1
|
Wilbrink R, Neys SF, Hendriks RW, Spoorenberg A, Kroese FG, Corneth OB, Verstappen GM. Aberrant B cell receptor signaling responses in circulating double-negative 2 B cells from radiographic axial spondyloarthritis patients. J Transl Autoimmun 2025; 10:100270. [PMID: 39974741 PMCID: PMC11835616 DOI: 10.1016/j.jtauto.2025.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Objective Radiographic axial spondyloarthritis (r-axSpA) is a chronic rheumatic disease in which innate immune cells and T cells are thought to play a major role. However, recent studies also hint at B cell involvement. Here, we performed an in-depth analysis on alterations within the B-cell compartment from r-axSpA patients. Methods We performed immune gene expression profiling on total peripheral blood B cells from 8 r-axSpA patients and 8 healthy controls (HCs). Next, we explored B cell subset distribution and B-cell receptor (BCR) signaling responses in circulating B cells from 28 r-axSpA patients and 15 HCs, by measuring spleen tyrosine kinase, phosphoinositide 3-kinase and extracellular signal regulated kinase 1/2 phosphorylation upon α-Ig stimulation using phosphoflow cytometry. Results Immune gene expression profiling indicated an elevated pathway score for BCR signaling in total B cells from r-axSpA patients compared with HCs. Flow cytometric analysis revealed an increase in frequency of both total and double-negative 2 (DN2) B cells in r-axSpA patients compared with HCs. In r-axSpA patients, DN2 B cells displayed an isotype shift towards IgA. Remarkably, where DN2 B cells from HCs were hyporesponsive, these cells displayed significant proximal BCR signaling responses in r-axSpA patients. Enhanced BCR signaling responses were also observed in the transitional and naïve B cell population from r-axSpA patients compared with HCs. The enhanced BCR signaling responses in DN2 B cells correlated with clinical disease parameters. Conclusion In r-axSpA patients, circulating DN2 B cells are expanded and, together with transitional and naïve B cells, display significantly enhanced BCR signaling responses upon stimulation. Together, our data suggest B cell involvement in the pathogenesis of r-axSpA.
Collapse
Affiliation(s)
- Rick Wilbrink
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan F.H. Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anneke Spoorenberg
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G.M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gwenny M.P.J. Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Wang Z, Chen G, Zhao C, Li Y, Shi J, Chen H, Chen G. B-cell depletion therapy reduces retinal inflammation in experimental autoimmune uveoretinitis. Int Immunopharmacol 2025; 153:114467. [PMID: 40117810 DOI: 10.1016/j.intimp.2025.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE Non-infectious uveitis (NIU) is recognized as a group of autoimmune sight-threatening disorders with complex pathogenesis. This study aims to analyze the pathogenic role of B cells in NIU and evaluate the effectiveness of B cell depletion therapy in experimental autoimmune uveoretinitis (EAU) mice. METHODS We performed high throughput transcriptome sequence on peripheral blood samples from healthy individuals (n = 6) and NIU patients (n = 12), and reanalyzed single-cell RNA transcriptome data of aqueous humor in NIU patients (n = 5). Female C57BL/6 J mice were induced the EAU model through immunization with the IRBP651-670 peptide. B cell depletion was performed via intravitreal injection of anti-CD20 antibody on day 7 and mice were executed on day 14 following antigen administration. Clinical symptoms were assessed by fundus photography and fundus fluorescein angiography. Pathological sections were analyzed using immunohistochemistry and immunofluorescence. Serum immunoglobulins and inflammatory factors were detected by ELISA. RESULTS Transcriptome sequencing and single-cell RNA analysis revealed strong B cell immune responses in both peripheral blood and aqueous humor of NIU patients. Intravitreal injection of anti-CD20 antibody partially reduces B cell numbers, suppresses T cell proliferation in CLNs, and decreases serum IgG and inflammatory cytokines level, which collectively alleviate clinical symptoms and mitigate retinal inflammation. Significant differences in BCR sequences were observed between the NIU groups and healthy controls. CONCLUSION B-cell depletion therapy may offer a novel strategy for the treatment of NIU and identifying specific BCR sequences provides a potential target for both therapeutic intervention and disease monitoring.
Collapse
Affiliation(s)
- Zhiruo Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Gong Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Cong Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Jingming Shi
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Arp AB, Abel Gutierrez A, Ter Beest M, Franken GA, Warner H, Rodgers Furones A, Kenyon AN, Jäger F, Cabrera-Orefice A, Kläsener K, van Deventer S, Droesen L, Dunlock VME, Classens R, Staniek J, Borst J, Reth M, Brandt U, Gros P, Kuijpers TW, Heemskerk MHM, Rizzi M, Querol Cano L, van Spriel AB. CD70 recruitment to the immunological synapse is dependent on CD20 in B cells. Proc Natl Acad Sci U S A 2025; 122:e2414002122. [PMID: 40232798 DOI: 10.1073/pnas.2414002122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
CD20 is a four-transmembrane protein expressed at the surface of B cells from late pro-B cells to memory B cells, with the exception of plasma cells. Its expression pattern makes it an attractive therapeutic target for different B cell malignancies and autoimmune diseases. Despite the clinical success of CD20-targeting antibodies, the biology of the CD20 protein is still not well understood. We investigated CD20 binding partners in the membrane of human B cells using immunoprecipitation followed by mass spectrometry analysis. We identified a molecular interaction between CD70 and CD20, and confirmed this using proximity ligation assays. CD20-CD70 spatiotemporal colocalization was validated at the plasma membrane of B cells using high-resolution microscopy. Cell surface expression of CD70 was found to be enhanced upon CD20 overexpression, suggesting a role for CD20 in stabilizing CD70 at the B cell membrane. Moreover, we observed impaired B-T cell synapse formation and defective recruitment of CD70 to the immunological synapse in the absence of CD20. Impaired synapse formation was confirmed by deleting CD20 in primary B cells, and analysis of B cells from a CD20-deficient patient. Finally, CD20-deletion resulted in diminished T cell activation and cytokine secretion. Together, this study demonstrates that CD20 interacts with CD70 at the B cell membrane, and that CD20 is required for immune synapse formation between B and T cells and consequent T cell activation.
Collapse
Affiliation(s)
- Abbey B Arp
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Andrea Abel Gutierrez
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Martin Ter Beest
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Guus A Franken
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Harry Warner
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Andrea Rodgers Furones
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Angelique N Kenyon
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Franziska Jäger
- Department of Chemistry, Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University Utrecht 3584 CH, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Kathrin Kläsener
- Department of Molecular Immunology, Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, Centre for Biological Signalling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Sjoerd van Deventer
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Lenny Droesen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Vera Marie E Dunlock
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, Leiden 2333 ZG, The Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden 2333 ZG, The Netherlands
| | - Michael Reth
- Department of Molecular Immunology, Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, Centre for Biological Signalling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ulrich Brandt
- Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Piet Gros
- Department of Chemistry, Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University Utrecht 3584 CH, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden 2333 ZG, The Netherlands
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
4
|
Cree BAC, Berger JR, Greenberg B. The Evolution of Anti-CD20 Treatment for Multiple Sclerosis: Optimization of Antibody Characteristics and Function. CNS Drugs 2025:10.1007/s40263-025-01182-8. [PMID: 40180777 DOI: 10.1007/s40263-025-01182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2025] [Indexed: 04/05/2025]
Abstract
B-cell depletion with CD20-targeted agents is commonly used for treatment of multiple sclerosis (MS), other autoimmune diseases, and certain hematologic malignancies. Initial apparent success with rituximab in MS and neuromyelitis optica spurred development of the anti-CD20 monoclonal antibody (mAb) therapies ocrelizumab, ofatumumab, and ublituximab as well as the anti-CD19 mAb inebilizumab. While each are effective at targeting and depleting B cells, structural differences translate into different mechanisms of action affecting maintenance of B-cell depletion and safety and tolerability. Although the anti-CD20 mAbs differ in degree of human versus mouse sequences as well as target CD20 epitope, these properties do not appear to substantially affect activity or tolerability. In contrast, an antibody-dependent cell-mediated cytotoxicity (ADCC) versus a complement-dependent cytotoxicity mechanism of action as well as subcutaneous versus intravenous administration may provide improved tolerability. Glycoengineering of the mAbs ublituximab and inebilizumab enhances ADCC and can overcome the reduced responses to mAb-mediated B-cell depletion associated with certain genetic polymorphisms. Other strategies for therapeutic targeting of CD20, including brain shuttle antibodies (e.g., RO7121932), bispecific antibodies, chimeric antigen receptor T-cell therapies, and antibody-drug conjugates, are in active clinical development and may be future treatment approaches in MS and other B-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, 675 Nelson Rising Lane, #221C, San Francisco, CA, 94158, USA.
| | - Joseph R Berger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Greenberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Leung KK, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025. [PMID: 40178992 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Banerjee D, Paul S, Selvan C, Pai S, Nandakumar BS, Mukherjee S, Raghavendra PB. Uncovering the Role of Tertiary Lymphoid Organs in the Inflammatory Landscape: A Novel Immunophenotype of Diabetic Foot Ulcers. J Cell Mol Med 2025; 29:e70479. [PMID: 40159626 PMCID: PMC11955414 DOI: 10.1111/jcmm.70479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Diabetes foot ulcers (DFU) are the most common foot injuries leading to lower extremity amputation. Our study aimed to provide the first representative analysis highlighting the vital role of Tertiary Lymphoid Organs (TLO) inflammatory landscape in diabetic foot ulcers. The study explores mechanisms of TLO formation and the disease-specific roles of TLOs in regulating peripheral inflammatory and immune responses. Additionally, comprehensive analysis of clinical data from DFU cases, focused on TLO pathophysiology and systemic immune-inflammation landscape, is documented, aiming to identify the risk factors contributing to the development of DFUs. Our experimental results showed very significant differences were observed among the IL-17 and IFN-γ cytokine levels between the DFU vs. Control and DFU vs. NIDFU (Non-Infectious Diabetic Foot Ulcers) groups, while minimal differences were observed in IL-6 and TNF-α cytokine levels. Immunohistochemistry staining or Immunophenotyping of DFU patient-derived wound samples for TLO inflammatory stratification showed remarkable differences between DFU, NIDFU, and control groups both in CD3+ T Cells and CD20+ B cells. Overall, our study findings highlight the perspective role of TLO in DFU mechanisms and its prudent role in regulating peripheral inflammatory-immune responses. TLO study-related significant findings might be one of the important mechanisms, and its effective unveil might be a valuable treatment modality for DFU-complications.
