1
|
Zhan S, Chen J, Wei L, Gan S, Zhang Q, Fu H. Allergic diseases and T2DM: a bidirectional multivariable Mendelian randomization study and mediation analysis. J Asthma 2025; 62:655-673. [PMID: 39541335 DOI: 10.1080/02770903.2024.2430368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Clinical studies involving observation have uncovered a mutual relationship between allergic disorders and diabetes, yet the precise causal link remains undetermined. METHODS We conducted two-sample bidirectional Mendelian randomization analyses using single nucleotide polymorphisms (SNPs) associated with allergic conditions (asthma, allergic rhinitis, atopic dermatitis) from genome-wide studies and SNPs related to type 2 diabetes from FinnGen. Initially, we evaluated the causal link between allergic disorders and type 2 diabetes through a univariate Mendelian randomization study, incorporating inverse variance weighting, MR-Egger, and the weighted median estimator. To address potential confounding, we employed multivariate Mendelian randomization. Finally, we validated mediators influencing the correlation between asthma and type 2 diabetes. RESULTS The Inverse variance weighted method showed that asthma genetically increased the risk of type 2 diabetes [Asthma-type 2 diabetes: β(95%CI)=0.892 (0.152-1.632), p = 0.018]. Allergic rhinitis and type 2 diabetes exhibit a mutual protective effect: β(95% CI)=-1.333 (-2.617 to -0.049), p = 0.042; type 2 diabetes-Allergic rhinitis: β(95%CI)=-0.002 (-0.004 to -0.000), p = 0.018. The Multivariable Mendelian randomization study results showed that after excluding confounding factors, asthma still demonstrates statistical significance in relation to type 2 diabetes. Through mediation analysis, it was discovered that lung function and the percentage of monocytes in leukocytes exert an inhibitory effect on the mediation between asthma and type 2 diabetes. CONCLUSION The Multivariable Mendelian randomization study indicates asthma as a risk factor for type 2 diabetes. Lung function, and the percentage of monocytes in leukocytes, play an inhibitory role in asthma and type 2 diabetes mediating effects.
Collapse
Affiliation(s)
- Shukun Zhan
- Department of Pediatrics, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Jinhua Chen
- Follow-Up Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lingxue Wei
- Department of Pediatrics, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Siyu Gan
- Department of Pediatrics, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Qi Zhang
- Department of Pediatrics, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Haiying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| |
Collapse
|
2
|
Ebubechukwu U, Geraghty P. Genesis of concurrent diseases: do diabetes mellitus and idiopathic pulmonary fibrosis have a direct relationship? Thorax 2025; 80:123-124. [PMID: 39848685 DOI: 10.1136/thorax-2024-222754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Affiliation(s)
| | - Patrick Geraghty
- Medicine, SUNY Downstate Medical Center, New York, New York, USA
| |
Collapse
|
3
|
Tsai YM, Lee YH, Chang CY, Tsai HP, Wu YY, Lee HC, Wu LY, Ong CT, Sun CH, Tsai MJ, Hsu YL. Characterizing the diabetes-induced pathological changes of the mouse lung by single-cell RNA sequencing. Life Sci 2025; 363:123408. [PMID: 39832739 DOI: 10.1016/j.lfs.2025.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Pulmonary disorders are exacerbated by high blood sugar, leading to a disordered immune defense and increased susceptibility to infection. Type 2 diabetes mellitus (T2D) is characterized by insulin resistance and inadequate insulin production. Mechanisms leading to pulmonary alternation due to T2D are not clear. The advancements in single-cell RNA sequencing aid in characterizing the effects of T2D on lungs and its altered mechanisms. Our results first revealed that in late-stage diabetic mice, the number of immune cells in the lungs significantly increased, with these immune cells predominantly being immature polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). At the early stages of diabetes, alveolar cell type I and type II (AT I & II) exhibited a mesenchymal phenotype and showed reduced expression of several key cytokines essential for maintaining lung immunity, including Cxcl15, Cxcl14, and Il34. Additionally, the antigen-presenting cell function of AT II, resulting from the downregulation of several MHC type II proteins, was markedly diminished in diabetic mice. Moreover, decreased expressions of interferon-related genes Ifnar1 and Ifnar2, along with impaired Sftpd expression, compromised lung immunity impairment in diabetic mice. These pathogenic changes contributed to the increased susceptibility and severity of respiratory syncytial virus and tuberculosis in the lung of diabetes. In addition to alveolar cells, pulmonary capillary endothelial cells also exhibited an immature transition phenotype, with a significant increase in angiogenic capacity. Our findings provided a comprehensive exploration of lung pathology under the influence of diabetes and explained the multiple factors impacting lung immunity in diabetic conditions.
