1
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
2
|
Yu C, Hsieh P, Chao S, Liao Y, Yu C, Chueh PJ, Peng C, Lee S. Carvacrol inhibits the progression of oral submucous fibrosis via downregulation of PVT1/miR-20a-5p-mediated pyroptosis. J Cell Mol Med 2024; 28:e70112. [PMID: 39320020 PMCID: PMC11423347 DOI: 10.1111/jcmm.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a precancerous condition in the oral cavity, which is closely related to the myofibroblast conversion of buccal mucosal fibroblasts (BMFs) after chronic consumption of areca nut. Emerging evidence suggests pyroptosis, a form of programmed cell death that is mediated by inflammasome, is implicated in persistent myofibroblast activation and fibrosis. Besides, numerous studies have demonstrated the effects of non-coding RNAs on pyroptosis and myofibroblast activities. Herein, we aimed to target key long non-coding RNA PVT1 with natural compound, carvacrol, to alleviate pyroptosis and myofibroblast activation in OSF. We first identified PVT1 was downregulated in the carvacrol-treated fBMFs and then demonstrated that myofibroblast features and expression of pyroptosis makers were all reduced in response to carvacrol treatment. Subsequently, we analysed the expression of PVT1 and found that PVT1 was aberrantly upregulated in OSF specimens and positively correlated with several fibrosis markers. After revealing the suppressive effects of carvacrol on myofibroblast characterisitcs and pyroptosis were mediated by repression of PVT1, we then explored the potential mechanisms. Our data showed that PVT1 may serve as a sponge of microRNA(miR)-20a to mitigate the myofibroblast activation and pyroptosis. Altogether, these findings indicated that the anti-fibrosis effects of carvacrol merit consideration and may be due to the attenuation of pyroptosis and myofibroblast activation by targeting the PVT1/miR-20a axis.
Collapse
Affiliation(s)
- Cheng‐Chia Yu
- Institute of Oral Sciences, Chung Shan Medical UniversityTaichungTaiwan
- Department of DentistryChung Shan Medical University HospitalTaichungTaiwan
- School of Dentistry, Chung Shan Medical UniversityTaichungTaiwan
- Oral Medicine Research CenterChung Shan Medical UniversityTaichungTaiwan
| | - Pei‐Ling Hsieh
- Department of Anatomy, School of MedicineChina Medical UniversityTaichungTaiwan
| | - Shih‐Chi Chao
- Institute of Oral Sciences, Chung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Yi‐Wen Liao
- Institute of Oral Sciences, Chung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Chuan‐Hang Yu
- Department of DentistryChung Shan Medical University HospitalTaichungTaiwan
- School of Dentistry, Chung Shan Medical UniversityTaichungTaiwan
- Oral Medicine Research CenterChung Shan Medical UniversityTaichungTaiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
- Department of Post‐Baccalaureate MedicineCollege of Medicine, National Chung Hsing UniversityTaichungTaiwan
| | - Chih‐Yu Peng
- Department of DentistryChung Shan Medical University HospitalTaichungTaiwan
- School of Dentistry, Chung Shan Medical UniversityTaichungTaiwan
- Oral Medicine Research CenterChung Shan Medical UniversityTaichungTaiwan
| | - Shiuan‐Shinn Lee
- Department of Public HealthCollege of health care and management, Chung Shan Medical UniversityTaichungTaiwan
| |
Collapse
|
3
|
Xu F, Yang F, Qiu Y, Wang C, Zou Q, Wang L, Li X, Jin M, Liu K, Zhang S, Zhang Y, Li B. The alleviative effect of C-phycocyanin peptides against TNBS-induced inflammatory bowel disease in zebrafish via the MAPK/Nrf2 signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109351. [PMID: 38171429 DOI: 10.1016/j.fsi.2023.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an incurable and highly complex chronic inflammatory bowel disease (IBD) affecting millions of people worldwide. C-phycocyanin (C-PC) has been reported to possess outstanding anti-inflammatory activities and can effectively inhibit various inflammation-related diseases. Whether C-PC-derived bioactive peptides can inhibit intestinal inflammation is worth research and consideration. METHODS The inhibition activities of three anti-neuroinflammatory peptides were evaluated using 2-4-6-trinitrobenzen sulfonic acid (TNBS)-induced zebrafish colitis model. Subsequently, the abilities of peptides to promote gastrointestinal motility were also examined. The changes in the intestinal pathological symptoms and ultrastructure of intestinal, reactive oxygen species (ROS) levels, and antioxidant enzymes were then determined after co-treatment with peptides and TNBS. Transcriptome analysis was used to investigate the underlying ameliorating TNBS-induced colitis effects molecular mechanisms of better activity peptide. Furthermore, quantitative reverse-transcription polymerase chain reaction and molecular docking techniques verified the mRNA sequencing results. RESULTS Three peptides, MHLWAAK, MAQAAEYYR and MDYYFEER, which significantly inhibit macrophage migration, were synthesized. The results showed that these peptides could effectively alleviate the inflammatory responses in the TNBS-induced zebrafish model of colitis. In addition, co-treatment with TNBS and C-PC peptides could decrease ROS production and increase antioxidant enzyme activities in zebrafish larvae. Moreover, MHLWAAK had the most significantly therapeutic effects on colitis in zebrafish. The transcriptome analysis suggests that the effect of MHLWAAK on TNBS-induced colitis may be associated with the modulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinase (MAPK) signaling pathway associated genes. In addition, molecular docking was conducted to study the prospective interaction between peptides and the key proteins that streamline the Nrf2 and MAPK signaling pathways. IL-6, JNK3, TNF-α, KEAP1-NRF2 complex and MAPK may be the core targets of MHLWAAK in treating colitis. CONCLUSION The results suggested that the three C-PC-derived peptides could ameliorate TNBS-induced colitis in zebrafish, and these peptides might be a promising therapeutic candidate for UC treatment.
Collapse
Affiliation(s)
- Fenghua Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266000, China
| | - Fei Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Yuezi Qiu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Qinglin Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China.
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
4
|
Cavalcante-Silva J, Koh TJ. Targeting the NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome to Improve Healing of Diabetic Wounds. Adv Wound Care (New Rochelle) 2023; 12:644-656. [PMID: 34841901 PMCID: PMC10701516 DOI: 10.1089/wound.2021.0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Significance: Chronic skin wounds are a significant health problem around the world, often leading to amputation and even death. Although persistent inflammation is a hallmark of these poorly healing wounds, few available therapies have been designed to target inflammation. In this review, we summarize available evidence of the role of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in impaired wound healing and describe strategies to inhibit the inflammasome to improve wound healing. Recent Advances: The NLRP3 inflammasome plays an important physiological role in skin wound healing, during which transient inflammasome activity contributes to both epidermal and dermal healing. In contrast, sustained activity of the NLRP3 inflammasome leads to impaired epidermal and dermal healing associated with diabetes. Of importance, preclinical studies have demonstrated that inhibiting the NLRP3 inflammasome-induced resolution of inflammation, increased granulation tissue formation and collagen deposition, and accelerated reepithelialization and wound closure. Critical Issues: NLRP3 inflammasome inhibitors have appealing potential for translation into therapies for chronic wounds. Although preclinical studies have shown promising results, there is a need for human/clinical studies to evaluate dosing formulations, potential therapeutic effects, dose-response relationships, and possible side effects. Future Directions: Among strategies to inhibit the NLRP3 inflammasome, glyburide, metformin, peroxisome proliferator-activated receptor agonists, and the dipeptidyl peptidase 4 inhibitor saxagliptin appear to be closest to clinical translation, as these drugs are already Food and Drug Administration approved for other indications. Future clinical studies are needed to develop topical formulations of these drugs, and to assess the safety and efficacy of these inhibitors, to improve healing of chronic wounds.