Collapse
Affiliation(s)
- Deboshmita Banerjee
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
- Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| | - Shouvik Paul
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
- Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| | - Chitra Selvan
- Department of Endocrinology and General SurgeryM. S. Ramaiah Medical College and HospitalsBengaluruIndia
| | - Sreekar Pai
- Department of Endocrinology and General SurgeryM. S. Ramaiah Medical College and HospitalsBengaluruIndia
| | - B. S. Nandakumar
- Department of Community MedicineM. S. Ramaiah Medical College and HospitalsBengaluruIndia
| | - Souvik Mukherjee
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
- Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| | - Pongali B. Raghavendra
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
- Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| |
Collapse
|
7
|
Henning AN, Pardoe J, Owusu-Ansah D, Lei H, Robichaux K, Perinet L, Muccilli S, Highfill SL, De Giorgi V. Assessing the impact of cell isolation method on B cell gene expression using next-generation sequencing. Exp Hematol 2025:104766. [PMID: 40164324 DOI: 10.1016/j.exphem.2025.104766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Transcriptional profiling of peripheral blood mononuclear cells (PBMCs) is a widely explored research approach across multiple fields. Cell populations of interest are generally isolated before analysis, especially if low-frequency cell populations are desired. B cells, in particular, make up approximately 5%-10% of total PBMCs in healthy individuals, thus, isolation of B cell populations is crucial for researchers investigating B cell malignancies. The most widely used cell isolation methods include negative or positive magnetic cell sorting (MCS) and fluorescence-activated cell sorting (FACS). In contrast to negative MCS, it is widely believed that positive MCS and FACS may affect gene expression due to the direct interaction of cell selection antibodies with surface markers. To the best of our knowledge, no specific studies have examined these effects within CD19+ B cell populations. To evaluate this, we have performed RNA sequencing (RNA-seq) on B cells isolated from four healthy donors using three distinct methods: positive and negative MCS using the EasySep StemCell Technologies kits and FACS, performed using the MACSQuant Tyto sorter (Miltenyi Biotec). We report significant gene expression changes following CD19-dependent B cell isolation via either positive MCS or FACS relative to negative MCS, including a general upregulation of genes associated with immune activity and receptor signaling and downregulation of RNA processing genes. These results suggest that B cell isolation methods should be taken into consideration when designing experiments or incorporating publicly available sequencing datasets into ongoing research studies, as they may significantly impact the reliability and interpretability of the findings.
Collapse
Affiliation(s)
- Amanda N Henning
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jordan Pardoe
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Darryl Owusu-Ansah
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Hong Lei
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Kobe Robichaux
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Lara Perinet
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Samantha Muccilli
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Steven L Highfill
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Valeria De Giorgi
- Department of Transfusion Medicine and Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
8
|
Zhang T, Tang X. Untangling immune cell contributions in the progression from GERD to Barrett's esophagus and esophageal cancer: Insights from genetic causal analysis. Int Immunopharmacol 2025; 150:114271. [PMID: 39965389 DOI: 10.1016/j.intimp.2025.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is a rapidly increasing malignancy with significant morbidity and mortality. The progression from gastroesophageal reflux disease (GERD) to Barrett's esophagus (BE) and ultimately to EAC is thought to be influenced by chronic inflammation and immune cell dynamics. Despite the observed correlations in observational studies, the causal relationships between immune cell phenotypes and this disease continuum remain unclear. METHODS This study utilized a two-sample Mendelian Randomization (MR) approach to investigate the causal roles of 731 distinct immune cell phenotypes in the GERD-BE-EAC continuum. The analysis leveraged genome-wide association study (GWAS) data for immune phenotypes from a Sardinian cohort and data for GERD, BE, and EAC from the FinnGen and Open GWAS databases. A comprehensive set of MR methods, including inverse variance weighted (IVW), MR-Egger, and weighted median estimators, was employed to assess causality. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy, ensuring the robustness of the findings. RESULTS The study revealed complex and multifaceted roles of immune cells across the GERD-BE-EAC continuum. In GERD, 34 immune phenotypes were found to be causally associated with either increased or decreased risk. Protective effects were observed in phenotypes such as Unswitched Memory B cells, while others like CD45RA- CD4+ T cells were linked to an elevated risk. In the context of BE, 28 immune phenotypes demonstrated significant causal associations, with the majority being protective, including Unswitched Memory B cells and CD62L on Granulocytes. Conversely, certain phenotypes, such as CD24 on Transitional B cells, were identified as risk factors for BE. For EAC, 34 immune phenotypes were implicated, with various B cell subsets, particularly those expressing BAFF-R and CD24, associated with an increased risk, while Switched Memory B cells and specific myeloid cell phenotypes showed protective effects. CONCLUSIONS This study provides novel insights into the complex role of immune cells in the pathogenesis of EAC, revealing a dynamic interplay where certain immune phenotypes may be protective in early stages but become risk-enhancing in later stages of disease progression. These findings highlight the potential of immune cell phenotypes to serve as biomarkers for early detection and targeted therapeutic interventions across the GERD-BE-EAC continuum. Further research is warranted to validate these findings in diverse populations and to explore the underlying mechanisms driving these immune-mediated effects.
Collapse
Affiliation(s)
- Tai Zhang
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China; Peking University Health Science Center, Beijing 100191, China
| | - Xudong Tang
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China; Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
9
|
Sarkar S, Pham JM, Edwards KJ, Sharma N, Xu K, King AP, Del Castillo AF, Farwell MD, Pryma DA, Schuster SJ, Sellmyer MA. A biorthogonal chemistry approach for high-contrast antibody imaging of lymphoma at early time points. EJNMMI Res 2025; 15:26. [PMID: 40122966 PMCID: PMC11930911 DOI: 10.1186/s13550-025-01213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Monoclonal antibodies are highly specific for their targets making them effective for cancer therapy. However, their large molecular weight causes slow blood clearance, often requiring weeks to be removed from circulation. This limitation affects companion nuclear imaging and antibody-based diagnostics, necessitating delayed imaging. We report the expansion of a methodology improving positron emission tomography (PET) contrast of the lymphoma biomarker CD20 at early time points after radiolabeled antibody administration. Intact radioimmunoconjugates are allowed to stay in circulation long enough to accumulate in tumors, and then, using a chemical trigger, we induced rapid clearance of the radioactivity from non-target tissues by cleaving the linker between the antibody and the radioactivity. For brevity, we refer to the this as the Tetrazine KnockOut (TKO) method which uses the transcyclooctene-tetrazine (TCO-Tz) reaction, wherein an antibody is conjugated with linker containing TCO and a radioisotope. RESULTS We optimized the TCO linker with several different radioisotopes and evaluated the ability of tetrazines to knockout radioactivity from circulating antibodies. We explored several cell types and antibodies with varying internalization rates, to characterize the parameters of TKO and tested [89Zr]Zr-DFO-TCO-rituximab in a lymphoma model with PET imaging after Tz or vehicle administration. Treatment with Tz induced > 70% cleavage of the TCO linker in vitro within 30 min. Internalizing radioimmunoconjugates exhibited similar cellular uptake with Tz compared to vehicle, whereas decreased uptake was seen with slowly internalizing antibodies. In rodents, Tz rapidly liberated the radioactivity from the antibody, cleared from the blood, and accumulated in the bladder. TKO resulted in > 50% decreased radioactivity in non-target organs following Tz injection. No decrease in tumor uptake was observed when rate of antibody internalization is higher in a lymphoma model, and the target-to-background ratio increased by > twofold in comparison with Tz nontreated groups at 24 h. CONCLUSION The TKO approach potentiates early imaging of rituximab radioimmunoconjugates and has translational potential for lymphoma imaging.
Collapse
Affiliation(s)
- Swarbhanu Sarkar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Jonathan M Pham
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Kimberly J Edwards
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Nitika Sharma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Kexiang Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - A Paden King
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Andres Fernandez Del Castillo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Daniel A Pryma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Sellmyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA.
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Wang XL, He YF, Chen SK, Cheng J, Wu XM. Dissecting Causal Relationships Between Immune Cells, Plasma Metabolites, and PCOS: Evidence From Mediating Mendelian Randomization Analysis. Int J Womens Health 2025; 17:807-823. [PMID: 40123755 PMCID: PMC11928329 DOI: 10.2147/ijwh.s508352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Background The relationship between Polycystic ovary syndrome (PCOS) and immune dysregulation, along with metabolic disturbances, remains unclear. This study used Mendelian Randomization (MR) to investigate causal relationships between immune cells, PCOS, and possible metabolite mediators. Methods We explored the genetic-level relationship between immune cells and PCOS, focusing on metabolites as potential mediators. Data from genome-wide association studies (GWAS) included 731 immune cell types (n=3757), 1400 plasma metabolites (n=8299), and PCOS cases (n=797) versus controls (n=140,558). Bidirectional MR analysis examined immune-PCOS relationships, while two-step MR and mediation analysis identified metabolites as potential mediators. The inverse variance-weighted (IVW) method was used for primary causal assessment, with sensitivity analysis validating results. Results We identified a total of 33 immune cells that were associated with increased or decreased risk of PCOS (P < 0.05), and these immune cells were also associated with alterations in certain metabolite levels (P < 0.05). Among them, 12 immune cells were found to influence the occurrence of PCOS through the mediation of 17 metabolites. Notably, the effects of Myeloid DC %DC, NKT AC, CD20 on CD20- CD38-, CD25 on memory B cell, and HLA DR on CD33dim HLA DR+ CD11b+ were mediated by multiple metabolites on PCOS development. Similarly, histidine betaine (hercynine) levels and alpha-ketoglutarate to ornithine ratio mediated the association of more than one immune cell with PCOS. Conclusion This study highlights 12 immune cells impacting PCOS through 17 metabolites, advancing the understanding of immune mechanisms in PCOS risk and suggesting potential therapeutic approaches targeting immune modulation.
Collapse
Affiliation(s)
- Xia-li Wang
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, 362000, People’s Republic of China
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Yi-fang He
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Shi-kun Chen
- Department of Clinical Laboratory, Quanzhou Taiwan Investment Zone Disease Prevention and Control Center, Quanzhou, 362000, People’s Republic of China
| | - Jing Cheng
- Quanzhou Science and Technology Center, Quanzhou Medical College, Quanzhou, 362000, People’s Republic of China
| | - Xiu-ming Wu
- Department of Ultrasound, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| |
Collapse
|
11
|
Jing F, Zhou J, Zhang F, Zhao G, Fang F, Pan X. Exploring the Relationship Between Gut Microbiota and Aortic Stenosis: Role of Inflammatory Proteins, Blood Metabolites, and Immune Cells. Int J Med Sci 2025; 22:1750-1761. [PMID: 40225870 PMCID: PMC11983298 DOI: 10.7150/ijms.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Aortic stenosis is the most prevalent valvular heart disease in high-income population, and there are currently no medical therapies to slow the disease progression. Given that gut microbiota influences the immune system, lipid metabolism, and inflammation, there may be a potential link between gut microbiota and AS. Aims: We aimed to examine the causal effects of gut microbiota on AS and to investigate the mediating roles of inflammatory proteins, blood metabolites, and immune cells. Methods: Bidirectional Mendelian randomization analysis was performed to assess the causal relationships between gut microbiota, inflammatory proteins, blood metabolites, immune cells, and AS. Two-step Mendelian randomization was utilized to explore direct and indirect effects. The data were derived from genome-wide association study summary statistics available in public databases. Results: The study identified nine gut microbial features (six microbial taxa and three pathways), four inflammatory proteins, 91 blood metabolites, and four immune cell traits associated with AS. However, no significant mediating roles were found for inflammatory proteins, blood metabolites, and immune cells in the causal pathway between gut microbiota and AS. Conclusion: This study revealed novel causal associations between gut microbial features, inflammatory proteins, blood metabolites, and immune cell traits with AS. These findings offer new insights into the pathophysiology of AS and provide potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Fanhui Jing
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiapeng Zhou
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fengwen Zhang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangzhi Zhao
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Fang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Pfeffer LK, Fischbach F, Heesen C, Friese MA. Current state and perspectives of CAR T cell therapy in central nervous system diseases. Brain 2025; 148:723-736. [PMID: 39530593 DOI: 10.1093/brain/awae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
B cell-directed CAR T cell therapy has fundamentally changed the treatment of haematological malignancies, and its scope of application is rapidly expanding to include other diseases such as solid tumours or autoimmune disorders. Therapy-refractoriness remains an important challenge in various inflammatory and non-inflammatory disorders of the CNS. The reasons for therapy failure are diverse and include the limited access current therapies have to the CNS, as well as enormous inter- and intra-individual disease heterogeneity. The tissue-penetrating properties of CAR T cells make them a promising option for overcoming this problem and tackling pathologies directly within the CNS. First application of B cell-directed CAR T cells in neuromyelitis optica spectrum disorder and multiple sclerosis patients has recently revealed promising outcomes, expanding the potential of CAR T cell therapy to encompass CNS diseases. Additionally, the optimization of CAR T cells for the therapy of gliomas is a growing field. As a further prospect, preclinical data reveal the potential benefits of CAR T cell therapy in the treatment of primary neurodegenerative diseases such as Alzheimer's disease. Considering the biotechnological optimizations in the field of T cell engineering, such as extension to target different antigens or variation of the modified T cell subtype, new and promising fields of CAR T cell application are rapidly opening up. These innovations offer the potential to address the complex pathophysiological properties of CNS diseases. To use CAR T cell therapy optimally to treat CNS diseases in the future while minimizing therapy risks, further mechanistic research and prospective controlled trials are needed to assess seriously the disease and patient-specific risk-benefit ratio.
