1
|
Yin A, Gui Y, Wan L, Cai Q, Luo Y, Wang JZ, Liu R, Ying C, Wang X, Yang F. p53 SUMOylation promotes neurogenesis defects in APP/PS1 mice. J Alzheimers Dis 2025:13872877251340432. [PMID: 40336408 DOI: 10.1177/13872877251340432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Backgroundp53 is a transcriptional factor that regulates numerous cellular processes, the stability and activity of p53 is essential to maintain its function. Post-translational modifications (PTMs), particularly SUMOylation, play a vital role in regulating p53 activity.ObjectiveTo investigate the neurogenesis related genes that downregulated by p53 SUMOylation in APP/PS1 mice, and the protected effect by overexpressing non-SUMOylated p53 (p53 K386R). Furthermore, to provide new clues for the mechanisms of Alzheimer's disease (AD).MethodsCo-immunoprecipitation was used to detect the p53 SUMOylation levels in neuro2a (N2a) cells and APP/PS1 mice overexpressing wild-type p53 (p53 WT) or p53 K386R. In addition, RNA sequencing (RNA-seq) was used to detect the p53 SUMOylation regulated genes. Then we used qPCR, western blot, and immunofluorescence to measure the expression of neuroglobin (ngb) and the effect of neurogenesis defects induced by p53 SUMOylation.ResultsWe verified that overexpression of p53 WT promoted p53 SUMOylation and p53 K386R decreased p53 SUMOylation in N2a cells and APP/PS1 mice. Ngb was related to neurogenesis which dramatically downregulated by p53 SUMOylation. In addition, we found p53 SUMOylation caused neuron reduction and impairment of neurogenesis.ConclusionsOur data support that p53 SUMOylation may lead to neurogenesis defects by downregulating ngb in AD, suggesting that inhibition of p53 SUMOylation may be served as a therapeutic strategy for preventing AD and provide a new target for future researches and interventions.
Collapse
Affiliation(s)
- Anqi Yin
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Lu Wan
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinfeng Cai
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yong Luo
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjiang Ying
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Fumin Yang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Shabanian K, Shabanian T, Karsai G, Pontiggia L, Paneni F, Ruschitzka F, Beer JH, Saeedi Saravi SS. AQP1 differentially orchestrates endothelial cell senescence. Redox Biol 2024; 76:103317. [PMID: 39180980 PMCID: PMC11388013 DOI: 10.1016/j.redox.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Accumulation of senescent endothelial cells (ECs) with age is a pivotal driver of cardiovascular diseases in aging. However, little is known about the mechanisms and signaling pathways that regulate EC senescence. In this report, we delineate a previously unrecognized role of aquaporin 1 (AQP1) in orchestrating extracellular hydrogen peroxide (H2O2)-induced cellular senescence in aortic ECs. Our findings underscore AQP1's differential impact on senescence hallmarks, including cell-cycle arrest, senescence-associated secretory phenotype (SASP), and DNA damage responses, intricately regulating angiogenesis. In proliferating ECs, AQP1 is crucial for maintaining angiogenic capacity, whereas disruption of AQP1 induces morphological and mitochondrial alterations, culminating in senescence and impaired angiogenesis. Conversely, Aqp1 knockdown or selective blockade of AQP1 in senescent ECs rescues the excess H2O2-induced cellular senescence phenotype and metabolic dysfunction, thereby ameliorating intrinsic angiogenic incompetence. Mechanistically, AQP1 facilitates H2O2 transmembrane transport, exacerbating oxidant-sensitive kinases CaMKII-AMPK. This process suppresses HDAC4 translocation, consequently de-repressing Mef2A-eNOS signaling in proliferating ECs. However, in senescent ECs, AQP1 overexpression is linked to preserved HDAC4-Mef2A complex and downregulation of eNOS signaling. Together, our studies identify AQP1 as a novel epigenetic regulator of HDAC4-Mef2A-dependent EC senescence and angiogenic potential, highlighting its potential as a therapeutic target for antagonizing age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Khatereh Shabanian
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Taraneh Shabanian
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zurich, 8952, Schlieren, Switzerland
| | - Luca Pontiggia
- Tissue Biology Research Unit, University Children's Hospital Zurich, 8952, Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Faculty of Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, 5404, Baden, Switzerland.