Collapse
Affiliation(s)
- Jacqueline Cavalcante-Silva
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Barbosa MDO, Wilairatana P, Leite GMDL, Delmondes GDA, da Silva LYS, Júnior SCA, Dantas LBR, Bezerra DS, de Beltrão ICSL, Dias DDQ, Ribeiro-Filho J, Felipe CFB, Coutinho HDM, de Menezes IRA, Kerntopf Mendonça MR. Plectranthus Species with Anti-Inflammatory and Analgesic Potential: A Systematic Review on Ethnobotanical and Pharmacological Findings. Molecules 2023; 28:5653. [PMID: 37570622 PMCID: PMC10419981 DOI: 10.3390/molecules28155653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The use of medicinal plants to treat inflammatory conditions and painful processes has attracted the attention of scientists and health professionals due to the evidence that natural products can promote significant therapeutic benefits associated with fewer adverse effects compared to conventional anti-inflammatory drugs. The genus Plectranthus is composed of various plants with pharmacological potential, which are used to treat various diseases in traditional communities worldwide. The present study systematically reviewed Plectranthus species with anti-inflammatory and analgesic potential. To this end, a systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. The search was conducted on the following databases: PubMed, ScienceDirect, SciVerse Scopus, and Web of Science. Different combinations of search terms were used to ensure more excellent article coverage. After the selection, a total of 45 articles were included in this review. This study identified twelve Plectranthus species indicated for the treatment of different inflammatory conditions, such as wounds, fever, bronchitis, abscess, asthma, hepatitis, labyrinthitis, tonsillitis, and uterine inflammation. The indications for pain conditions included headache, sore throat, heartburn, menstrual cramp, colic, toothache, stomachache, migraine, chest pain, abdominal pain, local pain, labor pain, and recurring pain. Among the listed species, ten plants were found to be used according to traditional knowledge, although only four of them have been experimentally studied. When assessing the methodological quality of preclinical in vivo assays, most items presented a risk of bias. The SR results revealed the existence of different Plectranthus species used to treat inflammation and pain. The results of this systematic review indicate that Plectranthus species have the potential to be used in the treatment of diseases with an inflammatory component, as well as in the management of pain. However, given the risk of biases, the experimental analysis of these species through preclinical testing is crucial for their safe and effective use.
Collapse
Affiliation(s)
- Maysa de Oliveira Barbosa
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Giovana Mendes de Lacerda Leite
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | | | - Lucas Yure Santos da Silva
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | | | - Lindaiane Bezerra Rodrigues Dantas
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | - Daniel Souza Bezerra
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | - Izabel Cristina Santiago Lemos de Beltrão
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | - Diógenes de Queiroz Dias
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Ceará, Eusébio 61773-270, CE, Brazil; (S.C.A.J.); (J.R.-F.)
| | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | - Irwin Rose Alencar de Menezes
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| | - Marta Regina Kerntopf Mendonça
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (M.d.O.B.); (G.M.d.L.L.); (L.Y.S.d.S.); (L.B.R.D.); (D.S.B.); (I.C.S.L.d.B.); (D.d.Q.D.); (H.D.M.C.); (M.R.K.M.)
| |
Collapse
|
6
|
Chen R, Li F, Zhou K, Xing M, Zhang X, Zhao X, Wu C, Han Z, Zhou Y, Yan L, Xia D. Component identification of modified sanmiao pills by UPLC-Xevo G2-XS QTOF and its anti-gouty arthritis mechanism based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116394. [PMID: 36940736 DOI: 10.1016/j.jep.2023.116394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified sanmiao pills (MSMP), a traditional Chinese medicine (TCM) formula, is consisted of rhizome of Smilax glabra Roxb., Cortexes of Phellodendron chinensis Schneid., rhizome of Atractylodes chinensis (DC.) Koidz., and roots of Cyathula officinalis Kuan. in a ratio of 3:3:2:1. This formula has been broadly applied to treat gouty arthritis (GA) in China. AIMS OF THE STUDY To elaborate the pharmacodynamic material basis and pharmacological mechanism of MSMP against GA. MATERIALS AND METHODS UPLC-Xevo G2-XS QTOF combined with UNIFI platform was applied to qualitatively assess the chemical compounds of MSMP. Network pharmacology and molecular docking were used to identify the active compounds, core targets and key pathways of MSMP against GA. The GA mice model was established by MSU suspension injecting into ankle joint. The swelling index of ankle joint, expressions of inflammatory cytokines, and histopathological changes in mice ankle joints were determined to validate the therapeutic effect of MSMP against GA. The protein expressions of TLRs/MyD88/NF-κB signaling pathway and NLRP3 inflammasome in vivo was detected by Western blotting. RESULTS In total, 34 chemical compounds and 302 potential targets of MSMP were ascertained, of which 28 were overlapping targets pertaining to GA. 143 KEGG enrichment pathway were obtained, of which the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and NF-κB signaling pathway were strongly associated with GA. In silico study indicated that the active compounds had excellent binding affinity to core targets. In vivo study confirmed that MSMP observably decreased swelling index and alleviated pathological damage to ankle joints in acute GA mice. Besides, MSMP significantly inhibited the secretion of inflammatory cytokines (IL-1β, IL-6, and TNF-α) induced by MSU, as well as the expression levels of key proteins involved in TLRs/MyD88/NF-κB signaling pathway and NLRP3 inflammasome. CONCLUSION MSMP possessed a pronounced therapeutic effect on acute GA. Results from network pharmacology and molecular docking showed that obaculactone, oxyberberine, and neoisoastilbin might treat gouty arthritis by down-regulating TLRs/MyD88/NF-κB signaling pathway and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ruyi Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kai Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyu Xing
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xiaoxi Zhang
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyu Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ziwei Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yixuan Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Li Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
7
|
Bimolata W, Bhattacharya R, Goswami A, Dey PK, Mitra A. Spectral Light Treatment Influenced Morpho-Physiological Properties and Carvacrol Accumulation in Indian Borage. JOURNAL OF PLANT GROWTH REGULATION 2023:1-15. [PMID: 37359317 PMCID: PMC10201491 DOI: 10.1007/s00344-023-11028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
Light emitting diodes (LEDs) as an alternative light source for plants had shown to enhance the plant material quality. Indian borage or Plectranthus amboinicus (Lour.) Spreng, a medicinal herb produces carvacrol as the major volatile organic compound (VOC). Histolocalization of VOCs and expression pattern of the terpenoid biosynthesis genes after spectral light treatment is not yet reported in P. amboinicus. This work investigated the morpho-physiological, biochemical and transcriptional responses towards red, green, blue, warm white and red-blue (RB, 1:1) LEDs treatment at 40 ± 5 μmol m-2 s-1 light intensity after 40 days. Maximal growth index (GI), leaf fresh weight and dry weight were obtained in RB (1:1) treated plants. There was one-fold increase in phenolics content and 2.5-fold increase in antioxidant activity in comparison to warm white. High quantity of terpenes and phenolics deposition were observed in the glandular trichomes of RB (1:1). Maximum carvacrol accumulation (14.45 µmol g-1 FW) was also detected in RB (1:1). The transcript levels of early terpene biosynthesis genes PaDXS, PaDXR, PaHMGR and cytochrome P450 monooxygenase genes, PaCYP1 and PaCYP9 were highly upregulated in RB (1:1) and green. The overall results suggest RB (1:1) as the better lighting option amongst the studied spectral lights for obtaining maximum phytochemicals in P. amboinicus. Work is being continued with different spectral ratios of red and blue LED lights to maximize phytochemical accumulation, the outcome of which will be reported elsewhere in near future. Supplementary Information The online version contains supplementary material available at 10.1007/s00344-023-11028-6.