Collapse
Affiliation(s)
- Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Felix Fischbach
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Zhang P, Yang J, Zhou Q, Xue C, Zhang B, Ye S, Li Y. Diagnostic challenge presented by extranodal NK/T cell lymphoma expressing CD20, CD30 and CD15: A case report. Oncol Lett 2025; 29:120. [PMID: 39807104 PMCID: PMC11726299 DOI: 10.3892/ol.2025.14867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/23/2024] [Indexed: 01/16/2025] Open
Abstract
The atypical expression of immune phenotypes in lymphoma is often associated with a poor prognosis and presents diagnostic challenges. The present study reports on a rare extranodal NK/T cell lymphoma. In addition to typical morphology and immunohistochemical characteristics, these tumors strongly express CD20 and CD30 and partially express CD15, which is associated with aggressive clinical behavior. Differential diagnosis should be cautiously approached in extranodal NK/T cell lymphoma because the abovementioned markers are typically expressed in B cell lymphoma or Hodgkin's lymphoma. In addition to rigorous histological and comprehensive immunohistochemical staining, whole-body imaging and molecular testing can assist with diagnosis. In the present case, the patient died of multiple organ failure shortly after diagnosis. Lymphoma exhibits an atypical immunophenotype, thus emphasizing the importance of a thorough analysis of the interrelations among clinical, imaging and pathological features.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jing Yang
- Department of Pathology, Chengdu First People's Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shue Ye
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yumin Li
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
14
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Goodin DS. The epidemiology, pathology and pathogenesis of MS: Therapeutic implications. Neurotherapeutics 2025:e00539. [PMID: 40021419 DOI: 10.1016/j.neurot.2025.e00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/22/2025] [Indexed: 03/03/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic, and potentially disabling, inflammatory disease of the central nervous system (CNS). MS is generally characterized by recurrent, and self-limited, episodes of neurological dysfunction, which occur unpredictably and often result in multifocal tissue injury within the CNS. Currently, women are affected two to three times as often as men although this may not have been the case during earlier Time-Periods. The pathogenesis of MS is known to involve both critical genetic and environmental mechanisms. Nevertheless, in addition to these two mechanisms, disease-pathogenesis also involves a "truly" random event. Indeed, it is this random mechanism, which is responsible for the currently-observed (and increasing) excess of women among patients with MS. This review summarizes the current state of knowledge regarding the pathogenesis of MS (includong its epidemiology, pathology, and genetics) and considers the therapeutic implications that these pathogenetic mechanisms have both for our currently available therapies as well as for the possible therapeutic approaches to the management of this potentially disabling condition in the future.
Collapse
Affiliation(s)
- Douglas S Goodin
- University of California, San Francisco and the San Francisco VA Medical Center, 675 Nelson Rising Lane, Suite #221D, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Xian Q, Zhou J, Li X, Xu Y, Sun Y. Role of immune cells in seborrheic dermatitis: a two-sample bidirectional Mendelian randomization study. Arch Dermatol Res 2025; 317:482. [PMID: 39994123 DOI: 10.1007/s00403-025-04028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Prior research has indicated a link between seborrheic dermatitis (SD) and dysregulated immune responses; however, the causal linkage between this association and certain immune cell features has yet to be thoroughly clarified. This study seeks to examine the potential causal influence of immune cell characteristics on the pathogenesis of seborrheic dermatitis (SD) and to evaluate if these characteristics can function as biomarkers for early diagnosis and therapy. Data mining was performed using the Genome-Wide Association Study (GWAS) Catalog database to select 731 immune cell features for exposure variables and seborrheic dermatitis for the outcome variable in a forward Mendelian Randomization (MR) study. In a reverse MR analysis, seborrheic dermatitis was designated as the exposure factor, while the significant immune cell traits recognized by a forward MR analysis were used as outcome factors to exclude potential reverse causality. Five MR analyses were carried out by utilizing methods such as inverse variance weighting (IVW). Additionally, false discovery rate (FDR) correction, heterogeneity testing, level-dependent pleiotropy analysis, and sensitivity analysis were conducted. This study identified 11 immune traits causally associated with seborrheic dermatitis (SD). Specifically, five immune phenotypes were found to have been linking to a lower risk of SD: CD24on transitional, CD28 - DN(CD4 - CD8-)%T cell, CD45RA - CD28 - CD8br AC, Resting Treg%CD4, SSC - A on NKT. Conversely, six immunized traits have been shown with a greater risk of SD: CD127 - CD8br AC, CD20on CD24 + CD27+, CD27on IgD - CD38br, CD27on unsw mem, CD28 + DN(CD4 - CD8-)%T cell, HLA DR on CD33br HLA DR + CD14dim. The sensitivity analysis showed an absence of heterogeneity and level-dependent pleiotropy.This study demonstrates that specific immune cell traits not only correlate with SD but also provide valuable mechanistic insights into its pathogenesis. These immune traits also hold promise as biomarkers for early diagnosis, risk stratification, and personalized therapy. In addition, the findings provide new insights into immune mechanisms, highlighting the potential of targeted immunotherapies in SD treatment.
Collapse
Affiliation(s)
- Qinan Xian
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Zhou
- Department of Pediatrics, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Li
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Xu
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan Sun
- Department of Emergency, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
17
|
Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Metwally MMM, Helmi N, Alnajeebi AM, Alotaibi BS, Albaqami A, Mawkili W, Samak MA, Eissa SA. Exploring the CD3/CD56/TNF-α/Caspase3 pathway in pyrethroid-induced immune dysregulation: curcumin-loaded chitosan nanoparticle intervention. Front Pharmacol 2025; 16:1505432. [PMID: 39981186 PMCID: PMC11840570 DOI: 10.3389/fphar.2025.1505432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Conflict reports exist on the impact of pyrethroid insecticides on immune function and the probable underlying mechanisms. Methods This study evaluated the effect of an extensively used pyrethroid insecticide, fenpropathrin (FTN) (15 mg/kg b.wt), on the innate and humoral immune components, blood cells, splenic oxidative status, and mRNA expression of CD3, CD20, CD56, CD8, CD4, IL-6, TNF-α, and Caspase3 in a 60-day trial in rats. Besides, the possible defensive effect of curcumin-loaded chitosan nanoparticle (CML-CNP) (50 mg/kg b.wt) was evaluated. Results FTN exposure resulted in hypochromic normocytic anemia, thrombocytosis, leukocytosis, and lymphopenia. Besides, a significant reduction in IgG, not IgM, but increased C3 serum levels was evident in the FTN-exposed rats. Moreover, their splenic tissues displayed a substantial increase in the ROS, MDA, IL-6, and IL-1β content, altered splenic histology, and reduced GPX, GSH, and GSH/GSSG. Furthermore, a substantial upregulation of mRNA expression of splenic CD20, CD56, CD8, CD4, CD3, IL-6, and TNF-α, but downregulation of CD8 was detected in FTN-exposed rats. FTN exposure significantly upregulated splenic Caspase-3 and increased its immunohistochemical expression, along with elevated TNF-α immunoexpression. However, the alterations in immune function, splenic antioxidant status, blood cell populations, and immune-related gene expression were notably restored in the FTN + CML-CNP-treated group. Conclusion The findings of this study highlighted the immunosuppressive effects of FTN and suggested the involvement of many CD cell markers as a potential underlying mechanism. Additionally, the results demonstrated the effectiveness of CML-CNP in mitigating pollutant-induced immune disorders.
Collapse
Affiliation(s)
- Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M. M. Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Afnan M. Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mai A. Samak
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Samar A. Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, Egypt
| |
Collapse
|
18
|
Chen M, Zhou S, He X, Wen H. Identification of diagnostic biomarkers in prostate cancer-related fatigue by construction of predictive models and experimental validation. Br J Cancer 2025; 132:283-294. [PMID: 39676131 PMCID: PMC11791036 DOI: 10.1038/s41416-024-02922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Cancer-related fatigue (CRF) is a prominent cancer-related complication occurring in Prostate cancer (PCa) patients, profoundly affecting prognosis. The lack of diagnostic criteria and biomarkers hampers the management of CRF. METHODS The CRF-related data and PCa single-cell data were retrieved from the GEO database and clinical data was downloaded from the TCGA database. The univariate logistic/Cox regression analysis were used to construct the prediction models. The predictive value of models was analyzed using the ROC curve and Kaplan-Meier survival. The hub genes were screened by an intersection analysis of DEGs. The mice model of PCa and PCa-related fatigue were established, and fatigue-like behaviors of mice were detected. The expression of selected hub genes was validated by RT-PCR and IHC analysis. RESULTS The diagnosis and risk models showed great predictive value both in the training and validation dataset. Five genes (Baiap2l2, Cacng4, Sytl2, Sec31b and Ms4a1) that enriched the CXCL signaling were identified as hub genes. Among all hub genes, the MS4A1 expression is the most significant in PCa-related fatigue mice. CONCLUSIONS We identified MS4A1 as a promising biomarker for the diagnosis of PCa-related fatigue. Our findings would lay a foundation for revealing the pathogenesis and developing therapies for PCa-related fatigue.