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
4
|
Deepu V, Rai V, Agrawal DK. Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE Activation. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:80-103. [PMID: 38784044 PMCID: PMC11113086 DOI: 10.26502/aimr.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The review delves into the methods for the quantitative assessment of intracellular effectors and cellular response of Receptor for Advanced Glycation End products (RAGE), a vital transmembrane receptor involved in a range of physiological and pathological processes. RAGE bind to Advanced Glycation End products (AGEs) and other ligands, which in turn activate diverse downstream signaling pathways that impact cellular responses such as inflammation, oxidative stress, and immune reactions. The review article discusses the intracellular signaling pathways activated by RAGE followed by differential activation of RAGE signaling across various diseases. This will ultimately guide researchers in developing targeted and effective interventions for diseases associated with RAGE activation. Further, we have discussed how PCR, western blotting, and microscopic examination of various molecules involved in downstream signaling can be leveraged to monitor, diagnose, and explore diseases involving proteins with unique post-translational modifications. This review article underscores the pressing need for advancements in molecular approaches for disease detection and management involving RAGE.
Collapse
Affiliation(s)
- Vinitha Deepu
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
5
|
Vondenhoff S, Schunk SJ, Noels H. Increased cardiovascular risk in patients with chronic kidney disease. Herz 2024; 49:95-104. [PMID: 38416185 PMCID: PMC10917854 DOI: 10.1007/s00059-024-05235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Cardiovascular disease (CVD) is highly prevalent in patients suffering from chronic kidney disease (CKD). The risk of patients with CKD developing CVD is manifested already in the early stages of CKD development. The impact of declined kidney function on increased cardiovascular risk and the underlying mechanisms are complex and multifactorial. This review discusses the impact of (a) traditional cardiovascular risk factors such as smoking, dyslipidemia, diabetes, and hypertension as well as (b) CKD-specific pathophysiological and molecular mechanisms associated with an increased cardiovascular risk. The latter include uremic toxins, post-translational modifications and uremic lipids, innate immune cell activation and inflammation, oxidative stress, endothelial cell dysfunction, increased coagulation and altered platelet responses, vascular calcification, renin-angiotensin-aldosterone-system (RAAS) and sympathetic activation, as well as anemia. Unraveling the complex interplay of different risk factors, especially in the context of patient subcohorts, will help to find new therapeutic approaches in order to reduce the increased cardiovascular risk in this vulnerable patient cohort.
Collapse
Affiliation(s)
- Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen University, 52074, Aachen, Germany
| | - Stefan J Schunk
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany.
