, strongly impacts the assembly of tau filaments in vitro . Our results reveal new insights into how tau phosphorylation impacts tau's physiological roles on microtubules and its pathoconversion into NFTs.
Collapse
|
23
|
Guo L, Chen Y, Sun Z, Zhao J, Yao J, Zhang Z, Lei M, Zhai Y, Xu J, Jiang Y, Wang Y, Xue H, Liu M, Liu F. Causal relationships between hippocampal volumetric traits and the risk of Alzheimer's disease: a Mendelian randomization study. Brain Commun 2025; 7:fcaf030. [PMID: 39898324 PMCID: PMC11783321 DOI: 10.1093/braincomms/fcaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Alzheimer's disease, a common and progressive neurodegenerative disorder, is associated with alterations in hippocampal volume, as revealed by neuroimaging research. However, the causal links between the volumes of the hippocampus and its subfield structures with Alzheimer's disease remain unknown. A genetic correlation analysis using linkage disequilibrium score regression was conducted to identify hippocampal volumetric traits linked to Alzheimer's disease. Following this, to examine the causal links between Alzheimer's disease and hippocampal volumetric traits, we applied a two-sample Mendelian randomization approach, utilizing a bidirectional framework. Seven hippocampal volumetric traits were found as genetically correlated with Alzheimer's disease in the genetic correlation analysis and were then included in the Mendelian randomization analyses. Inverse variance weighted Mendelian randomization analyses revealed that increased volumes in the left whole hippocampus, left hippocampal body, right presubiculum head and right cornu ammonis 1 head were causally related to higher risks of Alzheimer's disease. Conversely, a higher risk of Alzheimer's disease was causally associated with decreased volumes of the left hippocampal body and left whole hippocampus. These results were validated through other Mendelian randomization approaches and sensitivity analysis. Our findings uncover bidirectional causal relationships between Alzheimer's disease and hippocampal volumetric traits, suggesting not only the potential significance of these traits in predicting Alzheimer's disease but also the reciprocal influence of Alzheimer's disease on hippocampal volumes.
Collapse
Affiliation(s)
- Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Jiaxuan Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Jia Yao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Yurong Jiang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Ying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| |
Collapse
|
24
|
Silva CFM, Guerrinha APDDMS, Carvalho S, Pinto DCGA, Silva AMS. 1,3,5-Triazine: A Promising Molecular Scaffold for Novel Agents for the Treatment of Alzheimer's Disease. Int J Mol Sci 2025; 26:882. [PMID: 39940653 PMCID: PMC11817377 DOI: 10.3390/ijms26030882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Currently, Alzheimer's disease (AD) is one of the most frequent forms of dementia. From a molecular perspective, the molecular characteristics that better define this disease consist of abnormal protein deposits between neuronal cells, namely senile plaques (SPs) and neurofibrillary tangles (NFTs), consisting of protein aggregates of amyloid-β and hyperphosphorylated tau protein, respectively. In addition to these protein aggregates, a third molecular hallmark of AD consists of depleted neurotransmitter acetylcholine levels. To date, the treatments developed for this disease are mostly focused on the use of AChE inhibitors, presenting only a symptomatic approach against the disease instead of a cure. Triazines are nitrogen-containing heterocyclic compounds that, throughout the years, have attracted a lot of curiosity from medicinal chemists for presenting numerous biological properties and being widely present in nature. In particular, this class of compounds has been associated with inhibiting several biological targets, emerging as a promising class for developing new pharmacological agents. However, there is still a scarcity of knowledge regarding the potential of this type of compound against any of the hallmarks of AD. For this reason, this paper intends to fulfill this absence by highlighting the potential of a subclass of triazines, 1,3,5-triazines (sym-triazines), as promising molecules for developing novel AD treatments. Thus, an in-depth analysis of 1,3,5-triazine derivatives is performed regarding its inhibitory activity against AChE (cholinergic hypothesis) and its capability to inhibit amyloid-β formation and aggregation (amyloid hypothesis). Through this analysis, it is possible to indicate some structural features optimal for each described activity, a compilation that we believe to be essential for the scientific community in this never-ending pursuit.
Collapse
Affiliation(s)
| | | | | | | | - Artur M. S. Silva
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.F.M.S.); (A.P.D.d.M.S.G.); (S.C.); (D.C.G.A.P.)