Collapse
MESH Headings
- Animals
- Mice
- Lung/pathology
- Lung/immunology
- Lung/metabolism
- Single-Cell Analysis/methods
- Sequence Analysis, RNA/methods
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/immunology
- Male
Collapse
Affiliation(s)
- Ying-Ming Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | | | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Hsiao-Chen Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Chai-Tung Ong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan
| | - Chien-Hui Sun
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; National Pingtung University of Science and Technology, Department of Biological Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan.
| |
Collapse
|
4
|
Fan Q, Meng Y, Nie Z, Yi Z, Chen L, Xie S. The role of inflammatory factors in mediating the causal effects of type 1 diabetes mellitus on idiopathic pulmonary fibrosis: A two-step Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41320. [PMID: 39854757 PMCID: PMC11771656 DOI: 10.1097/md.0000000000041320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
While recent studies suggested a potential causal link between type 1 diabetes mellitus (T1DM) but not type 2 diabetes mellitus (T2DM) and idiopathic pulmonary fibrosis (IPF), the involved mechanism remains unclear. Here, using a Mendelian randomization (MR) approach, we verified the causal relationship between the two types of diabetes mellitus and IPF and investigated the possible role of inflammation in the association between diabetes mellitus and IPF. Based on genome-wide association study (GWAS) summary data of T1DM, T2DM, and IPF, the univariable MR, multivariable MR (MVMR), and mediation MR were successively used to analyze the causal relationship. Inverse variance weighted was used as the main method to infer the causal effect, together with a series of sensitivity analyses. The univariable MR showed that only T1DM increased the risk of IPF, and there was no significant causal relationship between T2DM and IPF. The MVMR further verified that there was an independent direct causal effect of T1DM on IPF. Further mediation analysis showed that this effect was partly mediated by increasing C-X-C motif chemokine ligand 10 (CXCL10) and interleukin-12 subunit beta (IL-12B). In conclusion, T1DM is related to an increased risk of IPF. Notably, the causal effect was partially mediated by CXCL10 and IL-12B. Hence, monitoring T1DM patients may help in the early detection and prevention of IPF.
Collapse
Affiliation(s)
- Qinglu Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Meng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihao Nie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuohuizi Yi
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liao Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Al-Beltagi M, Bediwy AS, Saeed NK, Bediwy HA, Elbeltagi R. Diabetes-inducing effects of bronchial asthma. World J Diabetes 2025; 16:97954. [PMID: 39817208 PMCID: PMC11718464 DOI: 10.4239/wjd.v16.i1.97954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/12/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The relationship between diabetes mellitus (DM) and asthma is complex and can impact disease trajectories. AIM To explore the bidirectional influences between the two conditions on clinical outcomes and disease control. METHODS We systematically reviewed the literature on the relationship between DM and asthma, focusing on their impacts, mechanisms, and therapeutic implications. Various studies were assessed, which investigated the effect of glycemic control on asthma outcomes, lung function, and exacerbations. The study highlighted the role of specific diabetes medications in managing asthma. RESULTS The results showed that poor glycemic control in diabetes can exacerbate asthma, increase hospitalizations, and reduce lung function. Conversely, severe asthma, especially in obese individuals, can complicate diabetes management and make glycemic control more difficult. The diabetes-associated mechanisms, such as inflammation, microangiopathy, and oxidative stress, can exacerbate asthma and decrease lung function. Some diabetes medications exhibit anti-inflammatory effects that show promise in mitigating asthma exacerbations. CONCLUSION The complex interrelationship between diabetes and asthma suggests bidirectional influences that affect disease course and outcomes. Inflammation and microvascular complications associated with diabetes may worsen asthma outcomes, while asthma severity, especially in obese individuals, complicates diabetes control. However, the current research has limitations, and more diverse longitudinal studies are required to establish causal relationships and identify effective treatment strategies for individuals with both conditions.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 26671, Manama, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| | | | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
