1
|
Fabricius TW, Verhulst CEM, Kristensen PL, Holst JJ, Tack CJ, McCrimmon RJ, Heller SR, Evans ML, de Galan BE, Pedersen-Bjergaard U. Counterregulatory hormone and symptom responses to hypoglycaemia in people with type 1 diabetes, insulin-treated type 2 diabetes or without diabetes: the Hypo-RESOLVE hypoglycaemic clamp study. Acta Diabetol 2024; 61:623-633. [PMID: 38376580 PMCID: PMC11055751 DOI: 10.1007/s00592-024-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/13/2024] [Indexed: 02/21/2024]
Abstract
AIM The sympathetic nervous and hormonal counterregulatory responses to hypoglycaemia differ between people with type 1 and type 2 diabetes and may change along the course of diabetes, but have not been directly compared. We aimed to compare counterregulatory hormone and symptom responses to hypoglycaemia between people with type 1 diabetes, insulin-treated type 2 diabetes and controls without diabetes, using a standardised hyperinsulinaemic-hypoglycaemic clamp. MATERIALS We included 47 people with type 1 diabetes, 15 with insulin-treated type 2 diabetes, and 32 controls without diabetes. Controls were matched according to age and sex to the people with type 1 diabetes or with type 2 diabetes. All participants underwent a hyperinsulinaemic-euglycaemic-(5.2 ± 0.4 mmol/L)-hypoglycaemic-(2.8 ± 0.13 mmol/L)-clamp. RESULTS The glucagon response was lower in people with type 1 diabetes (9.4 ± 0.8 pmol/L, 8.0 [7.0-10.0]) compared to type 2 diabetes (23.7 ± 3.7 pmol/L, 18.0 [12.0-28.0], p < 0.001) and controls (30.6 ± 4.7, 25.5 [17.8-35.8] pmol/L, p < 0.001). The adrenaline response was lower in type 1 diabetes (1.7 ± 0.2, 1.6 [1.3-5.2] nmol/L) compared to type 2 diabetes (3.4 ± 0.7, 2.6 [1.3-5.2] nmol/L, p = 0.001) and controls (2.7 ± 0.4, 2.8 [1.4-3.9] nmol/L, p = 0.012). Growth hormone was lower in people with type 2 diabetes than in type 1 diabetes, at baseline (3.4 ± 1.6 vs 7.7 ± 1.3 mU/L, p = 0.042) and during hypoglycaemia (24.7 ± 7.1 vs 62.4 ± 5.8 mU/L, p = 0.001). People with 1 diabetes had lower overall symptom responses than people with type 2 diabetes (45.3 ± 2.7 vs 58.7 ± 6.4, p = 0.018), driven by a lower neuroglycopenic score (27.4 ± 1.8 vs 36.7 ± 4.2, p = 0.012). CONCLUSION Acute counterregulatory hormone and symptom responses to experimental hypoglycaemia are lower in people with type 1 diabetes than in those with long-standing insulin-treated type 2 diabetes and controls.
Collapse
Affiliation(s)
- Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark.
| | - Clementine E M Verhulst
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter L Kristensen
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rory J McCrimmon
- Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Simon R Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Mark L Evans
- Welcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Maastricht UMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Ulrik Pedersen-Bjergaard
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Abstract
In health hypoglycaemia is rare and occurs only in circumstances like extreme sports. Hypoglycaemia in type 1 Diabetes (T1D) and advanced type 2 Diabetes (T2D) are the result of interplay between absolute or relative insulin access and defective glucose counterregulation. The basic mechanism is, failure of decreasing insulin and failure of the compensatory increasing counterregulatory hormones at the background of falling blood glucose. Any person with Diabetes on anti-diabetic medication who behaves oddly in any way whatsoever is hypoglycaemic until proven otherwise. Hypoglycaemia can be a terrifying experience for a patient with Diabetes. By definition, hypoglycaemic symptoms are subjective and vary from person to person and even episode to episode in same person. Fear of iatrogenic hypoglycaemia is a major barrier in achieving optimum glycaemic control and quality of life which limits the reduction of diabetic complications. Diabetes patients with comorbidities especially with chronic renal failure, hepatic dysfunction, major limb amputation, terminal illness, cognitive dysfunction etc. are more vulnerable to hypoglycaemia. In most cases, prompt glucose intake reverts hypoglycaemia. Exogenous insulin in T1D and insulin treated advanced T2D have no control by pancreatic regulation. Moreover, failure of increase of glucagon and attenuated secretion in epinephrine causes the defective glucose counterregulation. In this comprehensive review, I will try to touch all related topics for better understanding of hypoglycaemia.