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), University Hospital Aachen, Aachen, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Tanke NT, Liu Z, Gore MT, Bougaran P, Linares MB, Marvin A, Sharma A, Oatley M, Yu T, Quigley K, Vest S, Cook JG, Bautch VL. Endothelial cell flow-mediated quiescence is temporally regulated and utilizes the cell cycle inhibitor p27. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.09.544403. [PMID: 37662222 PMCID: PMC10473767 DOI: 10.1101/2023.06.09.544403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. Methods Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time to cell cycle re-entry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA seq analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. Results Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous-flow exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. Conclusions Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence mis-regulation that leads to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary B Linares
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Arya Sharma
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah Vest
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
7
|
Garza-Campos A, Prieto-Correa JR, Domínguez-Rosales JA, Hernández-Nazará ZH. Implications of receptor for advanced glycation end products for progression from obesity to diabetes and from diabetes to cancer. World J Diabetes 2023; 14:977-994. [PMID: 37547586 PMCID: PMC10401444 DOI: 10.4239/wjd.v14.i7.977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are chronic pathologies with a high incidence worldwide. They share some pathological mechanisms, including hyperinsulinemia, the production and release of hormones, and hyperglycemia. The above, over time, affects other systems of the human body by causing tissue hypoxia, low-grade inflammation, and oxidative stress, which lay the pathophysiological groundwork for cancer. The leading causes of death globally are T2DM and cancer. Other main alterations of this pathological triad include the accumulation of advanced glycation end products and the release of endogenous alarmins due to cell death (i.e., damage-associated molecular patterns) such as the intracellular proteins high-mobility group box protein 1 and protein S100 that bind to the receptor for advanced glycation products (RAGE) - a multiligand receptor involved in inflammatory and metabolic and neoplastic processes. This review analyzes the latest advanced reports on the role of RAGE in the development of obesity, T2DM, and cancer, with an aim to understand the intracellular signaling mechanisms linked with cancer initiation. This review also explores inflammation, oxidative stress, hypoxia, cellular senescence, RAGE ligands, tumor microenvironment changes, and the “cancer hallmarks” of the leading tumors associated with T2DM. The assimilation of this information could aid in the development of diagnostic and therapeutic approaches to lower the morbidity and mortality associated with these diseases.
Collapse
Affiliation(s)
- Andrea Garza-Campos
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Roberto Prieto-Correa
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Alfredo Domínguez-Rosales
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Zamira Helena Hernández-Nazará
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
8
|
Farfán-Labonne B, Leff-Gelman P, Pellón-Díaz G, Camacho-Arroyo I. Cellular senescence in normal and adverse pregnancy. Reprod Biol 2023; 23:100734. [PMID: 36773450 DOI: 10.1016/j.repbio.2023.100734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
Cellular senescence (CS) is defined as a state of terminal proliferation arrest accompanied by morphological alterations, pro-inflammatory phenotype, and metabolic changes. In recent years, the implications of senescence in numerous physiological and pathological conditions such as development, tissue repair, aging, or cancer have been evident. Some inductors of senescence are tissue repair pathways, telomere shortening, DNA damage, degenerative disorders, and wound healing. Lately, it has been demonstrated that CS plays a decisive role in the development and progression of healthy pregnancy and labor. Premature maternal-fetal tissues senescence (placenta, choriamniotic membranes, and endothelium) is implicated in many adverse pregnancy outcomes, including fetal growth restriction, preeclampsia, preterm birth, and intrauterine fetal death. Here we discuss cellular senescence and its association with normal pregnancy development and adverse pregnancy outcomes. Current evidence allows us to establish the relevance of CS in processes associated with the appropriate development of placentation, the progression of pregnancy, and the onset of labor; likewise, it allows us to understand the undeniable participation of CS deregulation in pathological processes associated with pregnancy.
Collapse
Affiliation(s)
- Blanca Farfán-Labonne
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México.
| | - Philippe Leff-Gelman
- Coordinación de Salud Mental, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México
| | - Gabriela Pellón-Díaz
- Coordinación de Salud Mental, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
9
|
Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med 2023; 55:1-12. [PMID: 36599934 PMCID: PMC9898542 DOI: 10.1038/s12276-022-00906-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Senescence compromises the essential role that the endothelium plays in maintaining vascular homeostasis, so promoting endothelial dysfunction and the development of age-related vascular diseases. Their biological and clinical significance calls for strategies for identifying and therapeutically targeting senescent endothelial cells. While senescence and endothelial dysfunction have been studied extensively, distinguishing what is distinctly endothelial senescence remains a barrier to overcome for an effective approach to addressing it. Here, we review the mechanisms underlying endothelial senescence and the evidence for its clinical importance. Furthermore, we discuss the current state and the limitations in the approaches for the detection and therapeutic intervention of target cells, suggesting potential directions for future research.
