1
|
Yamada G, Hashimoto D, Fujimoto K, Nakata M, Asamura S, Kawakami Y, Lwigale P. Topohistological alignments of ocular/penile organs. Anat Sci Int 2025:10.1007/s12565-025-00844-3. [PMID: 40358900 DOI: 10.1007/s12565-025-00844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Mammalian visual and genital (hereafter mainly penile) organs have been extensively studied albeit separately. Both organ systems contain sensation devices necessary for visual perception and sexual intercourse. Their terminal structures are covered with eyelid/prepuce followed by the sensitive epithelia of cornea/glans facing the eyeball and glans. These structures have been closely studied in humans for appropriate visual perception and copulation and have thus been treated by numerous surgeries for long periods. Despite the vastly divergent anatomy and physiological functions, there are a few intriguing topohistological similarities for both structures, functions, and pathology. The current article focuses on such features from various viewpoints.
Collapse
Affiliation(s)
- Gen Yamada
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan.
- Department of Plastic Reconstructive Surgery and Developmental Genetics, Wakayama Medical university, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan.
| | - Daiki Hashimoto
- Department of Physiology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
2
|
Taylor BE, Howell SJ, Lee C, Taylor Z, Barber K, Taylor PR. Diabetes-Mediated STEAP4 Enhances Retinal Oxidative Stress and Impacts the Development of Diabetic Retinopathy. Antioxidants (Basel) 2025; 14:205. [PMID: 40002391 PMCID: PMC11851923 DOI: 10.3390/antiox14020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic retinopathy is the most common diabetic complication of the microvasculature and one of the leading causes of acquired vision loss worldwide. Yet, the current treatments for this blinding disease are futile to many diabetics. Accordingly, new biomarkers and therapeutics for diabetic retinopathy are needed. We discovered that STEAP4 (Six-Transmembrane Epithelial Antigen of the Prostate 4) is significantly increased in peripheral blood mononuclear cells of diabetics. STEAP4 expression was gradiently increased from low levels in diabetics without retinopathy to successively higher levels in diabetics with more severe disease. Although the role of STEAP4 in the diabetic retina is unclear, these results provide strong evidence that this metabolic enzyme could be a potential biomarker for diabetic retinopathy progression. Thus, the central goal of this study was to evaluate if this potential biomarker impacts the intrinsic pathologies that lead to the development of diabetic retinopathy. In diabetic mice, STEAP4 was significantly increased and co-localized with 4-Hydroxy-2-nonenal in the Müller glia and photoreceptor layers of the retina. STEAP4 inhibition significantly decreased reactive oxygen species in murine photoreceptor cells, human Müller glia, and retinas of diabetic mice. Administering an intravitreal injection of anti-STEAP4 to diabetic mice halted Occludin degradation in the retinal vasculature. Similarly, anti-STEAP4 treatment of human retina endothelial cells halted cell death mediated by diabetic donor sera. Collectively, our findings provide strong evidence that STEAP4 impacts the intrinsic pathologies that initiate the development of diabetic retinopathy. Suggesting that STEAP4 could be a novel biomarker and clinically relevant therapeutic target for this diabetic complication and blinding disease.
Collapse
Affiliation(s)
- Brooklyn E. Taylor
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; (B.E.T.); (S.J.H.); (C.L.); (K.B.)
- Department of Ophthalmology and Vision Science, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Scott J. Howell
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; (B.E.T.); (S.J.H.); (C.L.); (K.B.)
| | - Chieh Lee
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; (B.E.T.); (S.J.H.); (C.L.); (K.B.)
- Department of Ophthalmology and Vision Science, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Zakary Taylor
- Department of Ophthalmology and Vision Science, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Katherine Barber
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; (B.E.T.); (S.J.H.); (C.L.); (K.B.)
| | - Patricia R. Taylor
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; (B.E.T.); (S.J.H.); (C.L.); (K.B.)
- Department of Ophthalmology and Vision Science, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
3
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Buliga-Finis ON, Ouatu A, Cucu AI, Botoc T, Costea CF. Enhancing Retinal Resilience: The Neuroprotective Promise of BDNF in Diabetic Retinopathy. Life (Basel) 2025; 15:263. [PMID: 40003672 PMCID: PMC11856995 DOI: 10.3390/life15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision impairment worldwide, is characterized by progressive damage to the retina due to prolonged hyperglycemia. Despite advances in treatment, current interventions largely target late-stage vascular complications, leaving underlying neurodegenerative processes insufficiently addressed. This article explores the crucial role in neuronal survival, axonal growth, and synaptic plasticity and the neuroprotective potential of Brain-Derived Neurotrophic Factor (BDNF) as a therapeutic strategy for enhancing retinal resilience in DR. Furthermore, it discusses innovative delivery methods for BDNF, such as gene therapy and nanocarriers, which may overcome the challenges of achieving sustained and targeted therapeutic levels in the retina, focusing on early intervention to preserve retinal function and prevent vision loss.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Andrei Ionut Cucu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University, 720229 Suceava, Romania;
- Department of Neurosurgery, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Tina Botoc
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.B.); (C.F.C.)
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.B.); (C.F.C.)
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
4
|
García DM. Retinal physiology in metabolic syndrome. ADVANCES IN GENETICS 2025; 113:76-101. [PMID: 40409801 DOI: 10.1016/bs.adgen.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Obesity is increasingly recognized not only for its systemic health impacts but also for its association with visual defects and eye diseases. This chapter explores the relationship between obesity and ocular health, highlighting the mechanisms by which metabolic dysregulation influences visual outcomes. Obesity exacerbates risk factors such as hypertension, dyslipidemia, and insulin resistance, which compromise retinal and optic nerve health. Conditions like diabetic retinopathy, age-related macular degeneration, and glaucoma are discussed in the context of obesity-related inflammation, oxidative stress, and altered vascular function, focusing on the retina as one of the body's most metabolically demanding tissues. Key pathways include adipose-derived cytokines that disrupt retinal homeostasis, and the effects of insulin resistance on retinal cells and vasculature. Furthermore, this chapter covers emerging evidence on the advances of genetic factors linking diabetic retinopathy to retinal impairments. By elucidating these interactions, we aim to provide insight into preventive and therapeutic strategies that could mitigate vision loss among individuals with obesity.
Collapse
Affiliation(s)
- David Meseguer García
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
5
|
Singh R, Sindhu J, Singh D, Kumar P. Key molecular scaffolds in the development of clinically viable α-amylase inhibitors. Future Med Chem 2025; 17:347-362. [PMID: 39835704 PMCID: PMC11792802 DOI: 10.1080/17568919.2025.2453421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The escalating cases of type II diabetes combined with adverse side effects of current antidiabetic drugs spurred the advancement of innovative approaches for the management of postprandial glucose levels. α-Amylase is an endoamylase responsible for the breakdown of internal α-1,4-glycosidic linkages in dietary starch, producing oligosaccharides. Subsequently, α-glucosidase degraded these oligosaccharides to monosaccharides, which are absorbed into the bloodstream and become available to the body. The inhibitors of α-amylase reduced the digestibility of carbohydrates accompanied by delayed glucose absorption, leading to decreased blood glucose levels after meals and thus, inhibition of the enzyme seems to be a crucial strategy for diabetes management and improving overall glycemic control in diabetic patients. The present review article emphasizes the therapeutic promise of recently discovered potential α-amylase inhibitors, highlighting their in vitro, in silico and in vivo profiles. Ultimately, we addressed the contemporary challenges and potential routes ahead in the search for safe and reliable α-amylase inhibitors for clinical use, summarizing the most recent research in the field.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- School of Chemistry, Indian Institutes of Science Education and Research, Thiruvananthapuram, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
6
|
Alkharfy KM, Ahmad A, Raish M, Alenazy MF. Thymoquinone Mediates Müller Cell Apoptosis via miR-29b/SP1 Pathway: A Potential Therapeutic Approach in Diabetic Retinopathy. Drug Res (Stuttg) 2025; 75:76-83. [PMID: 39814036 DOI: 10.1055/a-2507-5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This study aims to explore the therapeutic potential of thymoquinone (TQ) in DR by assessing its effects on Müller cell apoptosis through modulation of the miR-29b/SP1 pathway in a diabetic animal model.Healthy C57BL/6 mice (25 g) were used in the study. Retinal samples were collected from both normal and diabetic mice subjected to various treatments: TQ (1 mg/kg/day), glibenclamide (GLB, 250 mg/kg/day), sitagliptin (STG, 10 mg/kg/day), and metformin (MET, 5 mg/kg/day) over a period of 28 days. The study measured miR-29b and SP1 mRNA levels using qRT-PCR. Protein expressions of SP1, Bax, and bcl-2 were analyzed through western blotting, while Caspase-3 activity using an ELISA assay kit, and apoptosis levels by annexin V.TQ administration resulted in a 52% reduction in blood glucose levels. Similarly, GLB, STG, and MET treatments reduced blood glucose by 60%, 57%, and 61%, respectively (p<0.05). In addition, TQ upregulated miR-29b by 51.28% and downregulated SP1 mRNA by 32.52% (p<0.05). Bax protein expression levels were decreased by 64.99%, while Bcl-2 protein expression increased by 62.92% in the TQ treatment group as compared to the untreated diabetic controls. Furthermore, Caspase-3 activity was downregulated by 40.03% with TQ treatment (p<0.05). Interestingly, the effect TQ on SP1 mRNA expression was inhibited by a miR-29b blocker (p<0.05), while an miR-29b mimic enhanced this effect; this was associated with a mitigation of apoptosis of retinal Müller cells as measured by flow cytometry (p<0.05).These results indicate that TQ might be a possible option for DR via its effect on the miR-29b/SP1 pathway; and therefore, playing a significant role in the mechanism against cell death.
Collapse
Affiliation(s)
- Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Maha F Alenazy
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Oliveira S, Guimarães P, Campos EJ, Fernandes R, Martins J, Castelo-Branco M, Serranho P, Matafome P, Bernardes R, Ambrósio AF. Retinal OCT-Derived Texture Features as Potential Biomarkers for Early Diagnosis and Progression of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2025; 66:7. [PMID: 39760689 PMCID: PMC11717131 DOI: 10.1167/iovs.66.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose Diabetic retinopathy (DR) is usually diagnosed many years after diabetes onset. Indeed, an early diagnosis of DR remains a notable challenge, and, thus, developing novel approaches for earlier disease detection is of utmost importance. We aim to explore the potential of texture analysis of optical coherence tomography (OCT) retinal images in detecting retinal changes in streptozotocin (STZ)-induced diabetic animals at "silent" disease stages when early retinal molecular and cellular changes that cannot be clinically detectable are already occurring. Methods Volume OCT scans and electroretinograms were acquired before and 1, 2, and 4 weeks after diabetes induction. Automated OCT image segmentation was performed, followed by retinal thickness and texture analysis. Blood-retinal barrier breakdown, glial reactivity, and neuroinflammation were also assessed. Results Type 1 diabetes induced significant early changes in several texture metrics. At week 4 of diabetes, autocorrelation, correlation, homogeneity, information measure of correlation II (IMCII), inverse difference moment normalized (IDN), inverse difference normalized (INN), and sum average texture metrics decreased in all retinal layers. Similar effects were observed for correlation, homogeneity, IMCII, IDN, and INN at week 2. Moreover, the values of those seven-texture metrics described above decreased throughout the disease progression. In diabetic animals, subtle retinal thinning and impaired retinal function were detected, as well as an increase in the number of Iba1-positive cells (microglia/macrophages) and a subtle decrease in the tight junction protein immunoreactivity, which did not induce any physiologically relevant effect on the blood-retinal barrier. Conclusions The effects of diabetes on the retina can be spotted through retinal texture analysis in the early stages of the disease. Changes in retinal texture are concomitant with biological retinal changes, thus unlocking the potential of texture analysis for the early diagnosis of DR. However, this requires to be proven in clinical studies.