Collapse
|
3
|
Marathe CS, Marathe JA, Rayner CK, Kar P, Jones KL, Horowitz M. Hypoglycaemia and gastric emptying. Diabetes Obes Metab 2019; 21:491-498. [PMID: 30378748 DOI: 10.1111/dom.13570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Hypoglycaemia is arguably the most important complication of insulin therapy in type 1 and type 2 diabetes. Counter-regulation of hypoglycaemia is dependent on autonomic function and frequent hypoglycaemia may lead to reductions in both autonomic warning signals and the catecholamine response, the so-called "impaired awareness of hypoglycaemia". It is now appreciated that gastric emptying is a major determinant of the glycaemic response to carbohydrate-containing meals in both health and diabetes, that disordered (especially delayed) gastric emptying occurs frequently in diabetes, and that acute hypoglycaemia accelerates gastric emptying substantially. However, the potential relevance of gastric emptying to the predisposition to, and counter-regulation of, hypoglycaemia has received little attention. In insulin-treated patients, the rate of gastric emptying influences the timing of the postprandial insulin requirement, and gastroparesis is likely to predispose to postprandial hypoglycaemia. Conversely, the marked acceleration of gastric emptying induced by hypoglycaemia probably represents an important counter-regulatory response to increase the rate of carbohydrate absorption. This review summarizes the current knowledge of the inter-relationships between hypoglycaemia and gastric emptying, with a focus on clinical implications.
Collapse
Affiliation(s)
- Chinmay S Marathe
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jessica A Marathe
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Palash Kar
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Karen L Jones
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Blaslov K, Naranđa FS, Kruljac I, Renar IP. Treatment approach to type 2 diabetes: Past, present and future. World J Diabetes 2018; 9:209-219. [PMID: 30588282 PMCID: PMC6304295 DOI: 10.4239/wjd.v9.i12.209] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (DM) is a lifelong metabolic disease, characterized by hyperglycaemia which gradually leads to the development and progression of vascular complications. It is recognized as a global burden disease, with substantial consequences on human health (fatality) as well as on health-care system costs. This review focuses on the topic of historical discovery and understanding the complexity of the disease in the field of pathophysiology, as well as development of the pharmacotherapy beyond insulin. The complex interplay of insulin secretion and insulin resistance developed from previously known "ominous triumvirate" to "ominous octet" indicate the implication of multiple organs in glucose metabolism. The pharmacological approach has progressed from biguanides to a wide spectrum of medications that seem to provide a beneficial effect on the cardiovascular system. Despite this, we are still not achieving the target treatment goals. Thus, the future should bring novel antidiabetic drug classes capable of acting on several levels simultaneously. In conclusion, given the raising burden of type 2 DM, the best present strategy that could contribute the most to the reduction of morbidity and mortality should be focused on primary prevention.