Collapse
Affiliation(s)
- Waikhom Bimolata
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Raktim Bhattacharya
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Ambika Goswami
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Pritam Kumar Dey
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
8
|
Zhang Y, Zhang X, Zhang N, Yu S, Zhong Y, Zhao K. Leukadherin-1 inhibits NLRP3 inflammasome by blocking inflammasome assembly. Int Immunopharmacol 2023; 118:110024. [PMID: 36958209 DOI: 10.1016/j.intimp.2023.110024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Aberrant activation of the NLRP3 inflammasome has been implicated in the occurrence and development of many inflammatory diseases, and thus potent inhibitors of the NLRP3 inflammasome should be explored. An antitumor agent, Leukadherin-1 (LA-1), tested in phase 1/2 clinical trials, has been reported to exert anti-inflammatory properties by blocking the NF-κB pathway. However, the effects of LA-1 on the NLRP3 inflammasome have not been conclusively determined. In this study, we found that at lower doses (below 1 μM) ex vivo, LA-1 blocked NLRP3 inflammasome activation without affecting NF-κB signaling. Accordingly, 1 mg/Kg LA-1 strongly inhibited the release of NLRP3-dependent cytokine, but only slightly inhibited NLRP3-independent-cytokines secretion in endotoxemia and alleviated NLRP3-dependent peritonitis in vivo. Mechanistically, LA-1 had no effects on ion flux or mitochondrial injury. Instead, it inhibited NLRP3 inflammasome assembly by suppressing ASC oligomerization, blocking NLRP3 self-assembly, and reducing interactions of NLRP3 with ASC and NEK7. Therefore, LA-1 inhibits NLRP3 inflammasome activation, implying that it is a potential treatment option for NLRP3-associated diseases.
Collapse
Affiliation(s)
- Yening Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songlin Yu
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, Hunan, China
| | - YanJun Zhong
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Development of electrospun Plectranthus amboinicus loaded PCL polymeric nanofibrous scaffold for skin wound healing application: in-vitro and in-silico analysis. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Sumpio BJ, Mezghani I, Wang E, Li Z, Valsami EA, Theocharidis G, Veves A. Experimental treatments in clinical trials for diabetic foot ulcers: wound healers in the pipeline. Expert Opin Investig Drugs 2023; 32:95-99. [PMID: 36749693 DOI: 10.1080/13543784.2023.2178418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Diabetes affects 400 million people globally and patients and causes nephropathy, neuropathy, and vascular disease. Amongst these complications, diabetic foot ulcers remain a substantial problem for patients and clinicians. Aggressive wound care and antibiotics remain important for the healing of these chronic wounds, but even when treated these chronic ulcers can lead to infection and amputations. AREAS COVERED This paper reviews the pathophysiology of diabetic foot ulcers and the current management strategies. Then, it discusses novel therapeutics such as topical oxygen therapy as well as autologous patches and macrophage creams. EXPERT OPINION Diabetic foot ulcers are a substantial problem for patients and clinicians. Early identification, aggressive wound care, and normoglycemia remain the standard of care, however when these fail it is important to adapt. Since each patient and wound vary drastically we believe they should be treated as such. For patient with intact perfusion, topical ON101 and sucrose octasulfate creams can help. While patient with peripheral arterial disease should consider topical oxygen therapy as an adjunct. However, as scientists gain a better understanding of the pathophysiology behind DFUs, the hope is that this new wave of therapeutics will emerge.
Collapse
Affiliation(s)
- Brandon J Sumpio
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ikram Mezghani
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Enya Wang
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhuqing Li
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eleftheria-Angeliki Valsami
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
12
|
Rayate AS, Nagoba BS, Mumbre SS, Mavani HB, Gavkare AM, Deshpande AS. Current scenario of traditional medicines in management of diabetic foot ulcers: A review. World J Diabetes 2023; 14:1-16. [PMID: 36684382 PMCID: PMC9850800 DOI: 10.4239/wjd.v14.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetic foot infections and diabetic foot ulcers (DFU) cause significant suffering and are often recurring. DFU have three important pathogenic factors, namely, microangiopathy causing local tissue anoxia, neuropathy making the foot prone to injuries from trivial trauma, and local tissue hyperglycaemia favouring infection and delaying the wound healing. DFU have been the leading cause for non-traumatic amputations of part or whole of the limb. Western medicines focus mainly on euglycaemia, antimicrobials, debridement and wound cover with grafts, and off-loading techniques. Advances in euglycaemic control, foot care and footwear, systemic antimicrobial therapy, and overall health care access and delivery, have resulted in an overall decrease in amputations. However, the process of wound care after adequate debridement remains a major cost burden globally, especially in developing nations. This process revolves around two basic concerns regarding control/eradication of local infection and promotion of faster healing in a chronic DFU without recurrence. Wound modulation with various dressings and techniques are often a costly affair. Some aspects of the topical therapy with modern/Western medicines are frequently not addressed. Cost of and compliance to these therapies are important as both the wounds and their treatment are “chronic.” Naturally occurring agents/medications from traditional medicine systems have been used frequently in different cultures and nations, though without adequate clinical base/relevance. Traditional Chinese medicine involves restoring yin-yang balance, regulating the ‘chi’, and promoting local blood circulation. Traditional medicines from India have been emphasizing on ‘naturally’ available products to control wound infection and promote all the aspects of wound healing. There is one more group of chemicals which are not pharmaceutical agents but can create acidic milieu in the wound to satisfy the above-mentioned basic concerns. Various natural and plant derived products (e.g., honey, aloe vera, oils, and calendula) and maggots are also used for wound healing purposes. We believe that patients with a chronic wound are so tired physically, emotionally, and financially that they usually accept native traditional medicine which has the same cultural base, belief, and faith. Many of these products have never been tested in accordance to “evidence-based medicine.” There are usually case reports and experience-based reports about these products. Recently, there have been some trials (in vitro and in vivo) to verify the claims of usage of traditional medicines in management of DFU. Such studies show that these natural products enhance the healing process by controlling infection, stimulating granulation tissue, antimicrobial action, promoting fibroblastic activity and collagen deposition, etc. In this review, we attempt to study and analyse the available literature on results of topical traditional medicines, which are usually advocated in the management of DFU. An integrated and ‘holistic’ approach of both modern and traditional medicine may be more acceptable to the patient, cost effective, and easy to administer and monitor. This may also nevertheless lead to further improvement in quality of life and decrease in the rates of amputations for DFU.