| |
Collapse
|
25
|
Granov R, Vedad S, Wang SH, Durham A, Shah D, Pasinetti GM. The Role of the Neural Exposome as a Novel Strategy to Identify and Mitigate Health Inequities in Alzheimer's Disease and Related Dementias. Mol Neurobiol 2025; 62:1205-1224. [PMID: 38967905 PMCID: PMC11711138 DOI: 10.1007/s12035-024-04339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
With the continuous increase of the elderly population, there is an urgency to understand and develop relevant treatments for Alzheimer's disease and related dementias (ADRD). In tandem with this, the prevalence of health inequities continues to rise as disadvantaged communities fail to be included in mainstream research. The neural exposome poses as a relevant mechanistic approach and tool for investigating ADRD onset, progression, and pathology as it accounts for several different factors: exogenous, endogenous, and behavioral. Consequently, through the neural exposome, health inequities can be addressed in ADRD research. In this paper, we address how the neural exposome relates to ADRD by contributing to the discourse through defining how the neural exposome can be developed as a tool in accordance with machine learning. Through this, machine learning can allow for developing a greater insight into the application of transferring and making sense of experimental mouse models exposed to health inequities and potentially relate it to humans. The overall goal moving beyond this paper is to define a multitude of potential factors that can increase the risk of ADRD onset and integrate them to create an interdisciplinary approach to the study of ADRD and subsequently translate the findings to clinical research.
Collapse
Affiliation(s)
- Ravid Granov
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Skyler Vedad
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Shu-Han Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA.
- Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
26
|
Anton PE, Maphis NM, Linsenbardt DN, Coleman LG. Excessive Alcohol Use as a Risk Factor for Alzheimer's Disease: Epidemiological and Preclinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:211-242. [PMID: 40128481 DOI: 10.1007/978-3-031-81908-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Alcohol use has recently emerged as a modifiable risk factor for Alzheimer's disease (AD). However, the neurobiological mechanisms by which alcohol interacts with AD pathogenesis remain poorly understood. In this chapter, we review the epidemiological and preclinical support for the interaction between alcohol use and AD. We hypothesize that alcohol use increases the rate of accumulation of specific AD-relevant pathologies during the prodromal phase and exacerbates dementia onset and progression. We find that alcohol consumption rates are increasing in adolescence, middle age, and aging populations. In tandem, rates of AD are also on the rise, potentially as a result of this increased alcohol use throughout the lifespan. We then review the biological processes in common between alcohol use disorder and AD as a means to uncover potential mechanisms by which they interact; these include oxidative stress, neuroimmune function, metabolism, pathogenic tauopathy development and spread, and neuronal excitatory/inhibitory balance (EIB). Finally, we provide some forward-thinking suggestions we believe this field should consider. In particular, the inclusion of alcohol use assessments in longitudinal studies of AD and more preclinical studies on alcohol's impacts using better animal models of late-onset Alzheimer's disease (LOAD).
Collapse
Affiliation(s)
- Paige E Anton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole M Maphis
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - David N Linsenbardt
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Mohd Murshid N, Mohd Sahardi NFN, Makpol S. Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies. Int J Mol Sci 2024; 26:241. [PMID: 39796097 PMCID: PMC11719782 DOI: 10.3390/ijms26010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature. This review aims to study the development of an advanced AD model that accurately replicates key AD pathophysiological aspects using cutting-edge biomaterials and microenvironment design. Incorporating biomolecular elements like Tau proteins and beta-amyloid (Aβ) plaques improve the accuracy of illustrating disease mechanisms. The expected results involve creating a solid foundation for high-throughput screening with enhanced scalability, translational significance, and the possibility of speeding up drug discovery. Thus, this review fills the gaps in AD modelling and shows potential for creating precise and efficient drug treatments for AD.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Fatin Nabilah Mohd Sahardi
- Secretariat of Research and Innovation, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
28
|
Nedelkov D, Tsokolas ZE, Rodrigues MS, Sible I, Han SD, Kerman BE, Renteln M, Mack WJ, Pascoal TA, Yassine HN. Increased cerebrospinal fluid and plasma apoE glycosylation is associated with reduced levels of Alzheimer's disease biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629619. [PMID: 39763949 PMCID: PMC11702616 DOI: 10.1101/2024.12.20.629619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
The apolipoprotein E ( APOE ) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE is glycosylated with an O-linked Core-1 sialylated glycan at several sites, yet the impact and function of this glycosylation on AD biomarkers remains unclear. We examined apoE glycosylation in a cohort of cerebrospinal fluid (CSF, n=181) and plasma (n= 178) samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) stratified into 4 groups: cognitively normal (CN), Mild Cognitive Impairment (MCI), progressors and non-progressors based on delayed word recall performance over 4 years. We observed decreasing glycosylation from apoE2 > apoE3 > apoE4 in CSF, and in plasma (apoE3 > apoE4). ApoE glycosylation was reduced in the MCI compared with CN groups, and in progressors compared to non-progressors. In CSF, higher apoE glycosylation associated cross-sectionally with lower total tau (t-tau), p-tau181, and with higher Aβ 1-42 . Similar associations of apoE glycosylation with higher Aβ 1-42 were observed in plasma. In CSF, greater apoE4 glycosylation was associated with lower t-tau and p-tau181. Over a 6-year period, higher baseline levels of CSF apoE glycosylation predicted lower rates of increase in CSF t-tau and p-tau181 and lower rates of decrease in CSF Aβ 1-42 . These results indicate strong associations of apoE glycosylation with biomarkers of AD pathology independent of apoE genotype, warranting a deeper understanding of the functional role of apoE glycosylation on AD tau pathology.