Collapse
Affiliation(s)
- Ming Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Psycho-oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Key Laboratory of Carcinogenesis and Translational Research, Beijing, 100142, China
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiongwei He
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Haiyan Wen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
19
|
Santunione AL, Camatti J, Zucchi F, Ferronato C, Ferrari F, Caramaschi S, Silingardi E, Cecchi R. Fatal Waterhouse-Friderichsen Syndrome caused by Streptococcus pneumoniae in a vaccinated adult with traumatic splenectomy: A case report. Leg Med (Tokyo) 2025; 72:102569. [PMID: 39787974 DOI: 10.1016/j.legalmed.2025.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Waterhouse-Friderichsen Syndrome (WFS) is a rare but life-threatening condition characterized by massive adrenal hemorrhage. WFS represents one of the features of the Overwhelming Post-Splenectomy Infection, which occurs any time after spleen removal and is recognized as the most serious complication in asplenic patients. We report a fatal case of WFS resulting from Streptococcus pneumoniae infection in a vaccinated and splenectomized patient. D.R., a 62-year-old man who had been splenectomized 20 years earlier following a traffic accident and had undergone Streptococcus Pneumoniae vaccination, had an acute febrile episode with chills at home, followed by vomiting. He died suddenly within 12 h of presentation. A multidisciplinary approach was adopted to resolve the case. Autopsy, histological, immunohistochemical, microbiological and toxicological examinations were performed. At autopsy, both adrenal glands presented increased volume and diffuse intraparenchimal hemorrhage. Postmortem bacteriological cultures of blood, cerebrospinal fluid and pericardial fluid showed S. pneumoniae, while serologic and molecular characterization demonstrated that the serotype responsible was serotype 23B, which was not included in the vaccination which D.R. underwent. Accordingly, the cause of death of D.R. was attributed to acute adrenal insufficiency due to Waterhouse-Friderichsen syndrome caused by Serotype 23B Streptococcus pneumoniae infection. In splenectomized patients with fever, accompanied by other nonspecific symptoms, the diagnosis of WFS should be considered, even if the subjects received the recommended vaccinations. The postmortem diagnosis of WFS requires a multidisciplinary approach, including macroscopic examination, histological analysis, and microbiologic investigations, so it is necessary to collect appropriate postmortem biological specimens for microbiological investigation.
Collapse
|
20
|
Morgos DT, Eftimie LG, Nicolae H, Nica RI, Stefani C, Miricescu D, Tulin A, Filipoiu FM. Spotting the clues: cluster of differentiation-a perspective of immune response intertwined with dysautonomia in colon cancer - a prospective cohort study. J Med Life 2025; 18:125-132. [PMID: 40134445 PMCID: PMC11932503 DOI: 10.25122/jml-2025-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Dysautonomia, a parasympathetic-sympathetic imbalance, has clinical and public health consequences. Colon neoplasm is linked to dysautonomia through a complex interplay between the two conditions. In this prospective cohort study, we evaluated 18 patients divided into three groups: six patients with both colon cancer and dysautonomia, six patients with colon cancer without dysautonomia, and six patients with dysautonomia only (control group). Dysautonomia was defined by the presence of orthostatic hypotension, a non-increased or dropped heart rate, and various autonomic symptoms. During abdominal surgery, tissue samples from the celiac ganglion were collected and analyzed using immunohistochemistry (IHC). Our findings revealed a significant correlation between IHC marker expression in colon cancer and dysautonomia (control) (r = 0.927, P = 0.008). ANOVA results confirmed that the model was significant and that the dysautonomia group (control) had a significant effect on the independent variables (colon cancer or colon cancer + dysautonomia). The study proposes that a shared immunological mechanism underlies both dysautonomia and colon cancer, suggesting that the immune system plays a crucial role in the development or progression of these two conditions.
Collapse
Affiliation(s)
- Diana-Theodora Morgos
- Doctoral School, Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Lucian-George Eftimie
- Discipline of Anatomy and Biomechanics, Faculty of Physical Therapy, National University of Physical Education and Sports, Bucharest, Romania
- Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - Horia Nicolae
- Discipline of Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Discipline of Neurology, Elias University Emergency Hospital, Bucharest, Romania
| | - Remus Iulian Nica
- Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
- Discipline of General Surgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, Romania
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adrian Tulin
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Florin Mihail Filipoiu
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
21
|
Yang R, Fu D, Liao A. The role of complement in tumor immune tolerance and drug resistance: a double-edged sword. Front Immunol 2025; 16:1529184. [PMID: 39958348 PMCID: PMC11825488 DOI: 10.3389/fimmu.2025.1529184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
The domain of cancer treatment has persistently been confronted with significant challenges, including those associated with recurrence and drug resistance. The complement system, which serves as the foundation of the innate immune system, exhibits intricate and nuanced dual characteristics in the evolution of tumors. On the one hand, the complement system has the capacity to directly inhibit cancer cell proliferation via specific pathways, thereby exerting a beneficial anti-tumor effect. Conversely, the complement system can also facilitate the establishment of an immune escape barrier for cancer cells through non-complement-mediated mechanisms, thereby protecting them from eradication. Concurrently, the complement system can also be implicated in the emergence of drug resistance through a multitude of complex mechanisms, directly or indirectly reducing the efficacy of therapeutic interventions and facilitating the progression of cancer. This paper analyses the role of the complement system in tumors and reviews recent research advances in the mechanisms of tumor immune tolerance and drug resistance.
Collapse
Affiliation(s)
- Ronghui Yang
- Department of Blood Transfusion, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Di Fu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Practice, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Kacar M, Al-Hakim A, Savic S. Sequelae of B-Cell Depleting Therapy: An Immunologist's Perspective. BioDrugs 2025; 39:103-130. [PMID: 39680306 DOI: 10.1007/s40259-024-00696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
B-cell depleting therapy (BCDT) has revolutionised the treatment of B-cell malignancies and autoimmune diseases by targeting specific B-cell surface antigens, receptors, ligands, and signalling pathways. This narrative review explores the mechanisms, applications, and complications of BCDT, focusing on the therapeutic advancements since the introduction of rituximab in 1997. Various monoclonal antibodies and kinase inhibitors are examined for their roles in depleting B cells through antibody-dependent and independent mechanisms. The off-target effects, such as hypogammaglobulinemia, infections, and cytokine release syndrome, are discussed, emphasising the need for immunologists to identify and help manage these complications. The increasing prevalence of BCDT has necessitated the involvement of clinical immunologists in addressing treatment-associated immunological abnormalities, including persistent hypogammaglobulinemia and neutropenia. We highlight the importance of considering underlying inborn errors of immunity (IEI) in patients presenting with these complications. Furthermore, we discuss the impact of BCDT on other immune cell populations and the challenges in predicting and managing long-term immunological sequelae. The potential for novel BCDT agents targeting the BAFF/APRIL-TACI/BCMA axis and B-cell receptor signalling pathways to treat autoimmune disorders is also explored, underscoring the rapidly evolving landscape of B-cell targeted therapies.
Collapse
Affiliation(s)
- Mark Kacar
- Department of Allergy, University Clinic Golnik, Golnik, Slovenia
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Adam Al-Hakim
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Sinisa Savic
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK.
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
- NIHR Leeds Biomedical Research Centre, Leeds, UK.
| |
Collapse
|
23
|
Peng Y, Liu L, Li X, Song D, Huang D. B Cells at the Core: Immune Mechanisms and Therapeutic Potentials in Periapical Lesions. J Endod 2025; 51:4-14. [PMID: 39393516 DOI: 10.1016/j.joen.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION Periapical lesions (PLs) are common inflammatory diseases primarily caused by microbial infections within root canals. These infections trigger complex immune responses in periapical tissues, with B lymphocytes playing dual roles: defending against pathogens while also contributing to tissue damage. This highlights the crucial role of B cells in the immunological processes of PLs. METHODS A comprehensive review of the literature on B cells in PLs was conducted using PubMed, Web of Science, Scopus, and ScienceDirect databases. RESULTS The review included 120 studies that examined the distribution and subtypes of B cells, their dual functions in PLs, and the potential applications of B-cell-related therapies in treating apical periodontitis. CONCLUSIONS This review enhances our understanding of the complex immune mechanisms in PLs and aids in the development of new therapeutic approaches from a B-cell perspective.
Collapse
Affiliation(s)
- Yangqing Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangfen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Parveen A, Bhat SA, Elnaggar M, Meade KG. Comparative analysis of WC1.1+ and WC1.2+ γδ T cell subset responses from cattle naturally infected with Mycobacterium bovis to repeat stimulation with mycobacterial antigens. PLoS One 2024; 19:e0311854. [PMID: 39666627 PMCID: PMC11637235 DOI: 10.1371/journal.pone.0311854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
Mycobacterium bovis (M. bovis) causes bovine tuberculosis (bTB). The challenges in controlling and eradicating this zoonotic disease are compounded by our incomplete understanding of the host immune response. In this study, we used high-throughput bulk RNA sequencing (RNA-seq) to characterise the response profiles of γδ T cells to antigenic stimulation using purified protein derivate from M. bovis (PPDb). γδ T cells are a subgroup of T cells that bridge innate and adaptive immunity and have known anti-mycobacterial response mechanisms. These cells are usually classified based on the expression of a pathogen-recognition receptor, Workshop Cluster 1 (WC1), into two main subsets: WC1.1+ and WC1.2+. Previous studies have identified a preferential transcriptomic response in WC1.1+ cells during natural bTB infection, suggesting a subset-specific response to mycobacterial antigens. This follow on study tested the hypothesis that a subset specific response would also be apparent from γδ T cells from infected cattle after repeat stimulation. Peripheral blood was collected from Holstein-Friesian cattle naturally infected with M. bovis, confirmed by a single intradermal comparative tuberculin test (SICTT) and IFN-γ ELISA and stimulated with 10 μg/ml PPDb for 6 hours. After whole blood stimulation, WC1.1+ and WC1.2+ γδ T cell subsets were isolated using magnetic cell sorting (n = 5 per group). High-quality RNA was extracted from each purified lymphocyte subset (WC1.1+ and WC1.2+) to generate transcriptomes using bulk RNA sequencing, resulting in 20 RNA-seq libraries. Transcriptomic analysis revealed 111 differentially expressed genes (DEGs) common to both WC1.1+ and WC1.2+ γδ T cell compartments, including upregulation of IL1A, IL1B, IL6, IL17A, IL17F, and IFNG genes (FDR-Padj. < 0.1). Interestingly, the WC1.2+ cells showed upregulation of IL10, CCL22, and GZMA (log2FC ≥ 1.5, and FDR-Padj. < 0.1). In conclusion, while WC1.1+ and WC1.2+ γδ T cells exhibit a conserved inflammatory response to PPDb, differences in anti-inflammatory and antimicrobial gene expression between these cell subsets provide new insights into their effector functions in response to mycobacterial antigens.
Collapse
Affiliation(s)
- Alia Parveen
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Sajad A. Bhat
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Meath, Ireland
| | - Mahmoud Elnaggar
- Department of Veterinary Medicine, College of Applied and Health Sciences, A’Sharqiyah University, Ibra, Oman
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Kieran G. Meade
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Hu G, Zhao X, Wang Y, Zhu X, Sun Z, Yu X, Wang J, Liu Q, Zhang J, Zhang Y, Yang J, Chang T, Ruan Z, Lv J, Gao F. Advances in B Cell Targeting for Treating Muscle-Specific Tyrosine Kinase-Associated Myasthenia Gravis. Immunotargets Ther 2024; 13:707-720. [PMID: 39678139 PMCID: PMC11646387 DOI: 10.2147/itt.s492062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Myasthenia gravis (MG) is a typical autoimmune disease of the nervous system. It is characterized by skeletal muscle weakness and fatigue due to impaired neuromuscular junction transmission mediated by IgG autoantibodies. Muscle-specific receptor tyrosine kinase-associated MG (MuSK-MG), a rare and severe subtype of MG, is distinguished by the presence of anti-MuSK antibodies; it responds poorly to traditional therapies. Recent research on MuSK-MG treatment has focused on specific targeted therapies. Since B cells play a critical pathogenic role in producing autoantibodies and inflammatory mediators, they are often considered the preferred target for treating MuSK-MG. Currently, various B cell-targeted drugs have been developed to treat MuSK-MG; they have shown good therapeutic effects. This review explores the evolving landscape of B cell-targeted therapies in MuSK-MG, focusing on their mechanisms, efficacy, and safety, and the current limitations associated with their use. We discuss current B cell-targeted therapies aimed at depleting or modulating B cells via both direct and indirect approaches. Furthermore, we focus on novel and promising strategies such as Chimeric Autoantibody Receptor T cell therapy, which explicitly targets MuSK-specific B cells without compromising general humoral immunity. Finally, this review provides an outlook on the potential benefits and limitations of B cell-targeted therapy in developing new therapies for MuSK-MG. We conclude by discussing future research efforts needed to optimize these therapies, expand treatment options, and improve long-term outcomes in MuSK-MG management.