Collapse
Affiliation(s)
- Abhijit S Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Basavraj S Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Sachin S Mumbre
- Department of Community Medicine, Ashwini Rural Medical College, Solapur 413006, India
| | - Hardi B Mavani
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Ajay M Gavkare
- Department of Physiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Advait S Deshpande
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| |
Collapse
|
13
|
Nicolas M, Lasalo M, Chow S, Antheaume C, Huet K, Hnawia E, Guillemin GJ, Nour M, Matsui M. Anti-inflammatory activities of Coleus forsteri (formerly Plectranthus forsteri) extracts on human macrophages and chemical characterization. Front Pharmacol 2023; 13:1081310. [PMID: 36699063 PMCID: PMC9868419 DOI: 10.3389/fphar.2022.1081310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Formerly named Plectranthus forsteri, Coleus forsteri (Benth.) A.J.Paton, 2019 is a Lamiaceae traditionally used to treat flu-like symptoms and shock-related ecchymosis, especially in the Pacific region. Few studies investigated chemical composition and anti-inflammatory potential of this plant. Method: Herein, we investigated anti-inflammatory potential of C. forsteri ethanolic (ePE) and cyclohexane (cPE) plant extract on LPS-induced human macrophages models and quantified cytokines and quinolinic acid (QUIN) as inflammatory markers. Results: Our results show that extract of ePE and cPE significantly inhibit inflammatory cytokine IL-6 and TNF-α induced by LPS on PMA-derived THP-1 macrophages. QUIN production is also diminished under ePE and cPE treatment in activated human monocyte-derived macrophages (MDMs). Seven abietane diterpenes were characterized from C. forsteri cPE including coleon U (1), coleon U-quinone (2), 8α,9α-epoxycoleon U-quinone (3), horminone or 7α-hydroxyroyleanone (4), 6β,7α-dihydroxyroyleanone (5), 7α-acetoxy-6β-hydroxyroyleanone (6) and 7α-formyloxy-6β-hydroxyroyleanone (7). Discussion: We discussed potential contributions of these molecules from C. forsteri extracts for their anti-inflammatory activities.
Collapse
Affiliation(s)
- Mael Nicolas
- Département de Chimie, Université Côte d’Azur, Nice, France
| | - Malia Lasalo
- Group Bioactivities of Natural compounds and derivatives (BIONA), Formerly Group Immunity and Inflammation (GIMIN), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea, New Caledonia
| | - Sharron Chow
- Neuroinflammation Group, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Cyril Antheaume
- Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, Strasbourg, France
| | - Karl Huet
- Group Bioactivities of Natural compounds and derivatives (BIONA), Formerly Group Immunity and Inflammation (GIMIN), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea, New Caledonia
| | - Edouard Hnawia
- PHARMADEV, UMR152, Institut de Recherche pour le Développement (IRD), Noumea Center, Noumea, New Caledonia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Mohammed Nour
- Institut des Sciences Exactes et Appliqués (ISEA), EA7484, Université de Nouvelle-Calédonie, Noumea, New Caledonia
| | - Mariko Matsui
- Group Bioactivities of Natural compounds and derivatives (BIONA), Formerly Group Immunity and Inflammation (GIMIN), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea, New Caledonia
- Institut des Sciences Exactes et Appliqués (ISEA), EA7484, Université de Nouvelle-Calédonie, Noumea, New Caledonia
| |
Collapse
|
14
|
Fontana G, Bruno M, Sottile F, Badalamenti N. The Chemistry and the Anti-Inflammatory Activity of Polymethoxyflavonoids from Citrus Genus. Antioxidants (Basel) 2022; 12:antiox12010023. [PMID: 36670885 PMCID: PMC9855034 DOI: 10.3390/antiox12010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Polymethoxyflavonoids (PMFs) are a large group of compounds belonging to the more general class of flavonoids that possess a flavan carbon framework decorated with a variable number of methoxy groups. Hydroxylated polymethoxyflavonoids (HPMFs), instead, are characterized by the presence of both hydroxyl and methoxy groups in their structural unities. Some of these compounds are the aglycone part in a glycoside structure in which the glycosidic linkage can involve the -OH at various positions. These compounds are particular to Citrus genus plants, especially in fruits, and they are present mainly in the peel. A considerable number of PMFs and HPMFs have shown promising biological activities and they are considered to be important nutraceuticals, responsible for some of the known beneficial effects on health associated with a regular consumption of Citrus fruits. Among their several actions on human health, it is notable that the relevant contribution in controlling the intracellular redox imbalance is associated with the inflammation processes. In this work, we aim to describe the status concerning the chemical identification and the anti-inflammatory activity of both PMFs and HPMFs. In particular, all of the chemical entities unambiguously identified by isolation and complete NMR analysis, and for which a biochemical evaluation on the pure compound was performed, are included in this paper.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Francesco Sottile
- Dipartimento di Architettura, Università Degli Studi di Palermo, Centro di Conservazione della Biodiversità di Interesse Agrario, Viale delle Scienze Ed. 14, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
15
|
Srivastava P, Sondak T, Sivashanmugam K, Kim KS. A Review of Immunomodulatory Reprogramming by Probiotics in Combating Chronic and Acute Diabetic Foot Ulcers (DFUs). Pharmaceutics 2022; 14:2436. [PMID: 36365254 PMCID: PMC9699442 DOI: 10.3390/pharmaceutics14112436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 08/29/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are characterized by a lack of angiogenesis and distal limb diabetic neuropathy. This makes it possible for opportunistic pathogens to protect the biofilm-encased micro-communities, causing a delay in wound healing. The acute and chronic phases of DFU-associated infections are distinguished by the differential expression of innate proinflammatory cytokines and tumor necrosis factors (TNF-α and -β). Efforts are being made to reduce the microbial bioburden of wounds by using therapies such as debridement, hyperbaric oxygen therapy, shock wave therapy, and empirical antibiotic treatment. However, the constant evolution of pathogens limits the effectiveness of these therapies. In the wound-healing process, continuous homeostasis and remodeling processes by commensal microbes undoubtedly provide a protective barrier against diverse pathogens. Among commensal microbes, probiotics are beneficial microbes that should be administered orally or topically to regulate gut-skin interaction and to activate inflammation and proinflammatory cytokine production. The goal of this review is to bridge the gap between the role of probiotics in managing the innate immune response and the function of proinflammatory mediators in diabetic wound healing. We also highlight probiotic encapsulation or nanoformulations with prebiotics and extracellular vesicles (EVs) as innovative ways to tackle target DFUs.
Collapse
Affiliation(s)
- Prakhar Srivastava
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Tesalonika Sondak
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Karthikeyan Sivashanmugam
- School of Biosciences and Technology, High Throughput Screening Lab, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
16
|
Sim SL, Kumari S, Kaur S, Khosrotehrani K. Macrophages in Skin Wounds: Functions and Therapeutic Potential. Biomolecules 2022; 12:1659. [PMID: 36359009 PMCID: PMC9687369 DOI: 10.3390/biom12111659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 08/29/2023] Open
Abstract
Macrophages regulate cutaneous wound healing by immune surveillance, tissue repair and remodelling. The depletion of dermal macrophages during the early and middle stages of wound healing has a detrimental impact on wound closure, characterised by reduced vessel density, fibroblast and myofibroblast proliferation, delayed re-epithelization and abated post-healing fibrosis and scar formation. However, in some animal species, oral mucosa and foetal life, cutaneous wounds can heal normally and remain scarless without any involvement of macrophages. These paradoxical observations have created much controversy on macrophages' indispensable role in skin wound healing. Advanced knowledge gained by characterising macrophage subsets, their plasticity in switching phenotypes and molecular drivers provides new insights into their functional importance during cutaneous wound healing. In this review, we highlight the recent findings on skin macrophage subsets, their functional role in adult cutaneous wound healing and the potential benefits of targeting them for therapeutic use.