Collapse
|
29
|
Drehmer I, Santos-Terra J, Gottfried C, Deckmann I. mTOR signaling pathway as a pathophysiologic mechanism in preclinical models of autism spectrum disorder. Neuroscience 2024; 563:33-42. [PMID: 39481829 DOI: 10.1016/j.neuroscience.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent multifactorial disorder characterized by social deficits and stereotypies. Despite extensive research efforts, the etiology of ASD remains poorly understood. However, studies using preclinical models have identified the mechanistic target of rapamycin kinase (mTOR) signaling pathway as a key player in ASD-related features. This review examines genetic and environmental models of ASD, focusing on their association with the mTOR pathway. We organize findings on alterations within this pathway, providing insights about the potential mechanisms involved in the onset and maintenance of ASD symptoms. Our analysis highlights the central role of mTOR hyperactivation in disrupting autophagic processes, neural organization, and neurotransmitter pathways, which collectively contribute to ASD phenotypes. The review also discusses the therapeutic potential of mTOR pathway inhibitors, such as rapamycin, in mitigating ASD characteristics. These insights underscore the importance of the mTOR pathway as a target for future research and therapeutic intervention in ASD. This review innovates by bringing the convergence of disrupted mTOR signaling in preclinical models and clinical data associated with ASD.
Collapse
Affiliation(s)
- Isabela Drehmer
- Translational Research Group on Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Brazil; Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, Brazil; Psychiatry Molecular Laboratory, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Translational Research Group on Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Brazil; Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, Brazil; Psychiatry Molecular Laboratory, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carmem Gottfried
- Translational Research Group on Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Brazil; Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, Brazil; Psychiatry Molecular Laboratory, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Iohanna Deckmann
- Translational Research Group on Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Brazil; Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, Brazil; Psychiatry Molecular Laboratory, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
30
|
Huang LY, Ge YJ, Fu Y, Zhao YL, Ou YN, Zhang Y, Ma LZ, Chen SD, Guo ZX, Feng JF, Cheng W, Tan L, Yu JT. Identifying modifiable factors and their joint effect on brain health: an exposome-wide association study. GeroScience 2024; 46:6257-6268. [PMID: 38822946 PMCID: PMC11493923 DOI: 10.1007/s11357-024-01224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Considerable uncertainty remains regarding the associations of multiple factors with brain health. We aimed to conduct an exposome-wide association study on neurodegenerative disease and neuropsychiatry disorders using data of participants from the UK Biobank. Multivariable Cox regression models with the least absolute shrinkage and selection operator technique as well as principal component analyses were used to evaluate the exposures in relation to common disorders of central nervous system (CNS). Restricted cubic splines were conducted to explore potential nonlinear correlations. Then, weighted standardized scores were generated based on the coefficients to calculate the joint effects of risk factors. We also estimated the potential impact of eliminating the unfavorable profiles of risk domains on CNS disorders using population attributable fraction (PAF). Finally, sensitivity analyses were performed to reduce the risk of reverse causality. The current study discovered the significantly associated exposures fell into six primary exposome categories. The joint effects of identified risk factors demonstrated higher risks for common disorders of CNS (HR = 1.278 ~ 3.743, p < 2e-16). The PAF varied by exposome categories, with lifestyle and medical history contributing to majority of disease cases. In total, we estimated that up to 3.7 ~ 64.1% of disease cases could be prevented.This study yielded modifiable variables of different categories and assessed their joint effects on common disorders of CNS. Targeting the identified exposures might help formulate effective strategies for maintaining brain health.
Collapse
Affiliation(s)
- Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi-Jun Ge
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Xin Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
32
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
33
|
Popescu C, Munteanu C, Anghelescu A, Ciobanu V, Spînu A, Andone I, Mandu M, Bistriceanu R, Băilă M, Postoiu RL, Vlădulescu-Trandafir AI, Giuvara S, Malaelea AD, Onose G. Novelties on Neuroinflammation in Alzheimer's Disease-Focus on Gut and Oral Microbiota Involvement. Int J Mol Sci 2024; 25:11272. [PMID: 39457054 PMCID: PMC11508522 DOI: 10.3390/ijms252011272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recent studies underscore the role of gut and oral microbiota in influencing neuroinflammation through the microbiota-gut-brain axis, including in Alzheimer's disease (AD). This review aims to provide a comprehensive synthesis of recent findings on the involvement of gut and oral microbiota in the neuroinflammatory processes associated with AD, emphasizing novel insights and therapeutic implications. This review reveals that dysbiosis in AD patients' gut and oral microbiota is linked to heightened peripheral and central inflammatory responses. Specific bacterial taxa, such as Bacteroides and Firmicutes in the gut, as well as Porphyromonas gingivalis in the oral cavity, are notably altered in AD, leading to significant changes in microglial activation and cytokine production. Gut microbiota alterations are associated with increased intestinal permeability, facilitating the translocation of endotoxins like lipopolysaccharides (LPS) into the bloodstream and exacerbating neuroinflammation by activating the brain's toll-like receptor 4 (TLR4) pathways. Furthermore, microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and amyloid peptides, can cross the blood-brain barrier and modulate neuroinflammatory responses. While microbial amyloids may contribute to amyloid-beta aggregation in the brain, certain SCFAs like butyrate exhibit anti-inflammatory properties, suggesting a potential therapeutic avenue to mitigate neuroinflammation. This review not only highlights the critical role of microbiota in AD pathology but also offers a ray of hope by suggesting that modulating gut and oral microbiota could represent a novel therapeutic strategy for reducing neuroinflammation and slowing disease progression.