Collapse
Affiliation(s)
- Sara Oliveira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Pedro Guimarães
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Elisa Julião Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering (DEQ), Faculty of Sciences and Technology (FCTUC), Coimbra, Portugal
- University of Coimbra, Center for Neuroscience and Cell Biology (CNC-UC), Coimbra, Portugal
| | - Rosa Fernandes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - João Martins
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Pedro Serranho
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Universidade Aberta, Department of Sciences and Technology, Lisbon, Portugal
| | - Paulo Matafome
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
- Polytechnic University of Coimbra, Health and Technology Research Center (H&TRC), Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Rui Bernardes
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
| | - António Francisco Ambrósio
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
8
|
Newman D, Warren B, Barker R, Wykoff CC, Vujosevic S. Patient and Physician Perspectives of Diabetic Retinopathy and Diabetic Macular Edema Diagnosis, Treatment and Progression: A Podcast Article. Ophthalmol Ther 2025; 14:1-12. [PMID: 39503993 PMCID: PMC11724807 DOI: 10.1007/s40123-024-01053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/04/2024] [Indexed: 01/12/2025] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of vision loss among people of working age. However, people with diabetes are often unaware of the importance of DR screening for preserving vision, highlighting the importance of patient education about DR and DR-related ocular and systemic comorbidities. In this podcast, three patients with different stages of DR and two ophthalmologists exchanged their views on diagnosis, treatment, and progression of DR and diabetic macular edema. The discussion revealed that DR affects not only the physical aspects of patients' lives but also their mental wellbeing. The challenges of a DR diagnosis can be compounded by communication gaps that exist between patients, physicians, and the pharmaceutical industry. Development of new therapies is currently informed mainly by physician perspectives. However, the large burden of current treatments calls for new therapeutic approaches that meet patients' needs better. The preferred method of treatment administration can differ from patient to patient and the choices between treatments that necessitate repeated visits, monitoring, and at-home care must be discussed. As such, going forward it is crucial to consider both the physician and patient perspectives in shaping the clinical landscape of DR.
Collapse
Affiliation(s)
| | | | | | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Stela Vujosevic
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
9
|
Basir H, Nugrahani ASD, Aman AM, Bakri S, Rasyid H, Umar H, H. P. F, Ichsan AM, Zainuddin AA. The association between fibroblast growth factor 21 with diabetes retinopathy among type 2 diabetes mellitus patients: a systematic review, meta-analysis, and meta-regression. PeerJ 2024; 12:e18308. [PMID: 39687000 PMCID: PMC11648683 DOI: 10.7717/peerj.18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/24/2024] [Indexed: 12/18/2024] Open
Abstract
Background Diabetic retinopathy (DR), a leading cause of vision loss worldwide, is a common complication of type 2 diabetes mellitus (T2DM) driven by chronic hyperglycemia and microvascular damage. Fibroblast growth factor 21 (FGF21) is crucial in blood sugar regulation and has been linked to DR incidence and severity. While some studies suggest that FGF21 levels may contribute to the DR incidence, others propose a protective role. This discrepancy necessitates further analysis, prompting this study to evaluate the association between FGF21 levels and DR incidence and severity in T2DM patients. Methods A systematic search was conducted through MEDLINE, Web of Science, Scopus, and Embase up to May 2024 for studies evaluating the association between FGF21 and DR incidence and severity. A random-effect model meta-analysis was performed to calculate the pooled standardized mean difference (SMD) and 95% confidence intervals (CI). A univariate meta-regression was performed to analyze factors influencing pooled size estimates. All statistical analyses were performed using STATA 17 software. Result This systematic review and meta-analysis of 5,852 participants revealed that FGF21 was positively correlated with DR (SMD 3.11; 95% CI [0.92-5.30], p = 0.005) and sight-threatening DR (STDR) incidence (SMD 3.61; 95% CI [0.82-6.41], p = 0.01). There was no significant difference in FGF21 levels in DR vs STDR (p = 0.79). Subgroup analysis revealed a significant difference in DR incidence between LDL groups, with higher DR incidence in the group with low-density lipoprotein (LDL) levels >100 (P < 0.00001). Meta-regression revealed no variables significantly influenced the pooled size estimates. Conclusion A higher level of FGF21 was associated with higher DR and STDR incidence among T2DM patients, highlighting its potential utilization as a biomarker for DR detection and enabling the exploration of FGF21-based treatment strategies. However, variables independently predicting DR among patients with elevated FGF21 levels shall be explored further. PROSPERO ID CRD42024559142.
Collapse
Affiliation(s)
- Herni Basir
- Endocrinology and Metabolism Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | - Andi Makbul Aman
- Endocrinology and Metabolism Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Syakib Bakri
- Department of Internal Medicine, Faculty of Medicine Hasanuddin University, Makassar, Indonesia
| | - Haerani Rasyid
- Department of Internal Medicine, Faculty of Medicine Hasanuddin University, Makassar, Indonesia
| | - Husaini Umar
- Endocrinology and Metabolism Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Faridin H. P.
- Department of Internal Medicine, Faculty of Medicine Hasanuddin University, Makassar, Indonesia
| | - Andi Muhammad Ichsan
- Department of Ophthalmology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Alfian Zainuddin
- Department of Public Health, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
10
|
Medina-Arellano AE, Albert-Garay JS, Medina-Sánchez T, Fonseca KH, Ruiz-Cruz M, Ochoa-de la Paz L. Müller cells and retinal angiogenesis: critical regulators in health and disease. Front Cell Neurosci 2024; 18:1513686. [PMID: 39720707 PMCID: PMC11666533 DOI: 10.3389/fncel.2024.1513686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Müller cells are the most abundant glial cells in the mammalian retina. Their morphology and metabolism enable them to be in close contact and interact biochemically and physically with almost all retinal cell types, including neurons, pericytes, endothelial cells, and other glial cells, influencing their physiology by releasing bioactive molecules. Studies indicate that Müller glial cells are the primary source of angiogenic growth factor secretion in the neuroretina. Because of this, over the past decade, it has been postulated that Müller glial cells play a significant role in maintaining retinal vascular homeostasis, with potential implications in vasoproliferative retinopathies. This review aims to summarize the current understanding of the mechanisms by which Müller glial cells influence retinal angiogenesis in health and disease, with a particular emphasis on three of the retinopathies with the most significant impact on visual health worldwide: diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration.
Collapse
Affiliation(s)
- Alan E. Medina-Arellano
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Jesús Silvestre Albert-Garay
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| | - Tania Medina-Sánchez
- Laboratorio de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Karla Hernández Fonseca
- Laboratorio de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Matilde Ruiz-Cruz
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| | - Lenin Ochoa-de la Paz
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| |
Collapse
|
11
|
Singh V, Panda SP. Nexus of NFκB/VEGF/MMP9 signaling in diabetic retinopathy-linked dementia: Management by phenolic acid-enabled nanotherapeutics. Life Sci 2024; 358:123123. [PMID: 39419266 DOI: 10.1016/j.lfs.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
AIMS The purpose of this review is to highlight the therapeutic effectiveness of phenolic acids in slowing the progression of diabetic retinopathy (DR)-linked dementia by addressing the nuclear factor kappa B (NFκB)/matrix metalloproteinase-9 (MMP9)/vascular endothelial growth factor (VEGF) interconnected pathway. MATERIALS AND METHODS We searched 80 papers published in the last 20 years using terms like DR, dementia, phenolic acids, NFkB/VEFG/MMP9 signaling, and microRNAs (miRs) in databases including Pub-Med, WOS, and Google Scholar. By encasing phenolic acid in nanoparticles and then controlling its release into the targeted tissues, nanotherapeutics can increase their effectiveness. Results were summarized, and compared, and research gaps were identified throughout the data collection and interpretation. KEY FINDINGS Amyloid beta (Aβ) deposition in neuronal cells and drusen sites of the eye leads to the activation of NFkB/VEGF/MMP9 signaling and microRNAs (miR146a and miR155), which in turn energizes the accumulation of pro-inflammatory and pro-angiogenic microenvironments in the brain and retina leading to DR-linked dementia. This study demonstrates the potential of phenolic acid-enabled nanotherapeutics as a functional food or supplement for preventing and treating DR-linked dementia, and oxidative stress-related diseases. SIGNIFICANCE The retina has mechanisms to clear metabolic waste including Aβ, but the activation of NFkB/ MMP9/ VEGF signaling leads to fatal pathological consequences. Understanding the role of miR146a and miR155 provides potential therapeutic avenues for managing the complex pathology shared between DR and dementia. In particular, phenolic acid nanotherapeutics offer a dual benefit in retinal regeneration and dementia management.
Collapse
Affiliation(s)
- Vikrant Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
12
|
Zhao B, Zhao Y, Sun X. Mechanism and therapeutic targets of circulating immune cells in diabetic retinopathy. Pharmacol Res 2024; 210:107505. [PMID: 39547465 DOI: 10.1016/j.phrs.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic retinopathy (DR) continues to be the leading cause of preventable vision loss among working-aged adults, marked by immune dysregulation within the retinal microenvironment. Typically, the retina is considered as an immune-privileged organ, where circulating immune cells are restricted from entry under normal conditions. However, during the progression of DR, this immune privilege is compromised as circulating immune cells breach the barrier and infiltrate the retina. Increasing evidence suggests that vascular and neuronal degeneration in DR is largely driven by the infiltration of immune cells, particularly neutrophils, monocyte-derived macrophages, and lymphocytes. This review delves into the mechanisms and therapeutic targets associated with these immune cell populations in DR, offering a promising and innovative approach to managing the disease.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
13
|
Eyush E, Kumar S, Sen K, Sakarwal A, Ram H, Yadav D, Kumar A, Panwar A. Protective efficacy of nafronyl in diabetic retinopathy through targeted inhibition of key enzymes. Biotechnol Appl Biochem 2024; 71:1243-1261. [PMID: 38898746 DOI: 10.1002/bab.2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Diabetic retinopathy is governed by abnormal apoptosis, increased capillary pressure, and other linked pathology that needs an efficient treatment by multitargeted approaches. Thus, the current study aimed to explore the potential of inhibition of targeted enzymes (DPP4, ACE-2, and aldose reductase) and free radical scavenging capabilities of selected compounds (nafronyl or naftidrofuryl) through in silico and in vivo investigations. Significant binding energies were observed in complexes of aldolase reductase, angiotensin type 1 receptor, and DPP4 against the nafronyl and sitagliptin more than -7.5 kcal/mol. Further validation of free energy was confirmed by calculations of molecular mechanics Poisson-Boltzmann surface area (MMPBSA), and configurational stabilities examined by PCA (principal component analysis). Additionally, drug-likeness was examined by the Swiss ADME web tool, which showed significant findings. Consequently, in vivo experimentations showed significant inflammation and alterations in retinal layers of inner plexiform (inner limiting membrane, nerve fibers, and ganglionic cells), inner nuclear layer (bipolar cells and horizontal cells), and photoreceptors cells. Whereas the treatments (nafronyl and sitagliptin) caused significant improvements in the histoarchitecture of the retina. Additionally, the HOMA indices (IR-insulin resistance, sensitivity, and β cells functioning) and levels of free radicals were significantly altered in the diabetic control group in comparison to intact control. Nafronyl administration showed significant ameliorations in HOMA indices as well as antioxidant levels. Based on the results, it can be concluded that nafronyl efficiently interacts with target enzymes, which may result in potent inhibition and ameliorations in retinal histology as well as glucose homeostasis and antioxidants.