6
|
Wang J, Li Y, Chen H, Wang J. Vascular volume changes in radiological patterns of usual interstitial pneumonia in patients with type 2 diabetes. Diabetol Metab Syndr 2024; 16:298. [PMID: 39696634 DOI: 10.1186/s13098-024-01551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE This research primarily focuses on exploring the changes in intrapulmonary vascular volume (IPVV) in radiological patterns of usual interstitial pneumonia (UIP) associated with Type 2 Diabetes Mellitus (T2DM), thereby inferring the possible mechanisms of the co-occurrence of diabetes and UIP patterns. METHODS Thin-layer data were post-processed on the basis of high-resolution computed tomography (HRCT) and quantitatively assessed for IPVV. Changes in IPVV were compared between T2DM combined with UIP modality and T2DM non-UIP modality. Correlations between UIP patterns and various markers and confounders, including IPVV, were determined via logistic regression analysis. In this study, the potential of IPVV as a predictor for UIP presence was analysed through the application of subject operating characteristic curve analysis. RESULTS In patients with T2DM, the IPVV demonstrated smaller size in those with combined UIP patterns compared to T2DM patients without UIP patterns (164.4 ± 68.7 vs 202.9 ± 76.3 mL, P = 0.005). We detected a positive correlation between IPVV levels and several variables, including fasting plasma glucose (FPG) (r = 0.404, P < 0.0001), glycated hemoglobin (HbA1c) (r = 0.225, P = 0.022), serum uric acid (SUA) (r = 0.332, P = 0.0007) and HRCT scores (r = 0.288, P = 0.024). Conversely, negative correlations were noted with total cholesterol (TC) (r = -0.220, P = 0.028) and cystatin-C (Cys-C) (r = -0.215, P = 0.038). Multivariate logistic regression analysis identified independent associations between the presence of UIP and several factors: IPVV, age, smoking history, and FPG. In assessing the combined UIP pattern among T2DM patients, IPVV levels exhibited a sensitivity of 70.5% and a specificity of 58.5%, generating an AUC of 0.645. CONCLUSION In individuals diagnosed with T2DM alongside UIP, a substantial decline in IPVV was documented. This diminution correlates with the presence of UIP, suggesting that IPVV may serve as a potent biomarker for detecting UIP patterns in individuals with T2DM. This may suggest that the mechanism behind the co-occurrence of T2DM with UIP patterns is attributed to alterations in the pulmonary microvasculature, potentially representing one of the vascular complications associated with diabetes.
Collapse
Affiliation(s)
- Jiarong Wang
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuanchao Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hao Chen
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jianbo Wang
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
7
|
Saliba F, Khattar G, Mourad O, Aoun L, Bou Sanayeh E, Arafa F, Al Saidi I, Abidor E, Al Achkar M, Rizvi T, Sangaraju K, Di Pietro G, Haddadin F, Almardini S, El Gharib K, El-Hage H. Evaluating the impact of type 2 diabetes mellitus on interstitial lung disease prevalence in patients with systemic lupus erythematosus: A national inpatient sample analysis. Lupus 2024; 33:1547-1555. [PMID: 39401267 DOI: 10.1177/09612033241292162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) increases the risk of interstitial lung disease (ILD). SLE is also linked to an elevated risk of type 2 diabetes mellitus (T2DM). However, the impact of T2DM on ILD risk in patients with SLE is still unclear. This study aimed to compare the prevalence of ILD in patients with SLE based on the presence of T2DM (SLE + T2DM+) or its absence (SLE + T2DM-). METHODS This was a retrospective cohort study using the 2019-2020 National Inpatient Sample database. Adult SLE patients were identified and stratified by T2DM status. Comparable cohorts were created using propensity score matching, resulting in 10,532 patients in each cohort. Multivariate logistic regression assessed the association between T2DM and ILD. RESULTS T2DM was associated with a lower prevalence of ILD in patients with SLE (OR 0.798, 95% CI: 0.695-0.918, p = .002), occurring in 371 (3.5%) patients with T2DM compared to 463 (4.4%) patients without T2DM. Specifically, this difference was mainly driven by pulmonary fibrosis, which was significantly less frequent in the T2DM group (1.3% vs 1.8%, OR 0.7, 95% CI: 0.560-0.875, p = .002). No differences were found in secondary outcomes, including death rates, length of hospital stay, ARDS, pneumothorax, pleural effusion, or pulmonary arterial hypertension. CONCLUSION Our study suggests that T2DM significantly reduced ILD risk in patients with SLE, specifically diminishing pulmonary fibrosis prevalence. Further research should explore mechanisms for this protective association between T2DM and ILD development in SLE. These findings may guide management strategies for this vulnerable population.