Collapse
Affiliation(s)
- Kristina Blaslov
- Department of Endocrinology, Diabetes and Metabolic Diseases Mladen Sekso, University Hospital Center Sestre Milosrdnice, Zagreb 10000, Croatia
| | | | - Ivan Kruljac
- Department of Endocrinology, Diabetes and Metabolic Diseases Mladen Sekso, University Hospital Center Sestre Milosrdnice, Zagreb 10000, Croatia
| | | |
Collapse
|
5
|
Abstract
The counterregulatory response to hypoglycemia is a complex and well-coordinated process. As blood glucose concentration declines, peripheral and central glucose sensors relay this information to central integrative centers to coordinate neuroendocrine, autonomic, and behavioral responses and avert the progression of hypoglycemia. Diabetes, both type 1 and type 2, can perturb these counterregulatory responses. Moreover, defective counterregulation in the setting of diabetes can progress to hypoglycemia unawareness. While the mechanisms that underlie the development of hypoglycemia unawareness are not completely known, possible causes include altered sensing of hypoglycemia by the brain and/or impaired coordination of responses to hypoglycemia. Further study is needed to better understand the intricacies of the counterregulatory response and the mechanisms contributing to the development of hypoglycemia unawareness.
Collapse
Affiliation(s)
- Nolawit Tesfaye
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
6
|
Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 58:773-95. [PMID: 19336687 PMCID: PMC2661582 DOI: 10.2337/db09-9028] [Citation(s) in RCA: 1929] [Impact Index Per Article: 120.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ralph A Defronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas, USA.
| |
Collapse
|
7
|
Imrich R. Hypoglycemia, an Old Tool for New Findings in the Adrenomedullary Hormonal System in Patients with Rheumatic Diseases. Ann N Y Acad Sci 2006; 1069:98-108. [PMID: 16855137 DOI: 10.1196/annals.1351.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Over the past decades, research in patients with rheumatic disorders showed enormous progress in detecting various perturbations of the neuroendocrine system including those affecting autonomic nervous function. There is, however, a substantial lack of data on adrenomedullary hormonal system (AMHS) function in those patients. Insulin-induced hypoglycemia (IIH) represents a metabolic stressor, which elicits a counterregulatory stress response not only of the hypothalamic-pituitary axis but also of the AMHS. Therefore, in addition to traditional testing of hypothalamic-pituitary function, IIH can be used as a well-controlled functional test of the AMHS. Our recent studies showed, for the first time, attenuated epinephrine and norepinephrine responses to IIH in premenopausal females with rheumatoid arthritis (RA) and systemic sclerosis (SSc). These findings are suggestive of downregulation, or possibly defects, of the AMHS in those patients. This article reviews mechanism of the AMHS activation during IIH and demonstrates applications of the test in neuroendocrine-immune research.
Collapse
Affiliation(s)
- Richard Imrich
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 83306 Bratislava, Slovakia.
| |
Collapse
|
8
|
Abstract
Glucose counterregulatory failure and hypoglycaemia unawareness frequently complicate treatment of Type 1 diabetes mellitus, especially when aiming for intensive metabolic control. Since tight metabolic control reduces microvascular long-term complications in Type 2 diabetes mellitus, the integrity of glucose counterregulation in Type 2 diabetic patients is important. Using a Medline search, we identified 12 studies in which counterregulatory responses to insulin-induced hypoglycaemia were compared between Type 2 diabetic patients and appropriate controls. A review of these studies showed that some patients with Type 2 diabetes mellitus develop mild counterregulatory dysfunction and reduced awareness of insulin-induced hypoglycaemia. Some studies suggested an association between counterregulatory impairment and intensity of metabolic control. We speculate that the relatively low frequency of (severe) hypoglycaemic events in Type 2 diabetes may explain why glucose counterregulation remains unaffected in most patients. We hypothesize that residual beta-cell reserve and insulin resistance provide protection against severe hypoglycaemia and limit impaired counterregulation. Diabet. Med. 18, 519-527 (2001)