Collapse
Affiliation(s)
- Eyush Eyush
- Department of Biochemistry, Central University of Haryana, Mahendragrah, India
| | - Shivani Kumar
- School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Karishma Sen
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Anita Sakarwal
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Mahendragrah, India
| | - Anil Panwar
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
14
|
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11850. [PMID: 39519401 PMCID: PMC11546760 DOI: 10.3390/ijms252111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood-retina barrier. An increase in the pro-inflammatory cytokines-TNF-α, IL-1β, and IL-6-and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood-retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options.
Collapse
Affiliation(s)
- Jovana V. Srejovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja D. Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia
| | - Suncica B. Sreckovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad T. Petrovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dusan Z. Todorovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Tatjana S. Sarenac Vulovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
15
|
Guo J, Kiryluk K, Wang S. PheW 2P2V: a phenome-wide prediction framework with weighted patient representations using electronic health records. JAMIA Open 2024; 7:ooae084. [PMID: 39282083 PMCID: PMC11401611 DOI: 10.1093/jamiaopen/ooae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
Objective Electronic health records (EHRs) provide opportunities for the development of computable predictive tools. Conventional machine learning methods and deep learning methods have been widely used for this task, with the approach of usually designing one tool for one clinical outcome. Here we developed PheW2P2V, a Phenome-Wide prediction framework using Weighted Patient Vectors. PheW2P2V conducts tailored predictions for phenome-wide phenotypes using numeric representations of patients' past medical records weighted based on their similarities with individual phenotypes. Materials and Methods PheW2P2V defines clinical disease phenotypes using Phecode mapping based on International Classification of Disease codes, which reduces redundancy and case-control misclassification in real-life EHR datasets. Through upweighting medical records of patients that are more relevant to a phenotype of interest in calculating patient vectors, PheW2P2V achieves tailored incidence risk prediction of a phenotype. The calculation of weighted patient vectors is computationally efficient, and the weighting mechanism ensures tailored predictions across the phenome. We evaluated prediction performance of PheW2P2V and baseline methods with simulation studies and clinical applications using the MIMIC-III database. Results Across 942 phenome-wide predictions using the MIMIC-III database, PheW2P2V has median area under the receiver operating characteristic curve (AUC-ROC) 0.74 (baseline methods have values ≤0.72), median max F1-score 0.20 (baseline methods have values ≤0.19), and median area under the precision-recall curve (AUC-PR) 0.10 (baseline methods have values ≤0.10). Discussion PheW2P2V can predict phenotypes efficiently by using medical concept embeddings and upweighting relevant past medical histories. By leveraging both labeled and unlabeled data, PheW2P2V reduces overfitting and improves predictions for rare phenotypes, making it a useful screening tool for early diagnosis of high-risk conditions, though further research is needed to assess the transferability of embeddings across different databases. Conclusions PheW2P2V is fast, flexible, and has superior prediction performance for many clinical disease phenotypes across the phenome of the MIMIC-III database compared to that of several popular baseline methods.
Collapse
Affiliation(s)
- Jia Guo
- Department of Biostatistics, Columbia University, New York, NY 10032, United States
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Shuang Wang
- Department of Biostatistics, Columbia University, New York, NY 10032, United States
| |
Collapse
|
16
|
Cai C, Gu C, Meng C, He S, Thashi L, Deji D, Zheng Z, Qiu Q. Therapeutic Effects of Metformin on Central Nervous System Diseases: A Focus on Protection of Neurovascular Unit. Pharm Res 2024; 41:1907-1920. [PMID: 39375240 DOI: 10.1007/s11095-024-03777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Metformin is one of the most commonly used oral hypoglycemic drugs in clinical practice, with unique roles in neurodegeneration and vascular lesions. Neurodegeneration and vasculopathy coexist in many diseases and typically affect the neurovascular unit (NVU), a minimal structural and functional unit in the central nervous system. Its components interact with one another and are indispensable for maintaining tissue homeostasis. This review focuses on retinal (diabetic retinopathy, retinitis pigmentosa) and cerebral (ischemic stroke, Alzheimer's disease) diseases to explore the effects of metformin on the NVU. Metformin has a preliminarily confirmed therapeutic effect on the retinal NUV, affecting many of its components, such as photoreceptors (cones and rods), microglia, ganglion, Müller, and vascular endothelial cells. Since it rapidly penetrates the blood-brain barrier (BBB) and accumulates in the brain, metformin also has an extensively studied neuronal protective effect in neuronal diseases. Its mechanism affects various NVU components, including pericytes, astrocytes, microglia, and vascular endothelial cells, mainly serving to protect the BBB. Regulating the inflammatory response in NVU (especially neurons and microglia) may be the main mechanism of metformin in improving central nervous system related diseases. Metformin may be a potential drug for treating diseases associated with NVU deterioration, however, more trials are needed to validate its timing, duration, dose, clinical effects, and side effects.
Collapse
Affiliation(s)
- Chunyang Cai
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Chunren Meng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuai He
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China
| | - Lhamo Thashi
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China
| | - Draga Deji
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China.
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China.
- High Altitude Ocular Disease Research Center of People's Hospital of Shigatse City and Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
17
|
Gamal El-Deen AM, Abd El-Hamid SM, Farrag EA. Serum brain-derived neurotrophic factor and macular perfusion in type 2 diabetes mellitus using optical coherence tomography angiography. Taiwan J Ophthalmol 2024; 14:422-430. [PMID: 39430362 PMCID: PMC11488803 DOI: 10.4103/tjo.tjo-d-22-00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/29/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE To investigate the relationship between serum brain-derived neurotrophic factor (BDNF) and changes in macular perfusion in different stages of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA). MATERIALS AND METHODS The study was conducted on 72 eyes of people with type 2 diabetes mellitus (DM). They were divided into five groups based on their DR stage: no DR (nDR), mild and moderate nonproliferative DR, severe nonproliferative DR, active proliferative DR (aPDR), and stable PDR. The presence or absence of diabetic maculopathy was also used to categorize the cases. All patients underwent a complete history, ophthalmological examination, OCTA imaging, and evaluation of BDNF and glycated hemoglobin A1c levels. RESULTS The mean blood BDNF levels in the aPDR group were considerably lower than those in the nDR group (P = 0.023). In comparison to eyes without maculopathy, eyes with maculopathy had considerably decreased mean blood BDNF levels (P = 0.0004). Comparing NPDR and PDR groups to nDR as well as NPDR and PDR, a substantial decrease in average and parafoveal vessel density (VD) of the retina and choriocapillaries was seen (P = 0.02). The Foveal Avascular Zone (FAZ) acircularity index and VD were found to be significantly impacted by deteriorating DR (P = 0.001 and 0.017, respectively). It was discovered that there is a positive correlation between BDNF and the FAZ fractal dimension (P = 0.03). In diabetic eyes, there was a statistically favorable correlation between BDNF levels and best corrected visual acuity (P = 0.002). Furthermore, there was a negative relationship between DM duration and BDNF (P = 0.021). CONCLUSION Serum BDNF levels decreased with the progression of DR and in patients with maculopathy. BDNF was found to be related to macular perfusion, particularly in the fovea.
Collapse
Affiliation(s)
| | | | - Enas Ahmed Farrag
- Department of Clinical Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Wang M, Chen N, Wang Y, Ni J, Lu J, Zhao W, Cui Y, Du R, Zhu W, Zhou J. Association of sudomotor dysfunction with risk of diabetic retinopathy in patients with type 2 diabetes. Endocrine 2024; 84:951-957. [PMID: 38197989 DOI: 10.1007/s12020-023-03682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE Sudomotor dysfunction is considered as one of the earliest manifestations of diabetic peripheral neuropathy. We aimed to investigate the association between sudomotor dysfunction non-invasively detected by the SUDOSCAN device and diabetic retinopathy (DR) in patients with type 2 diabetes. METHODS A total of 2010 patients admitted to a tertiary hospital located in Shanghai were included from March 2020 to September 2023. Sudomotor function was assessed by the SUDOSCAN device, and sudomotor dysfunction was defined as feet electrochemical skin conductance (FESC) <60 μs. Fundus radiography was used for DR assessment, which was graded according to the severity, specifically: (1) non-DR; (2) mild nonproliferative DR (NPDR); (3) moderate NPDR/vision-threatening DR (VTDR). RESULTS Among the enrolled 2010 patients, 525 patients had sudomotor dysfunction; 648 were diagnosed with DR, which was equivalent to 32.2% of all patients. Patients with sudomotor dysfunction had a significantly higher prevalence of DR, compared to those with normal sudomotor function (40.8% vs. 29.2%, P < 0.05). After controlling for confounding factors including HbA1c, sudomotor dysfunction was significantly associated with any DR (odd ratio [OR] = 1.57, 95% CI 1.26-1.96). When FESC was considered as a continuous variable, the multivariable-adjusted OR of DR was 1.29 (95% CI 1.17-1.42) for per 1-SD decrease in FESC. Furthermore, multinomial logistic regression revealed significant associations between sudomotor dysfunction and all stages of DR (mild NPDR: OR = 1.40, 95% CI 1.11-1.78; moderate NPDR/VTDR: OR = 2.35, 95% CI 1.60-3.46). CONCLUSIONS Sudomotor dysfunction was significantly associated with DR in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ming Wang
- Postgraduate Training Basement of Jinzhou Medical University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Niuniu Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Yaxin Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Jiaying Ni
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Weijing Zhao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Yating Cui
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Ronghui Du
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China.
| | - Jian Zhou
- Postgraduate Training Basement of Jinzhou Medical University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China.
| |
Collapse
|
19
|
Lam CHI, Zuo B, Chan HHL, Leung TW, Abokyi S, Catral KPC, Tse DYY. Coenzyme Q10 eyedrops conjugated with vitamin E TPGS alleviate neurodegeneration and mitochondrial dysfunction in the diabetic mouse retina. Front Cell Neurosci 2024; 18:1404987. [PMID: 38863499 PMCID: PMC11165046 DOI: 10.3389/fncel.2024.1404987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness and vision impairment worldwide and represents one of the most common complications among diabetic patients. Current treatment modalities for DR, including laser photocoagulation, intravitreal injection of corticosteroid, and anti-vascular endothelial growth factor (VEGF) agents, target primarily vascular lesions. However, these approaches are invasive and have several limitations, such as potential loss of visual function, retinal scars and cataract formation, and increased risk of ocular hypertension, vitreous hemorrhage, retinal detachment, and intraocular inflammation. Recent studies have suggested mitochondrial dysfunction as a pivotal factor leading to both the vascular and neural damage in DR. Given that Coenzyme Q10 (CoQ10) is a proven mitochondrial stabilizer with antioxidative properties, this study investigated the effect of CoQ10 eyedrops [in conjunction with vitamin E d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS)] on DR-induced neurodegeneration using a type 2 diabetes mouse model (C57BLKsJ-db/db mice). Utilizing a comprehensive electroretinography protocol, supported by immunohistochemistry, our results revealed that topical application of CoQ10 eyedrops conjugated with vitamin E TPGS produced a neuroprotective effect against diabetic-induced neurodegeneration by preserving the function and histology of various retinal neural cell types. Compared to the control group, mice treated with CoQ10 exhibited thicker outer and inner nuclear layers, higher densities of photoreceptor, cone cell, and rod-bipolar cell dendritic boutons, and reduced glial reactivity and microglial cell density. Additionally, the CoQ10 treatment significantly alleviated retinal levels of MMP-9 and enhanced mitochondrial function. These findings provide further insight into the role of mitochondrial dysfunction in the development of DR and suggest CoQ10 eyedrops, conjugated with vitamin E TPGS, as a potential complementary therapy for DR-related neuropathy.
