1
|
Seckold R, Smart CE, O'Neal DN, Riddell MC, Rafferty J, Morrison D, Obeyesekere V, Gooley JL, Paldus B, Valkenborghs SR, Vogrin S, Zaharieva DP, King BR. A Comparison of Glucose and Additional Signals for Three Different Exercise Types in Adolescents with Type 1 Diabetes Using a Hybrid Closed-Loop System. Diabetes Technol Ther 2025; 27:308-322. [PMID: 39788892 DOI: 10.1089/dia.2024.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Objective: To compare glycemic outcomes during and following moderate-intensity exercise (MIE), high-intensity interval exercise (HIE), and resistance exercise (RE) in adolescents with type 1 diabetes (T1D) using a hybrid closed-loop (HCL) insulin pump while measuring additional physiological signals associated with activity. Methods: Twenty-eight adolescents (average age 16.3 ± 2.1 years, 50% females, average duration of T1D 9.4 ± 4 years) using HCL (Medtronic MiniMed 670G) undertook 40 min of MIE, HIE, and RE. A temporary glucose target (8.3 mmol/L, 150 mg/dL) was set for 2 h prior and during exercise. Heart rate, accelerometer, venous glucose, lactate, ketones, and counter-regulatory hormones were measured for 280 min postexercise commencement. The primary outcome was glucose percentage time in range (TIR): 3.9-10 mmol/L (70-180 mg/dL) for 14 h from exercise onset. Results: Median (interquartile range) TIR for HIE was 88 (78, 96)%, MIE 79 (63, 88)%, and RE 86 (72, 95)% for 14 h from exercise onset. For MIE compared with HIE, TIR was lower (P = 0.012) and time above range (TAR) was greater (18 [2.4, 28] vs. 6.9 [0.0, 14]%, P = 0.041). Hypoglycemia occurred in 13 (46%), 11 (39%), and 14 (50%) of participants for HIE, MIE, and RE, respectively, the majority following the meal after exercise. There were higher levels of lactate (P = 0.001), growth hormone (P = 0.001), noradrenaline (P = 0.001), and heart rate (P = 0.01) during HIE and RE compared with MIE. Conclusions: HCL use in adolescents with T1D results in excellent TIR during different forms of exercise when a temporary target is set 2 h before. Extending the temporary target after exercise may also be needed to help minimize postexercise hypoglycemia.
Collapse
Affiliation(s)
- Rowen Seckold
- Department of Paediatric Diabetes and Endocrinology, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Carmel E Smart
- Department of Paediatric Diabetes and Endocrinology, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - David N O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- The Australian Centre for Accelerating Diabetes Innovations, Melbourne, Victoria, Australia
| | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jordan Rafferty
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Dale Morrison
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- The Australian Centre for Accelerating Diabetes Innovations, Melbourne, Victoria, Australia
| | | | - Judy L Gooley
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Barbora Paldus
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah R Valkenborghs
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
- Active Living Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Sara Vogrin
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Dessi P Zaharieva
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| | - Bruce R King
- Department of Paediatric Diabetes and Endocrinology, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Molveau J, Myette-Côté É, Guédet C, Tagougui S, St-Amand R, Suppère C, Heyman E, Messier V, Boudreau V, Legault L, Rabasa-Lhoret R. Impact of pre- and post-exercise strategies on hypoglycemic risk for two modalities of aerobic exercise among adults and adolescents living with type 1 diabetes using continuous subcutaneous insulin infusion: A randomized controlled trial. DIABETES & METABOLISM 2025; 51:101599. [PMID: 39653075 DOI: 10.1016/j.diabet.2024.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE We investigated strategies to mitigate hypoglycemic risk during and after different aerobic exercises in people with type 1 diabetes (pwT1D) using continuous subcutaneous insulin infusion. RESEARCH DESIGN AND METHODS Thirty-seven pwT1D (21 adults, 16 adolescents; HbA1c = 7.5 ± 1.0 %) participated in two post-absorptive (4-h post-meal) exercise sessions (60-min continuous moderate intensity [CONT] vs. intermittent [INT]). Pre-exercise basal rate reduction (BRR) was either 40 % or 80 %, 90 min before exercise. Post-exercise, participants undertook either a 20 % BRR for 10 h with 20 % reduced dinner bolus (INS) or a 45 g post-exercise carbohydrate (CHO) snack with a 50 % insulin bolus, and a 30 g bedtime CHO snack without bolus (snack). RESULTS While a similar number of hypoglycemic events (31 vs. 28) were observed between exercise modalities, CONT led to a greater decrease in blood glucose during exercise compared to INT (-3.1 ± 2.3, CONT vs. -2.7 ± 2.2 mmol/l, INT, P = 0.005). Changes in blood glucose during exercise (-3.0 ± 2.4, 40 %BRR vs. -2.8 ± 2.1 mmol/l, 80 %BRR, P = 0.076) and the number of hypoglycemic events (35 vs. 24) were similar between 40 % and 80 %BRR. Time in hyperglycemia was lower with INS compared to snack in the first 30 min after exercise, but no differences were observed for late recovery period or nighttime. CONCLUSION Compared to INT, CONT led to greater blood glucose decline without increasing hypoglycemia risk. A larger pre-exercise BRR did not further reduce hypoglycemia risk during exercise. Post-exercise INS and snack strategies led to comparable glucose profiles in pwT1D.