Collapse
Affiliation(s)
- Guanlian Hu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yiren Wang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoyan Zhu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhan Sun
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoxiao Yu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jiahui Wang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Qian Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Junhong Yang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ting Chang
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhe Ruan
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
26
|
Stelljes M. Ph- ALL: immunotherapy in upfront treatment. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:86-92. [PMID: 39644077 DOI: 10.1182/hematology.2024000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Antibody-based and cell-based novel immunotherapies, such as bispecific T-cell engagers (BiTE), antibody-drug conjugates, or chimeric antigen receptor (CAR) T cells are currently standard treatment options for patients with relapsed or refractory (R/R) B-cell precursor acute lymphoblastic leukemia (ALL). To date, CD20-targeting monoclonal antibodies and the CD19-targeting BiTE's blinatumomab have been established elements of frontline therapy, either in patients with CD20+ ALL or in patients with measurable disease (MRD) following conventional chemotherapy. Recently, blinatumomab has also demonstrated a survival benefit in patients with MRD-negative ALL. Based on the observed high response rates and improved survival outcomes in patients with R/R ALL, antibody-based immunotherapies are being prospectively studied in the upfront setting, particularly in older adult patients, where even age-adapted conventional chemotherapies are still associated with significant rates of early death, treatment-related toxicity, and poor prognosis. In these approaches, conventional chemotherapy has been replaced or reduced and supplemented by immunotherapeutic agents, resulting in promising outcomes that form the basis for evaluating and defining new treatment standards.
Collapse
Affiliation(s)
- Matthias Stelljes
- Department of Medicine A, Hematology and Oncology, University Hospital Münster, Münster, Germany
| |
Collapse
|
27
|
Xiong ZY, Shen YJ, Zhang SZ, Zhu HH. A review of immunotargeted therapy for Philadelphia chromosome positive acute lymphoblastic leukaemia: making progress in chemotherapy-free regimens. Hematology 2024; 29:2335856. [PMID: 38581291 DOI: 10.1080/16078454.2024.2335856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (PH + ALL) is the most common cytogenetic abnormality of B-ALL in adults and is associated with poor prognosis. Previously, the only curative treatment option in PH + ALL was allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Since 2000, targeted therapy combined with chemotherapy, represented by the tyrosine kinase inhibitor Imatinib, has become the first-line treatment for PH + ALL. Currently, the remission rate and survival rate of Imatinib are superior to those of simple chemotherapy, and it can also improve the efficacy of transplantation. More recently, some innovative immune-targeted therapy greatly improved the prognosis of PH + ALL, such as Blinatumomab and Inotuzumab Ozogamicin. For patients with ABL1 mutations and those who have relapsed or are refractory to other treatments, targeted oral small molecule drugs, monoclonal antibodies, Bispecific T cell Engagers (BiTE), and chimeric antigen receptor (CAR) T cells immunotherapy are emerging as potential treatment options. These new therapeutic interventions are changing the treatment landscape for PH + ALL. In summary, this review discusses the current advancements in targeted therapeutic agents shift in the treatment strategy of PH + ALL towards using more tolerable chemotherapy-free induction and consolidation regimens confers better disease outcomes and might obviate the need for HSCT.
Collapse
Affiliation(s)
- Zhen-Yu Xiong
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
| | - Yao-Jia Shen
- Department of Hematology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shi-Zhong Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
| | - Hong-Hu Zhu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Chinese Institutes for Medical Research, Beijing, People's Republic of China
| |
Collapse
|
28
|
Zhu H, Lu X, Zhang X, Hua H, Zhang J, Miao Y, Gu W, Xu M, Lu X, Li B, Wang C, Ni H, Qian J, Shi J, Xu M, Wu G, Zhang Y, Shen Q, Wang Z, Zhu J, Cheng Z, Zhuang W, Lin G, Hu Y, Shan Q, Chen Y, Qiu H, Li J, Shi W. Multi-center study of COVID-19 infection in elderly patients with lymphoma: on behalf of Jiangsu Cooperative Lymphoma Group (JCLG). Ann Hematol 2024; 103:5713-5727. [PMID: 38649594 DOI: 10.1007/s00277-024-05744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Elderly patients with lymphoproliferative diseases (LPD) are vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we retrospectively described the clinical features and outcomes of the first time infection of Omicron SARS-CoV-2 in 364 elderly patients with lymphoma enrolled in Jiangsu Cooperative Lymphoma Group (JCLG) between November 2022 and April 2023 in China. Median age was 69 years (range 60-92). 54.4% (198/364) of patients were confirmed as severe and critical COVID-19 infection. In univariable analysis, Age > 70 years (OR 1.88, p = 0.003), with multiple comorbidities (OR 1.41, p = 0.005), aggressive lymphoma (OR 2.33, p < 0.001), active disease (progressive or relapsed/refractory, OR 2.02, p < 0.001), and active anti-lymphoma therapy (OR 1.90, p < 0.001) were associated with severe COVID-19. Multiple (three or more) lines of previous anti-lymphoma therapy (OR 3.84, p = 0.021) remained an adverse factor for severe COVID-19 in multivariable analysis. Moreover, CD20 antibody (Rituximab or Obinutuzumab)-based treatments within the last 6 months was associated with severe COVID-19 in the entire cohort (OR 3.42, p < 0.001). Continuous BTK inhibitors might be protective effect on the outcome of COVID-19 infection (OR 0.44, p = 0.043) in the indolent lymphoma cohort. Overall, 7.7% (28/364) of the patients ceased, multiple lines of previous anti-lymphoma therapy (OR 3.46, p = 0.016) remained an adverse factor for mortality.
Collapse
Affiliation(s)
- Huayuan Zhu
- Department of Hematology, Lymphoma Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China.
| | - Xiao Lu
- Department of Hematology, Lymphoma Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Xiaoping Zhang
- Department of Hematology, The Affiliated Zhongda Hospital of Southeast University Medical College, Nanjing, 210044, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Haiying Hua
- Department of Hematology, Wuxi Third People's Hospital, Wuxi, 214045, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Yuqing Miao
- Department of Hematology, Yancheng First People's Hospital, Yancheng, 224006, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Weiying Gu
- Department of Hematology, The First People's Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Min Xu
- Department of Hematology, Zhangjiagang First Affiliated Hospital of Soochow University, Zhangjiagang, 215699, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Xuzhang Lu
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, 213004, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Bingzong Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Chunling Wang
- Department of Hematology, The First People's Hospital of Huai'an, Huai'an, 223399, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Haiwen Ni
- Department of Hematology, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210004, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Jinning Shi
- Department of Hematology, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211199, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Maozhong Xu
- Department of Hematology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214433, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Guangqi Wu
- Department of Hematology, The First People's Hospital of Suqian, Suqian, 223812, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Yunping Zhang
- Department of Hematology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214206, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Qiudan Shen
- Department of Hematology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215008, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Zhi Wang
- Department of Hematology, Wuxi Second People's Hospital, Wuxi, 214001, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Jianfeng Zhu
- Department of Hematology, The People's Hospital of Taizhou, Taizhou, 225399, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Zhen Cheng
- Department of Hematology, Taicang Hospital Affiliated to Soochow University, Taicang, 215488, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Wanchuan Zhuang
- Department of Hematology, The Second People's Hospital of Lianyungang, Lianyungang, 222002, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Guoqiang Lin
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, 223022, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Yongjun Hu
- Department of Hematology, Huaiyin Hospital of Huai'an, Huai'an, 223399, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Qiurong Shan
- Department of Hematology, Shuyang Traditional Chinese Medicine Hospital, Shuyang, 223614, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Yifei Chen
- Department of Hematology, Jiangdu People's Hospital of Yangzhou, Yangzhou, 225202, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Hongchun Qiu
- Department of Hematology, The Third People's Hospital of Kunshan, Kunshan, 215316, China
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China
| | - Jianyong Li
- Department of Hematology, Lymphoma Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China.
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Department of Hematology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
- Jiangsu Cooperative Lymphoma Group (JCLG), Nanjing, China.
| |
Collapse
|
29
|
von Essen MR, Stolpe LE, Bach Søndergaard H, Sellebjerg F. The origin of human CD20 + T cells: a stolen identity? Front Immunol 2024; 15:1487530. [PMID: 39650658 PMCID: PMC11621209 DOI: 10.3389/fimmu.2024.1487530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Human T cells expressing CD20 play an important role in the defense against virus and cancer and are central in the pathogenesis of both malignancies and various autoimmune disorders. Therapeutic modulation of CD20+ T cells and the CD20 expression level is therefore of significant interest. In rodents, CD20 on T cells is likely the product of an active transfer of CD20 from a donor B cell interacting with a recipient T cell in a process termed trogocytosis. Whether the same applies to human CD20+ T cells is highly debated. Investigating this dispute showed that human CD20- T cells could achieve CD20 along with a series of other B-cell markers from B cells through trogocytosis. However, none of these B-cell markers were co-expressed with CD20 on human CD20+ T cells in blood or inflamed CSF, implying that additional mechanisms may be involved in the development of human CD20+ T cells. In support of this, we identified true naïve CD20+ T cells, measured endogenous production of CD20, and observed that CD20 could be inherited to daughter cells, contradicting that all human CD20+ T cells are a product of trogocytosis.
Collapse
Affiliation(s)
- Marina Rode von Essen
- The Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | | | | | | |
Collapse
|
30
|
Hlavac K, Pavelkova P, Ondrisova L, Mraz M. FoxO1 signaling in B cell malignancies and its therapeutic targeting. FEBS Lett 2024. [PMID: 39533662 DOI: 10.1002/1873-3468.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
FoxO transcription factors (FoxO1, FoxO3a, FoxO4, FoxO6) are a highly evolutionary conserved subfamily of the 'forkhead' box proteins. They have traditionally been considered tumor suppressors, but FoxO1 also exhibits oncogenic properties. The complex nature of FoxO1 is illustrated by its various roles in B cell development and differentiation, immunoglobulin gene rearrangement and cell-surface B cell receptor (BCR) structure, DNA damage control, cell cycle regulation, and germinal center reaction. FoxO1 is tightly regulated at a transcriptional (STAT3, HEB, EBF, FoxOs) and post-transcriptional level (Akt, AMPK, CDK2, GSK3, IKKs, JNK, MAPK/Erk, SGK1, miRNA). In B cell malignancies, recurrent FoxO1 activating mutations (S22/T24) and aberrant nuclear export and activity have been described, underscoring the potential of its therapeutic inhibition. Here, we review FoxO1's roles across B cell and myeloid malignancies, namely acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and multiple myeloma (MM). We also discuss preclinical evidence for FoxO1 targeting by currently available inhibitors (AS1708727, AS1842856, cpd10).