Collapse
Affiliation(s)
- B E de Galan
- Department of Internal Medicine, University Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
9
|
Spyer G, Hattersley AT, MacDonald IA, Amiel S, MacLeod KM. Hypoglycaemic counter-regulation at normal blood glucose concentrations in patients with well controlled type-2 diabetes. Lancet 2000; 356:1970-4. [PMID: 11130525 DOI: 10.1016/s0140-6736(00)03322-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Intensive treatment to achieve good glycaemic control in diabetic patients is limited by a high frequency of hypoglycaemia. The glucose concentrations at which symptoms and release of counter-regulatory hormones takes place have not been studied in patients with well controlled type-2 diabetes. METHODS We studied seven well controlled, non-insulin treated, type-2 diabetic patients (mean HbA1c [corrected according to Diabetes Control and Complications Trial] 7.4%, SD 1.0) and seven healthy controls matched for age, sex, and body mass index with a stepped hyperinsulinaemic hypoglycaemic glucose clamp. Symptoms, cognitive function, and counter-regulatory hormone concentrations were measured at each glucose plateau, and the glucose value at which there was a significant change from baseline was calculated. FINDINGS Symptom response took place at higher whole-blood glucose concentrations in diabetic patients than in controls. Counter-regulatory release of epinephrine, norepinephrine, growth hormone, and cortisol showed a similar pattern--eg, at blood glucose concentrations of 3.8 mmol/L [SD 0.4] vs 2.6 [0.3] for epinephrine. INTERPRETATION Glucose thresholds for counter-regulatory hormone secretion are altered in well controlled type-2 diabetic patients, so that both symptoms and counter-regulatory hormone release can take place at normal glucose values. This effect might protect type-2 diabetic patients against episodes of profound hypoglycaemia and make the achievement of normoglycaemia more challenging in clinical practice.
Collapse
Affiliation(s)
- G Spyer
- Department of Vascular Medicine and Diabetes Research, School of Postgraduate Medicine and Health Sciences, Exeter, Devon, UK
| | | | | | | | | |
Collapse
|
10
|
Landstedt-Hallin L, Adamson U, Lins PE. Oral glibenclamide suppresses glucagon secretion during insulin-induced hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab 1999; 84:3140-5. [PMID: 10487677 DOI: 10.1210/jcem.84.9.6002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intensifying pharmacological therapy in patients with type 2 diabetes increases the risk of hypoglycemia and often requires the simultaneous use of more than one agent. Combining insulin and sulfonylurea is an effective and frequently used therapy in such patients. However, sulfonylurea derivatives have been shown to affect the release of glucagon, indicating a possible effect of such therapy on hormonal counterregulation to hypoglycemia. Thirteen patients receiving combined therapy were studied on two occasions: 1) after a wash-out period of glibenclamide (-GLIB), and 2) after resuming combined treatment for 6 months (+GLIB). We performed nonstep-wise, hyperinsulinemic hypoglycemic clamps using a constant i.v. insulin infusion and clamping blood glucose at 2.7 mmol/L (48 mg/dL) for 60 min. C Peptide levels were significantly higher during + GLIB, but no significant differences were seen in peripheral plasma insulin levels (+GLIB mean +/- SD, 70 +/- 17 mU/L vs. -GLIB, 75 +/- 14; P = 0.26). Epinephrine responses were similar in the two tests, but when glibenclamide was present the glucagon response was smaller, both the peak value (P = 0.016) and the incremental area under the curve (P = 0.011) as well as the total area under the curve (P = 0.016). These results suggest that intraislet insulin secretion is of importance for the alpha-cell responsiveness to hypoglycemia in these patients.
Collapse
Affiliation(s)
- L Landstedt-Hallin
- Division of Internal Medicine, Karolinska Institute, Danderyd Hospital, Sweden
| | | | | |
Collapse
|
11
|
Burge MR, Sood V, Sobhy TA, Rassam AG, Schade DS. Sulphonylurea-induced hypoglycaemia in type 2 diabetes mellitus: a review. Diabetes Obes Metab 1999; 1:199-206. [PMID: 11228754 DOI: 10.1046/j.1463-1326.1999.00031.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- M R Burge
- University of New Mexico School of Medicine, Department of Medicine/Endocrinology and Metabolism, Albuquerque, NM, 87131 USA.