Collapse
Affiliation(s)
- Joséphine Molveau
- Institut de recherches cliniques de Montréal, Canada; Département de Nutrition, Faculté de Médecine, Université de Montréal, Canada; Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, France
| | - Étienne Myette-Côté
- Institut de recherches cliniques de Montréal, Canada; Department of Applied Human Sciences, Faculty of Science, University of Prince Edward Island, Canada
| | - Capucine Guédet
- Institut de recherches cliniques de Montréal, Canada; Département de Kinésiologie, Faculté de Médecine, Université de Montréal, Canada; Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, France
| | - Sémah Tagougui
- Institut de recherches cliniques de Montréal, Canada; Département de Nutrition, Faculté de Médecine, Université de Montréal, Canada; Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, France
| | | | | | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, France; Institut Universitaire de France, Paris, France
| | | | | | - Laurent Legault
- Montreal Children's Hospital, McGill University Health Centre, Canada
| | - Rémi Rabasa-Lhoret
- Institut de recherches cliniques de Montréal, Canada; Département de Nutrition, Faculté de Médecine, Université de Montréal, Canada; Endocrinology Division and Montreal Diabetes Research Center, Canada.
| |
Collapse
|
3
|
Perkins BA, Turner LV, Riddell MC. Applying technologies to simplify strategies for exercise in type 1 diabetes. Diabetologia 2024; 67:2045-2058. [PMID: 39145882 DOI: 10.1007/s00125-024-06229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024]
Abstract
Challenges and fears related to managing glucose levels around planned and spontaneous exercise affect outcomes and quality of life in people living with type 1 diabetes. Advances in technology, including continuous glucose monitoring, open-loop insulin pump therapy and hybrid closed-loop (HCL) systems for exercise management in type 1 diabetes, address some of these challenges. In this review, three research or clinical experts, each living with type 1 diabetes, leverage published literature and clinical and personal experiences to translate research findings into simplified, patient-centred strategies. With an understanding of limitations in insulin pharmacokinetics, variable intra-individual responses to aerobic and anaerobic exercise, and the features of the technologies, six steps are proposed to guide clinicians in efficiently communicating simplified actions more effectively to individuals with type 1 diabetes. Fundamentally, the six steps centre on two aspects. First, regardless of insulin therapy type, and especially needed for spontaneous exercise, we provide an estimate of glucose disposal into active muscle meant to be consumed as extra carbohydrates for exercise ('ExCarbs'; a common example is 0.5 g/kg body mass per hour for adults and 1.0 g/kg body mass per hour for youth). Second, for planned exercise using open-loop pump therapy or HCL systems, we additionally recommend pre-emptive basal insulin reduction or using HCL exercise modes initiated 90 min (1-2 h) before the start of exercise until the end of exercise. Modifications for aerobic- and anaerobic-type exercise are discussed. The burden of pre-emptive basal insulin reductions and consumption of ExCarbs are the limitations of HCL systems, which may be overcome by future innovations but are unquestionably required for currently available systems.
Collapse
Affiliation(s)
- Bruce A Perkins
- Leadership Sinai Centre for Diabetes, Sinai Health, Toronto, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Lauren V Turner
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
4
|
Romeres D, Yadav Y, Ruchi FNU, Carter R, Cobelli C, Basu R, Basu A. Hyperglycemia Suppresses Lactate Clearance During Exercise in Type 1 Diabetes. J Clin Endocrinol Metab 2024; 109:e1720-e1731. [PMID: 38174728 PMCID: PMC11318997 DOI: 10.1210/clinem/dgae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
CONTEXT Circulating lactate concentration is an important determinant of exercise tolerance. OBJECTIVE This work aimed to determine the role of hyperglycemia on lactate metabolism during exercise in individuals with type 1 diabetes (T1D). METHODS The protocol at the University of Virginia compared 7 T1D participants and 7 participants without diabetes (ND) at euglycemia (5.5 mM) or hyperglycemia (9.2 mM) in random order in T1D and at euglycemia in ND. Intervention included [1-13C] lactate infusion, exercise at 65% maximal oxygen uptake (VO2max), euglycemia, and hyperglycemia visits. The main outcome measure was lactate turnover before, during, and after 60 minutes of exercise at 65% VO2max. RESULTS A 2-compartment model with loss only from the peripheral compartment described lactate kinetics. Volume of distribution of the accessible compartment was similar between T1D and ND individuals (P = .76) and concordant with plasma volume (∼40 mL/kg). Circulating lactate concentrations were higher (P < .001) in T1D participants during exercise at hyperglycemia than euglycemia. Exercise-induced lactate appearance did not differ (P = .13) between hyperglycemia and euglycemia. However, lactate clearance (CL) was lower (P = .03) during hyperglycemia than euglycemia in T1D participants. There were no differences in any of the aforementioned parameters between T1D and ND participants during euglycemia. CONCLUSION Hyperglycemia modulates lactate metabolism during exercise by lowering CL, leading to higher circulating lactate concentrations in T1D individuals. This novel observation implies that exercise during hyperglycemia can lead to higher circulating lactate concentrations thus increasing the likelihood of reaching the lactate threshold sooner in T1D, and has high translational relevance both for providers and recreationally active people with T1D.