Collapse
Affiliation(s)
- Fares Saliba
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Georges Khattar
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Omar Mourad
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Laurence Aoun
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Elie Bou Sanayeh
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Fatema Arafa
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Ibrahim Al Saidi
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Erica Abidor
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Michel Al Achkar
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Taqi Rizvi
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Koushik Sangaraju
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Gaetano Di Pietro
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Fadi Haddadin
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Shaza Almardini
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Khalil El Gharib
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Halim El-Hage
- Department of Pulmonary and Critical Care Medicine, Staten Island University Hospital, Staten Island, NY, USA
| |
Collapse
|
8
|
Pelizzo G, Calcaterra V, Baldassarre P, Marinaro M, Taranto S, Ceresola M, Capelo G, Gazzola C, Zuccotti G. The impact of hormones on lung development and function: an overlooked aspect to consider from early childhood. Front Endocrinol (Lausanne) 2024; 15:1425149. [PMID: 39371928 PMCID: PMC11449876 DOI: 10.3389/fendo.2024.1425149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
The impact of hormones on the respiratory system constitutes a multifaceted and intricate facet of human biology. We propose a comprehensive review of recent advancements in understanding the interactions between hormones and pulmonary development and function, focusing on pediatric populations. We explore how hormones can influence ventilation, perfusion, and pulmonary function, from regulating airway muscle tone to modulating the inflammatory response. Hormones play an important role in the growth and development of lung tissues, influencing them from early stages through infancy, childhood, adolescence, and into adulthood. Glucocorticoids, thyroid hormones, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1), retinoids, cholecalciferol sex steroids, hormones derived from adipose tissue, factors like insulin, granulocyte-macrophage colony-stimulating factor (GM-CSF) and glucagon are key players in modulating respiratory mechanics and inflammation. While ample evidence underscores the impact of hormones on lung development and function, along with sex-related differences in the prevalence of respiratory disorders, further research is needed to clarify their specific roles in these conditions. Further research into the mechanisms underlying hormonal effects is essential for the development of customizing therapeutic approaches for respiratory diseases. Understanding the impact of hormones on lung function could be valuable for developing personalized monitoring approaches in both medical and surgical pediatric settings, in order to improve outcomes and the quality of care for pediatric patients.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| | | | - Michela Marinaro
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | - Silvia Taranto
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| | - Michele Ceresola
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | - Gerson Capelo
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| |
Collapse
|
9
|
Wang Y, Wang X, Du C, Wang Z, Wang J, Zhou N, Wang B, Tan K, Fan Y, Cao P. Glycolysis and beyond in glucose metabolism: exploring pulmonary fibrosis at the metabolic crossroads. Front Endocrinol (Lausanne) 2024; 15:1379521. [PMID: 38854692 PMCID: PMC11157045 DOI: 10.3389/fendo.2024.1379521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
At present, pulmonary fibrosis (PF) is a prevalent and irreversible lung disease with limited treatment options, and idiopathic pulmonary fibrosis (IPF) is one of its most common forms. Recent research has highlighted PF as a metabolic-related disease, including dysregulated iron, mitochondria, lipid, and glucose homeostasis. Systematic reports on the regulatory roles of glucose metabolism in PF are rare. This study explores the intricate relationships and signaling pathways between glucose metabolic processes and PF, delving into how key factors involved in glucose metabolism regulate PF progression, and the interplay between them. Specifically, we examined various enzymes, such as hexokinase (HK), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), pyruvate kinase (PK), and lactate dehydrogenase (LDH), illustrating their regulatory roles in PF. It highlights the significance of lactate, alongside the role of pyruvate dehydrogenase kinase (PDK) and glucose transporters (GLUTs) in modulating pulmonary fibrosis and glucose metabolism. Additionally, critical regulatory factors such as transforming growth factor-beta (TGF-β), interleukin-1 beta (IL-1β), and hypoxia-inducible factor 1 subunit alpha (HIF-1α) were discussed, demonstrating their impact on both PF and glucose metabolic pathways. It underscores the pivotal role of AMP-activated protein kinase (AMPK) in this interplay, drawing connections between diabetes mellitus, insulin, insulin-like growth factors, and peroxisome proliferator-activated receptor gamma (PPARγ) with PF. This study emphasizes the role of key enzymes, regulators, and glucose transporters in fibrogenesis, suggesting the potential of targeting glucose metabolism for the clinical diagnosis and treatment of PF, and proposing new promising avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Yuejiao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Xue Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Chaoqi Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Zeming Wang
- Department of Laboratory, Hebei Provincial People’s Hospital, Shijiazhuang, Hebei, China
| | - Jiahui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Nan Zhou
- Department of Gynecology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Dwivedi J, Wal P, Dash B, Ovais M, Sachan P, Verma V. Diabetic Pneumopathy- A Novel Diabetes-associated Complication: Pathophysiology, the Underlying Mechanism and Combination Medication. Endocr Metab Immune Disord Drug Targets 2024; 24:1027-1052. [PMID: 37817659 DOI: 10.2174/0118715303265960230926113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The "diabetic lung" has been identified as a possible target organ in diabetes, with abnormalities in ventilation control, bronchomotor tone, lung volume, pulmonary diffusing capacity, and neuroadrenergic bronchial innervation. OBJECTIVE This review summarizes studies related to diabetic pneumopathy, pathophysiology and a number of pulmonary disorders including type 1 and type 2 diabetes. METHODS Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL), Scopus, Elsevier, ScienceDirect, and Google Scholar using standard keywords "diabetes," "diabetes Pneumopathy," "Pathophysiology," "Lung diseases," "lung infection" for review articles published between 1978 to 2023 very few previous review articles based their focus on diabetic pneumopathy and its pathophysiology. RESULTS Globally, the incidence of diabetes mellitus has been rising. It is a chronic, progressive metabolic disease. The "diabetic lung" may serve as a model of accelerated ageing since diabetics' rate of respiratory function deterioration is two to three-times higher than that of normal, non-smoking people. CONCLUSION Diabetes-induced pulmonary dysfunction has not gained the attention it deserves due to a lack of proven causality and changes in cellular properties. The mechanism underlying a particular lung illness can still only be partially activated by diabetes but there is evidence that hyperglycemia is linked to pulmonary fibrosis in diabetic people.