| | | | | | | | | |
Collapse
|
12
|
Veneman TF, Erkelens DW. Clinical review 88: hypoglycemia unawareness in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997; 82:1682-4. [PMID: 9177362 DOI: 10.1210/jcem.82.6.3972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T F Veneman
- Department of Internal Medicine, University Hospital Utrecht, The Netherlands
| | | |
Collapse
|
13
|
Lindström T, Jorfeldt L, Tegler L, Arnqvist HJ. Hypoglycaemia and cardiac arrhythmias in patients with type 2 diabetes mellitus. Diabet Med 1992; 9:536-41. [PMID: 1643801 DOI: 10.1111/j.1464-5491.1992.tb01834.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Improved blood glucose control by insulin treatment in patients with Type 2 (non-insulin dependent) diabetes mellitus increases the risk for hypoglycaemic episodes. Our objective was to investigate if hypoglycaemia causes electrocardiographic changes and cardiac arrhythmias in patients with Type 2 diabetes. Six insulin-treated patients with Type 2 diabetes and no known cardiac disease took part in the study. Hypoglycaemia was induced by insulin infusion aiming at a plasma glucose less than or equal to 2.0 mmol l-1 or hypoglycaemic symptoms. All patients experienced hypoglycaemic symptoms. The median lowest arterial plasma glucose was 2.0 mmol l-1. Arterial plasma adrenaline concentration increased from 0.4 +/- 0.1 (mean +/- SE) to 6.9 +/- 0.3 nmol l-1 (p less than 0.001) while serum potassium was lowered from 4.1 +/- 0.3 mmol l-1 to 3.5 +/- 0.2 mmol l-1 (p less than 0.001). The heart rate increased significantly during hypoglycaemia except in one patient who developed hypoglycaemic symptoms and a severe bradyarrhythmia at a plasma glucose of 4.4 mmol l-1. One patient developed frequent ventricular ectopic beats during hypoglycaemia while four patients showed no arrhythmia. ST-depression in ECG leads V2 and V6 was observed during hypoglycaemia in five patients (p less than 0.05) and four patients developed flattening of the T-wave. In conclusion, the study supports the hypothesis that hypoglycaemia in patients with Type 2 diabetes may be hazardous by causing cardiac arrhythmias.
Collapse
Affiliation(s)
- T Lindström
- Department of Internal Medicine, Faculty of Health Sciences, Linköping University, Sweden
| | | | | | | |
Collapse
|
14
|
Gerich JE, Campbell PJ. Overview of counterregulation and its abnormalities in diabetes mellitus and other conditions. DIABETES/METABOLISM REVIEWS 1988; 4:93-111. [PMID: 3281810 DOI: 10.1002/dmr.5610040202] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- J E Gerich
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | | |
Collapse
|
15
|
Heller SR, Macdonald IA, Tattersall RB. Counterregulation in type 2 (non-insulin-dependent) diabetes mellitus. Normal endocrine and glycaemic responses, up to ten years after diagnosis. Diabetologia 1987; 30:924-9. [PMID: 3325324 DOI: 10.1007/bf00295875] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have examined hormonal and metabolic responses to insulin-induced hypoglycaemia in 10 Type 2 (non-insulin-dependent) diabetic patients treated with tablets and 10 age, sex and weight matched control subjects. Diabetic patients were under 110% ideal body weight, had no autonomic neuropathy and were well controlled (HbA1, 7.1 +/- 0.2%). After the diabetic patients were kept euglycaemic by an overnight insulin infusion, hypoglycaemia was induced in both groups by intravenous insulin at 30 mU.m-2.min-1 for 60 min and counterregulatory responses measured for 150 min. There were no significant differences between diabetic patients and control subjects in the rate of fall (3.3 +/- 0.3 vs 4.0 +/- 0.3 mmol.l-1.h-1), nadir (2.4 +/- 0.2 vs 2.3 +/- 0.1 mmol/l) and rate of recovery (0.027 +/- 0.002 vs 0.030 +/- 0.003 mmol.l-1.min-1) of blood glucose. Increments of glucagon (60.5 +/- 5.7 vs 70 +/- 9.2 ng/l) and adrenaline (1.22 +/- 0.31 vs 1.45 +/- 0.31 nmol/l) were similar in both groups. When tested using this model, patients with Type 2 diabetes, without microvascular complications and taking oral hypoglycaemic agents show no impairment of the endocrine response and blood glucose recovery following hypoglycaemia.