Collapse
Affiliation(s)
- Davide Romeres
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yogesh Yadav
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - F N U Ruchi
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rickey Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova, Padua 35122, Italy
| | - Rita Basu
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ananda Basu
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Helleputte S, Stautemas J, Jansseune L, De Backer T, Marlier J, Lapauw B, Calders P. Glycemic Management Around Postprandial Exercise in People With Type 1 Diabetes: Challenge Accepted. J Clin Endocrinol Metab 2024; 109:2039-2052. [PMID: 38330239 DOI: 10.1210/clinem/dgae079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
CONTEXT The precise glycemic impact and clinical relevance of postprandial exercise in type 1 diabetes (T1D) has not been clarified yet. OBJECTIVE This work aimed to examine acute, subacute, and late effects of postprandial exercise on blood glucose (BG). METHODS A randomized, controlled trial comprised 4 laboratory visits, with 24-hour follow-up at home. Participants included adults with T1D (n = 8), aged 44 ± 13 years, with body mass index of 24 ± 2.1. Intervention included 30 minutes of rest (CONTROL), walking (WALK), moderate-intensity (MOD), or intermittent high-intensity (IHE) exercise performed 60 minutes after a standardized meal. Main outcome measures included BG change during exercise/control (acute), and secondary outcomes included the subacute (≤2 h after) and late glycemic effects (≤24 h after). RESULTS Exercise reduced postprandial glucose (PPG) excursion compared to CONTROL, with a consistent BG decline in all patients for all modalities (mean declines -45 ± 24, -71 ± 39, and -35 ± 21 mg/dL, during WALK, MOD, and IHE, respectively (P < .001). For this decline, clinical superiority was demonstrated separately for each exercise modality vs CONTROL. Noninferiority of WALK vs MOD was not demonstrated, noninferiority of WALK vs IHE was demonstrated, and equivalence of IHE vs MOD was not demonstrated. Hypoglycemia did not occur during exercise. BG increased in the hour after exercise (more than after CONTROL; P < .001). More than half of participants showed hyperglycemia after exercise necessitating insulin correction. There were more nocturnal hypoglycemic events after exercise vs CONTROL (P < .05). CONCLUSION Postprandial exercise of all modalities is effective, safe, and feasible if necessary precautions are taken (ie, prandial insulin reductions), as exercise lowered maximal PPG excursion and caused a consistent and clinically relevant BG decline during exercise while there was no hypoglycemia during or shortly after exercise. However, there seem to be 2 remaining challenges: subacute postexercise hyperglycemia and nocturnal hypoglycemia.
Collapse
Affiliation(s)
- Simon Helleputte
- Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Fonds Wetenschappelijk Onderzoek (FWO) Flanders, Brussel 1000, Belgium
| | - Jan Stautemas
- Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Laura Jansseune
- Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Tine De Backer
- Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Department of Cardiology, Ghent University Hospital, Ghent 9000, Belgium
- Department of Internal Medicine & Paediatrics, Ghent University, Ghent 9000, Belgium
| | - Joke Marlier
- Department of Endocrinology, Ghent University Hospital, Ghent 9000, Belgium
| | - Bruno Lapauw
- Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- Department of Internal Medicine & Paediatrics, Ghent University, Ghent 9000, Belgium
- Department of Endocrinology, Ghent University Hospital, Ghent 9000, Belgium
| | - Patrick Calders
- Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
6
|
Zimmer RT, Auth A, Schierbauer J, Haupt S, Wachsmuth N, Zimmermann P, Voit T, Battelino T, Sourij H, Moser O. (Hybrid) Closed-Loop Systems: From Announced to Unannounced Exercise. Diabetes Technol Ther 2023. [PMID: 38133645 DOI: 10.1089/dia.2023.0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Physical activity and exercise have many beneficial effects on general and type 1 diabetes (T1D) specific health and are recommended for individuals with T1D. Despite these health benefits, many people with T1D still avoid exercise since glycemic management during physical activity poses substantial glycemic and psychological challenges - which hold particularly true for unannounced exercise when using an AID system. Automated insulin delivery (AID) systems have demonstrated their efficacy in improving overall glycemia and in managing announced exercise in numerous studies. They are proven to increase time in range (70-180 mg/dL) and can especially counteract nocturnal hypoglycemia, even when evening exercise was performed. AID-systems consist of a pump administering insulin as well as a CGM sensor (plus transmitter), both communicating with a control algorithm integrated into a device (insulin pump, mobile phone/smart watch). Nevertheless, without manual pre-exercise adaptions, these systems still face a significant challenge around physical activity. Automatically adapting to the rapidly changing insulin requirements during unannounced exercise and physical activity is still the Achilles' heel of current AID systems. There is an urgent need for improving current AID-systems to safely and automatically maintain glucose management without causing derailments - so that going forward, exercise announcements will not be necessary in the future. Therefore, this narrative literature review aimed to discuss technological strategies to how current AID-systems can be improved in the future and become more proficient in overcoming the hurdle of unannounced exercise. For this purpose, the current state-of-the-art therapy recommendations for AID and exercise as well as novel research approaches are presented along with potential future solutions - in order to rectify their deficiencies in the endeavor to achieve fully automated AID-systems even around unannounced exercise.