Collapse
Affiliation(s)
- Christie Hang-I Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
| | - Bing Zuo
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Henry Ho-Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
| | - Tsz-Wing Leung
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | | | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Du K, Luo W. Association between blood urea nitrogen levels and diabetic retinopathy in diabetic adults in the United States (NHANES 2005-2018). Front Endocrinol (Lausanne) 2024; 15:1403456. [PMID: 38800479 PMCID: PMC11116622 DOI: 10.3389/fendo.2024.1403456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Objective To investigate the association between blood urea nitrogen (BUN) levels and diabetic retinopathy (DR) in adults with diabetes mellitus (DM). Methods Seven cycles of cross-sectional population information acquired from NHANES(national health and nutrition examination surveys) 2005-2018 were collected, from which a sample of diabetic adults was screened and separated into two groups based on whether or not they had DR, followed by weighted multivariate regression analysis. This study collected a complete set of demographic, biological, and sociological risk factor indicators for DR. Demographic risk factors comprised age, gender, and ethnicity, while biological risk factors included blood count, blood pressure, BMI, waist circumference, and glycated hemoglobin. Sociological risk factors included education level, deprivation index, smoking status, and alcohol consumption. Results The multiple regression model revealed a significant connection between BUN levels and DR [odds ratio =1.04, 95% confidence interval (1.03-1.05), p-value <0.0001],accounting for numerous variables. After equating BUN levels into four groups, multiple regression modeling showed the highest quartile (BUN>20 mg/dl) was 2.22 times more likely to develop DR than the lowest quartile [odds ratio =2.22, 95% confidence interval (1.69-2.93), p- value <0.0001]. Subgroup analyses revealed that gender, race, diabetes subtype, and duration of diabetes had a regulating effect on the relationship between BUN and DR. Conclusion BUN levels were related with an increased prevalence of DR, particularly in individuals with BUN >20 mg/dl. These findings highlight the significance of BUN level in assessing the risk of DR.
Collapse
Affiliation(s)
| | - Wenjuan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Hernández-Zulueta J, Bolaños-Chang AJ, Santa Cruz-Pavlovich FJ, Valero Rodríguez AD, Lizárraga Madrigal A, Del Rio-Murillo XI, Navarro-Partida J, Gonzalez-De la Rosa A. Microbial Dynamics in Ophthalmic Health: Exploring the Interplay between Human Microbiota and Glaucoma Pathogenesis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:592. [PMID: 38674238 PMCID: PMC11051970 DOI: 10.3390/medicina60040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The human microbiome has a crucial role in the homeostasis and health of the host. These microorganisms along with their genes are involved in various processes, among these are neurological signaling, the maturation of the immune system, and the inhibition of opportunistic pathogens. In this sense, it has been shown that a healthy ocular microbiota acts as a barrier against the entry of pathogens, contributing to the prevention of infections. In recent years, a relationship has been suggested between microbiota dysbiosis and the development of neurodegenerative diseases. In patients with glaucoma, it has been observed that the microbiota of the ocular surface, intraocular cavity, oral cavity, stomach, and gut differ from those observed in healthy patients, which may suggest a role in pathology development, although the evidence remains limited. The mechanisms involved in the relationship of the human microbiome and this neurodegenerative disease remain largely unknown. For this reason, the present review aims to show a broad overview of the influence of the structure and composition of the human oral and gut microbiota and relate its dysbiosis to neurodegenerative diseases, especially glaucoma.
Collapse
Affiliation(s)
- Joicye Hernández-Zulueta
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Av. Ing. Ramón Padilla Sánchez, Zapopan 45200, Jalisco, Mexico
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| | | | | | | | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| | - José Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirúrgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Alejandro Gonzalez-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirúrgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
22
|
Moustafa M, Khalil A, Darwish NHE, Zhang DQ, Tawfik A, Al-Shabrawey M. 12-HETE activates Müller glial cells: The potential role of GPR31 and miR-29. Prostaglandins Other Lipid Mediat 2024; 171:106805. [PMID: 38141777 PMCID: PMC10939904 DOI: 10.1016/j.prostaglandins.2023.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Diabetic retinopathy (DR) is a neurovascular complication of diabetes, driven by an intricate network of cellular and molecular mechanisms. This study sought to explore the mechanisms by investigating the role of 12-hydroxyeicosatetraenoic acid (12-HETE), its receptor GPR31, and microRNA (miR-29) in the context of DR, specifically focusing on their impact on Müller glial cells. We found that 12-HETE activates Müller cells (MCs), elevates glutamate production, and induces inflammatory and oxidative responses, all of which are instrumental in DR progression. The expression of GPR31, the receptor for 12-HETE, was prominently found in the retina, especially in MCs and retinal ganglion cells, and was upregulated in diabetes. Interestingly, miR29 showed potential as a protective agent, mitigating the harmful effects of 12-HETE by attenuating inflammation and oxidative stress, and restoring the expression of pigment epithelium-derived factor (PEDF). Our results underline the central role of 12-HETE in DR progression through activation of a neurovascular toxic pathway in MCs and illuminate the protective capabilities of miR-29, highlighting both as promising therapeutic targets for the management of DR.
Collapse
Affiliation(s)
- Mohamed Moustafa
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Abraham Khalil
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Noureldien H E Darwish
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Clinical Pathology, Mansoura College of Medicine, Mansoura University-Egypt
| | - Dao-Qi Zhang
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Amany Tawfik
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Mohamed Al-Shabrawey
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA.
| |
Collapse
|
23
|
Kumar P, Puri O, Unnithan VB, Reddy AP, Aswath S, Pathania M. Preparedness of diabetic patients for receiving telemedical health care: A cross-sectional study. J Family Med Prim Care 2024; 13:1004-1011. [PMID: 38736819 PMCID: PMC11086785 DOI: 10.4103/jfmpc.jfmpc_1024_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/09/2023] [Indexed: 05/14/2024] Open
Abstract
Introduction This study evaluates feasibility of telemedicine to deliver diabetic care among different regions of the country. Materials and Methods Medical interns affiliated with Rotaract Club of Medicrew (RCM) organized a Free Diabetes Screening Camp called "Diab-at-ease" at multiple sites across the country. Of all beneficiaries of the camp >18 years of age, patients previously diagnosed with diabetes and undiagnosed patients with a random blood sugar level of more than 200 mg/dL were interviewed regarding their knowledge, attitude, and practice regarding diabetes care and preparedness and vigilance to receiving care through telemedicine. Random blood sugar, height, weight, and waist circumference were also documented. Results About 51.1% (N = 223) of female patients aged 57.57 ± 13.84 years (>18 years) with body mass index (BMI) =26.11 ± 4.63 were the beneficiaries of the health camps. About 75.3% (n = 168) of them were on oral hypoglycemic agents (OHAs), 15.7% (n = 35) were on insulin preparations, and 59.6% (n = 156) and 88.5% (n = 31) of which were highly compliant with treatment, respectively. About 35% (n = 78) and 43.9% (n = 98) of them were unaware of their frequency of hypoglycemic and hyperglycemic episodes, respectively. About 64.6% (n = 144) of the patients were equipped for receiving teleconsultation. Glucometer was only possessed by 51.6% (115) of which only 46.95% (n = 54) can operate it independently. Only 80 patients (35.9%) were aware of the correct value of blood glucose levels. Conclusion While a majority of the population is compliant with treatment and aware about diabetes self-care, they lack adequate knowledge and resource equipment for the same leading to very limited utilization.
Collapse
Affiliation(s)
- Pratyush Kumar
- Intern, Dr. Baba Saheb Ambedkar Medical College and Hospital, Rohini, Delhi, India
| | - Oshin Puri
- Intern, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Vishnu B. Unnithan
- Department of Nuclear Medicine, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Asmitha P. Reddy
- Intern, Father Muller Medical College, Mangalore, Karnataka, India
| | - Shravya Aswath
- Intern, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, Karnataka, India
| | - Monika Pathania
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| |
Collapse
|
24
|
Lv Y, Zhai C, Sun G, He Y. Chitosan as a promising materials for the construction of nanocarriers for diabetic retinopathy: an updated review. J Biol Eng 2024; 18:18. [PMID: 38388386 PMCID: PMC10885467 DOI: 10.1186/s13036-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetic retinopathy (DR) is a condition that causes swelling of the blood vessels of the retina and leaks blood and fluids. It is the most severe form of diabetic eye disease. It causes vision loss in its advanced stage. Diabetic retinopathy is responsible for causing 26% of blindness. Very insufficient therapies are accessible for the treatment of DR. As compared to the conventional therapies, there should be enhanced research on the controlled release, shorter duration, and cost-effective therapy of diabetic retinopathy. The expansion of advanced nanocarriers-based drug delivery systems has been now employed to exploit as well as regulate the transport of many therapeutic agents to target sites via the increase in penetration or the extension of the duration of contact employing production by enclosing as well as distributing tiny molecules in nanostructured formulation. Various polymers have been utilized for the manufacturing of these nanostructured formulations. Chitosan possesses incredible biological and chemical properties, that have led to its extensive use in pharmaceutical and biomedical applications. Chitosan has been used in many studies because of its enhanced mucoadhesiveness and non-toxicity. Multiple studies have used chitosan as the best candidate for manufacturing nanocarriers and treating diabetic retinopathy. Numerous nanocarriers have been formulated by using chitosan such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, and dendrimers for treating diabetic retinopathy. This current review elaborates on the recent advancements of chitosan as a promising approach for the manufacturing of nanocarriers that can be used for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Yan Lv
- Department of Ophthalmology, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Chenglei Zhai
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Gang Sun
- Department of General Surgery, Jilin Province FAW General Hospital, Changchun, 130011, China.
| | - Yangfang He
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
25
|
Riazi-Esfahani H, Jafari B, Azimi H, Rahimi M, Saeidian J, Pouya P, Faghihi H, Mirzaei A, Asadi Khameneh E, Khalili Pour E. Assessment of area and structural irregularity of retinal layers in diabetic retinopathy using machine learning and image processing techniques. Sci Rep 2024; 14:4013. [PMID: 38369610 PMCID: PMC10874958 DOI: 10.1038/s41598-024-54535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Diabetes retinopathy prevention necessitates early detection, monitoring, and treatment. Non-invasive optical coherence tomography (OCT) shows structural changes in the retinal layer. OCT image evaluation necessitates retinal layer segmentation. The ability of our automated retinal layer segmentation to distinguish between normal, non-proliferative (NPDR), and proliferative diabetic retinopathy (PDR) was investigated in this study using quantifiable biomarkers such as retina layer smoothness index (SI) and area (S) in horizontal and vertical OCT images for each zone (fovea, superior, inferior, nasal, and temporal). This research includes 84 eyes from 57 individuals. The study shows a significant difference in the Area (S) of inner nuclear layer (INL) and outer nuclear layer (ONL) in the horizontal foveal zone across the three groups (p < 0.001). In the horizontal scan, there is a significant difference in the smoothness index (SI) of the inner plexiform layer (IPL) and the upper border of the outer plexiform layer (OPL) among three groups (p < 0.05). There is also a significant difference in the area (S) of the OPL in the foveal zone among the three groups (p = 0.003). The area (S) of the INL in the foveal region of horizontal slabs performed best for distinguishing diabetic patients (NPDR and PDR) from normal individuals, with an accuracy of 87.6%. The smoothness index (SI) of IPL in the nasal zone of horizontal foveal slabs was the most accurate at 97.2% in distinguishing PDR from NPDR. The smoothness index of the top border of the OPL in the nasal zone of horizontal slabs was 84.1% accurate in distinguishing NPDR from PDR. Smoothness index of IPL in the temporal zone of horizontal slabs was 89.8% accurate in identifying NPDR from PDR patients. In conclusion, optical coherence tomography can assess the smoothness index and irregularity of the inner and outer plexiform layers, particularly in the nasal and temporal regions of horizontal foveal slabs, to distinguish non-proliferative from proliferative diabetic retinopathy. The evolution of diabetic retinopathy throughout severity levels and its effects on retinal layer irregularity need more study.