Collapse
|
10
|
Hu CC, Wei X, Liu JM, Han LL, Xia CK, Wu J, You T, Zhu AF, Yao SL, Yuan SY, Xu HD, Xia ZY, Wang TT, Mao WK. Cardiac-targeted PIASy gene silencing mediates deSUMOylation of caveolin-3 and prevents ischemia/reperfusion-induced Na v1.5 downregulation and ventricular arrhythmias. Mil Med Res 2022; 9:58. [PMID: 36229865 PMCID: PMC9563440 DOI: 10.1186/s40779-022-00415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 09/07/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Abnormal myocardial Nav1.5 expression and function cause lethal ventricular arrhythmias during myocardial ischemia-reperfusion (I/R). Protein inhibitor of activated STAT Y (PIASy)-mediated caveolin-3 (Cav-3) SUMO modification affects Cav-3 binding to the voltage-gated sodium channel 1.5 (Nav1.5). PIASy activity is increased after myocardial I/R, but it is unclear whether this is attributable to plasma membrane Nav1.5 downregulation and ventricular arrhythmias. METHODS Using recombinant adeno-associated virus subtype 9 (AAV9), rat cardiac PIASy was silenced using intraventricular injection of PIASy short hairpin RNA (shRNA). After two weeks, rat hearts were subjected to I/R and electrocardiography was performed to assess malignant arrhythmias. Tissues from peri-infarct areas of the left ventricle were collected for molecular biological measurements. RESULTS PIASy was upregulated by I/R (P < 0.01), with increased SUMO2/3 modification of Cav-3 and reduced membrane Nav1.5 density (P < 0.01). AAV9-PIASy shRNA intraventricular injection into the rat heart downregulated PIASy after I/R, at both mRNA and protein levels (P < 0.05 vs. Scramble-shRNA + I/R group), decreased SUMO-modified Cav-3 levels, enhanced Cav-3 binding to Nav1.5, and prevented I/R-induced decrease of Nav1.5 and Cav-3 co-localization in the intercalated disc and lateral membrane. PIASy silencing in rat hearts reduced I/R-induced fatal arrhythmias, which was reflected by a modest decrease in the duration of ventricular fibrillation (VF; P < 0.05 vs. Scramble-shRNA + I/R group) and a significantly reduced arrhythmia score (P < 0.01 vs. Scramble-shRNA + I/R group). The anti-arrhythmic effects of PIASy silencing were also evidenced by decreased episodes of ventricular tachycardia (VT), sustained VT and VF, especially at the time 5-10 min after ischemia (P < 0.05 vs. Scramble-shRNA + IR group). Using in vitro human embryonic kidney 293 T (HEK293T) cells and isolated adult rat cardiomyocyte models exposed to hypoxia/reoxygenation (H/R), we confirmed that increased PIASy promoted Cav-3 modification by SUMO2/3 and Nav1.5/Cav-3 dissociation after H/R. Mutation of SUMO consensus lysine sites in Cav-3 (K38R or K144R) altered the membrane expression levels of Nav1.5 and Cav-3 before and after H/R in HEK293T cells. CONCLUSIONS I/R-induced cardiac PIASy activation increased Cav-3 SUMOylation by SUMO2/3 and dysregulated Nav1.5-related ventricular arrhythmias. Cardiac-targeted PIASy silencing mediated Cav-3 deSUMOylation and partially prevented I/R-induced Nav1.5 downregulation in the plasma membrane of cardiomyocytes, and subsequent ventricular arrhythmias in rats. PIASy was identified as a potential therapeutic target for life-threatening arrhythmias in patients with ischemic heart diseases.
Collapse
Affiliation(s)
- Chen-Chen Hu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Wei
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin-Min Liu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin-Lin Han
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Kun Xia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Wu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao You
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - A-Fang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, CAMS and PUMC, Beijing, 100730, China
| | - Shang-Long Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi-Ying Yuan
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao-Dong Xu
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Zheng-Yuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, 999077, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Ting-Ting Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei-Ke Mao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|