Collapse
Affiliation(s)
- Krystof Hlavac
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Petra Pavelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
31
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Witkowska M, Majchrzak A, Robak P, Wolska-Washer A, Robak T. The role of antibody therapies in treating relapsed chronic lymphocytic leukemia: a review. Expert Opin Biol Ther 2024; 24:1233-1244. [PMID: 39364800 DOI: 10.1080/14712598.2024.2413365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is one of the most common types of leukemia in adult patients. The landscape of CLL therapy has changed in the last decades with the introduction of antibody-based therapies and novel targeted agents resulting in improved outcomes. AREAS COVERED This article describes the use of monoclonal antibodies, bispecific antibodies and antibody-drug conjugates in the treatment of relapsed and refractory CLL. The mechanism of action and clinical applications and safety of antibody-based therapies, both as monotherapy and in combination with other drugs, are discussed. A literature search was performed using PubMed, Web of Science, and Google Scholar for articles published in English. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION Antibody-based therapeutic strategies have drastically changed the treatment of CLL, as they have introduced the concept of boosting immune responses against tumor cells. While immunotherapy is generally effective, some treatment failure can occur due to antigen loss, mutation, or down-regulation, and this remains the main obstacle to cure. The development of novel antibody therapies, including their combinations with targeted drugs and bispecific antibodies, might help to reduce toxicity and improve efficacy.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Immunotherapy
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Animals
- Immunoconjugates/therapeutic use
- Recurrence
Collapse
Affiliation(s)
- Magdalena Witkowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Agata Majchrzak
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Paweł Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
33
|
Domka K, Dąbkowska A, Janowska M, Urbańska Z, Pastorczak A, Winiarska M, Fidyt K, Lachota M, Patkowska E, Sędek Ł, Perkowski B, Hunia J, Jakubowska J, Krzymieniewska B, Lech-Marańda E, Młynarski W, Szczepański T, Firczuk M. Asciminib stands out as the superior tyrosine kinase inhibitor to combine with anti-CD20 monoclonal antibodies for the treatment of CD20 + Philadelphia-positive B-cell precursor acute lymphoblastic leukemia in preclinical models. Haematologica 2024; 109:3520-3532. [PMID: 38841802 PMCID: PMC11532687 DOI: 10.3324/haematol.2023.284853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia (Ph+ BCP-ALL) is a high-risk subtype of acute lymphoblastic leukemia characterized by the presence of the BCR::ABL1 fusion gene. Tyrosine kinase inhibitors (TKI) combined with chemotherapy are established as the first-line treatment. Additionally, rituximab, an anti-CD20 monoclonal antibody is administered to adult BCP-ALL patients with ≥20% CD20+ blasts. In this study, we observed a marked prevalence of CD20 expression in patients diagnosed with Ph+ BCP-ALL, indicating a potential widespread clinical application of rituximab in combination with TKI. Consequently, we examined the influence of TKI on the antitumor effectiveness of anti-CD20 monoclonal antibodies by evaluating levels of CD20 on the cell surface and conducting in vitro functional assays. All tested TKI were found to uniformly downregulate CD20 on leukemic cells, diminishing the efficacy of rituximab-mediated complement- dependent cytotoxicity. Interestingly, these TKI displayed varied effects on natural killer (NK) cell-mediated antibody- dependent cytotoxicity and macrophage phagocytic function. While asciminib demonstrated no inhibition of effector cell functions, dasatinib notably suppressed the anti-CD20-monoclonal antibody-mediated NK cell cytotoxicity and macrophage phagocytosis of BCP-ALL cells. Dasatinib and ponatinib also decreased NK cell degranulation in vitro. Importantly, oral administration of dasatinib, but not asciminib, compromised NK cell activity in patients' blood, as determined by an ex vivo degranulation assay. Our results indicate that asciminib might be preferred over other TKI for combination therapy with anti-CD20 monoclonal antibodies.
Collapse
Affiliation(s)
- Krzysztof Domka
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland; Department of Immunology, Medical University of Warsaw, Warsaw
| | - Agnieszka Dąbkowska
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland; Department of Immunology, Medical University of Warsaw, Warsaw
| | - Martyna Janowska
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw
| | - Zuzanna Urbańska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland; Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland; Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz
| | - Magdalena Winiarska
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland; Department of Immunology, Medical University of Warsaw, Warsaw
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw
| | - Mieszko Lachota
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Warsaw, Poland; Department of Ophthalmology, Children's Memorial Health Institute, Warsaw
| | - Elżbieta Patkowska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw
| | - Łukasz Sędek
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice
| | - Bartosz Perkowski
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice
| | - Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw
| | - Justyna Jakubowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz
| | - Beata Krzymieniewska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw
| | - Ewa Lech-Marańda
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice
| | - Małgorzata Firczuk
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland; Department of Immunology, Medical University of Warsaw, Warsaw.
| |
Collapse
|
34
|
Wu Y, Cai T, Xu W, Yang X, Gu P, Zhang J. Polymorphisms of B-lymphocyte-associated genes CD20 and FCRL5 are associated with susceptibility to autoimmune thyroid diseases. Hum Immunol 2024; 85:111165. [PMID: 39461276 DOI: 10.1016/j.humimm.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Recent studies have confirmed that B cell-related genes CD20 and FCRL5 may be involved in the pathogenesis of autoimmune thyroid diseases (AITDs). However, there is a lack of comprehensive genetic susceptibility studies on this subject. OBJECTIVE The purpose of this study was to investigate the relationship of CD20 and FCRL5 gene polymorphisms with AITD susceptibility. METHODS A total of 1740 subjects were recruited from the Chinese Han population. They consisted of 1007 patients with AITD and 633 healthy controls. Multiplex polymerase chain reaction (PCR) combined with high-throughput sequencing was used to genotype four screened single nucleotide polymorphisms (SNPs). The four SNPs were rs7126354 of CD20 and rs6667109, rs6692977 and rs3811035 of FCRL5. RESULTS The minor allele frequency of rs7126354 was significantly lower in patients with AITD and Hashimoto's thyroiditis (HT) than in healthy controls (P = 0.031; P = 0.017). The minor allele frequency of rs6667109 was significantly higher in the Graves' disease (GD) subgroup than in the healthy control group (P = 0.029). In the Log-additive model, rs6667109 in the GD group also showed an increased risk of onset disease. CONCLUSIONS This study presents robust evidence of a genetic association of CD20 and FCRL5 with AITDs. The C allele of CD20 rs7126354 is a protective factor for HT susceptibility. The A allele of FCRL5 rs6667109 is a risk factor for the susceptibility to GD.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tiantian Cai
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Wenyu Xu
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xiaorong Yang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Peili Gu
- Department of Endocrinology, Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Jinan Zhang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
35
|
van Oostveen WM, Huizinga TWJ, Fehres CM. Pathogenic role of anti-nuclear autoantibodies in systemic sclerosis: Insights from other rheumatic diseases. Immunol Rev 2024; 328:265-282. [PMID: 39248128 PMCID: PMC11659924 DOI: 10.1111/imr.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease characterized by vasculopathy, fibrosis, and dysregulated immunity, with hallmark autoantibodies targeting nuclear antigens such as centromere protein (ACA) and topoisomerase I (ATA). These autoantibodies are highly prevalent and disease-specific, rarely coexisting, thus serving as crucial biomarkers for SSc diagnosis. Despite their diagnostic value, their roles in SSc pathogenesis remain unclear. This review summarizes current literature on ACA and ATA in SSc, comparing them to autoantibodies in other rheumatic diseases to elucidate their potential pathogenic roles. Similarities are drawn with anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis, particularly regarding disease specificity and minimal pathogenic impact of antigen binding. In addition, differences between ANA and ACPA in therapeutic responses and Fab glycosylation patterns are reviewed. While ACA and ATA are valuable for disease stratification and monitoring activity, understanding their origins and the associated B cell responses is critical for advancing therapeutic strategies for SSc.
Collapse
Affiliation(s)
| | - Tom W. J. Huizinga
- Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Cynthia M. Fehres
- Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
36
|
Moregola A, Bonacina F, Vingiani GB, Frapolli R, Turrini R, Norata GD. Profiling the impact of anti-human CD20 monoclonal antibodies on lymphocyte B cell subsets and their precursors in the bone marrow and in lymphoid tissues in an immunocompromised mouse engrafted with human cells. Pharmacol Res 2024; 209:107442. [PMID: 39374887 DOI: 10.1016/j.phrs.2024.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Ofatumumab (OFA) and ocrelizumab (OCRE) are two anti-CD20 monoclonal antibodies approved for the treatment of relapsing forms of multiple sclerosis due to their ability to deplete B lymphocytes. The aim of this study was to investigate the impact of these anti-hCD20 antibodies on B lymphocyte subsets in the circulation and in primary and secondary lymphoid organs in an immune system humanized mouse model (immunocompromised Rag2-/-Il2rg-/-CD47-/-) engrafted with human CD34+ hematopoietic stem cells. Three months after humanization, mice, which present adaptive immune cells only of human origin, were treated with OFA (0.3 mg/Kg; day 1, 3 and 5), or OCRE (10 mg/kg; day 1) or saline. Seven days after the last injection a robust (>90 %) decrease of circulating human CD20+ B lymphocytes was observed in both OFA- and OCRE-treated mice. A partial replenishment of B lymphocytes was detectable in blood 36 days from the last injection in OFA-treated mice, while no B lymphocytes could be detected in OCRE-treated mice up to 65 days post injection. Bone marrow profiling showed that during hCD20+ B cell depletion and replenishment, OCRE-treated mice preserved only preB-I cells in the bone marrow, while the bone marrow of OFA-treated mice presented both preB-I as well as preB-II cells, with the latter subset being the one closest to differentiate into immature B cells. These data together with changes in B cell distribution in other tissues suggest that ofatumumab preserve BM niches, critical for B lymphocyte replenishment, limiting potential side effects of the treatment associated with the increased risk of infection.
Collapse
Affiliation(s)
- Annalisa Moregola
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giovanni Battista Vingiani
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Roberta Frapolli
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
37
|
Attarian S. New treatment strategies in Myasthenia gravis. Rev Neurol (Paris) 2024; 180:971-981. [PMID: 39379218 DOI: 10.1016/j.neurol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by muscle weakness and fatigue. The disease is primarily caused by antibodies targeting acetylcholine receptors (AChR) and muscle-specific kinase (MuSK) proteins at the neuromuscular junction. Traditional treatments for MG, such as acetylcholinesterase inhibitors, corticosteroids, and immunosuppressants, have shown efficacy but are often associated with significant long-term side effects and variable patient response rates. Notably, approximately 15% of patients exhibit inadequate responses to these standard therapies. Recent advancements in molecular therapies, including monoclonal antibodies, B cell-depleting agents, complement inhibitors, Fc receptor antagonists, and chimeric antigen receptor (CAR) T cell-based therapies, have introduced promising alternatives for MG treatment. These novel therapeutic approaches offer potential improvements in targeting specific immune pathways involved in MG pathogenesis. This review highlights the progress and challenges in developing and implementing these molecular therapies. It discusses their mechanisms, efficacy, and the potential for personalized medicine in managing MG. The integration of new molecular therapies into clinical practice could significantly transform the treatment landscape of MG, offering more effective and tailored therapeutic options for patients who do not respond adequately to traditional treatments. These innovations underscore the importance of ongoing research and clinical trials to optimize therapeutic strategies and improve the quality of life for individuals with MG.