Collapse
Affiliation(s)
- Hamid Riazi-Esfahani
- Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Behzad Jafari
- Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Hossein Azimi
- Faculty of Mathematical Sciences and Computer, Kharazmi University, No. 50, Taleghani Ave, Tehran, Iran
| | - Masoud Rahimi
- Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Jamshid Saeidian
- Faculty of Mathematical Sciences and Computer, Kharazmi University, No. 50, Taleghani Ave, Tehran, Iran
| | - Parnia Pouya
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hooshang Faghihi
- Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Arash Mirzaei
- Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Esmaeil Asadi Khameneh
- Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Elias Khalili Pour
- Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran.
| |
Collapse
|
26
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Verma S, Singh VK, Rana J, Kumar S, Singh K, Srivastava R. Quantitative measurement of retinal nerve fiber layer thickness and its correlation with optical coherence tomography angiography vascular biomarker changes in preclinical diabetic retinopathy. Indian J Ophthalmol 2024; 72:S11-S15. [PMID: 38131535 PMCID: PMC10833175 DOI: 10.4103/ijo.ijo_340_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE The present study was done to assess the use of optical coherence tomography angiography (OCTA) in detecting earlier stages of diabetic retinopathy and for the early management and effective blood glucose control in preclinical diabetic patients for preventing retinal nerve fiber layer (RNFL) thinning. METHODS A tertiary care center-based prospective observational study was conducted from the year 2021 to 2022 in the Department of Ophthalmology. The study included 50 cases and 50 controls. The parameters analyzed by using OCTA (Topcon 3D OCT-1 Maestro2) were RNFL thickness and peripapillary vessel density. RESULTS We found that the RNFL thickness in the temporal and superior disc in patients with preclinical diabetic retinopathy was significantly (0.041 and 0.044, respectively) decreased. The duration of diabetes and glycated hemoglobin (HbA1c) were the risk factors for peripapillary vessel density reduction in patients with preclinical diabetic retinopathy (P < 0.001). CONCLUSION RNFL thinning is an early sign of retinal neurodegeneration and is associated with peripapillary vessel density reduction. Early management and effective blood glucose control in diabetes patients may be beneficial for preventing RNFL thinning in superior and temporal disc.
Collapse
Affiliation(s)
- Shweta Verma
- Regional Institute of Ophthalmology, M.L.N. Medical College, Prayagaraj, Uttar Pradesh, India
| | - Vinod Kumar Singh
- Regional Institute of Ophthalmology, M.L.N. Medical College, Prayagaraj, Uttar Pradesh, India
| | - Jagriti Rana
- Regional Institute of Ophthalmology, M.L.N. Medical College, Prayagaraj, Uttar Pradesh, India
| | - Santosh Kumar
- Regional Institute of Ophthalmology, M.L.N. Medical College, Prayagaraj, Uttar Pradesh, India
| | - Kamaljeet Singh
- Regional Institute of Ophthalmology, M.L.N. Medical College, Prayagaraj, Uttar Pradesh, India
| | - Ratnapriya Srivastava
- Regional Institute of Ophthalmology, M.L.N. Medical College, Prayagaraj, Uttar Pradesh, India
| |
Collapse
|
28
|
Shanbagh S, Gadde SG, Shetty R, Heymans S, Abilash VG, Chaurasia SS, Ghosh A. Hyperglycemia-induced miR182-5p drives glycolytic and angiogenic response in Proliferative Diabetic Retinopathy and RPE cells via depleting FoxO1. Exp Eye Res 2024; 238:109713. [PMID: 37952722 DOI: 10.1016/j.exer.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/10/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Diabetic Retinopathy (DR) is associated with metabolic dysfunction in cells such as retinal pigmented epithelium (RPE). Small molecular weight microRNAs can simultaneously regulate multiple gene products thus having pivotal roles in disease pathogenesis. Since miR182-5p is involved in regulating glycolysis and angiogenesis, two pathologic processes of DR, we investigated its status in DR eyes and in high glucose model in vitro. METHOD ology: Total RNA was extracted from vitreous humor of PDR (n = 48) and macular hole (n = 22) subjects followed by quantification of miR182-5p and its target genes. ARPE-19 cells, cultured in DMEM under differential glucose conditions (5 mM and 25 mM) were used for metabolic and biochemical assays. Cells were transfected with miRNA182 mimic or antagomir to evaluate the gain and loss of function effects. RESULTS PDR patient eyes had high levels of miR182-5p levels (p < 0.05). RPE cells under high glucose stress elevated miR182-5p expression with altered glycolytic pathway drivers such as HK2, PFKP and PKM2 over extended durations. Additionally, RPE cells under high glucose conditions exhibited reduced FoxO1 and enhanced Akt activation. RPE cells transfected with miR182-5p mimic phenocopied the enhanced basal and compensatory glycolytic rates observed under high glucose conditions with increased VEGF secretion. Conversely, inhibiting miR182-5p reduced Akt activation, glycolytic pathway proteins, and VEGF while stabilizing FoxO1. CONCLUSION Glycolysis-associated proteins downstream of the FoxO1-Akt axis were regulated by miR182-5p. Further, miR182-5p increased expression of VEGFR2 and VEGF levels, likely via inhibition of ZNF24. Thus, the FoxO1-Akt-glycolysis/VEGF pathway driving metabolic dysfunction with concurrent angiogenic signaling in PDR may be potentially targeted for treatment via miR182-5p modulation.
Collapse
Affiliation(s)
- Shaika Shanbagh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India; Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | | | | - V G Abilash
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Shyam S Chaurasia
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.
| |
Collapse
|
29
|
Malakhova AI, Strakhov VV, Malakhova YA. [Objective structural and functional monitoring of polypeptide retinal neuroprotective therapy in diabetic retinopathy]. Vestn Oftalmol 2024; 140:97-104. [PMID: 39569781 DOI: 10.17116/oftalma202414005197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In recent years, there has been a growing interest in the contribution of neuroretinal degeneration to the pathogenesis of diabetic retinopathy (DR), preceding the classic vascular changes associated with DR. PURPOSE This study evaluated the impact of the polypeptide drug Retinalamin on the structural and functional condition of the retina in patients with DR using optical coherence tomography (OCT) (Topcon OCT 2000 FA, Japan) and the Diopsys Nova vision testing system for electrophysiological studies of the visual organ. MATERIAL AND METHODS The clinical study included 56 patients (112 eyes) with type 1 and type 2 diabetes and DR without macular edema. Of these, 28 patients (56 eyes) comprised the main group receiving intramuscular Retinalamin. The control group consisted of 28 patients (56 eyes) who did not receive Retinalamin treatment. The thickness of the ganglion cell complex was analyzed by OCT imaging performed on the Topcon OCT 2000 FA. Electrophysiological studies of the visual organ were conducted using the Diopsys Nova vision testing system, following the Diopsys PERG24 (pattern ERG) and Diopsys ffERG/Multi-Luminance Flicker (full-field ERG, or flash ERG) protocols. RESULTS The study demonstrated convincing objective evidence of positive changes in the main observation group. CONCLUSION The emergence of two pathogenetically oriented neurodegenerative vectors of DR, involving both the inner and outer retina, significantly expands our understanding of this diabetic complication. This includes the potential for retinal neuroprotective treatment with peptide bioregulators in clinical practice, especially in the early stages of DR.
Collapse
Affiliation(s)
- A I Malakhova
- Smolensk Regional Clinical Hospital, Smolensk, Russia
| | - V V Strakhov
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - Yu A Malakhova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
30
|
Singuri S, Luo S, Hatipoglu D, Nowacki AS, Patel R, Schachat AP, Ehlers JP, Singh RP, Anand-Apte B, Yuan A. Clinical Utility of Spectral-Domain Optical Coherence Tomography Marker Disorganization of Retinal Inner Layers in Diabetic Retinopathy. Ophthalmic Surg Lasers Imaging Retina 2023; 54:692-700. [PMID: 38113360 DOI: 10.3928/23258160-20231031-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Disorganization of retinal inner layers (DRIL) is a potential spectral-domain optical coherence tomography (SD-OCT) imaging biomarker with clinical utility in diabetic retinopathy (DR). PATIENTS AND METHODS A cross-sectional study was conducted at a large academic center. The cohort was composed of 1,175 patients with type 2 diabetes with and without retinopathy on initial examination between September 2009 and January 2019 (n = 2,083 eyes). DR risk and progression factors were obtained from the medical record. Trained graders masked to patients' clinical histories evaluated SD-OCT scans for DRIL. RESULTS Of 2,083 eyes, 28.1% (n = 585) demonstrated presence of DRIL with high interrater reliability (K = 0.88, 95% CI 0.86-0.90). DRIL was associated with worse visual acuity (VA) (P < 0.001) and DR severity (P < 0.0001). Insulin users had more severe DR (P < 0.0001). DR-related factors, race (Black, White) and sex (male) were significantly associated with DRIL (P < 0.05). CONCLUSIONS DRIL was strongly associated with DR severity and worse VA, supporting its utility as an unfavorable prognostic indicator. [Ophthalmic Surg Lasers Imaging Retina 2023;54:692-700.].