Collapse
Affiliation(s)
- Jyotsana Dwivedi
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Biswajit Dash
- Department of Pharmaceutical Technology, ADAMAS University, West Bengal, India
| | | | - Pranjal Sachan
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | | |
Collapse
|
11
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
13
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
14
|
Yadav R, Kailashiya V, Sharma HB, Pandey R, Bhagat P. Persistent Hyperglycemia Worsens the Oleic Acid Induced Acute Lung Injury in Rat Model of Type II Diabetes Mellitus. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:197-204. [PMID: 38235050 PMCID: PMC10790744 DOI: 10.4103/jpbs.jpbs_391_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 01/19/2024] Open
Abstract
Aim This research aimed to study the impacts of persistent hyperglycemia on oleic acid (OA)-induced acute lung injury (ALI) in a rat model of type II diabetes mellitus. Materials and Methods Healthy adult male albino rats that weigh 150 to 180 g were divided into four groups (n = 6). Group I-saline (75 μL i.v.) was injected and served as a control; group II-OA (75 μL i.v.) was injected to induce ALI. Group III-pretreated with a high-fat diet and streptozotocin (35 mg/kg), was injected with saline, and served as a control for group IV. Group IV was pretreated with a high-fat diet, and streptozotocin (35 mg/kg) was injected with OA (75 μL i.v). Urethane was used to anesthetize the animal. The jugular venous cannulation was done for drug/saline administration, carotid artery cannulation was done to record blood pressure, and the tracheal cannulation was done to maintain the respiratory tract's patent. Heart rate, mean arterial pressure, and respiratory frequency were recorded on a computerized chart recorder; an arterial blood sample was collected to measure PaO2/FiO2. Additionally, the pulmonary water content and lung histology were examined. Result Hyperglycemic rats showed no significant change in the cardio-respiratory parameter. Histology of the lungs shows fibroblastic proliferation; however, rats survived throughout the observation period. There was an early deterioration of all the cardio-respiratory parameters in hyperglycemic rats when induced ALI (OA- induced), and survival time was significantly less compared to nonhyperglycemic rats. Conclusion Persistent hyperglycemia may cause morphological changes in the lungs, which worsens the outcome of acute lung injury.