Collapse
Affiliation(s)
- Rebecca Tanja Zimmer
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Alexander Auth
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Janis Schierbauer
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Sandra Haupt
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Nadine Wachsmuth
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Paul Zimmermann
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Thomas Voit
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Tadej Battelino
- University Children's Hospital, Ljubljana, Slovenia, Department of Endocrinology, Diabetes and Metabolism, Bohoriceva 20, Ljubljana, Slovenia, 1000
- Slovenia;
| | - Harald Sourij
- Medical University of Graz, 31475, Auenbruggerplatz 15, 8036 Graz, Graz, Austria, 8036;
| | - Othmar Moser
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Universitätsstraße 30, Bayreuth, Bayern, Germany, 95440;
| |
Collapse
|
7
|
Griffin TP, Gallen G, Hartnell S, Crabtree T, Holloway M, Gibb FW, Lumb A, Wilmot EG, Choudhary P, Hussain S. UK's Association of British Clinical Diabetologist's Diabetes Technology Network (ABCD-DTN): Best practice guide for hybrid closed-loop therapy. Diabet Med 2023; 40:e15078. [PMID: 36932929 DOI: 10.1111/dme.15078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
This best practice guide is written with the aim of providing an overview of current hybrid closed-loop (HCL) systems in use within the United Kingdom's (UK) National Health Service (NHS) and to provide education and advice for their management on both an individual and clinical service level. The environment of diabetes technology, and particularly HCL systems, is rapidly evolving. The past decade has seen unprecedented advances in the development of HCL systems. These systems improve glycaemic outcomes and reduce the burden of treatment for people with type 1 diabetes (pwT1D). It is anticipated that access to these systems will increase in England as a result of updates in National Institute of Health and Care Excellence (NICE) guidance providing broader support for the use of real-time continuous glucose monitoring (CGM) for pwT1D. NICE is currently undertaking multiple-technology appraisal into HCL systems. Based on experience from centres involved in supporting advanced technologies as well as from the recent NHS England HCL pilot, this guide is intended to provide healthcare professionals with UK expert consensus on the best practice for initiation, optimisation and ongoing management of HCL therapy.
Collapse
Affiliation(s)
- Tomás P Griffin
- Leicester Diabetes Centre, University Hospitals of Leicester, Leicester, UK
- Diabetes Research Centre, College of Health Sciences, University of Leicester, Leicester, UK
- School of Medicine, University of Limerick, Limerick, Ireland
- Centre for Diabetes and Endocrinology, University Hospital Limerick, Limerick, Ireland
| | - Geraldine Gallen
- Department of Diabetes, School of Cardiovascular, Metabolic Medicine and Sciences, King's College London, London, UK
| | - Sara Hartnell
- Department of Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas Crabtree
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
- Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | | | - Fraser W Gibb
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Alistair Lumb
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Emma G Wilmot
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
- Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Pratik Choudhary
- Leicester Diabetes Centre, University Hospitals of Leicester, Leicester, UK
- Diabetes Research Centre, College of Health Sciences, University of Leicester, Leicester, UK
| | - Sufyan Hussain
- Department of Diabetes, School of Cardiovascular, Metabolic Medicine and Sciences, King's College London, London, UK
- Department of Diabetes and Endocrinology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Bishop FK, Addala A, Corbin KD, Muntis FR, Pratley RE, Riddell MC, Mayer-Davis EJ, Maahs DM, Zaharieva DP. An Overview of Diet and Physical Activity for Healthy Weight in Adolescents and Young Adults with Type 1 Diabetes: Lessons Learned from the ACT1ON Consortium. Nutrients 2023; 15:nu15112500. [PMID: 37299463 DOI: 10.3390/nu15112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence of overweight and obesity in young people with type 1 diabetes (T1D) now parallels that of the general population. Excess adiposity increases the risk of cardiovascular disease, which is already elevated up to 10-fold in T1D, underscoring a compelling need to address weight management as part of routine T1D care. Sustainable weight management requires both diet and physical activity (PA). Diet and PA approaches must be optimized towards the underlying metabolic and behavioral challenges unique to T1D to support glycemic control throughout the day. Diet strategies for people with T1D need to take into consideration glycemic management, metabolic status, clinical goals, personal preferences, and sociocultural considerations. A major barrier to weight management in this high-risk population is the challenge of integrating regular PA with day-to-day management of T1D. Specifically, exercise poses a substantial challenge due to the increased risk of hypoglycemia and/or hyperglycemia. Indeed, about two-thirds of individuals with T1D do not engage in the recommended amount of PA. Hypoglycemia presents a serious health risk, yet prevention and treatment often necessitates the consumption of additional calories, which may prohibit weight loss over time. Exercising safely is a concern and challenge with weight management and maintaining cardiometabolic health for individuals living with T1D and many healthcare professionals. Thus, a tremendous opportunity exists to improve exercise participation and cardiometabolic outcomes in this population. This article will review dietary strategies, the role of combined PA and diet for weight management, current resources for PA and glucose management, barriers to PA adherence in adults with T1D, as well as findings and lessons learned from the Advancing Care for Type 1 Diabetes and Obesity Network (ACT1ON).