Collapse
Affiliation(s)
- Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Vlad Ciobanu
- Department of Computer Science and Engineering, Faculty for Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihaela Mandu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Roxana Bistriceanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sebastian Giuvara
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Alin-Daniel Malaelea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| |
Collapse
|
34
|
Zhang S, Crossley CA, Yuan Q. Neuronal Vulnerability of the Entorhinal Cortex to Tau Pathology in Alzheimer's Disease. Br J Biomed Sci 2024; 81:13169. [PMID: 39435008 PMCID: PMC11491395 DOI: 10.3389/bjbs.2024.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
This review delves into the entorhinal cortex (EC) as a central player in the pathogenesis of Alzheimer's Disease (AD), emphasizing its role in the accumulation and propagation of tau pathology. It elucidates the multifaceted functions of the EC, encompassing memory formation, spatial navigation, and olfactory processing, while exploring how disruptions in these processes contribute to cognitive decline in AD. The review discusses the intricate interplay between tau pathology and EC vulnerability, highlighting how alterations in neuronal firing patterns and synaptic function within the EC exacerbate cognitive impairments. Furthermore, it elucidates how specific neuronal subtypes within the EC exhibit differential susceptibility to tau-induced damage, contributing to disease progression. Early detection methods, such as imaging techniques and assessments of EC blood flow, are examined as potential tools for identifying tau pathology in the preclinical stages of AD. These approaches offer promise for improving diagnostic accuracy and enabling timely intervention. Therapeutic strategies targeting tau pathology within the EC are explored, including the clearance of pathological tau aggregates and the inhibition of tau aggregation processes. By understanding the molecular and cellular mechanisms underlying EC vulnerability, researchers can develop more targeted and effective interventions to slow disease progression. The review underscores the importance of reliable biomarkers to assess disease progression and therapeutic efficacy in clinical trials targeting the EC. Ultimately, it aims to contribute to the development of more effective management strategies for AD, emphasizing the translation of research findings into clinical practice to address the growing societal burden of the disease.
Collapse
Affiliation(s)
| | - Chelsea Ann Crossley
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | |
Collapse
|
35
|
Huang L, Fu Y, Zhang Y, Hu H, Ma L, Ge Y, Zhao Y, Zhang Y, Chen S, Feng J, Cheng W, Tan L, Yu J. Identifying modifiable factors associated with neuroimaging markers of brain health. CNS Neurosci Ther 2024; 30:e70057. [PMID: 39404063 PMCID: PMC11474882 DOI: 10.1111/cns.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Brain structural alterations begin long before the presentation of brain disorders; therefore, we aimed to systematically investigate a wide range of influencing factors on neuroimaging markers of brain health. METHODS Utilizing data from 30,651 participants from the UK Biobank, we explored associations between 218 modifiable factors and neuroimaging markers of brain health. We conducted an exposome-wide association study using the least absolute shrinkage and selection operator (LASSO) technique. Restricted cubic splines (RCS) were further employed to estimate potential nonlinear correlations. Weighted standardized scores for neuroimaging markers were computed based on the estimates for individual factors. Finally, stratum-specific analyses were performed to examine differences in factors affecting brain health at different ages. RESULTS The identified factors related to neuroimaging markers of brain health fell into six domains, including systematic diseases, lifestyle factors, personality traits, social support, anthropometric indicators, and biochemical markers. The explained variance percentage of neuroimaging markers by weighted standardized scores ranged from 0.5% to 7%. Notably, associations between systematic diseases and neuroimaging markers were stronger in older individuals than in younger ones. CONCLUSION This study identified a series of factors related to neuroimaging markers of brain health. Targeting the identified factors might help in formulating effective strategies for maintaining brain health.