Collapse
Affiliation(s)
- S Attarian
- Referral center for Neuromuscular disorders, Timone Hospital University, AIX-Marseille Université, Marseille, France; Filnemus, ERN NMD, Marseille, France.
| |
Collapse
|
38
|
Schreiner TG, Romanescu C, Schreiner OD, Nhambasora F. New insights on the link between Epstein‑Barr virus infection and cognitive decline in neurodegenerative diseases (Review). Exp Ther Med 2024; 28:413. [PMID: 39268367 PMCID: PMC11391170 DOI: 10.3892/etm.2024.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Cognitive decline is a frequent complaint in healthy controls and neurological patients, regardless of the underlying pathology. Whilst cognitive impairment can be easily diagnosed in the more advanced stages of neurodegenerative diseases, early detection can be challenging. This is mainly the consequence of the incomplete understanding of the underlying pathophysiological mechanisms. In addition, currently available neurological treatments do not specifically target cognitive decline, since other motor and non-motor symptoms, such as bradykinesia, tremor, autonomic disturbances and depression, are of greater relevance from a therapeutic perspective. In this context, prospective studies must address a number of issues, including the risk factors associated with cognitive deficits in neurodegenerative diseases. The present review aims to offer a novel perspective on the association between Epstein-Barr virus infection and cognitive decline found in patients with neurodegenerative disorders. Specifically, relevant epidemiological studies and clinical trials explaining this connection were reviewed, focusing on the most frequent neurodegenerative disorders. They are namely Alzheimer's disease, Parkinson's disease and multiple sclerosis. Despite their limitations, possible underlying pathophysiological mechanisms that explain the impact of Epstein-Barr virus infection on cognitive decline are expected to offer novel study directions on this clinically relevant topic.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy 'Gr. T. Popa', 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Constantin Romanescu
- Clinical Section IV, 'St. Parascheva' Infectious Disease Hospital, 700116 Iasi, Romania
| | - Oliver Daniel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy 'Gr. T. Popa', 700115 Iasi, Romania
- Department of Medical Oncology, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Farai Nhambasora
- Department of Obstetrics and Gynecology, St. Luke's Hospital, R95 FY71 Kilkenny, Republic of Ireland
| |
Collapse
|
39
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
40
|
Ondrisova L, Seda V, Hlavac K, Pavelkova P, Hoferkova E, Chiodin G, Kostalova L, Mladonicka Pavlasova G, Filip D, Vecera J, Zeni PF, Oppelt J, Kahounova Z, Vichova R, Soucek K, Panovska A, Plevova K, Pospisilova S, Simkovic M, Vrbacky F, Lysak D, Fernandes SM, Davids MS, Maiques-Diaz A, Charalampopoulou S, Martin-Subero JI, Brown JR, Doubek M, Forconi F, Mayer J, Mraz M. FoxO1/Rictor axis induces a non-genetic adaptation to Ibrutinib via Akt activation in chronic lymphocytic leukemia. J Clin Invest 2024; 134:e173770. [PMID: 39436708 PMCID: PMC11601945 DOI: 10.1172/jci173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BTK inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL) lasting for several months. It remains unclear whether non-genetic adaptation mechanisms exist, allowing CLL cells' survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70 % of CLL cases, ibrutinib treatment in vivo increases Akt activity above pre-therapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of FoxO1 transcription factor, which induces expression of Rictor, an assembly protein for mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knock-out or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. FoxO1/Rictor/pAktS473 axis represents an early non-genetic adaptation to BCR inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically, and its inhibition induces CLL cells' apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T-cell factors (CD40L, IL-4, and IL-21).
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Vaclav Seda
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Krystof Hlavac
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Pavelkova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Eva Hoferkova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Giorgia Chiodin
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lenka Kostalova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Daniel Filip
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Josef Vecera
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Jan Oppelt
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
| | - Zuzana Kahounova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Rachel Vichova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Anna Panovska
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Karla Plevova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Simkovic
- Fourth Department of Internal Medicine–Haematology, University Hospital Hradec Kralove and Faculty of Medicine Hradec Kralove, Charles University, Prague, Czechia
| | - Filip Vrbacky
- Fourth Department of Internal Medicine–Haematology, University Hospital Hradec Kralove and Faculty of Medicine Hradec Kralove, Charles University, Prague, Czechia
| | - Daniel Lysak
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alba Maiques-Diaz
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Stella Charalampopoulou
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jose I. Martin-Subero
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Francesco Forconi
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Haematology Department, Cancer Care Directorate, University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
41
|
Lu X, Gao L, Qian SJ, Dai LMJ, Zhou ZY, Qiu TL, Xia Y, Miao Y, Qin SC, Fan L, Xu W, Li JY, Zhu HY. [Single-center study of COVID-19 in patients with chronic lymphocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:923-930. [PMID: 39622756 PMCID: PMC11579760 DOI: 10.3760/cma.j.cn121090-20240621-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 12/06/2024]
Abstract
Objective: To investigate the vaccination status, characteristics and prognosis of patients suffering from a combination of COVID-19 and chronic lymphocytic anemia (CLL) in China. Methods: Clinical data of 328 patients with chronic lymphocytic leukemia (CLL) who were first diagnosed with COVID-19 and treated in the Department of Hematology of Jiangsu Provincial People's Hospital between November 2022 and February 2023 were retrospectively analyzed. Univariate and multivariate analysis of data of patients with severe/critical COVID-19 were conducted by applying the binary logistic regression model. Results: The median age of the CLL patients was 60 (24-87) years. 23.5% (77/328) of these patients suffered from severe/critical COVID-19 infection. Univariate analysis of the data demonstrated that a combination of factors including age >67 years (OR=2.15, 95% CI 1.24- 3.73, P=0.006), diabetes (OR=2.09, 95% CI 1.05-4.20, P=0.037), chronic hepatitis B (OR=2.91, 95% CI 1.30-6.51, P=0.010), CLL progressive (OR=3.79, 95% CI 1.57-9.15, P=0.003) and CD20 antibody-based treatments within three months prior to the COVID-19 infection (OR=2.79, 95% CI 1.35-5.77, P=0.006) were the risk factors for severe/critical COVID-19. According to the multivariate analysis, CLL progressive (OR=2.98, 95% CI 1.10-8.10, P=0.033) was an independent risk factor for severe/critical COVID-19 and administration of the BTK (Bruton tyrosine kinase) inhibitor monotherapy might exert a protective effect and influence a positive outcome of the COVID-19 infection (OR=0.38, 95% CI 0.16-0.90, P=0.028). Among the 242 patients who were followed up until October 2023, 9.1% (22/242) had multiple subsequent COVID-19 infections (≥3), and 2.1% (5/242) had persistent COVID-19 infections (patients with persistent positive test for the SARS-CoV-2 antigen testing until missing follow-up for any reason). The peak value of the anti-SARS-CoV-2-IgG titres was observed between three and four months post symptom onset (median: 3.511 S/CO vs 1.047 S/CO, P<0.05). The levels of immunoglobulin A gradually decreased following infection with COVID-19, and its trough levels were attained between two to four weeks post infection (median: 0.30 g/L vs 0.74 g/L, P<0.05). According to this study the mortality of patients suffering from a combination of COVID-19 infection and CLL was 2.7% (9/328), and the main reason for their death was respiratory failure and heart failure. Conclusions: A low rate of COVID-19 vaccination and a high rate of severe/critical COVID-19 infection was observed in the CLL patients. CLL progressive was associated with severe/critical COVID-19. Anti-CD20-based treatments received within the past three months might be a risk factor for exacerbation of COVID-19 infection, whereas a monotherapy with BTK inhibitors exert a protective effect and improve outcome of COVID-19 infection.
Collapse
Affiliation(s)
- X Lu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - L Gao
- Department of Hematology, The Affiliate Suqian First People's Hospital of Nanjing Medical University, Suqian Branch of Jiangsu Provincial People's Hospital, Suqian 223999, China
| | - S J Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - L M J Dai
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Z Y Zhou
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - T L Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Y Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Y Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - S C Qin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - L Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - W Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - J Y Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - H Y Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China Department of Hematology, The Affiliate Suqian First People's Hospital of Nanjing Medical University, Suqian Branch of Jiangsu Provincial People's Hospital, Suqian 223999, China
| |
Collapse
|
42
|
Robinson WH, Fiorentino D, Chung L, Moreland LW, Deodhar M, Harler MB, Saulsbery C, Kunder R. Cutting-edge approaches to B-cell depletion in autoimmune diseases. Front Immunol 2024; 15:1454747. [PMID: 39445025 PMCID: PMC11497632 DOI: 10.3389/fimmu.2024.1454747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
B-cell depletion therapy (BCDT) has been employed to treat autoimmune disease for ~20 years. Immunoglobulin G1 (IgG1) monoclonal antibodies targeting CD20 and utilizing effector function (eg, antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis) to eliminate B cells have historically been the predominant therapeutic approaches. More recently, diverse BCDT approaches targeting a variety of B-cell surface antigens have been developed for use in hematologic malignancies, including effector-function-enhanced monoclonal antibodies, chimeric antigen receptor T-cell (CAR-T) treatment, and bispecific T-cell engagers (TCEs). The latter category of antibodies employs CD3 engagement to augment the killing of target cells. Given the improvement in B-cell depletion observed with CAR-T and TCEs compared with conventional monospecific antibodies for treatment of hematologic malignancies and the recent case reports demonstrating therapeutic benefit of CAR-T in autoimmune disease, there is potential for these mechanisms to be effective for B-cell-mediated autoimmune disease. In this review, we discuss the various BCDTs that are being developed in autoimmune diseases, describing the molecule designs, depletion mechanisms, and potential advantages and disadvantages of each approach as they pertain to safety, efficacy, and patient experience. Additionally, recent advances and strategies with TCEs are presented to help broaden understanding of the potential for bispecific antibodies to safely and effectively engage T cells for deep B-cell depletion in autoimmune diseases.
Collapse
Affiliation(s)
- William H. Robinson
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States
| | - David Fiorentino
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States
| | - Lorinda Chung
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States
- Palo Alto VA Health Care System, Palo Alto, CA, United States
| | - Larry W. Moreland
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz, Aurora, CO, United States
| | | | | | | | | |
Collapse
|
43
|
Komura K. CD19: a promising target for systemic sclerosis. Front Immunol 2024; 15:1454913. [PMID: 39421745 PMCID: PMC11484411 DOI: 10.3389/fimmu.2024.1454913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by immune dysregulation, vascular damage, and fibrosis. B cells play a significant role in SSc through autoantibody production, cytokine secretion, and T cell regulation. Autoantibodies like anti-topoisomerase I and anti-RNA polymerase III are specific to SSc and linked to clinical features such as skin and lung involvement. B cell depletion therapies, particularly anti-CD20 antibodies like rituximab, have shown benefits in treating SSc, improving skin and lung disease symptoms. However, CD19, another B cell marker, is more widely expressed and has emerged as a promising target in autoimmune diseases. CD19-targeted therapies, such as CAR T cells and Uplizna® (inebilizumab), have demonstrated potential in treating refractory autoimmune diseases, including SSc. Uplizna® offers advantages over rituximab by targeting a broader range of B cells and showing higher efficacy in specific patient subsets. Clinical trials currently investigate Uplizna®'s effectiveness in SSc, particularly in severe cases. While these therapies offer hope, long-term safety and efficacy remain unknown. SSc is still a complex disease, but advancing B cell-targeted treatments could significantly improve patient outcomes and knowledge about the pathogenesis.