Collapse
Affiliation(s)
- Franziska K Bishop
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Karen D Corbin
- AdventHealth, Translational Research Institute, Orlando, FL 32804, USA
| | - Franklin R Muntis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard E Pratley
- AdventHealth, Translational Research Institute, Orlando, FL 32804, USA
| | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94304, USA
- Stanford Diabetes Research Center, Stanford, CA 94305, USA
| | - Dessi P Zaharieva
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
9
|
Zaharieva DP, Morrison D, Paldus B, Lal RA, Buckingham BA, O’Neal DN. Practical Aspects and Exercise Safety Benefits of Automated Insulin Delivery Systems in Type 1 Diabetes. Diabetes Spectr 2023; 36:127-136. [PMID: 37193203 PMCID: PMC10182962 DOI: 10.2337/dsi22-0018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Regular exercise is essential to overall cardiovascular health and well-being in people with type 1 diabetes, but exercise can also lead to increased glycemic disturbances. Automated insulin delivery (AID) technology has been shown to modestly improve glycemic time in range (TIR) in adults with type 1 diabetes and significantly improve TIR in youth with type 1 diabetes. Available AID systems still require some user-initiated changes to the settings and, in some cases, significant pre-planning for exercise. Many exercise recommendations for type 1 diabetes were developed initially for people using multiple daily insulin injections or insulin pump therapy. This article highlights recommendations and practical strategies for using AID around exercise in type 1 diabetes.
Collapse
Affiliation(s)
- Dessi P. Zaharieva
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Dale Morrison
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Barbora Paldus
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Endocrinology & Diabetes, St Vincent’s Hospital Melbourne, Melbourne, Australia
| | - Rayhan A. Lal
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford, CA
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Bruce A. Buckingham
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford, CA
| | - David N. O’Neal
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Endocrinology & Diabetes, St Vincent’s Hospital Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Davis EA, Shetty VB, Teo SY, Lim RJ, Patton SR, Taplin CE. Physical Activity Management for Youth With Type 1 Diabetes: Supporting Active and Inactive Children. Diabetes Spectr 2023; 36:137-145. [PMID: 37193201 PMCID: PMC10182969 DOI: 10.2337/dsi22-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Regular physical activity and exercise are important for youth and essential components of a healthy lifestyle. For youth with type 1 diabetes, regular physical activity can promote cardiovascular fitness, bone health, insulin sensitivity, and glucose management. However, the number of youth with type 1 diabetes who regularly meet minimum physical activity guidelines is low, and many encounter barriers to regular physical activity. Additionally, some health care professionals (HCPs) may be unsure how to approach the topic of exercise with youth and families in a busy clinic setting. This article provides an overview of current physical activity research in youth with type 1 diabetes, a basic description of exercise physiology in type 1 diabetes, and practical strategies for HCPs to conduct effective and individualized exercise consultations for youth with type 1 diabetes.
Collapse
Affiliation(s)
- Elizabeth A. Davis
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Perth, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - Vinutha B. Shetty
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Perth, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - Shaun Y.M. Teo
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Rachel J. Lim
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Craig E. Taplin
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Perth, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Abstract
Regular physical activity improves cardiometabolic and musculoskeletal health, helps with weight management, improves cognitive and psychosocial functioning, and is associated with reduced mortality related to cancer and diabetes mellitus. However, turnover rates of glucose in the blood increase dramatically during exercise, which often results in either hypoglycaemia or hyperglycaemia as well as increased glycaemic variability in individuals with type 1 diabetes mellitus (T1DM). A complex neuroendocrine response to an acute exercise session helps to maintain circulating levels of glucose in a fairly tight range in healthy individuals, while several abnormal physiological processes and limitations of insulin therapy limit the capacity of people with T1DM to exercise in a normoglycaemic state. Knowledge of the acute and chronic effects of exercise and regular physical activity is critical for the formulation of clinical strategies for the management of insulin and nutrition for active patients with T1DM. Emerging diabetes-related technologies, such as continuous glucose monitors, automated insulin delivery systems and the administration of solubilized glucagon, are demonstrating efficacy for preserving glucose homeostasis during and after exercise in this population of patients. This Review highlights the beneficial effects of regular exercise and details the complex endocrine and metabolic responses to different types of exercise for adults with T1DM. An overview of basic clinical strategies for the preservation of glucose homeostasis using emerging technologies is also provided.