Collapse
Affiliation(s)
- Liang‐Yu Huang
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yan Fu
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yi Zhang
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - He‐Ying Hu
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Ling‐Zhi Ma
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Yi‐Jun Ge
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yong‐Li Zhao
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Ya‐Ru Zhang
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Wei Cheng
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
36
|
Jha AB, Chaube UJ, Jha AB. Ellagic acid improves the symptoms of early-onset Alzheimer's disease: Behavioral and physiological correlates. Heliyon 2024; 10:e37372. [PMID: 39309887 PMCID: PMC11416286 DOI: 10.1016/j.heliyon.2024.e37372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Oryza sativa is a globally recognized staple food, rich in essential phyto-phenolic compounds such as γ-Oryzanol (OZ), Ferulic acid (FA), and Ellagic acid (EA). These phytochemicals are known for their potential to beneficially modulate molecular biochemistry. The present investigation aimed to evaluate the neuroprotective and cognitive enhancement effects of Oryza sativa phyto-phenolics in a model of early-onset Alzheimer's disease (EOAD) induced by Aβ (1-42) in animals. In-silico studies suggested that FA, OZ, and EA have target specificity for Aβ, with EA being further selected based on its potent in-vitro Aβ anti-aggregatory effects for exploring neurodegenerative conditions. The in-vivo experiments demonstrated that EA exerts therapeutic effects in Aβ-induced EOAD, modulating both biochemical and behavioral outcomes. EA treatment at two dose levels, EA70 and EA140 (70 μM and 140 μM, respectively, administered i.c.v.), significantly counteracted Aβ aggregation and modulated the Ca2⁺/Calpain/GSK-3β/CDK5 signaling pathways, exhibiting anti-tauopathy effects. Additionally, EA was shown to exert anti-inflammatory effects by preventing astroglial activation, modulating FAIM-L expression, and protecting against TNF-α-induced apoptotic signals. Moreover, the neuromodulatory effects of EA were attributed to the regulation of CREB levels, Dnm-1 expression, and synaptophysin levels, thereby enhancing LTP and synaptic plasticity. EA also induced beneficial cytological and behavioral changes, improving both long-term and short-term spatial memory as well as associative learning behavior in the animal model, which underscores its cognitive enhancement properties.
Collapse
Affiliation(s)
- Abhishek B. Jha
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Udit J. Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | | |
Collapse
|
37
|
Myint SLL, Rodsiri R, Benya-Aphikul H, Rojanaratha T, Ritthidej G, Islamie R. Nasal Delivery of Asiatic Acid Ameliorates Scopolamine-Induced Memory Dysfunction in Mice. Adv Pharmacol Pharm Sci 2024; 2024:9941034. [PMID: 39286638 PMCID: PMC11405110 DOI: 10.1155/2024/9941034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Asiatic acid (AA) has previously shown its neuroprotective effects, but low oral bioavailability limits its penetration into the brain. This study aimed to investigate the effect of intranasal AA administration in mice with memory dysfunction induced by scopolamine. Mice received either intranasal AA (INAA), oral AA (POAA3 or POAA30), or donepezil, followed by scopolamine for 10 days. Morris water maze (MWM) was performed on days 0-5, 30 min after treatment. Locomotor activity was conducted on day 6 followed by brain collection. In MWM, INAA treatment had significantly reduced escape latency on days 2-4, while POAA3 decreased escape latency on day 3 and POAA30 and donepezil decreased escape latency on day 4. INAA inhibited acetylcholinesterase activity, increased catalase protein expression, and decreased malondialdehyde levels in the brain tissue. Therefore, intranasal administration of AA produced a rapid onset in the protection of learning and memory deficits induced by scopolamine through acetylcholinesterase inhibition and antioxidant effect.
Collapse
Affiliation(s)
- Su Lwin Lwin Myint
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Hattaya Benya-Aphikul
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Tissana Rojanaratha
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Queen Saovabha Memorial Institute The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ridho Islamie
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical and Community Pharmacy Faculty of Pharmacy University of Surabaya, Surabaya 60293, Indonesia
| |
Collapse
|
38
|
Dey A, Ghosh S, Rajendran RL, Bhuniya T, Das P, Bhattacharjee B, Das S, Mahajan AA, Samant A, Krishnan A, Ahn BC, Gangadaran P. Alzheimer's Disease Pathology and Assistive Nanotheranostic Approaches for Its Therapeutic Interventions. Int J Mol Sci 2024; 25:9690. [PMID: 39273645 PMCID: PMC11395116 DOI: 10.3390/ijms25179690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood-brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns.