Collapse
|
31
|
Castoldi V, Zerbini G, Maestroni S, Viganò I, Rama P, Leocani L. Topical Nerve Growth Factor (NGF) restores electrophysiological alterations in the Ins2 Akita mouse model of diabetic retinopathy. Exp Eye Res 2023; 237:109693. [PMID: 37890756 DOI: 10.1016/j.exer.2023.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
People suffering from diabetes mellitus commonly have to face diabetic retinopathy (DR), an eye disease characterized by early retinal neurodegeneration and microvascular damage, progressively leading to sight loss. The Ins2Akita (Akita) diabetic mouse presents the characteristics of DR and experimental drugs can be tested on this model to check their efficacy before going to the clinic. Topical administration of Nerve Growth Factor (NGF) has been recently demonstrated to prevent DR in the Akita mouse, reverting the thinning of retinal layers and protecting the retinal ganglion cells (RGCs) from death. In this study, we characterize the effects of topical NGF on neuroretina function, quantified with the electroretinogram (ERG). In particular, we show that NGF can ameliorate RGC conduction in the retina of Akita mice, which correlates with a recovery of retinal nerve fiber plus ganglion cell layer (RNFL-GCL) structure. Overall, our preclinical results highlight that topical administration of NGF could be a promising therapeutic approach for DR, being capable of exerting a beneficial impact on retinal functionality.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Maestroni
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Unit, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
32
|
Pfeifer CW, Walsh JT, Santeford A, Lin JB, Beatty WL, Terao R, Liu YA, Hase K, Ruzycki PA, Apte RS. Dysregulated CD200-CD200R signaling in early diabetes modulates microglia-mediated retinopathy. Proc Natl Acad Sci U S A 2023; 120:e2308214120. [PMID: 37903272 PMCID: PMC10636339 DOI: 10.1073/pnas.2308214120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurovascular complication of diabetes. Recent investigations have suggested that early degeneration of the neuroretina may occur prior to the appearance of microvascular changes; however, the mechanisms underlying this neurodegeneration have been elusive. Microglia are the predominant resident immune cell in the retina and adopt dynamic roles in disease. Here, we show that ablation of retinal microglia ameliorates visual dysfunction and neurodegeneration in a type I diabetes mouse model. We also provide evidence of enhanced microglial contact and engulfment of amacrine cells, ultrastructural modifications, and transcriptome changes that drive inflammation and phagocytosis. We show that CD200-CD200R signaling between amacrine cells and microglia is dysregulated during early DR and that targeting CD200R can attenuate high glucose-induced inflammation and phagocytosis in cultured microglia. Last, we demonstrate that targeting CD200R in vivo can prevent visual dysfunction, microglia activation, and retinal inflammation in the diabetic mouse. These studies provide a molecular framework for the pivotal role that microglia play in early DR pathogenesis and identify a potential immunotherapeutic target for treating DR in patients.
Collapse
Affiliation(s)
- Charles W. Pfeifer
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Neurosciences Graduate Program, Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - James T. Walsh
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Andrea Santeford
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Joseph B. Lin
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Neurosciences Graduate Program, Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Ryo Terao
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo1138665, Japan
| | - Yizhou A. Liu
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Keitaro Hase
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Philip A. Ruzycki
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Rajendra S. Apte
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
33
|
Li YQ, Zhang ST, Ke NY, Fang YC, Hu WL, Li GA, Huang F, Zhou YF. The impact of multiple metals exposure on the risk of developing proliferative diabetic retinopathy in Anhui, China: a case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112132-112143. [PMID: 37831242 DOI: 10.1007/s11356-023-30294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Through multiple different pathways, the environmental multiple metals make their ways to the human bodies, where they induce different levels of the oxidative stress response. This study further investigated the impact of multiple-metal exposure on the risk of developing proliferative diabetic retinopathy (PDR). We designed a case-control study with type 2 diabetic patients (T2D), in which the case group was the proliferative diabetic retinopathy group (PDR group), while the control group was the non-diabetic retinopathy group (NDR group). Graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to detect the metal levels in our participants' urine samples. The least absolute shrinkage and selection operator (LASSO) regression approach was used to include these representative trace elements in a multiple exposure model. Following that, logistic regression models and Bayesian kernel machine regression (BKMR) models were used to describe the effect of different elements and also analyze their combined effect. In the single-element model, we discovered that lithium (Li), cadmium (Cd), and strontium (Sr) were all positively related to PDR. The multiple-exposure model revealed a positive relationship between Li and PDR risk, with a maximum quartile OR of 2.80 (95% CI: 1.10-7.16). The BKMR model also revealed that selenium (Se) might act as a protective agent, whereas magnesium (Mg), Li, and Cd may raise the risk of PDR. In conclusion, our study not only revealed an association between exposure to multiple metals and PDR risk but it also implied that urine samples might be a useful tool to assess PDR risk.
Collapse
Affiliation(s)
- Yan-Qing Li
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, Anhui, China
| | - Si-Tian Zhang
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, Anhui, China
| | - Nai-Yu Ke
- Department of First Clinical Medical College, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yan-Cheng Fang
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, Anhui, China
| | - Wen-Lei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Ao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yan-Feng Zhou
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, Anhui, China.
| |
Collapse
|
34
|
Tundo GR, Grasso G, Persico M, Tkachuk O, Bellia F, Bocedi A, Marini S, Parravano M, Graziani G, Fattorusso C, Sbardella D. The Insulin-Degrading Enzyme from Structure to Allosteric Modulation: New Perspectives for Drug Design. Biomolecules 2023; 13:1492. [PMID: 37892174 PMCID: PMC10604886 DOI: 10.3390/biom13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The insulin-degrading enzyme (IDE) is a Zn2+ peptidase originally discovered as the main enzyme involved in the degradation of insulin and other amyloidogenic peptides, such as the β-amyloid (Aβ) peptide. Therefore, a role for the IDE in the cure of diabetes and Alzheimer's disease (AD) has been long envisaged. Anyway, its role in degrading amyloidogenic proteins remains not clearly defined and, more recently, novel non-proteolytic functions of the IDE have been proposed. From a structural point of view, the IDE presents an atypical clamshell structure, underscoring unique enigmatic enzymological properties. A better understanding of the structure-function relationship may contribute to solving some existing paradoxes of IDE biology and, in light of its multifunctional activity, might lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Grazia Raffaella Tundo
- Department of Clinical Science and Traslational Medicine, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (G.R.T.)
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Marco Persico
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | - Oleh Tkachuk
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | - Francesco Bellia
- Institute of Crystallography, CNR, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Science and Traslational Medicine, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (G.R.T.)
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | | |
Collapse
|
35
|
Attia SA, Truong AT, Phan A, Lee SJ, Abanmai M, Markanovic M, Avila H, Luo H, Ali A, Sreekumar PG, Kannan R, MacKay JA. αB-Crystallin Peptide Fused with Elastin-like Polypeptide: Intracellular Activity in Retinal Pigment Epithelial Cells Challenged with Oxidative Stress. Antioxidants (Basel) 2023; 12:1817. [PMID: 37891896 PMCID: PMC10604459 DOI: 10.3390/antiox12101817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Oxidative stress-induced retinal degeneration is among the main contributing factors of serious ocular pathologies that can lead to irreversible blindness. αB-crystallin (cry) is an abundant component of the visual pathway in the vitreous humor, which modulates protein and cellular homeostasis. Within this protein exists a 20 amino acid fragment (mini-cry) with both chaperone and antiapoptotic activity. This study fuses this mini-cry peptide to two temperature-sensitive elastin-like polypeptides (ELP) with the goal of prolonging its activity in the retina. METHODS The biophysical properties and chaperone activity of cry-ELPs were confirmed by mass spectrometry, cloud-point determination, and dynamic light scattering 'DLS'. For the first time, this work compares a simpler ELP architecture, cry-V96, with a previously reported ELP diblock copolymer, cry-SI. Their relative mechanisms of cellular uptake and antiapoptotic potential were tested using retinal pigment epithelial cells (ARPE-19). Oxidative stress was induced with H2O2 and comparative internalization of both cry-ELPs was made using 2D and 3D culture models. We also explored the role of lysosomal membrane permeabilization by confocal microscopy. RESULTS The results indicated successful ELP fusion, cellular association with both 2D and 3D cultures, which were enhanced by oxidative stress. Both constructs suppressed apoptotic signaling (cleaved caspase-3); however, cry-V96 exhibited greater lysosomal escape. CONCLUSIONS ELP architecture is a critical factor to optimize delivery of therapeutic peptides, such as the anti-apoptotic mini-cry peptide; furthermore, the protection of mini-cry via ELPs is enhanced by lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sara Aly Attia
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Anh Tan Truong
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Shin-Jae Lee
- Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA;
| | - Manal Abanmai
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Marinella Markanovic
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Haozhong Luo
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Atham Ali
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | | | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA; (P.G.S.); (R.K.)
- Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
- Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
36
|
Luo X, Sun J, Pan H, Zhou D, Huang P, Tang J, Shi R, Ye H, Zhao Y, Zhang A. Establishment and health management application of a prediction model for high-risk complication combination of type 2 diabetes mellitus based on data mining. PLoS One 2023; 18:e0289749. [PMID: 37552706 PMCID: PMC10409378 DOI: 10.1371/journal.pone.0289749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
In recent years, the prevalence of T2DM has been increasing annually, in particular, the personal and socioeconomic burden caused by multiple complications has become increasingly serious. This study aimed to screen out the high-risk complication combination of T2DM through various data mining methods, establish and evaluate a risk prediction model of the complication combination in patients with T2DM. Questionnaire surveys, physical examinations, and biochemical tests were conducted on 4,937 patients with T2DM, and 810 cases of sample data with complications were retained. The high-risk complication combination was screened by association rules based on the Apriori algorithm. Risk factors were screened using the LASSO regression model, random forest model, and support vector machine. A risk prediction model was established using logistic regression analysis, and a dynamic nomogram was constructed. Receiver operating characteristic (ROC) curves, harrell's concordance index (C-Index), calibration curves, decision curve analysis (DCA), and internal validation were used to evaluate the differentiation, calibration, and clinical applicability of the models. This study found that patients with T2DM had a high-risk combination of lower extremity vasculopathy, diabetic foot, and diabetic retinopathy. Based on this, body mass index, diastolic blood pressure, total cholesterol, triglyceride, 2-hour postprandial blood glucose and blood urea nitrogen levels were screened and used for the modeling analysis. The area under the ROC curves of the internal and external validations were 0.768 (95% CI, 0.744-0.792) and 0.745 (95% CI, 0.669-0.820), respectively, and the C-index and AUC value were consistent. The calibration plots showed good calibration, and the risk threshold for DCA was 30-54%. In this study, we developed and evaluated a predictive model for the development of a high-risk complication combination while uncovering the pattern of complications in patients with T2DM. This model has a practical guiding effect on the health management of patients with T2DM in community settings.
Collapse
Affiliation(s)
- Xin Luo
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jijia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Pan
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dian Zhou
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Tang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Ye
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhao
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An Zhang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Heyns IM, Davis G, Ganugula R, Ravi Kumar MNV, Arora M. Glucose-Responsive Microgel Comprising Conventional Insulin and Curcumin-Laden Nanoparticles: a Potential Combination for Diabetes Management. AAPS J 2023; 25:72. [PMID: 37442863 DOI: 10.1208/s12248-023-00839-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Successful management of type 2 diabetes mellitus (T2DM), a complex and chronic disease, requires a combination of anti-hyperglycemic and anti-inflammatory agents. Here, we have conceptualized and tested an integrated "closed-loop mimic" in the form of a glucose-responsive microgel (GRM) based on chitosan, comprising conventional insulin (INS) and curcumin-laden nanoparticles (nCUR) as a potential strategy for effective management of the disease. In addition to mimicking the normal, on-demand INS secretion, such delivery systems display an uninterrupted release of nCUR to combat the inflammation, oxidative stress, lipid metabolic abnormality, and endothelial dysfunction components of T2DM. Additives such as gum arabic (GA) led to a fivefold increased INS loading capacity compared to GRM without GA. The GRMs showed excellent in vitro on-demand INS release, while a constant nCUR release is observed irrespective of glucose concentrations. Thus, this study demonstrates a promising drug delivery technology that can simultaneously, and at physiological/pathophysiological relevance, deliver two drugs of distinct physicochemical attributes in the same formulation.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Garrett Davis
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA.
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA.
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA.