Collapse
Affiliation(s)
- Michael C Riddell
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
- LMC Diabetes and Endocrinology, Toronto, Ontario, Canada.
| | - Anne L Peters
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Adolfsson P, Taplin CE, Zaharieva DP, Pemberton J, Davis EA, Riddell MC, McGavock J, Moser O, Szadkowska A, Lopez P, Santiprabhob J, Frattolin E, Griffiths G, DiMeglio LA. ISPAD Clinical Practice Consensus Guidelines 2022: Exercise in children and adolescents with diabetes. Pediatr Diabetes 2022; 23:1341-1372. [PMID: 36537529 PMCID: PMC10107219 DOI: 10.1111/pedi.13452] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Peter Adolfsson
- Department of PediatricsKungsbacka HospitalKungsbackaSweden
- Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Craig E. Taplin
- Department of Endocrinology and DiabetesPerth Children's HospitalNedlandsWestern AustraliaAustralia
- Telethon Kids InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Dessi P. Zaharieva
- Division of Endocrinology, Department of PediatricsSchool of Medicine, Stanford UniversityStanfordCaliforniaUSA
| | - John Pemberton
- Department of Endocrinology and DiabetesBirmingham Women's and Children's HospitalBirminghamUK
| | - Elizabeth A. Davis
- Department of Endocrinology and DiabetesPerth Children's HospitalNedlandsWestern AustraliaAustralia
- Telethon Kids InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Centre for Child Health ResearchUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | | | - Jonathan McGavock
- Faculty of Kinesiology and Recreation ManagementUniversity of ManitobaWinnipegManitobaCanada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeChildren's Hospital Research Institute of ManitobaWinnipegManitobaCanada
- Department of Pediatrics and Child HealthUniversity of ManitobaWinnipegManitobaCanada
- Diabetes Action Canada SPOR NetworkTorontoOntarioCanada
| | - Othmar Moser
- Division Exercise Physiology and Metabolism, Department of Sport ScienceUniversity of BayreuthBayreuthGermany
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazGrazAustria
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology & NephrologyMedical University of LodzLodzPoland
| | - Prudence Lopez
- Department of PaediatricsJohn Hunter Children's HospitalNewcastleNew South WalesAustralia
- University of NewcastleNewcastleNew South WalesAustralia
| | - Jeerunda Santiprabhob
- Siriraj Diabetes CenterFaculty of Medicine Siriraj Hospital, Mahidol UniversityBangkokThailand
- Division of Endocrinology and Metabolism, Department of PediatricsFaculty of Medicine Siriraj Hospital, Mahidol UniversityBangkokThailand
| | | | | | - Linda A. DiMeglio
- Department of Pediatrics, Division of Pediatric Endocrinology and DiabetologyIndiana University School of Medicine, Riley Hospital for ChildrenIndianapolisIndianaUSA
| |
Collapse
|
13
|
Association of HbA1c with VO 2max in Individuals with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:metabo12111017. [PMID: 36355100 PMCID: PMC9697838 DOI: 10.3390/metabo12111017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to evaluate the association between glycemic control (HbA1c) and functional capacity (VO2max) in individuals with type 1 diabetes (T1DM). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Knowledge for publications from January 1950 until July 2020. Randomized and observational controlled trials with a minimum number of three participants were included if cardio-pulmonary exercise tests to determine VO2max and HbA1c measurement has been performed. Pooled mean values were estimated for VO2max and HbA1c and weighted Pearson correlation and meta-regression were performed to assess the association between these parameters. We included 187 studies with a total of 3278 individuals with T1DM. The pooled mean HbA1c value was 8.1% (95%CI; 7.9−8.3%), and relative VO2max was 38.5 mL/min/kg (37.3−39.6). The pooled mean VO2max was significantly lower (36.9 vs. 40.7, p = 0.001) in studies reporting a mean HbA1c > 7.5% compared to studies with a mean HbA1c ≤ 7.5%. Weighted Pearson correlation coefficient was r = −0.19 (p < 0.001) between VO2max and HbA1c. Meta-regression adjusted for age and sex showed a significant decrease of −0.94 mL/min/kg in VO2max per HbA1c increase of 1% (p = 0.024). In conclusion, we were able to determine a statistically significant correlation between HbA1c and VO2max in individuals with T1DM. However, as the correlation was only weak, the association of HbA1c and VO2max might not be of clinical relevance in individuals with T1DM.