Collapse
Affiliation(s)
- Rinkoo Yadav
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hanjabam B. Sharma
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ratna Pandey
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyanka Bhagat
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
15
|
Aryankalayil MJ, Bylicky MA, Martello S, Chopra S, Sproull M, May JM, Shankardass A, MacMillan L, Vanpouille-Box C, Eke I, Scott KMK, Dalo J, Coleman CN. Microarray analysis of hub genes, non-coding RNAs and pathways in lung after whole body irradiation in a mouse model. Int J Radiat Biol 2023; 99:1702-1715. [PMID: 37212632 PMCID: PMC10615684 DOI: 10.1080/09553002.2023.2214205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE Previous research has highlighted the impact of radiation damage, with cancer patients developing acute disorders including radiation induced pneumonitis or chronic disorders including pulmonary fibrosis months after radiation therapy ends. We sought to discover biomarkers that predict these injuries and develop treatments that mitigate this damage and improve quality of life. MATERIALS AND METHODS Six- to eight-week-old female C57BL/6 mice received 1, 2, 4, 8, 12 Gy or sham whole body irradiation. Animals were euthanized 48 h post exposure and lungs removed, snap frozen and underwent RNA isolation. Microarray analysis was performed to determine dysregulation of messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA) after radiation injury. RESULTS We observed sustained dysregulation of specific RNA markers including: mRNAs, lncRNAs, and miRNAs across all doses. We also identified significantly upregulated genes that can indicate high dose exposure, including Cpt1c, Pdk4, Gdf15, and Eda2r, which are markers of senescence and fibrosis. Only three miRNAs were significantly dysregulated across all radiation doses: miRNA-142-3p and miRNA-142-5p were downregulated and miRNA-34a-5p was upregulated. IPA analysis predicted inhibition of several molecular pathways with increasing doses of radiation, including: T cell development, Quantity of leukocytes, Quantity of lymphocytes, and Cell viability. CONCLUSIONS These RNA biomarkers might be highly relevant in the development of treatments and in predicting normal tissue injury in patients undergoing radiation treatment. We are conducting further experiments in our laboratory, which includes a human lung-on-a-chip model, to develop a decision tree model using RNA biomarkers.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aman Shankardass
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin M K Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
16
|
Chen S, Li M, Zhang R, Ye L, Jiang Y, Jiang X, Peng H, Wang Z, Guo Z, Chen L, Zhang R, Niu Y, Aschner M, Li D, Chen W. Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM 2.5-induced lung injury: a comparative study. Part Fibre Toxicol 2023; 20:10. [PMID: 37069663 PMCID: PMC10108512 DOI: 10.1186/s12989-023-00526-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated. RESULTS Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-β-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice. CONCLUSIONS These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhanyu Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Han Z, Andrš M, Madhavan BK, Kaymak S, Sulaj A, Kender Z, Kopf S, Kihm L, Pepperkok R, Janscak P, Nawroth P, Kumar V. The importance of nuclear RAGE-Mcm2 axis in diabetes or cancer-associated replication stress. Nucleic Acids Res 2023; 51:2298-2318. [PMID: 36807739 PMCID: PMC10018352 DOI: 10.1093/nar/gkad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.
Collapse
Affiliation(s)
- Zhe Han
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Martin Andrš
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14300 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Bindhu K Madhavan
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Serap Kaymak
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Alba Sulaj
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Zoltan Kender
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Lars Kihm
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Rainer Pepperkok
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14300 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, Heidelberg, Germany
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
18
|
Varun K, Zoltan K, Alba S, Manuel B, Elisabeth K, Dimitrios T, Jan B G, Maik B, Khurrum S, Berend I, Stephen H, Thomas F, Julia S, Peter N, Stefan K. Elevated markers of DNA damage and senescence are associated with the progression of albuminuria and restrictive lung disease in patients with type 2 diabetes. EBioMedicine 2023; 90:104516. [PMID: 36934657 PMCID: PMC10025008 DOI: 10.1016/j.ebiom.2023.104516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND This study was conducted to investigate the cascade involving DNA damage, senescence, and senescence-associated secretory phenotype (SASP) in experimental diabetes and in a four-year follow-up study in patients with pre-diabetes and type 2 diabetes. METHODS Kidney, lung, and liver were studied in 4 months diabetic db/db mice and age-matched controls for the presence of DNA damage and fibrosis. DNA damage (comet-tail-length and ɤH2Ax-positivity in white blood cells), urinary p21-excretion, and plasma IL-6 and TGF-β1 were determined from 115 healthy participants, 34 patients with pre-diabetes and 221 with type 2 diabetes. Urinary albumin-creatinine-ratio, lung function, and transient elastography of the liver were performed in a prospective follow-up study over 4 years. FINDINGS db/db mice showed an increased nuclear ɤH2AX signal in all tissues as compared to the background control. Markers for DNA damage, senescence, and SASP were increased in patients with diabetes. The presence of nephropathy, restrictive lung disease (RLD), and increased liver stiffness was in a cross-sectional design associated with increased markers for DNA damage, senescence, and SASP. The progression of nephropathy over 4 years was predicted by increased DNA damage, senescence, and SASP, while the progression of RLD was associated with increased DNA damage and IL-6 only. The progression of liver stiffness was not associated with any of these parameters. HbA1c was not predictive for progression. INTERPRETATION In db/db mice, the cascade of DNA damage is associated with diabetes-related complications. In patients with diabetes, the progression of complications in the kidney and lung is predicted by markers reflecting DNA damage, and senescence-triggered organ fibrosis. FUNDING This work was supported by the German Research Foundation (DFG) in the CRC 1118 and CRC 1158, by the GRK DIAMICOM, by the German Center for Diabetes Research (DZD e.V.), and by the Ministry of Science, Research and the Arts, Baden-Württemberg (Kompetenznetzwerk Präventivmedizin).