Collapse
Affiliation(s)
- Kazuhiro Komura
- Department of Dermatology, Kanazawa Red Cross Hospital, Japanese Red Cross Society, Kanazawa, Ishikawa, Japan
| |
Collapse
|
44
|
Toledo-Stuardo K, Ribeiro CH, González-Herrera F, Matthies DJ, Le Roy MS, Dietz-Vargas C, Latorre Y, Campos I, Guerra Y, Tello S, Vásquez-Sáez V, Novoa P, Fehring N, González M, Rodríguez-Siza J, Vásquez G, Méndez P, Altamirano C, Molina MC. Therapeutic antibodies in oncology: an immunopharmacological overview. Cancer Immunol Immunother 2024; 73:242. [PMID: 39358613 PMCID: PMC11448508 DOI: 10.1007/s00262-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Carolina H Ribeiro
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Douglas J Matthies
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - María Soledad Le Roy
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudio Dietz-Vargas
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yesenia Latorre
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ivo Campos
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yuneisy Guerra
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Samantha Tello
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Valeria Vásquez-Sáez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Pedro Novoa
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Nicolás Fehring
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Mauricio González
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Jose Rodríguez-Siza
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Vásquez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pamela Méndez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudio en Alimentos Saludables, Valparaíso, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| | - María Carmen Molina
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile.
| |
Collapse
|
45
|
Olejnik P, Roszkowska Z, Adamus S, Kasarełło K. Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol Rep 2024; 76:926-943. [PMID: 39177889 PMCID: PMC11387431 DOI: 10.1007/s43440-024-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Roszkowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Adamus
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
46
|
Sun D, Wang R, Du Q, Chen H, Shi Z, Zhang Y, Zhang N, Wang X, Zhou H. Integrating genetic and proteomic data to elucidate the association between immune system and blood-brain barrier dysfunction with multiple sclerosis risk and severity. J Affect Disord 2024; 362:652-660. [PMID: 39029667 DOI: 10.1016/j.jad.2024.07.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Immune system dysfunction and blood-brain barrier (BBB) impairment are implicated in multiple sclerosis (MS) risk and severity. However, the causal relationships and potential therapeutic targets remain unclear. METHODS Leveraging the MRC IEU OpenGWAS data infrastructure, we extracted 1254 peripheral immune systems and 792 BBB biomarkers as genetic instruments for exposure. MS risk data from the International Multiple Sclerosis Genetics Consortium (IMSGC) (47,429 MS cases, 68,374 controls) served as one outcome, replicated in FinnGen (1048 cases, 217,141 controls) and the UK Biobank (1679 cases, 461,254 controls). Genetic associations with MS severity derived from IMSGC and MultipleMS Consortium GWAS data (12,584 cases). Two-sample, bidirectional, and protein drug-target MR analyses were conducted, along with interaction analysis of identified proteins and druggability assessment. RESULTS Causal relationships between 45 immunological markers, 15 BBB markers, and MS risk were strongly supported. In peripheral immunity, the causal associations with MS are predominantly concentrated in CD4+ T cells and CD8+ T cells. Notably, anti-Epstein-Barr virus nuclear antigen (EBNA) IgG levels exhibited the most significant causal effect on MS risk (OR = 225.62, P = 5.63E-208), replicated in the MS severity (OR = 1.11, P = 0.04). Weak causal evidence was found between 62 immunological markers, 35 BBB markers, and MS severity. Reverse MR analysis suggested potential causal effects of MS risk on 8 markers. Drug-targeted MR analysis indicated potential therapeutic benefits in reducing MS risk for CD40 (OR = 0.71, P = 7.24E-13, PPH4 = 97.6 %), AHSG (OR = 0.88, P = 2.91E-05, PPH4 = 94.4 %), and FCRL3 (Sun BB et al.: OR = 0.83, P = 8.93E-09, PPH4 = 94.2 %, Suhre K et al.: OR = 0.88, P = 5.20E-08, PPH4 = 99.2 %). CONCLUSIONS This study provides evidence supporting the causal effects of immune system and BBB dysfunction on MS risk and severity. It emphasizes the significant role of anti-EBNA IgG levels, CD4+ T cells, and CD8+ T cells in MS, and delineates the potential therapeutic benefits of targeting three proteins associated with MS risk: CD40, AHSG, and FCRL3.
Collapse
Affiliation(s)
- Dongren Sun
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Rui Wang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Yangyang Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Nana Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China.
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China.
| |
Collapse
|
47
|
Lu Y, Yao Y, Zhai S, Ni F, Wang J, Chen F, Zhang Y, Li H, Hu H, Zhang H, Yu B, Chen H, Huang X, Ding W, Lu D. The role of immune cell signatures in the pathogenesis of ovarian-related diseases: a causal inference based on Mendelian randomization. Int J Surg 2024; 110:6541-6550. [PMID: 38884272 PMCID: PMC11486969 DOI: 10.1097/js9.0000000000001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Immune cells play a pivotal role in maintaining ovarian function. However, the specific contributions of different immune cell phenotypes to the pathogenesis of specific ovarian-related diseases remain poorly understood. The authors aim to investigate the correlation between 731 immunophenotypes and ovarian-related diseases. MATERIALS AND METHODS Utilizing publicly available genetic data, the authors undertook a series of quality control measures to identify instrumental variables associated with exposure. Subsequently, we conducted two-sample Mendelian randomization (MR) using inverse variance weighting to explore the causal relationships between 731 immune cell features and six ovarian-related diseases: ovarian cysts, ovarian dysfunction, premature ovarian failure (POF), polycystic ovary syndrome (PCOS), benign neoplasm of ovary, and malignant neoplasm of ovary at the genetic level. Sensitivity analyses, including leave-one-out and other MR analysis models, were performed. Finally, Bayesian colocalization (COLOC) analysis was employed to identify specific co-localized genes, thereby validating the MR results. RESULTS At the significance level corrected by Bonferroni, four immune phenotypes, including CD25 on IgD- CD38- B cells, were associated with ovarian cysts; four immune phenotypes, including CD39+ CD4+ T cell Absolute Count, were associated with ovarian dysfunction; eight immune phenotypes, including SSC-A on HLA DR+ CD8+ T cells, were associated with POF; five immune phenotypes, including CD20- CD38- B cell Absolute Count, were associated with PCOS; five immune phenotypes, including CD4+ CD8dim T cell Absolute Count, were associated with benign ovarian tumors; and three immune phenotypes, including BAFF-R on IgD- CD38+ B cells, were associated with malignant ovarian tumors. Sensitivity analysis indicated robust results. COLOC analysis identified four immune cell co-localized variants (rs150386792, rs117936291, rs75926368, and rs575687159) with ovarian diseases. CONCLUSION Our study elucidates the close genetic associations between immune cells and six ovarian-related diseases, thereby providing valuable insights for future research endeavors and clinical applications.
Collapse
Affiliation(s)
- Yangguang Lu
- The First School of Medicine, School of Information and Engineering
| | - Yingyu Yao
- Tongde Hospital of Zhejiang Province
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Sijia Zhai
- The First School of Medicine, School of Information and Engineering
| | - Feitian Ni
- The Second Affiliated College, Zhejiang Chinese Medical University, Hangzhou
| | - Jingyi Wang
- The Second Affiliated College, Zhejiang Chinese Medical University, Hangzhou
| | - Feng Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou
| | - Yige Zhang
- The First School of Medicine, School of Information and Engineering
| | - Haoyang Li
- The First School of Medicine, School of Information and Engineering
| | - Hantao Hu
- The First School of Medicine, School of Information and Engineering
| | - Hongzhi Zhang
- The First School of Medicine, School of Information and Engineering
| | - Bohuai Yu
- The First School of Medicine, School of Information and Engineering
| | - Hongbo Chen
- The First School of Medicine, School of Information and Engineering
| | - Xianfeng Huang
- The First School of Medicine, School of Information and Engineering
| | | | - Di Lu
- Tongde Hospital of Zhejiang Province
| |
Collapse
|
48
|
Martínez LE, Comin-Anduix B, Güemes-Aragon M, Ibarrondo J, Detels R, Mimiaga MJ, Epeldegui M. Characterization of unique B-cell populations in the circulation of people living with HIV prior to non-Hodgkin lymphoma diagnosis. Front Immunol 2024; 15:1441994. [PMID: 39324141 PMCID: PMC11422120 DOI: 10.3389/fimmu.2024.1441994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
People living with HIV (PLWH) are at higher risk of developing lymphoma. In this study, we performed cytometry by time-of-flight (CyTOF) on peripheral blood mononuclear cells of cART-naïve HIV+ individuals and cART-naïve HIV+ individuals prior to AIDS-associated non-Hodgkin lymphoma (pre-NHL) diagnosis. Participants were enrolled in the Los Angeles site of the MACS/WIHS Combined Cohort Study (MWCCS). Uniform Manifold Approximation and Projection (UMAP) and unsupervised clustering analysis were performed to identify differences in the expression of B-cell activation markers and/or oncogenic markers associated with lymphomagenesis. CD10+CD27- B cells, CD20+CD27- B cells, and B-cell populations with aberrant features (CD20+CD27+CXCR4+CD71+ B cells and CD20+CXCR4+cMYC+ B cells) were significantly elevated in HIV+ cART-naïve compared to HIV-negative samples. CD20+CD27+CD24+CXCR4+CXCR5+ B cells, CD20+CD27+CD10+CD24+CXCR4+cMYC+ B cells, and a cluster of CD20+CXCR4hiCD27-CD24+CXCR5+CD40+CD4+AICDA+ B cells were significantly elevated in HIV+ pre-NHL (cART-naïve) compared to HIV+ cART-naïve samples. A potentially clonal cluster of CD20+CXCR4+CXCR5+cMYC+AICDA+ B cells and a cluster of germinal center B-cell-like cells (CD19-CD20+CXCR4+Bcl-6+PD-L1+cMYC+) were also found in the circulation of HIV+ pre-NHL (cART-naïve) samples. Moreover, significantly elevated clusters of CD19+CD24hiCD38hi cMYC+ AICDA+ B regulatory cells were identified in HIV+ pre-NHL (cART-naïve) compared to HIV+ cART-naïve samples. The present study identifies unique B-cell subsets in PLWH with potential pre-malignant features that may contribute to the development of pre-tumor B cells in PLWH and that may play a role in lymphomagenesis.
Collapse
Affiliation(s)
- Laura E. Martínez
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Miriam Güemes-Aragon
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Javier Ibarrondo
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Roger Detels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew J. Mimiaga
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marta Epeldegui
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
49
|
Nguyen AA, Platt CD. Flow Cytometry-based Immune Phenotyping of T and B Lymphocytes in the Evaluation of Immunodeficiency and Immune Dysregulation. Clin Lab Med 2024; 44:479-493. [PMID: 39089753 DOI: 10.1016/j.cll.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There are approximately 500 congenital disorders that impair immune cell development and/or function. Patients with these disorders may present with a wide range of symptoms, including increased susceptibility to infection, autoimmunity, autoinflammation, lymphoproliferation, and/or atopy. Flow cytometry-based immune phenotyping of T and B lymphocytes plays an essential role in the evaluation of patients with these presentations. In this review, we describe the clinical utility of flow cytometry as part of a comprehensive evaluation of immune function and how this testing may be used as a diagnostic tool to identify underlying aberrant immune pathways, monitor disease activity, and assess infection risk.
Collapse
Affiliation(s)
- Alan A Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Fegan Building 6th Floor, Boston, MA 02115, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Karp Building 10th Floor, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|