Collapse
Affiliation(s)
- Seen Ling Sim
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Snehlata Kumari
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Simranpreet Kaur
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
17
|
Lin CW, Hung CM, Chen WJ, Chen JC, Huang WY, Lu CS, Kuo ML, Chen SG. New Horizons of Macrophage Immunomodulation in the Healing of Diabetic Foot Ulcers. Pharmaceutics 2022; 14:pharmaceutics14102065. [PMID: 36297499 PMCID: PMC9606988 DOI: 10.3390/pharmaceutics14102065] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the most costly and troublesome complications of diabetes mellitus. The wound chronicity of DFUs remains the main challenge in the current and future treatment of this condition. Persistent inflammation results in chronic wounds characterized by dysregulation of immune cells, such as M1 macrophages, and impairs the polarization of M2 macrophages and the subsequent healing process of DFUs. The interactive regulation of M1 and M2 macrophages during DFU healing is critical and seems manageable. This review details how cytokines and signalling pathways are co-ordinately regulated to control the functions of M1 and M2 macrophages in normal wound repair. DFUs are defective in the M1-to-M2 transition, which halts the whole wound-healing machinery. Many pre-clinical and clinical innovative approaches, including the application of topical insulin, CCL chemokines, micro RNAs, stem cells, stem-cell-derived exosomes, skin substitutes, antioxidants, and the most recent Phase III-approved ON101 topical cream, have been shown to modulate the activity of M1 and M2 macrophages in DFUs. ON101, the newest clinically approved product in this setting, is designed specifically to down-regulate M1 macrophages and further modulate the wound microenvironment to favour M2 emergence and expansion. Finally, the recent evolution of macrophage modulation therapies and techniques will improve the effectiveness of the treatment of diverse DFUs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Liang Kuo
- Microbio Co., Ltd., Taipei 115, Taiwan
- Correspondence: (M.-L.K.); or (S.-G.C.); Tel.: +886-2-27031298 (ext. 550) (M.-L.K.); +886-2-27031098 (ext. 551) (S.-G.C.)
| | - Shyi-Gen Chen
- Oneness Biotech Co., Ltd., Taipei 106, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (M.-L.K.); or (S.-G.C.); Tel.: +886-2-27031298 (ext. 550) (M.-L.K.); +886-2-27031098 (ext. 551) (S.-G.C.)
| |
Collapse
|
18
|
Wang X, Zhang S, Shang H, Wang C, Zhou F, Liu Y, Jiang Y, Gao P, Li N, Liu D, Shen M, Zhu R, Shi Y, Wei K. Evaluation of the antiviral effect of four plant polysaccharides against duck circovirus. Res Vet Sci 2022; 152:446-457. [PMID: 36148714 DOI: 10.1016/j.rvsc.2022.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Recently, outbreaks of duck circovirus (DuCV) are frequently occurring worldwide due to secondary infections caused by post infection-induced immunosuppression. Due to a lack of preventive drugs and vaccines, the waterfowl industry losses are ever increasing. In this study, we extracted Astragalus polysaccharides (APS), pine pollen polysaccharides (PPPS), Aloe vera polysaccharides (AVE), and Ficus carica polysaccharides (FCPS) from Astragalus, pine pollen, aloe, and F. carica leaves, respectively. We randomly divided 150 one-day-old Cherry Valley ducks into five groups, which were inoculated with the DuCV solution and orally administered APS, PPPS, AVE, FCPS, and phosphate buffer saline (PBS), respectively. We collected the duck immune organs and serum samples at 8, 16, 24, 32, 40, and 48 days post-infection (dpi). Using clinical symptom analysis, molecular biology experiments, and serological experiments, we proved that plant polysaccharides could (a) improve the duck immunity, (b) reduce the viral load, and (c) mitigate DuCV-induced damage to immune organs, with both APS and PPPS having significant effects. Moreover, we detected viral load and cytokines within the first 8 dpi. Since the body's innate immunity could inhibit viral replication within five days of virus infection, 1-5 dpi was the best treatment time. Among the four polysaccharides showing in vitro anti-apoptotic activity, APS and PPPS significantly inhibited the DuCV infection-induced apoptosis of peripheral blood lymphocytes. Overall, since our findings show APS and PPPS having significant anti-DuCV effects both in vivo and in vitro, they can be promising candidates for preventing DuCV infection in ducks.
Collapse
Affiliation(s)
- Xiangkun Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Shuyu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Hongqi Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Cheng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Fan Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Yong Liu
- Shandong Feicheng Animal Husbandry and Veterinary Health Center, Taian, China
| | - Yunxuan Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Panpan Gao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Defeng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Mingyue Shen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Youfei Shi
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Kai Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| |
Collapse
|
19
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
20
|
Lin CW, Chen CC, Huang WY, Chen YY, Chen ST, Chou HW, Hung CM, Chen WJ, Lu CS, Nian SX, Chen SG, Chang HW, Chang VH, Liu LY, Kuo ML, Chang SC. Restoring Pro-healing/remodeling- associated M2a/c Macrophages using ON101 Accelerates Diabetic Wound Healing. JID INNOVATIONS 2022; 2:100138. [PMID: 36017415 PMCID: PMC9396230 DOI: 10.1016/j.xjidi.2022.100138] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/05/2023] Open
Abstract
Diabetic wounds exhibit chronic inflammation and delayed tissue proliferation or remodeling, mainly owing to prolonged proinflammatory (M1) macrophage activity and defects in transition to prohealing/proremodeling (M2a/M2c; CD206+ and/or CD163+) macrophages. We found that topical treatment with ON101, a plant-based potential therapeutic for diabetic foot ulcers, increased M2c-like (CD163+ and CD206+) cells and suppressed M1-like cells, altering the inflammatory gene profile in a diabetic mouse model compared with that in the controls. An in vitro macrophage-polarizing model revealed that ON101 directly suppressed CD80+ and CD86+ M1-macrophage polarization and M1-associated proinflammatory cytokines at both protein and transcriptional levels. Notably, conditioned medium collected from ON101-treated M1 macrophages reversed the M1-conditioned medium‒mediated suppression of CD206+ macrophages. Furthermore, conditioned medium from ON101-treated adipocyte progenitor cells significantly promoted CD206+ and CD163+ macrophages but strongly inhibited M1-like cells. ON101 treatment also stimulated the expression of GCSF and CXCL3 genes in human adipocyte progenitor cells. Interestingly, treatment with recombinant GCSF protein enhanced both CD206+ and CD163+ M2 markers, whereas CXCL3 treatment only stimulated CD163+ M2 macrophages. Depletion of cutaneous M2 macrophages inhibited ON101-induced diabetic wound healing. Thus, ON101 directly suppressed M1 macrophages and facilitated the GCSF- and CXCL3-mediated transition from M1 to M2 macrophages, lowering inflammation and leading to faster diabetic wound healing.
Collapse
Affiliation(s)
| | - Chih-Chiang Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | | | | | | | | | | | - Chia-Sing Lu
- NTU YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Shi-Xin Nian
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shyi-Gen Chen
- Oneness Biotech Co., Ltd., Taipei, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsuen-Wen Chang
- TMU Laboratory Animal Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Vincent H.S. Chang
- TMU Laboratory Animal Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Ying Liu
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Shun-Cheng Chang
- Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Correspondence: Shun-Cheng Chang, Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Number 291, Zhongzheng Road, Zhonghe District, New Taipei City 235, Taiwan.
| |
Collapse
|
21
|
Kang X, Jin D, Jiang L, Zhang Y, Zhang Y, An X, Duan L, Yang C, Zhou R, Duan Y, Sun Y, Lian F. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: a systematic review. Chin Med 2022; 17:30. [PMID: 35227280 PMCID: PMC8883015 DOI: 10.1186/s13020-022-00587-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), traditional Chinese medicine (TCM) has made an important contribution to the prevention and control of the epidemic. This review aimed to evaluate the efficacy and explore the mechanisms of TCM for COVID-19. We systematically searched 7 databases from their inception up to July 21, 2021, to distinguish randomized controlled trials (RCTs), cohort studies (CSs), and case–control studies (CCSs) of TCM for COVID-19. Two reviewers independently completed the screening of literature, extraction of data, and quality assessment of included studies. Meta-analysis was performed using Review Manager 5.4 software. Eventually, 29 RCTs involving 3060 patients and 28 retrospective studies (RSs) involving 12,460 patients were included. The meta-analysis demonstrated that TCM could decrease the proportion of patients progressing to severe cases by 55% and the mortality rate of severe or critical patients by 49%. Moreover, TCM could relieve clinical symptoms, curtail the length of hospital stay, improve laboratory indicators, and so on. In addition, we consulted the literature and obtained 149 components of Chinese medicinal herbs that could stably bind to antiviral targets or anti-inflammatory or immune-regulating targets by the prediction of molecular docking. It suggested that the mechanisms involved anti-virus, anti-inflammation, and regulation of immunity. Our study made a systematic review on the efficacy of TCM for COVID-19 and discussed the possible mechanisms, which provided clinical reference and theoretical basis for further research on the mechanism of TCM for COVID-19.