Collapse
|
14
|
Molveau J, Rabasa-Lhoret R, Myette-Côté É, Messier V, Suppère C, J. Potter K, Heyman E, Tagougui S. Prevalence of nocturnal hypoglycemia in free-living conditions in adults with type 1 diabetes: What is the impact of daily physical activity? Front Endocrinol (Lausanne) 2022; 13:953879. [PMID: 36237197 PMCID: PMC9551602 DOI: 10.3389/fendo.2022.953879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Studies investigating strategies to limit the risk of nocturnal hypoglycemia associated with physical activity (PA) are scarce and have been conducted in standardized, controlled conditions in people with type 1 diabetes (T1D). This study sought to investigate the effect of daily PA level on nocturnal glucose management in free-living conditions while taking into consideration reported mitigation strategies to limit the risk of nocturnal hyoglycemia in people with T1D. Methods Data from 25 adults (10 males, 15 females, HbA1c: 7.6 ± 0.8%), 20-60 years old, living with T1D, were collected. One week of continuous glucose monitoring and PA (assessed using an accelerometer) were collected in free-living conditions. Nocturnal glucose values (midnight-6:00 am) following an active day "ACT" and a less active day "L-ACT" were analyzed to assess the time spent within the different glycemic target zones (<3.9 mmol/L; 3.9 - 10.0 mmol/L and >10.0 mmol/L) between conditions. Self-reported data about mitigation strategies applied to reduce the risk of nocturnal hypoglycemia was also analyzed. Results Only 44% of participants reported applying a carbohydrate- or insulin-based strategy to limit the risk of nocturnal hypoglycemia on ACT day. Nocturnal hypoglycemia occurrences were comparable on ACT night versus on L-ACT night. Additional post-meal carbohydrate intake was higher on evenings following ACT (27.7 ± 15.6 g, ACT vs. 19.5 ± 11.0 g, L-ACT; P=0.045), but was frequently associated with an insulin bolus (70% of participants). Nocturnal hypoglycemia the night following ACT occurred mostly in people who administrated an additional insulin bolus before midnight (3 out of 5 participants with nocturnal hypoglycemia). Conclusions Although people with T1D seem to be aware of the increased risk of nocturnal hypoglycemia associated with PA, the risk associated with additional insulin boluses may not be as clear. Most participants did not report using compensation strategies to reduce the risk of PA related late-onset hypoglycemia which may be because they did not consider habitual PA as something requiring treatment adjustments.
Collapse
Affiliation(s)
- Joséphine Molveau
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Rémi Rabasa-Lhoret
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Département des Sciences Biomédicales, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Endocrinology Division, Montreal Diabetes Research Center, Montréal, QC, Canada
| | - Étienne Myette-Côté
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Department of Applied Human Sciences, Faculty of Science, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Virginie Messier
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Corinne Suppère
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | | | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sémah Tagougui
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| |
Collapse
|
15
|
McGaugh SM, Edwards S, Wolpert H, Zaharieva DP, Gulati N, Riddell MC. The Development of an Exercise Advisor App for Type 1 Diabetes: Digitization Facilitates More Individualized Guidance. J Diabetes Sci Technol 2022; 16:760-763. [PMID: 33345601 PMCID: PMC9158247 DOI: 10.1177/1932296820979811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining blood glucose levels in the target range during exercise can be onerous for people with type 1 diabetes (T1D). Using evidence-based research and consensus guidelines, we developed an exercise advisor app to reduce some of the burden associated with diabetes management during exercise. The app will guide the user on carbohydrate feeding strategies and insulin management strategies before, during, and after exercise and provide targeted and individualized recommendations. As a basis for the recommendations, the decision trees for the app use various factors including the type of insulin regimen, time of activity, previous insulin boluses, and current glucose level. The app is designed to meet the various needs of people with T1D for different activities to promote safe exercise practices.