Collapse
Affiliation(s)
- Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India;
| | - Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Tiyasa Bhuniya
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India;
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India;
| | - Bidyabati Bhattacharjee
- Department of Life Sciences, Jain (Deemed-to-be) University, Bangalore 560078, Karnataka, India;
| | - Sagnik Das
- Department of Microbiology, St Xavier’s College (Autonomous), Kolkata 700016, West Bengal, India;
| | - Atharva Anand Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai 410210, Maharashtra, India
| | - Anushka Samant
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Rourkela 769008, Orissa, India;
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa;
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
39
|
Pourahmad R, saleki K, Zare Gholinejad M, Aram C, Soltani Farsani A, Banazadeh M, Tafakhori A. Exploring the effect of gut microbiome on Alzheimer's disease. Biochem Biophys Rep 2024; 39:101776. [PMID: 39099604 PMCID: PMC11296257 DOI: 10.1016/j.bbrep.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most widespread and irreversible form of dementia and accounts for more than half of dementia cases. The most significant risk factors for AD are aging-related exacerbations, degradation of anatomical pathways, environmental variables and mitochondrial dysfunction. Finding a decisive therapeutic solution is a major current issue. Nuanced interactions between major neuropathological mechanisms in AD in patients and microbiome have recently gained rising attention. The presence of bacterial amyloid in the gut triggers the immune system, resulting in increased immune feedbacks and endogenous neuronal amyloid within the CNS. Also, early clinical research revealed that changing the microbiome with beneficial bacteria or probiotics could affect brain function in AD. New approaches focus on the possible neuroprotective action of disease-modifying medications in AD. In the present review, we discuss the impact of the gut microbiota on the brain and review emerging research that suggests a disruption in the microbiota-brain axis can affect AD by mediating neuroinflammation. Such novel methods could help the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Hossen F, Sun GY, Lee JC. Oligomeric Tau-induced oxidative damage and functional alterations in cerebral endothelial cells: Role of RhoA/ROCK signaling pathway. Free Radic Biol Med 2024; 221:261-272. [PMID: 38815773 PMCID: PMC11184584 DOI: 10.1016/j.freeradbiomed.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Despite of yet unknown mechanism, microvascular deposition of oligomeric Tau (oTau) has been implicated in alteration of the Blood-Brain Barrier (BBB) function in Alzheimer's disease (AD) brains. In this study, we employed an in vitro BBB model using primary mouse cerebral endothelial cells (CECs) to investigate the mechanism underlying the effects of oTau on BBB function. We found that exposing CECs to oTau induced oxidative stress through NADPH oxidase, increased oxidative damage to proteins, decreased proteasome activity, and expressions of tight junction (TJ) proteins including occludin, zonula occludens-1 (ZO-1) and claudin-5. These effects were suppressed by the pretreatment with Fasudil, a RhoA/ROCK signaling inhibitor. Consistent with the biochemical alterations, we found that exposing the basolateral side of CECs to oTau in the BBB model disrupted the integrity of the BBB, as indicated by an increase in FITC-dextran transport across the model, and a decrease in trans endothelial electrical resistance (TEER). oTau also increased the transmigration of peripheral blood mononuclear cells (PBMCs) in the BBB model. These functional alterations in the BBB induced by oTau were also suppressed by Fasudil. Taken together, our findings suggest that targeting the RhoA/ROCK pathway can be a potential therapeutic strategy to maintain BBB function in AD.
Collapse
Affiliation(s)
- Faruk Hossen
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - James C Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
41
|
Canet G, Gratuze M, Zussy C, Bouali ML, Diaz SD, Rocaboy E, Laliberté F, El Khoury NB, Tremblay C, Morin F, Calon F, Hébert SS, Julien C, Planel E. Age-dependent impact of streptozotocin on metabolic endpoints and Alzheimer's disease pathologies in 3xTg-AD mice. Neurobiol Dis 2024; 198:106526. [PMID: 38734152 DOI: 10.1016/j.nbd.2024.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease with a complex origin, thought to involve a combination of genetic, biological and environmental factors. Insulin dysfunction has emerged as a potential factor contributing to AD pathogenesis, particularly in individuals with diabetes, and among those with insulin deficiency or undergoing insulin therapy. The intraperitoneal administration of streptozotocin (STZ) is widely used in rodent models to explore the impact of insulin deficiency on AD pathology, although prior research predominantly focused on young animals, with no comparative analysis across different age groups. Our study aimed to fill this gap by analyzing the impact of insulin dysfunction in 7 and 23 months 3xTg-AD mice, that exhibit both amyloid and tau pathologies. Our objective was to elucidate the age-specific consequences of insulin deficiency on AD pathology. STZ administration led to insulin deficiency in the younger mice, resulting in an increase in cortical amyloid-β (Aβ) and tau aggregation, while tau phosphorylation was not significantly affected. Conversely, older mice displayed an unexpected resilience to the peripheral metabolic impact of STZ, while exhibiting an increase in both tau phosphorylation and aggregation without significantly affecting amyloid pathology. These changes were paralleled with alterations in signaling pathways involving tau kinases and phosphatases. Several markers of blood-brain barrier (BBB) integrity declined with age in 3xTg-AD mice, which might have facilitated a direct neurotoxic effect of STZ in older mice. Overall, our research confirms the influence of insulin signaling dysfunction on AD pathology, but also advises careful interpretation of data related to STZ-induced effects in older animals.