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA.
| |
Collapse
|
38
|
Liu DD, Zhang CY, Zhang JT, Gu LM, Xu GT, Zhang JF. Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface. Neural Regen Res 2023; 18:1441-1449. [PMID: 36571340 PMCID: PMC10075108 DOI: 10.4103/1673-5374.361536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Epigenetics focuses on DNA methylation, histone modification, chromatin remodeling, noncoding RNAs, and other gene regulation mechanisms beyond the DNA sequence. In the past decade, epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels. The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated. The diabetic condition facilitates epigenetic changes and influences target gene expression. In this review, we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Chao-Yang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jing-Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Li-Min Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Jing-Fa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
39
|
Wu CLS, Cioanca AV, Gelmi MC, Wen L, Di Girolamo N, Zhu L, Natoli R, Conway RM, Petsoglou C, Jager MJ, McCluskey PJ, Madigan MC. The multifunctional human ocular melanocortin system. Prog Retin Eye Res 2023; 95:101187. [PMID: 37217094 DOI: 10.1016/j.preteyeres.2023.101187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Immune privilege in the eye involves physical barriers, immune regulation and secreted proteins that together limit the damaging effects of intraocular immune responses and inflammation. The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) normally circulates in the aqueous humour of the anterior chamber and the vitreous fluid, secreted by iris and ciliary epithelium, and retinal pigment epithelium (RPE). α-MSH plays an important role in maintaining ocular immune privilege by helping the development of suppressor immune cells and by activating regulatory T-cells. α-MSH functions by binding to and activating melanocortin receptors (MC1R to MC5R) and receptor accessory proteins (MRAPs) that work in concert with antagonists, otherwise known as the melanocortin system. As well as controlling immune responses and inflammation, a broad range of biological functions is increasingly recognised to be orchestrated by the melanocortin system within ocular tissues. This includes maintaining corneal transparency and immune privilege by limiting corneal (lymph)angiogenesis, sustaining corneal epithelial integrity, protecting corneal endothelium and potentially enhancing corneal graft survival, regulating aqueous tear secretion with implications for dry eye disease, facilitating retinal homeostasis via maintaining blood-retinal barriers, providing neuroprotection in the retina, and controlling abnormal new vessel growth in the choroid and retina. The role of melanocortin signalling in uveal melanocyte melanogenesis however remains unclear compared to its established role in skin melanogenesis. The early application of a melanocortin agonist to downregulate systemic inflammation used adrenocorticotropic hormone (ACTH)-based repository cortisone injection (RCI), but adverse side effects including hypertension, edema, and weight gain, related to increased adrenal gland corticosteroid production, impacted clinical uptake. Compared to ACTH, melanocortin peptides that target MC1R, MC3R, MC4R and/or MC5R, but not adrenal gland MC2R, induce minimal corticosteroid production with fewer adverse systemic effects. Pharmacological advances in synthesising MCR-specific targeted peptides provide further opportunities for treating ocular (and systemic) inflammatory diseases. Following from these observations and a renewed clinical and pharmacological interest in the diverse biological roles of the melanocortin system, this review highlights the physiological and disease-related involvement of this system within human eye tissues. We also review the emerging benefits and versatility of melanocortin receptor targeted peptides as non-steroidal alternatives for inflammatory eye diseases such as non-infectious uveitis and dry eye disease, and translational applications in promoting ocular homeostasis, for example, in corneal transplantation and diabetic retinopathy.
Collapse
Affiliation(s)
- Chieh-Lin Stanley Wu
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Optometry, Asia University, Taichung, Taiwan
| | - Adrian V Cioanca
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - Maria C Gelmi
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Li Wen
- New South Wales Organ and Tissue Donation Service, Sydney Hospital and Sydney Eye Hospital, NSW, 2000, Australia
| | - Nick Di Girolamo
- School of Biomedical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Riccardo Natoli
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - R Max Conway
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Constantinos Petsoglou
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; New South Wales Organ and Tissue Donation Service, Sydney Hospital and Sydney Eye Hospital, NSW, 2000, Australia
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter J McCluskey
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
40
|
Xie D, Li K, Feng R, Xiao M, Sheng Z, Xie Y. Ferroptosis and Traditional Chinese Medicine for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1915-1930. [PMID: 37398945 PMCID: PMC10312342 DOI: 10.2147/dmso.s412747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Ferroptosis, an emerging form of regulated programmed cell death, has garnered significant attention in the past decade. It is characterized by the accumulation of lipid peroxides and subsequent damage to cellular membranes, which is dependent on iron. Ferroptosis has been implicated in the pathogenesis of various diseases, including tumors and diabetes mellitus. Traditional Chinese medicine (TCM) has unique advantages in preventing and treating type 2 diabetes mellitus (T2DM) due to its anti-inflammatory, antioxidant, immunomodulatory, and intestinal flora-regulating functions. Recent studies have determined that TCM may exert therapeutic effects on T2DM and its complications by modulating the ferroptosis-related pathways. Therefore, a comprehensive and systematic understanding of the role of ferroptosis in the pathogenesis and TCM treatment of T2DM is of great significance for developing therapeutic drugs for T2DM and enriching the spectrum of effective T2DM treatment with TCM. In this review, we review the concept, mechanism, and regulatory pathways of ferroptosis and the ferroptosis mechanism of action involved in the development of T2DM. Also, we develop a search strategy, establish strict inclusion and exclusion criteria, and summarize and analyze the application of the ferroptosis mechanism in TCM studies related to T2DM and its complications. Finally, we discuss the shortcomings of current studies and propose a future research focus.
Collapse
Affiliation(s)
- Dandan Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, Health Management Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Clinical Nutrition, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Kai Li
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Ruxue Feng
- Department of Stomatology, Geriatric Hospital of Hainan, Haikou, Hainan, People’s Republic of China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Zhifeng Sheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, Health Management Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| |
Collapse
|
41
|
Chen X, Zhao J, You Y, Li Z, Chen S. The Ratio of Fibrinogen to Albumin is Related to the Occurrence of Retinopathy in Type 2 Diabetic Patients. Diabetes Metab Syndr Obes 2023; 16:1859-1867. [PMID: 37384130 PMCID: PMC10295541 DOI: 10.2147/dmso.s407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
Purpose Type 2 diabetic retinopathy is a long-term chronic inflammatory disease. The aim of this study was to investigate the relationship between fibrinogen to albumin ratio (FAR) and retinopathy in type 2 diabetic patients. Methods This was a retrospective study that included 500 patients with type 2 diabetes mellitus (T2DM), and were divided into non-diabetic retinopathy group (NDR, n=297) and diabetic retinopathy group (DR, n=203) according to fundus examination findings, and the DR group was further divided into non-proliferative retinopathy group (NPDR, n=182) and proliferative retinopathy group (PDR, n=21). Baseline data of patients were collected, and the fibrinogen to albumin ratio (FAR) and neutrophil to lymphocyte ratio (NLR) were calculated to analyze the correlation between FAR and NLR and type 2 diabetic retinopathy. Results The FAR and NLR were significantly higher in the DR group compared with the NDR group (both P < 0.001). Spearman correlation analysis showed that FAR was positively correlated with NLR and DR (P < 0.05). As the FAR quartile increased, the prevalence of DR increased (14.8%, 16.7%, 25.1%, and 43.30%, respectively; P < 0.05). Multifactorial logistic regression analysis showed that FAR, diabetic course, systolic blood pressure (SBP) and diabetic peripheral neuropathy (DPN) were risk factors for the development of DR in patients with T2DM. The area under the ROC curve for FAR to predict DR progression was 0.708, with an optimal critical value of 7.04, and the area under the ROC curve for diabetes duration and SBP to predict DR was 0.705 and 0.588, respectively. Conclusion Our findings show for the first time that FAR is an independent risk factor for assessing DR in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Graduate School, Hebei North University, Zhangjiakou, 075000, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| | - Jingyu Zhao
- Graduate School, North China University of Science and Technology, Tangshan, 063210, People’s Republic of China
| | - Yanxue You
- Graduate School, Hebei North University, Zhangjiakou, 075000, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| | - Zelin Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| |
Collapse
|
42
|
Singh RP, Welch L, Longo NL, Frese M. Impact of an immersive, interactive medical education initiative on guideline-based retinal disease management knowledge/competence and effectual practice change. BMC Ophthalmol 2023; 23:285. [PMID: 37349689 DOI: 10.1186/s12886-023-03034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Retinal diseases, including wet or dry age-related macular degeneration, diabetic macular edema, and diabetic retinopathy (DR), are underdiagnosed and undertreated in the United States. Clinical trials support the effectiveness of anti-vascular endothelial growth factor (anti-VEGF) therapies for several retinal conditions, but real-world data suggest underuse by clinicians, resulting in patients experiencing poorer visual outcomes over time. Continuing education (CE) has demonstrated effectiveness at changing practice behaviors, but more research is needed to understand whether CE can help address diagnostic and treatment gaps. METHODS This test and control matched pair analysis examined pre-/post-test knowledge of retinal diseases and guideline-based screening and intervention among 10,786 healthcare practitioners (i.e., retina specialists, ophthalmologists, optometrists, primary care providers, diabetes educators, pharmacists/managed care specialists, and other healthcare providers, such as registered nurses, nurse practitioners, and physician assistants) who participated in a modular, interactive CE initiative. An additional medical claims analysis provided data on practice change, evaluating use of VEGF-A inhibitors among retina specialist and ophthalmologist learners (n = 7,827) pre-/post-education, compared to a matched control group of non-learners. Outcomes were pre-/post-test change in knowledge/competence and clinical change in application of anti-VEGF therapy, as identified by the medical claims analysis. RESULTS Learners significantly improved knowledge/competence scores on early identification and treatment, identifying patients who could benefit from anti-VEGF agents, using guideline-recommended care, recognizing the importance of screening and referral, and recognizing the importance of early detection and care for DR (all P-values = 0.003 to 0.004). Compared with matched controls, learners' incremental total injections for anti-VEGF agents for retinal conditions increased more after the CE intervention (P < 0.001); specifically, there were 18,513 more (new) anti-VEGF injections prescribed versus non-learners (P < 0.001). CONCLUSIONS This modular, interactive, immersive CE initiative resulted in significant knowledge/competence gains among retinal disease care providers and changes in practice-related treatment behaviors (i.e., appropriate consideration and greater incorporation of guideline-recommended anti-VEGF therapies) among participating ophthalmologists and retina specialists compared to matched controls. Future studies will utilize medical claims data to show longitudinal impact of this CE initiative on treatment behavior among specialists and impact on diagnosis and referral rates among optometrists and primary care providers who participate in future programming.