Collapse
Affiliation(s)
- Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongrong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Huang YY, Lin CW, Cheng NC, Cazzell SM, Chen HH, Huang KF, Tung KY, Huang HL, Lin PY, Perng CK, Shi B, Liu C, Ma Y, Cao Y, Li Y, Xue Y, Yan L, Li Q, Ning G, Chang SC. Effect of a Novel Macrophage-Regulating Drug on Wound Healing in Patients With Diabetic Foot Ulcers: A Randomized Clinical Trial. JAMA Netw Open 2021; 4:e2122607. [PMID: 34477854 PMCID: PMC8417758 DOI: 10.1001/jamanetworkopen.2021.22607] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Delayed healing of diabetic foot ulcers (DFUs) is known to be caused by dysregulated M1/M2-type macrophages, and restoring the balance between these macrophage types plays a critical role in healing. However, drugs used to regulate M1/M2 macrophages have not yet been studied in large randomized clinical trials. OBJECTIVE To compare the topical application of ON101 cream with use of an absorbent dressing (Hydrofiber; ConvaTec Ltd) when treating DFUs. DESIGN, SETTING, AND PARTICIPANTS This multicenter, evaluator-blinded, phase 3 randomized clinical trial was performed in 21 clinical and medical centers across the US, China, and Taiwan from November 23, 2012, to May 11, 2020. Eligible patients with debrided DFUs of 1 to 25 cm2 present for at least 4 weeks and with Wagner grade 1 or 2 were randomized 1:1 to receive ON101 or control absorbent dressings. INTERVENTIONS Twice-daily applications of ON101 or a absorbent dressing changed once daily or 2 to 3 times a week for 16 weeks, with a 12-week follow-up. MAIN OUTCOMES AND MEASURES The primary outcome was the incidence of complete healing, defined as complete re-epithelialization at 2 consecutive visits during the treatment period assessed on the full-analysis set (FAS) of all participants with postrandomization data collected. Safety outcomes included assessment of the incidences of adverse events, clinical laboratory values, and vital signs. RESULTS In the FAS, 236 eligible patients (175 men [74.2%]; mean [SD] age, 57.0 [10.9] years; mean [SD] glycated hemoglobin level, 8.1% [1.6%]) with DFUs classified as Wagner grade 1 or 2 (mean [SD] ulcer area, 4.8 [4.4] cm2) were randomized to receive either the ON101 cream (n = 122) or the absorbent dressing (n = 114) for as long as 16 weeks. The incidence of complete healing in the FAS included 74 patients (60.7%) in the ON101 group and 40 (35.1%) in the comparator group during the 16-week treatment period (difference, 25.6 percentage points; odds ratio, 2.84; 95% CI, 1.66-4.84; P < .001). A total of 7 (5.7%) treatment-emergent adverse events occurred in the ON101 group vs 5 (4.4%) in the comparator group. No treatment-related serious adverse events occurred in the ON101 group vs 1 (0.9%) in the comparator group. CONCLUSIONS AND RELEVANCE In this multicenter randomized clinical trial, ON101 exhibited better healing efficacy than absorbent dressing alone in the treatment of DFUs and showed consistent efficacy among all patients, including those with DFU-related risk factors (glycated hemoglobin level, ≥9%; ulcer area, >5 cm2; and DFU duration, ≥6 months). TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01898923.
Collapse
Affiliation(s)
- Yu-Yao Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Nutritional Therapy, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | | | - Nai-Chen Cheng
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - Hsin-Han Chen
- Plastic and Reconstruction Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Feng Huang
- Plastic Surgery Center, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kwang-Yi Tung
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsuan-Li Huang
- Division of Cardiology, Buddhist Tzu Chi General Hospital, Taipei, Taiwan
| | - Pao-Yuan Lin
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Cherng-Kang Perng
- Division of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Chang Liu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Yujin Ma
- Department of Endocrinology, The First Affiliated Hospital of Henan Science and Technology University, Henan, China
| | - Yemin Cao
- Department of Vascular Anomalies, Shanghai TCM (Traditional Chinese Medicine)–Integrated Hospital, Shanghai, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Yaoming Xue
- Department of Endocrinology, Nanfang Hospital of Southern Medical University, Guangdong, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangdong, China
| | - Qiu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Shanghai, China
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shun-Cheng Chang
- Division of Plastic Surgery, Department of Surgery, Integrated Burn and Wound Care Center, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Division of Plastic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Chen PY, Wang C, Zhang Y, Yuan C, Yu B, Ke XG, Wu HZ, Yang YF, Xiao XC. Predicting the Molecular Mechanism of “Angong Niuhuang Pills” in the Treatment of COVID-19 Based on Network Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211024032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction Angong Niuhuang Pills (AGNH), a Chinese patent medicine recommended in the “Diagnosis and Treatment Plan for COVID-19 (8th Edition),” may be clinically effective in treating COVID-19. The active components and signal pathways of AGNH through network pharmacology have been examined, and its potential mechanisms determined. Methods We screened the components in the Traditional Chinese Medicine Systems Pharmacology (TCMSP) via Drug-like properties (DL) and Oral bioavailability (OB); PharmMapper and GeneCards databases were used to collect components and COVID-19 related targets; KEGG pathway annotation and GO bioinformatics analysis were based on KOBAS3.0 database; “herb-components-targets-pathways” (H-C-T-P) network and protein-protein interaction network (PPI) were constructed by Cytoscape 3.6.1 software and STRING 10.5 database; we utilized virtual molecular docking to predict the binding ability of the active components and key proteins. Results A total of 87 components and 40 targets were screened in AGNH. The molecular docking results showed that the docking scores of the top 3 active components and the targets were all greater than 90. Conclusion Through network pharmacology research, we found that moslosooflavone, oroxylin A, and salvigenin in AGNH can combine with ACE2 and 3CL, and then are involved in the MAPK and JAK-STAT signaling pathways. Finally, it is suggested that AGNH may have a role in the treatment of COVID-19.