Collapse
Affiliation(s)
- Geoffrey Canet
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Maud Gratuze
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Institute of Neurophysiopathology (INP), University of Aix-Marseille, CNRS UMR 7051, 13385 Marseille, France.
| | - Charleine Zussy
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Mohamed Lala Bouali
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada.
| | - Sofia Diego Diaz
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada.
| | - Emma Rocaboy
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada.
| | - Francis Laliberté
- Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada
| | - Noura B El Khoury
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; University of Balamand, Faculty of Arts and Sciences, Departement of Psychology, Tueini Building Kalhat, Al-Kurah, P.O. Box 100, Tripoli, Lebanon.
| | - Cyntia Tremblay
- Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Françoise Morin
- Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Frédéric Calon
- Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada; Laval University, Faculty of Pharmacy, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada.
| | - Sébastien S Hébert
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| | - Carl Julien
- Research Center in Animal Sciences of Deschambault, Québec, QC G0A 1S0, Canada; Laval University, Faculty of Agricultural and Food Sciences, Québec, QC G1V 0A6, Canada.
| | - Emmanuel Planel
- Laval University, Faculty of Medicine, Neurosciences and Psychiatry department, Québec, QC G1V 0A6, Canada; Neurosciences axis, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
42
|
Kim DY, Kim SM, Han IO. Chronic rapid eye movement sleep deprivation aggravates the pathogenesis of Alzheimer's disease by decreasing brain O-GlcNAc cycling in mice. J Neuroinflammation 2024; 21:180. [PMID: 39044290 PMCID: PMC11264383 DOI: 10.1186/s12974-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aβ) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3β and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
43
|
Amelimojarad M, Amelimojarad M, Cui X. The emerging role of brain neuroinflammatory responses in Alzheimer's disease. Front Aging Neurosci 2024; 16:1391517. [PMID: 39021707 PMCID: PMC11253199 DOI: 10.3389/fnagi.2024.1391517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
As the most common cause of dementia, Alzheimer's disease (AD) is characterized by neurodegeneration and synaptic loss with an increasing prevalence in the elderly. Increased inflammatory responses triggers brain cells to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in this paper, we discuss the current understanding of how inflammation affects brain activity to induce AD pathology, the inflammatory biomarkers and possible therapies that combat inflammation for AD.
Collapse
Affiliation(s)
| | | | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Abdul-Rahman T, Awuah WA, Mikhailova T, Kalmanovich J, Mehta A, Ng JC, Coghlan MA, Zivcevska M, Tedeschi AJ, de Oliveira EC, Kumar A, Cantu-Herrera E, Lyndin M, Sikora K, Alexiou A, Bilgrami AL, Al-Ghamdi KM, Perveen A, Papadakis M, Ashraf GM. Antioxidant, anti-inflammatory and epigenetic potential of curcumin in Alzheimer's disease. Biofactors 2024; 50:693-708. [PMID: 38226733 DOI: 10.1002/biof.2039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | - Wireko Andrew Awuah
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | | | - Jacob Kalmanovich
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Jyi Cheng Ng
- Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Megan Ariel Coghlan
- University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | | | | | - Akinchita Kumar
- Lincoln Memorial University-DeBusk College of Osteopathic Medicine Harrogate, Harrogate, Tennessee, United States
| | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, Mexico
| | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Essen, Germany
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- AFNP Med, Wien, Austria
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, Uttar Pradesh, India
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah, United Arab Emirates
| |
Collapse
|
45
|
AmeliMojarad M, AmeliMojarad M. The neuroinflammatory role of microglia in Alzheimer's disease and their associated therapeutic targets. CNS Neurosci Ther 2024; 30:e14856. [PMID: 39031970 PMCID: PMC11259573 DOI: 10.1111/cns.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the main cause of dementia, is characterized by synaptic loss and neurodegeneration. Amyloid-β (Aβ) accumulation, hyperphosphorylation of tau protein, and neurofibrillary tangles (NFTs) in the brain are considered to be the initiating factors of AD. However, this hypothesis falls short of explaining many aspects of AD pathogenesis. Recently, there has been mounting evidence that neuroinflammation plays a key role in the pathophysiology of AD and causes neurodegeneration by over-activating microglia and releasing inflammatory mediators. METHODS PubMed, Web of Science, EMBASE, and MEDLINE were used for searching and summarizing all the recent publications related to inflammation and its association with Alzheimer's disease. RESULTS Our review shows how inflammatory dysregulation influences AD pathology as well as the roles of microglia in neuroinflammation, the possible microglia-associated therapeutic targets, top neuroinflammatory biomarkers, and anti-inflammatory drugs that combat inflammation. CONCLUSION In conclusion, microglial inflammatory reactions are important factors in AD pathogenesis and need to be discussed in more detail for promising therapeutic strategies.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| |
Collapse
|
46
|
Snyder SH, Vignaux PA, Ozalp MK, Gerlach J, Puhl AC, Lane TR, Corbett J, Urbina F, Ekins S. The Goldilocks paradigm: comparing classical machine learning, large language models, and few-shot learning for drug discovery applications. Commun Chem 2024; 7:134. [PMID: 38866916 PMCID: PMC11169557 DOI: 10.1038/s42004-024-01220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Recent advances in machine learning (ML) have led to newer model architectures including transformers (large language models, LLMs) showing state of the art results in text generation and image analysis as well as few-shot learning (FSLC) models which offer predictive power with extremely small datasets. These new architectures may offer promise, yet the 'no-free lunch' theorem suggests that no single model algorithm can outperform at all possible tasks. Here, we explore the capabilities of classical (SVR), FSLC, and transformer models (MolBART) over a range of dataset tasks and show a 'goldilocks zone' for each model type, in which dataset size and feature distribution (i.e. dataset "diversity") determines the optimal algorithm strategy. When datasets are small ( < 50 molecules), FSLC tend to outperform both classical ML and transformers. When datasets are small-to-medium sized (50-240 molecules) and diverse, transformers outperform both classical models and few-shot learning. Finally, when datasets are of larger and of sufficient size, classical models then perform the best, suggesting that the optimal model to choose likely depends on the dataset available, its size and diversity. These findings may help to answer the perennial question of which ML algorithm is to be used when faced with a new dataset.