Collapse
Affiliation(s)
- Rishi P Singh
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
- Cleveland Clinic Martin Health, Stuart, FL, USA
| | - Lauren Welch
- Med Learning Group, 17th St #4, New York, NY, 10011, USA.
| | - Nicole L Longo
- Med Learning Group, 17th St #4, New York, NY, 10011, USA
| | - Matt Frese
- Med Learning Group, 17th St #4, New York, NY, 10011, USA
| |
Collapse
|
43
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
44
|
Afarid M, Bahari H, Sanie-Jahromi F. In Vitro Evaluation of Apoptosis, Inflammation, Angiogenesis, and Neuroprotection Gene Expression in Retinal Pigmented Epithelial Cell Treated with Interferon α-2b. J Interferon Cytokine Res 2023. [PMID: 37289822 DOI: 10.1089/jir.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Angiogenesis, retinal neuropathy, and inflammation are the main molecular features of diabetic retinopathy (DR) and should be taken into consideration for potential treatment approaches. Retinal pigmented epithelial (RPE) cells play a major role in DR progression. This study evaluated the in vitro effect of interferon (IFN) α-2b on the expression of genes involved in apoptosis, inflammation, neuroprotection, and angiogenesis in RPE cells. RPE cells were cocultured with IFN α-2b at 2 doses (500 and 1,000 IU) and treatment periods (24 and 48 h). The quantitative relative expression of genes (BCL-2, BAX, BDNF, VEGF, and IL-1b) was evaluated in the treated versus control cells through real-time polymerase chain reaction (PCR). The result of this study demonstrated that IFN treatment at 1,000 IU (48 h) led to significant upregulation of BCL-2, BAX, BDNF, and IL-1b; however, the BCL-2/BAX ratio was not statistically altered from 1:1, in any of the treatment patterns. We also showed that VEGF expression was downregulated in RPE cells treated with 500 IU for 24 h. It can be concluded that IFN α-2b was safe (BCL-2/BAX ∼1:1) and enhanced neuroprotection at 1,000 IU (48 h); however-at the same time-IFN α-2b induced inflammation in RPE cells. Moreover, the antiangiogenic effect of IFN α-2b was solely observed in RPE cells treated with 500 IU (24 h). It seems that IFN α-2b in lower doses and short duration exerts antiangiogenic effects and in higher doses and longer duration has neuroprotective and inflammatory effects. Hence, appropriate concentration and duration of treatment, according to the type and stage of the disease, should be considered to achieve success in IFN therapy.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bahari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Cao JA, Patel SB, Wong CW, Garcia D, Munoz J, Cone C, Zamora D, Reagan M, Nguyen TV, Pearce W, Fish RH, Brown DM, Chaudhary V, Wykoff CC, Fan KC. Demographic and Socioeconomic Factors in Prospective Retina-Focused Clinical Trial Screening and Enrollment. J Pers Med 2023; 13:880. [PMID: 37373869 DOI: 10.3390/jpm13060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Historically marginalized populations are disproportionately affected by many diseases that commonly affect the retina, yet they have been traditionally underrepresented in prospective clinical trials. This study explores whether this disparity affects the clinical trial enrollment process in the retina field and aims to inform future trial recruitment and enrollment. Age, gender, race, ethnicity, preferred language, insurance status, social security number (SSN) status, and median household income (estimated using street address and zip code) for patients referred to at least one prospective, retina-focused clinical trial at a large, urban, retina-based practice were retrospectively extracted using electronic medical records. Data were collected for the 12-month period from 1 January 2022, through 31 December 2022. Recruitment status was categorized as Enrolled, Declined, Communication (defined as patients who were not contacted, were contacted with no response, were waiting for a follow-up, or were scheduled for screening following a clinical trial referral.), and Did Not Qualify (DNQ). Univariable and multivariable analyses were used to determine significant relationships between the Enrolled and Declined groups. Among the 1477 patients, the mean age was 68.5 years old, 647 (43.9%) were male, 900 (61.7%) were White, 139 (9.5%) were Black, and 275 (18.7%) were Hispanic. The distribution of recruitment status was: 635 (43.0%) Enrolled, 232 (15.7%) Declined, 290 (19.6%) Communication, and 320 (21.7%) DNQ. In comparing socioeconomic factors between the Enrolled and Declined groups, significant odds ratios were observed for age (p < 0.02, odds ratio (OR) = 0.98, 95% confidence interval (CI) [0.97, 1.00]), and between patients who preferred English versus Spanish (p = 0.004, OR = 0.35, 95% CI [0.17, 0.72]. Significant differences between the Enrolled and Declined groups were also observed for age (p < 0.05), ethnicity (p = 0.01), preferred language (p < 0.05), insurance status (p = 0.001), and SSN status (p < 0.001). These factors may contribute to patient participation in retina-focused clinical trials. An awareness of these demographic and socioeconomic disparities may be valuable to consider when attempting to make clinical trial enrollment an equitable process for all patients, and strategies may be useful to help address these challenges.
Collapse
Affiliation(s)
| | - Sagar B Patel
- Retina Consultants of Texas, Houston, TX 77401, USA
- Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Calvin W Wong
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David Garcia
- Retina Consultants of Texas, Houston, TX 77401, USA
| | - Jose Munoz
- Retina Consultants of Texas, Houston, TX 77401, USA
| | | | | | - Mary Reagan
- Retina Consultants of Texas, Houston, TX 77401, USA
| | - Tieu V Nguyen
- Retina Consultants of Texas, Houston, TX 77401, USA
- Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Will Pearce
- Retina Consultants of Texas, Houston, TX 77401, USA
- Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Richard H Fish
- Retina Consultants of Texas, Houston, TX 77401, USA
- Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX 77030, USA
| | - David M Brown
- Retina Consultants of Texas, Houston, TX 77401, USA
- Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Varun Chaudhary
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Charles C Wykoff
- Retina Consultants of Texas, Houston, TX 77401, USA
- Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Kenneth C Fan
- Retina Consultants of Texas, Houston, TX 77401, USA
- Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX 77030, USA
| |
Collapse
|
46
|
Saraiva SM, Martín-Banderas L, Durán-Lobato M. Cannabinoid-Based Ocular Therapies and Formulations. Pharmaceutics 2023; 15:pharmaceutics15041077. [PMID: 37111563 PMCID: PMC10146987 DOI: 10.3390/pharmaceutics15041077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The interest in the pharmacological applications of cannabinoids is largely increasing in a wide range of medical areas. Recently, research on its potential role in eye conditions, many of which are chronic and/or disabling and in need of new alternative treatments, has intensified. However, due to cannabinoids’ unfavorable physicochemical properties and adverse systemic effects, along with ocular biological barriers to local drug administration, drug delivery systems are needed. Hence, this review focused on the following: (i) identifying eye disease conditions potentially subject to treatment with cannabinoids and their pharmacological role, with emphasis on glaucoma, uveitis, diabetic retinopathy, keratitis and the prevention of Pseudomonas aeruginosa infections; (ii) reviewing the physicochemical properties of formulations that must be controlled and/or optimized for successful ocular administration; (iii) analyzing works evaluating cannabinoid-based formulations for ocular administration, with emphasis on results and limitations; and (iv) identifying alternative cannabinoid-based formulations that could potentially be useful for ocular administration strategies. Finally, an overview of the current advances and limitations in the field, the technological challenges to overcome and the prospective further developments, is provided.
Collapse
Affiliation(s)
- Sofia M. Saraiva
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| | - Lucía Martín-Banderas
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla (IBIS), Campus Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556754
| | - Matilde Durán-Lobato
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
| |
Collapse
|
47
|
Sanie-Jahromi F, Zia Z, Afarid M. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy. Chin Med 2023; 18:18. [PMID: 36803536 PMCID: PMC9936729 DOI: 10.1186/s13020-023-00725-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Garlic is one of the favorite herbs in traditional medicine that has been reported to have many medicinal features. The aim of the current study is to review the latest documents on the effect of garlic on diabetes, VEGF, and BDNF and, finally, to review the existing studies on the effect of garlic on diabetic retinopathy. MAIN TEXT The therapeutic effect of garlic on diabetes has been investigated in various studies. Diabetes, especially in advanced stages, is associated with complications such as diabetic retinopathy, which is caused by the alteration in the expression of molecular factors involved in angiogenesis, neurodegeneration, and inflammation in the retina. There are different in-vitro and in-vivo reports on the effect of garlic on each of these processes. Considering the present concept, we extracted the most related English articles from Web of Science, PubMed, and Scopus English databases from 1980 to 2022. All in-vitro and animal studies, clinical trials, research studies, and review articles in this area were assessed and classified. RESULT AND CONCLUSION According to previous studies, garlic has been confirmed to have beneficial antidiabetic, antiangiogenesis, and neuroprotective effects. Along with the available clinical evidence, it seems that garlic can be suggested as a complementary treatment option alongside common treatments for patients with diabetic retinopathy. However, more detailed clinical studies are needed in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Zahra Zia
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| |
Collapse
|
48
|
|
49
|
Taylor BE, Lee CA, Zapadka TE, Zhou AY, Barber KG, Taylor ZRR, Howell SJ, Taylor PR. IL-17A Enhances Retinal Neovascularization. Int J Mol Sci 2023; 24:ijms24021747. [PMID: 36675261 PMCID: PMC9866094 DOI: 10.3390/ijms24021747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Retinal neovascularization occurs in proliferative diabetic retinopathy, neovascular glaucoma, and age-related macular degeneration. This type of retinal pathology normally occurs in the later stages of these ocular diseases and is a prevalent cause of vision loss. Previously, we determined that Interleukin (IL)-17A plays a pivotal role in the onset and progression of non-proliferative diabetic retinopathy in diabetic mice. Unfortunately, none of our diabetic murine models progress to proliferative diabetic retinopathy. Hence, the role of IL-17A in vascular angiogenesis, neovascularization, and the onset of proliferative diabetic retinopathy was unclear. In the current study, we determined that diabetes-mediated IL-17A enhances vascular endothelial growth factor (VEGF) production in the retina, Muller glia, and retinal endothelial cells. Further, we determined that IL-17A can initiate retinal endothelial cell proliferation and can enhance VEGF-dependent vascular angiogenesis. Finally, by utilizing the oxygen induced retinopathy model, we determined that IL-17A enhances retinal neovascularization. Collectively, the results of this study provide evidence that IL-17A plays a pivotal role in vascular proliferation in the retina. Hence, IL-17A could be a potentially novel therapeutic target for retinal neovascularization, which can cause blindness in multiple ocular diseases.
Collapse
Affiliation(s)
- Brooklyn E. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Thomas E. Zapadka
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Amy Y. Zhou
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Zakary R. R. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott J. Howell
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
50
|
Alkharfy KM, Ahmad A, Siddiquei MM, Ghulam M, El-Asrar AA. Thymoquinone Attenuates Retinal Expression of Mediators and Markers of Neurodegeneration in a Diabetic Animal Model. Curr Mol Pharmacol 2023; 16:188-196. [PMID: 35049444 DOI: 10.2174/1874467215666220113105300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a slow eye disease that affects the retina due to a long-standing uncontrolled diabetes mellitus. Hyperglycemia-induced oxidative stress can lead to neuronal damage leading to DR. OBJECTIVE The aim of the current investigation is to assess the protective effects of thymoquinone (TQ) as a potential compound for the treatment and/or prevention of neurovascular complications of diabetes, including DR. METHODS Diabetes was induced in rats by the administration of streptozotocin (55 mg/kg intraperitoneally, i.p.). Subsequently, diabetic rats were treated with either TQ (2 mg/kg i.p.) or vehicle on alternate days for three weeks. A healthy control group was also run in parallel. At the end of the treatment period, animals were euthanized, and the retinas were collected and analyzed for the expression levels of brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), nerve growth factor receptor (NGFR), and caspase-3 using Western blotting techniques in the retina of diabetic rats and compared with the normal control rats. In addition, dichlorofluorescein (DCF) levels in the retina were assessed as a marker of reactive oxygen species (ROS), and blood-retinal barrier breakdown (BRB) was examined for vascular permeability. The systemic effects of TQ treatments on glycemic control, kidney and liver functions were also assessed in all groups. RESULTS Diabetic animals treated with TQ showed improvements in the liver and kidney functions compared with control diabetic rats. Normalization in the levels of neuroprotective factors, including BDNF, TH, and NGFR, was observed in the retina of diabetic rats treated with TQ. In addition, TQ ameliorated the levels of apoptosis regulatory protein caspase-3 in the retina of diabetic rats and reduced disruption of the blood-retinal barrier, possibly through a reduction in reactive oxygen species (ROS) generation. CONCLUSION These findings suggest that TQ harbors a significant potential to limit the neurodegeneration and retinal damage that can be provoked by hyperglycemia in vivo.
Collapse
Affiliation(s)
- Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Mairaj Siddiquei
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Ghulam
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|