Collapse
Affiliation(s)
- Peng-yu Chen
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
- Hubei Key Laboratory of Chinese Medicine Resources and Chemistry, Wuhan, China
| | - Chen Wang
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
- Hubei Key Laboratory of Chinese Medicine Resources and Chemistry, Wuhan, China
| | - Ying Zhang
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
- Hubei Key Laboratory of Chinese Medicine Resources and Chemistry, Wuhan, China
| | - Chong Yuan
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
- Hubei Key Laboratory of Chinese Medicine Resources and Chemistry, Wuhan, China
| | - Bing Yu
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
- Hubei Key Laboratory of Chinese Medicine Resources and Chemistry, Wuhan, China
| | - Xin-ge Ke
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
- Hubei Key Laboratory of Chinese Medicine Resources and Chemistry, Wuhan, China
| | - He-zhen Wu
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
- Hubei Key Laboratory of Chinese Medicine Resources and Chemistry, Wuhan, China
- Hubei Geriatrics New Products Collaborative Innovation Center of Chinese Medicine, Wuhan, China
| | - Yan-fang Yang
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
- Hubei Key Laboratory of Chinese Medicine Resources and Chemistry, Wuhan, China
- Hubei Geriatrics New Products Collaborative Innovation Center of Chinese Medicine, Wuhan, China
| | - Xue-cheng Xiao
- Department of pharmacy, Hubei University of Chinese Medicine, Wu Han, China
| |
Collapse
|
24
|
Koycheva IK, Vasileva LV, Amirova KM, Marchev AS, Balcheva-Sivenova ZP, Georgiev MI. Biotechnologically Produced Lavandula angustifolia Mill. Extract Rich in Rosmarinic Acid Resolves Psoriasis-Related Inflammation Through Janus Kinase/Signal Transducer and Activator of Transcription Signaling. Front Pharmacol 2021; 12:680168. [PMID: 33986690 PMCID: PMC8111009 DOI: 10.3389/fphar.2021.680168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a common skin pathology, characterized by dysregulation of epidermal keratinocyte function attended by persistent inflammation, suggesting that molecules with anti-inflammatory potential may be effective for its management. Rosmarinic acid (RA) is a natural bioactive molecule known to have an anti-inflammatory potential. Here we examined the effect of biotechnologically produced cell suspension extract of Lavandula angustifolia Mill (LV) high in RA content as treatment for psoriasis-associated inflammation in human keratinocytes. Regulatory genes from the nuclear factor kappa B (NF-κB) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways were upregulated upon stimulation with a combination of interferon gamma (IFN-γ), interleukin (IL)-17A and IL-22. We also observed that both LV extract and RA could inhibit JAK2, leading to reduced STAT1 phosphorylation. Further, we demonstrated that LV extract inhibited phosphoinositide 3-kinases (PI3K) and protein kinase B (AKT), which could be implicated in reduced hyperproliferation in keratinocytes. Collectively, these findings indicate that the biotechnologically produced LV extract resolved psoriasis-like inflammation in human keratinocytes by interfering the JAK2/STAT1 signaling pathway and its effectiveness is due to its high content of RA (10%). Hence, both LV extract and pure RA possess the potential to be incorporated in formulations for topical application as therapeutic approach against psoriasis.
Collapse
Affiliation(s)
- Ivanka K Koycheva
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Liliya V Vasileva
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Kristiana M Amirova
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Andrey S Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zhivka P Balcheva-Sivenova
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
25
|
Lee J, Hong SM, Park N, Lee J, Jang SG, Cho ML, Kwok SK, Ju JH, Park SH. Red ginseng extracts as an adjunctive therapeutic for gout: preclinical and clinical evidence. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1854189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Jennifer Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Min Hong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - NaRae Park
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeseon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Se Gwang Jang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
26
|
Chalcones Display Anti-NLRP3 Inflammasome Activity in Macrophages through Inhibition of Both Priming and Activation Steps-Structure-Activity-Relationship and Mechanism Studies. Molecules 2020; 25:molecules25245960. [PMID: 33339319 PMCID: PMC7767297 DOI: 10.3390/molecules25245960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
Chalcones are responsible for biological activity throughout fruits, vegetables, and medicinal plants in preventing and treating a variety of inflammation-related diseases. However, their structure-activity relationship (SAR) in inhibiting inflammasome activation has not been explored. We synthesized numerous chalcones and determined their SAR on lipopolysaccharide (LPS)-primed ATP-induced NLRP3 inflammasome activation. 11Cha1 displayed good inhibitory activity on release reaction of caspase-1, IL-1β, and IL-18. It significantly inhibited LPS-induced phosphorylation and proteolytic degradation of IĸB-α and nuclear translocation of NF-ĸB, but had little effect on mitogen-activated protein kinases (MAPKs) activities. Furthermore, 11Cha1 blocked LPS-induced up-regulation of NLRP3, pro-caspase-1, ASC, IL-18, and IL-1β, indicating the suppression on priming step of inflammasome activation. ASC dimerization and oligomerization are considered to be direct evidence for inflammasome activation. 11Cha1 profoundly inhibited ATP-induced formation of ASC dimers, trimers, and oligomers, and the assembly of ASC, pro-caspase-1, and NLRP3 in inflammasome formation. Decrease of intracellular K+ levels is the common cellular activity elicited by all NLRP3 inflammasome activators. 11Cha1 substantially diminished ATP-mediated K+ efflux, confirming the anti-NLRP3 inflammasome activity of 11Cha1. In summary, the SAR of chalcone derivatives in anti-inflammasome activities was examined. Besides, 11Cha1 inhibited both priming and activation steps of NLRP3 inflammasome activation. It inhibited NF-ĸB activation and subsequently suppressed the up-regulation of NLRP3 inflammasome components including NLRP3, ASC, pro-caspase-1, pro-IL-18, and pro-IL-1β. Next, 11Cha1 blocked ATP-mediated K+ efflux and suppressed the assembly and activation of NLRP3 inflammasome, leading to the inhibition of caspase-1 activation and proteolytic cleavage, maturation, and secretion of IL-1β and IL-18.
Collapse
|
27
|
Bian HT, Wang GH, Huang JJ, Liang L, Xiao L, Wang HL. Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats. Int Immunopharmacol 2020; 88:106943. [PMID: 33182053 DOI: 10.1016/j.intimp.2020.106943] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Depression is a complex and heterogeneous mental disorder. Yet, the mechanisms behind depression remain elusive. Increasing evidence suggests that inflammatory reaction and microglia activation are involved in the pathogenesis of depression. Scutellarin has been found to have anti-inflammatory and antioxidant effects in various diseases. The aim of the present study was to investigate the anti-depressant effects and potential mechanism of scutellarin in the lipopolysaccharide (LPS)-induced depression animal model. The behavioral tests showed that scutellarin administration ameliorated LPS-induced depressive-like behaviors. Additionally, the scutellarin treatment inhibited reactive oxygen species (ROS) generation. Western blot analysis results showed that scutellarin pretreatment suppressed LPS-induced the protein levels of NLRP3, caspase-1, and IL-1β. Furthermore, immunostaining results showed that scutellarin pretreatment inhibited LPS-induced microglia activation in the hippocampus of rats. These findings suggest that scutellarin effectively improves LPS-induced inflammation-related depressive-like behaviors by inhibiting LPS-induced neuroinflammation and microglia activation, possibly via regulation of the ROS/NLRP3 signaling pathway and microglia activation. Thus, scutellarin may serve as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- He-Tao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| | - Jun-Jie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Hui-Ling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| |
Collapse
|
28
|
Liu L, Xu X, Zhang N, Zhang Y, Zhao K. Acetylase inhibitor SI-2 is a potent anti-inflammatory agent by inhibiting NLRP3 inflammasome activation. Int Immunopharmacol 2020; 87:106829. [PMID: 32736194 DOI: 10.1016/j.intimp.2020.106829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
Aberrant activation of Nod-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome is implicated in a variety of inflammatory diseases. Targeting NLRP3 inflammasome represents a promising therapy to cure such diseases. We and others recently demonstrated that acetylation of NLRP3 promotes the inflammasome activity and also suggested lysine acetyltransferases inhibitors could be a kind of promising agents for treating NLRP3 associated disorders. In this study, by searching for kinds of lysine acetyltransferases inhibitors, we showed that SI-2 hydrochloride (SI-2), a specific inhibitor of lysine acetyltransferase KAT13B (lysine acetyltransferases 13B), specifically blocks NLRP3 inflammasome activation both in mice in vivo and in human cells ex vivo. Intriguingly, SI-2 does not affect the acetylation of NLRP3. Instead, it disrupts the interaction between NLRP3 and adaptor apoptosis-associated speck-like protein containing CARD (ASC), then blocks the formation of ASC speck. Thus, our study identified a specific inhibitor for NLRP3 inflammasome and suggested SI-2 as a potential inhibitory agent for the therapy of NLRP3-driven diseases.