Collapse
Affiliation(s)
- Scott H Snyder
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Patricia A Vignaux
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Mustafa Kemal Ozalp
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - John Corbett
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| |
Collapse
|
47
|
Yang Y, Qiu L. Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer's Disease. Brain Sci 2024; 14:590. [PMID: 38928590 PMCID: PMC11201671 DOI: 10.3390/brainsci14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As the population ages worldwide, Alzheimer's disease (AD), the most prevalent kind of neurodegenerative disorder among older people, has become a significant factor affecting quality of life, public health, and economies. However, the exact pathogenesis of Alzheimer's remains elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses of Alzheimer's disease include neuroimaging positron emission computed tomography, magnetic resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer's disease primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs, glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims to summarize existing research results on Alzheimer's disease pathogenesis, diagnosis, and drug therapy, with the objective of facilitating future research in this area.
Collapse
Affiliation(s)
- Yixuan Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lina Qiu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
48
|
Sindi G, Ismael S, Uddin R, Slepchenko KG, Colvin RA, Lee D. Endogenous tau released from human ReNCell VM cultures by neuronal activity is phosphorylated at multiple sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597022. [PMID: 38854111 PMCID: PMC11160771 DOI: 10.1101/2024.06.02.597022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100μM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3β, demonstrating that GSK3β-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.
Collapse
Affiliation(s)
| | - Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reaz Uddin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Kira G. Slepchenko
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Robert A. Colvin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
49
|
Cooper JM, Lathuiliere A, Su EJ, Song Y, Torrente D, Jo Y, Weinrich N, Sales JD, Migliorini M, Sisson TH, Lawrence DA, Hyman BT, Strickland DK. SORL1 is a receptor for tau that promotes tau seeding. J Biol Chem 2024; 300:107313. [PMID: 38657864 PMCID: PMC11145553 DOI: 10.1016/j.jbc.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.
Collapse
Affiliation(s)
- Joanna M Cooper
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aurelien Lathuiliere
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA; Department of Rehabilitation and Geriatrics, Memory Center, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Enming J Su
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yuyu Song
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel Torrente
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York, USA
| | - Youhwa Jo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nicholas Weinrich
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Diaz Sales
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary Migliorini
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas H Sisson
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| | - Dudley K Strickland
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
50
|
Zubčić K, Franić D, Pravica M, Hof PR, Šimić G, Boban M. Effects of heterologous human tau protein expression in yeast models of proteotoxic stress response. CNS Neurosci Ther 2024; 30:e14304. [PMID: 37341072 PMCID: PMC11163194 DOI: 10.1111/cns.14304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The primary histological characteristic of Alzheimer's disease is the presence of neurofibrillary tangles, which are large aggregates of tau protein. Aging is the primary risk factor for the development of Alzheimer's disease, however, the underlying causes of tau protein aggregation and toxicity are unclear. AIMS Here we investigated tau aggregation and toxicity under the conditions of compromised protein homeostasis. METHODS We used heterologous expression of human tau protein in the unicellular eukaryote yeast Saccharomyces cerevisiae with evolutionarily conserved protein quality control pathways and examined tau-dependent toxicity and aggregation using growth assays, fluorescence microscopy, and a split luciferase-based reporter NanoBiT. RESULTS Tau protein expressed in yeast under mild proteotoxic stress, or in mutants with impaired pathways for proteotoxic stress response, did not lead to synthetic toxicity or the formation of obvious aggregates. Chronologically old cells also did not develop observable tau aggregates. Our examination of tau oligomerization in living cells using NanoBiT reporter suggests that tau does not form significant levels of oligomers under basal conditions or under mild proteotoxic stress. CONCLUSION Together our data suggest that human tau protein does not represent a major burden to the protein quality control system in yeast cells.
Collapse
Affiliation(s)
- Klara Zubčić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Dina Franić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mihaela Pravica
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's DiseaseFriedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Goran Šimić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mirta Boban
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| |
Collapse
|