Collapse
Affiliation(s)
- Kumar Varun
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Kender Zoltan
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sulaj Alba
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Blume Manuel
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Kliemank Elisabeth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tsilingiris Dimitrios
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Groener Jan B
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medicover Neuroendokrinologie, Munich, Germany
| | - Brune Maik
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Shahzad Khurrum
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital of Leipzig, Germany
| | - Isermann Berend
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital of Leipzig, Germany
| | - Herzig Stephen
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Helmholtz Diabetes Center, Institute for Diabetes and Cancer, Helmholtz Center Munich, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Fleming Thomas
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Szendroedi Julia
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Nawroth Peter
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Kopf Stefan
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
19
|
Uppal P, Mohammed SA, Rajashekar S, Giri Ravindran S, Kakarla M, Ausaja Gambo M, Yousri Salama M, Haidar Ismail N, Tavalla P, Hamid P. Type 2 Diabetes Mellitus and Asthma: Pathomechanisms of Their Association and Clinical Implications. Cureus 2023; 15:e36047. [PMID: 37056543 PMCID: PMC10089620 DOI: 10.7759/cureus.36047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and asthma are chronic illnesses concomitantly present in a significant percentage of the population. Their comorbidity is associated with poor disease control and lower quality of life, thus imposing a substantial medical and economic burden worldwide. This review investigates the association between asthma and T2DM, in terms of pathogenesis, clinical outcomes, and therapeutic opportunities. Our review found an increased risk of asthma among diabetics, and vice versa. Having diabetes and poor glycemic control is associated with an increased rate of asthma exacerbations and increased mortality among those hospitalized for asthma exacerbations. The mechanisms postulated for the diabetes-asthma association include chronic low-grade inflammation, obesity, hyperinsulinemia, and possibly diabetic pneumopathy. Usage of metformin, which is the first-line drug for type 2 diabetes, was found to be associated with a decreased asthma occurrence, asthma exacerbations, and asthma-related hospitalizations. Glucagon-like peptide 1 receptor agonists were also found to be associated with a lower occurrence of asthma exacerbations. Thiazolidinediones are also associated with lower rates of asthma exacerbations, but their clinical efficacy for the same was suggested to be limited. This literature review supports a partly causative association between asthma and diabetes. This comorbidity leads to poor patient compliance, worse disease outcomes, and poor quality of life. Thus, further studies are warranted to explore the prognostic implications, therapeutic opportunities, and specific clinical practice algorithms for patients with concurrent asthma and type 2 diabetes mellitus.
Collapse
|
20
|
Zhang L, Jiang F, Xie Y, Mo Y, Zhang X, Liu C. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne) 2023; 14:1073878. [PMID: 37025413 PMCID: PMC10071002 DOI: 10.3389/fendo.2023.1073878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 04/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic condition with a high global morbidity and mortality rate that affects the whole body. Their primary consequences are mostly caused by the macrovascular and microvascular bed degradation brought on by metabolic, hemodynamic, and inflammatory variables. However, research in recent years has expanded the target organ in T2DM to include the lung. Inflammatory lung diseases also impose a severe financial burden on global healthcare. T2DM has long been recognized as a significant comorbidity that influences the course of various respiratory disorders and their disease progress. The pathogenesis of the glycemic metabolic problem and endothelial microangiopathy of the respiratory disorders have garnered more attention lately, indicating that the two ailments have a shared history. This review aims to outline the connection between T2DM related endothelial cell dysfunction and concomitant respiratory diseases, including Coronavirus disease 2019 (COVID-19), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Faming Jiang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Xie
- Department of Nephrology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Xin Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| |
Collapse
|
21
|
Laursen JC, Mizrak HI, Kufaishi H, Hecquet SK, Stougaard EB, Tougaard NH, Frimodt-Møller M, Hansen TW, Hansen CS, Rossing P. Lower Blood Oxygen Saturation is Associated With Microvascular Complications in Individuals With Type 1 Diabetes. J Clin Endocrinol Metab 2022; 108:99-106. [PMID: 36137008 DOI: 10.1210/clinem/dgac559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Blood oxygen saturation (SpO2) is lower in type 1 diabetes (T1D) compared with nondiabetic controls. Hypoxia (low tissue oxygenation) is thought to be a risk factor for progression of diabetic complications, but it is unknown whether hypoxemia (low SpO2) is associated with diabetic complications. OBJECTIVE To test if hypoxemia is associated with presence of diabetic complications in T1D. DESIGN, SETTING, AND METHODS Cross-sectional study in persons with T1D divided by a previously suggested threshold in low (<96%) and high (≥96%) SpO2, measured in the supine position with pulse oximetry. Complications included albuminuria (2 of 3 consecutive measurements ≥30 mg/g), any diabetic retinopathy, neuropathy, and history of cardiovascular disease (CVD). Odds ratios were adjusted for age, diabetes duration, sex, smoking, physical activity, body mass index, systolic blood pressure, and blood hemoglobin. RESULTS We included 659 persons, 23 (3.5%) with low and 636 (96.5%) with high SpO2. In total, 151 (23%) had albuminuria, 233 (36%) had retinopathy, 231 (35%) had neuropathy, and 72 (11%) had CVD. The adjusted odds ratio (95% CI, P value) for low vs high SpO2 was 3.4 (1.3-8.7, P = 0.01) for albuminuria, 2.8 (1.0-7.5, P = 0.04) for retinopathy, 5.8 (1.8-18.6, P < 0.01) for neuropathy, and nonsignificant for CVD (0.6 [0.2-2.4, P = 0.51]). CONCLUSIONS SpO2 below 96% was associated with increased presence of albuminuria, retinopathy, and neuropathy in T1D, but not with CVD. Whether hypoxemia could be a target of intervention to prevent progression in microvascular disease in type 1 diabetes should be investigated.