Collapse
Affiliation(s)
- Liping Liu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Xueming Xu
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Yening Zhang
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China.
| | - Kai Zhao
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China.
| |
Collapse
|
29
|
Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway. Biomed Pharmacother 2020; 129:110471. [PMID: 32768958 DOI: 10.1016/j.biopha.2020.110471] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
Huoxuezhitong capsule (HXZT, activating blood circulation and relieving pain capsule), has been applied for osteoarthritis since 1974. It consists of Angelica sinensis (Oliv.) Diels, Panax notoginseng (Burkill) F. H. Chen ex C. H., Boswellia sacra, Borneol, Eupolyphaga sinensis Walker, Pyritum. However, the direct effects of HXZT on osteoarthritis and the underlying mechanisms were poorly understood. In this study, we aimed to explore the analgesia effect of HXZT on MIA-induced osteoarthritis rat and the underlying mechanisms. The analgesia and anti-inflammatory effect of HXZT on osteoarthritis in vivo were tested by the arthritis model rats induced by monosodium iodoacetate (MIA).. Mechanistic studies confirmed that HXZT could inhibit the activation of NF-κB and down-regulate the mRNA expression of related inflammatory factors in LPS-induced RAW264.7 and ATDC5 cells. Furtherly, in LPS-induced RAW264.7 cells, HXZT could suppress NF-κB via inhibiting PI3K/Akt pathway. Taken together, HXZT capsule could ameliorate MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway.
Collapse
|
30
|
Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L, Wang H. Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation 2020; 17:166. [PMID: 32450903 PMCID: PMC7249417 DOI: 10.1186/s12974-020-01836-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recently, depression has been identified as a prevalent and severe mental disorder. However, the mechanisms underlying the depression risk remain elusive. The neuroinflammation and NLRP3 inflammasome activation are known to be involved in the pathology of depression. Dihydrolipoic acid (DHLA) has been reported as a strong antioxidant and exhibits anti-inflammatory properties in various diseases, albeit the direct relevance between DHLA and depression is yet unknown. The present study aimed to investigate the preventive effect and potential mechanism of DHLA in the lipopolysaccharide (LPS)-induced sickness behavior in rats. Methods Adult male Sprague–Dawley rats were utilized. LPS and DHLA were injected intraperitoneally every 2 days and daily, respectively. Fluoxetine (Flu) was injected intraperitoneally daily. PD98059, an inhibitor of ERK, was injected intraperitoneally 1 h before DHLA injection daily. Small interfering ribonucleic acid (siRNA) for nuclear factor erythroid 2-like (Nrf2) was injected into the bilateral hippocampus 14 days before the DHLA injection. Depression-like behavior tests were performed. Western blot and immunofluorescence staining detected the ERK/Nrf2/HO-1/ROS/NLRP3 pathway-related proteins. Results The DHLA and fluoxetine treatment exerted preventive effects in LPS-induced sickness behavior rats. The DHLA treatment increased the expression of ERK, Nrf2, and HO-1 but decreased the ROS generation levels and reduced the expression of NLRP3, caspase-1, and IL-1β in LPS-induced sickness behavior rats. PD98059 abolished the effects of DHLA on preventive effect as well as the levels of Nrf2 and HO-1 proteins. Similarly, Nrf2 siRNA reversed the preventive effect of DHLA administration via the decreased expression of HO-1. Conclusions These findings suggested that DHLA exerted a preventive effect via ERK/Nrf2/HO-1/ROS/NLRP3 pathway in LPS-induced sickness behavior rats. Thus, DHLA may serve as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Hetao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China.
| | - Junjie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Yage Zheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Hui Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| |
Collapse
|
31
|
Qi R, Zhang W, Zheng L, Xu M, Rong R, Zhu T, Yang C. Cyclic helix B peptide ameliorates renal tubulointerstitial fibrosis induced by unilateral ureter obstruction via inhibiting NLRP3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:167. [PMID: 32309314 PMCID: PMC7154394 DOI: 10.21037/atm.2020.02.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Renal fibrosis is the inevitable outcome of all progressive chronic kidney diseases (CKD) and leads to a gradual loss of renal function. We previously reported cyclic helix B peptide (CHBP), a novel synthesized peptide derived from erythropoietin, had shown effective renoprotection. In this study, we investigated the anti-fibrotic and renoprotective effect of CHBP in a murine renal tubulointerstitial fibrosis model induced by unilateral ureter obstruction (UUO). Methods Mice were subjected to the UUO model and CHBP was given intraperitoneally. To assess the therapeutic effects of CHBP, pathological injury, deposition of extracellular matrix (ECM) and the progression of epithelial-mesenchymal transition (EMT) were examined in vivo. The anti-fibrotic effects of CHBP was validated in vitro using TCMK-1 cells treated with TGF-β1. Involvement of the NLRP3 pathway was demonstrated both in vivo and in vitro. Results CHBP significantly ameliorated renal tubulointerstitial injury and fibrosis in terms of ECM deposition. The EMT process was also alleviated after CHBP treatment. Similar therapeutic effects of CHBP were also observed in vitro in TGF-β1 treated tubular epithelial cells (TECs). NLRP3/caspase-1/IL-1β pathway was involved and activated upon injury, both in vivo and in vitro. While the activation of the NLRP3 pathway was found to be in negative correlation with CHBP treatment. CHBP could suppress the activation of NLRP3 and its downstream inflammatory mediators even with addition of extracellular ATP, a direct activator of the NLRP3 inflammasome. Conclusions Our results suggest that CHBP could effectively protect the kidney from renal tubulointerstitial fibrosis in the UUO model via counteracting the NLRP3/caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Ruochen Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| |
Collapse
|
32
|
Hongyan L, Mengjiao Z, Chunyan W, Yaruo H. Rhynchophyllin attenuates neuroinflammation in Tourette syndrome rats via JAK2/STAT3 and NF-κB pathways. ENVIRONMENTAL TOXICOLOGY 2019; 34:1114-1120. [PMID: 31231976 DOI: 10.1002/tox.22813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was designed to investigate the effects of rhynchophyllin (RH) on neuroinflammation in Tourette syndrome (TS) rats. TS model was established in rats by the injection of selective 5-HT2A/2C agonist 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Behavior in DOI-induced rats was tested. Inflammatory cytokines levels such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in serum and striatum were detected. The expression levels of janus kinase 2 (JAK2)/signal transducer and transcription activator 3 (STAT3) and nuclear factor (NF)-κB pathways in striatum were measured by Western blot. Data indicated that RH can significantly reduce the numbers of nodding experiment of TS rats. RH significantly decreased IL-6, IL-1β, and TNF-α in serum and striatum of TS rats, with altered expression of P-JAK2, P-STAT3, P-NF-κBp65, and P-IκBα in TS rats, as evidenced by Western blot analysis and immunohistochemistry, suggesting that the regulation of JAK2/STAT3 and NF-κB pathways might be involved in the mechanism of RH on TS.
Collapse
Affiliation(s)
- Long Hongyan
- Central Laboratory, Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Wang Chunyan
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huang Yaruo
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|