Collapse
Affiliation(s)
- S R Heller
- Department of Medicine, University Hospital, Nottingham, UK
| | | | | |
Collapse
|
16
|
Bolli GB, Tsalikian E, Haymond MW, Cryer PE, Gerich JE. Defective glucose counterregulation after subcutaneous insulin in noninsulin-dependent diabetes mellitus. Paradoxical suppression of glucose utilization and lack of compensatory increase in glucose production, roles of insulin resistance, abnormal neuroendocrine responses, and islet paracrine interactions. J Clin Invest 1984; 73:1532-41. [PMID: 6373827 PMCID: PMC437063 DOI: 10.1172/jci111359] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To characterize glucose counterregulatory mechanisms in patients with noninsulin-dependent diabetes mellitus (NIDDM) and to test the hypothesis that the increase in glucagon secretion during hypoglycemia occurs primarily via a paracrine islet A-B cell interaction, we examined the effects of a subcutaneously injected therapeutic dose of insulin (0.15 U/kg) on plasma glucose kinetics, rates of glucose production and utilization, and their relationships to changes in the circulating concentrations of neuroendocrine glucoregulatory factors (glucagon, epinephrine, norepinephrine, growth hormone, and cortisol), as well as to changes in endogenous insulin secretion in 13 nonobese NIDDM patients with no clinical evidence of autonomic neuropathy. Compared with 11 age-weight matched nondiabetic volunteers in whom euglycemia was restored primarily by a compensatory increase in glucose production, in the diabetics there was no compensatory increase in glucose production (basal 2.08 +/- 0.04----1.79 +/- 0.07 mg/kg per min at 21/2 h in diabetics vs. basal 2.06 +/- 0.04----2.32 +/- 0.11 mg/kg per min at 21/2 h in nondiabetics, P less than 0.01) despite the fact that plasma insulin concentrations were similar in both groups (peak values 22 +/- 2 vs. 23 +/- 2 microU/ml in diabetics and nondiabetics, respectively). This abnormality in glucose production was nearly completely compensated for by a paradoxical decrease in glucose utilization after injection of insulin (basal 2.11 +/- 0.03----1.86 +/- 0.06 mg/kg per min at 21/2 h in diabetics vs. basal 2.08 +/- 0.04----2.39 +/- 0.11 mg/kg per min at 21/2 h nondiabetics, P less than 0.01), which could not be accounted for by differences in plasma glucose concentrations; the net result was a modest prolongation of hypoglycemia. Plasma glucagon (area under the curve [AUC] above base line, 12 +/- 3 vs. 23 +/- 3 mg/ml X 12 h in nondiabetics, P less than 0.05), cortisol (AUC 2.2 +/- 0.5 vs. 4.0 +/- 0.7 mg/dl X 12 h in nondiabetics, P less than 0.05), and growth hormone (AUC 1.6 +/- 0.4 vs. 2.9 +/- 0.4 micrograms/ml X 12 h in nondiabetics, P less than 0.05) responses in the diabetics were decreased 50% while their plasma norepinephrine responses (AUC 49 +/- 12 vs. 21 +/- 5 ng/ml X 12 h in nondiabetics, P less than 0.05) were increased twofold (P less than 0.05) and their plasma epinephrine responses were similar to those of the nondiabetics (AUC 106 +/- 17 vs. 112 +/- 10 ng/ml X 12 h in nondiabetics). In both groups of subjects, increases in plasma glucagon were inversely correlated with plasma glucose concentrations (r = -0.80 in both groups, P less than 0.01) and suppression of endogenous insulin secretion (r = -0.57 in nondiabe
Collapse
|