Collapse
Affiliation(s)
| | - Hatice Isik Mizrak
- Complications Research, Steno Diabetes Center Copenhagen, Capital Region, Denmark
| | - Huda Kufaishi
- Complications Research, Steno Diabetes Center Copenhagen, Capital Region, Denmark
| | | | | | - Ninna Hahn Tougaard
- Complications Research, Steno Diabetes Center Copenhagen, Capital Region, Denmark
| | - Marie Frimodt-Møller
- Complications Research, Steno Diabetes Center Copenhagen, Capital Region, Denmark
| | - Tine Willum Hansen
- Complications Research, Steno Diabetes Center Copenhagen, Capital Region, Denmark
| | | | - Peter Rossing
- Complications Research, Steno Diabetes Center Copenhagen, Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Nawroth PP, Kumar V, Kopf S. Diabetische Folgeschäden: Eine Erkrankung der DNA? – Paul-Langerhans-Medaille 2022 – eine Kurzübersicht über den Preisträger Peter Nawroth. DIABETOL STOFFWECHS 2022. [DOI: 10.1055/a-1902-4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Hyrylä VV, Rissanen APE, Peltonen JE, Koponen AS, Tikkanen HO, Tarvainen MP. Altered Expiratory Flow Dynamics at Peak Exercise in Adult Men With Well-Controlled Type 1 Diabetes. Front Physiol 2022; 13:836814. [PMID: 35250637 PMCID: PMC8894884 DOI: 10.3389/fphys.2022.836814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes may, in time, cause lung dysfunction including airflow limitation. We hypothesized that ventilatory flow morphology during a cardiopulmonary exercise test (CPET) would be altered in adult men with well-controlled type 1 diabetes. Thirteen men with type 1 diabetes [glycated hemoglobin A1c 59 (9) mmol/mol or 7.5 (0.8)%, duration of diabetes 12 (9) years, and age 33.9 (6.6) years] without diagnosed diabetes-related complications and 13 healthy male controls [age 37.2 (8.6) years] underwent CPET on a cycle ergometer (40 W increments every 3 min until volitional fatigue). We used a principal component analysis based method to quantify ventilatory flow dynamics throughout the CPET protocol. Last minute of each increment, peak exercise, and recovery were examined using linear mixed models, which accounted for relative peak oxygen uptake and minute ventilation. The type 1 diabetes participants had lower expiratory peak flow (P = 0.008) and attenuated slope from expiration onset to expiratory peak flow (P = 0.012) at peak exercise when compared with the healthy controls. Instead, during submaximal exercise and recovery, the type 1 diabetes participants possessed similar ventilatory flow dynamics to that of the healthy controls. In conclusion, men with relatively well-controlled type 1 diabetes and without clinical evidence of diabetes-related complications exhibited attenuated expiratory flow at peak exercise independently of peak oxygen uptake and minute ventilation. This study demonstrates that acute exercise reveals alterations in ventilatory function in men with type 1 diabetes but not until peak exercise.
Collapse
Affiliation(s)
- Vesa V. Hyrylä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Vesa V. Hyrylä,
| | - Antti-Pekka E. Rissanen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
- HULA—Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Juha E. Peltonen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
- HULA—Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Anne S. Koponen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Heikki O. Tikkanen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mika P. Tarvainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|