Collapse
Affiliation(s)
- Sarah M. McGaugh
- School of Kinesiology and Health Science, York
University, Toronto, Ontario, Canada
| | | | - Howard Wolpert
- Connected Care, Lilly Innovation Center,
Cambridge, MA, USA
| | - Dessi P. Zaharieva
- Department of Pediatric Endocrinology and
Diabetes, Stanford University, School of Medicine, Stanford, CA, USA
| | - Nany Gulati
- Global Scientific Communications, Eli Lilly
Services India Pvt. Ltd, Bengaluru, India
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York
University, Toronto, Ontario, Canada
- LMC Diabetes & Endocrinology, Toronto,
Canada
- Michael C. Riddell, PhD, School of Kinesiology and
Health Science, York University, 4700 Keele St, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
16
|
Tagougui S, Legault L, Heyman E, Messier V, Suppere C, Potter KJ, Pigny P, Berthoin S, Taleb N, Rabasa-Lhoret R. Anticipated Basal Insulin Reduction to Prevent Exercise-Induced Hypoglycemia in Adults and Adolescents Living with Type 1 Diabetes. Diabetes Technol Ther 2022; 24:307-315. [PMID: 35099281 DOI: 10.1089/dia.2021.0375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: We investigated the effect of two key timings for basal insulin rate reduction on exercise-induced glucose changes and explored the association between circulating insulin concentrations and muscle vasoreactivity. Research Design and Methods: Twenty adults and adolescents performed 60-min exercise sessions (ergocycle) at 60% VO2peak, 240 min after a standardized lunch. In a randomized order, we compared an 80% basal insulin reduction applied 40 min (T-40) or 90 min (T-90) before exercise onset. Near-infrared spectroscopy was used to investigate muscle hemodynamics at vastus lateralis. Glucose and insulin plasma concentrations were measured. Results: Reduction in plasma glucose (PG) level during exercise was attenuated during T-90 versus T-40 strategy (-0.89 ± 1.89 mmol/L vs. -2.17 ± 2.49 mmol/L, respectively; P = 0.09). Linear mixed model analysis showed that PG dropped by an additional 0.01 mM per minute in T-40 versus T-90 (time × strategy interaction, P < 0.05). The absolute number of hypoglycemic events was not different between the two strategies, but they occurred later with T-90. Free insulin tends to decrease more during the pre-exercise period in the T-90 strategy (P = 0.08). Although local muscle vasodilatation (ΔTHb) was comparable between the two strategies, we found that PG dropped more in cases of higher exercise-induced skeletal muscle vasodilatation (ΔTHb × time interaction P < 0.005, e: -0.0086 mM/min and additional mM of ΔTHb). Conclusion: T-90 timing reduced exercise-induced drop in PG and delayed the occurrence of hypoglycemic episodes compared with T-40 timing without a significant reduction in the number of events requiring treatment. Trial registration: ClinicalTrials.gov identifier: NCT03349489.
Collapse
Affiliation(s)
- Sémah Tagougui
- Montreal Clinical Research Institute (IRCM), Montreal, Canada
- Département de nutrition, Université de Montréal, Montreal, Canada
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Laurent Legault
- Montreal Clinical Research Institute (IRCM), Montreal, Canada
- McGill University Health Center (MUHC), Montreal Children's Hospital, Montreal, Canada
| | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | | | - Corinne Suppere
- Montreal Clinical Research Institute (IRCM), Montreal, Canada
| | | | - Pascal Pigny
- Laboratoire de Biochimie-Hormonologie, CHU Lille, Centre de Biologie-Pathologie, Lille, France
| | - Serge Berthoin
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Nadine Taleb
- Montreal Clinical Research Institute (IRCM), Montreal, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montréal, Canada
- Endocrinology Division, Montreal Diabetes Research Center (MDRC), Montreal University Hospital (CHUM), Montreal, Canada
| | - Rémi Rabasa-Lhoret
- Montreal Clinical Research Institute (IRCM), Montreal, Canada
- Département de nutrition, Université de Montréal, Montreal, Canada
- Endocrinology Division, Montreal Diabetes Research Center (MDRC), Montreal University Hospital (CHUM), Montreal, Canada
| |
Collapse
|
17
|
Paldus B, Morrison D, Lee M, Zaharieva DP, Riddell MC, O'Neal DN. Strengths and Challenges of Closed-Loop Insulin Delivery During Exercise in People With Type 1 Diabetes: Potential Future Directions. J Diabetes Sci Technol 2022:19322968221088327. [PMID: 35466723 DOI: 10.1177/19322968221088327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exercise has many physical and psychological benefits and is recommended for people with type 1 diabetes; however, there are many barriers to exercise, including glycemic instability and fear of hypoglycemia. Closed-loop (CL) systems have shown benefit in the overall glycemic management of type 1 diabetes, including improving HbA1c levels and reducing the incidence of nocturnal hypoglycemia; however, these systems are challenged by the rapidly changing insulin needs with exercise. This commentary focuses on the principles, strengths, and challenges of CL in the management of exercise, and discusses potential approaches, including the use of additional physiological signals, to address their shortcomings in the pursuit of fully automated CL systems.
Collapse
Affiliation(s)
- Barbora Paldus
- Department of Medicine, The University of Melbourne, Victoria, Australia
- Department of Endocrinology & Diabetes, St. Vincent's Hospital Melbourne, Victoria, Australia
| | - Dale Morrison
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Melissa Lee
- Department of Medicine, The University of Melbourne, Victoria, Australia
- Department of Endocrinology & Diabetes, St. Vincent's Hospital Melbourne, Victoria, Australia
| | - Dessi P Zaharieva
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, CA, USA
| | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - David N O'Neal
- Department of Medicine, The University of Melbourne, Victoria, Australia
- Department of Endocrinology & Diabetes, St. Vincent's Hospital Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Wake AD. Protective effects of physical activity against health risks associated with type 1 diabetes: "Health benefits outweigh the risks". World J Diabetes 2022; 13:161-184. [PMID: 35432757 PMCID: PMC8984568 DOI: 10.4239/wjd.v13.i3.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/08/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
The magnitude of diabetes mellitus (DM) has increased in recent decades, where the number of cases and the proportion of the disease have been gradually increasing over the past few decades. The chronic complications of DM affect many organ systems and account for the majority of morbidity and mortality associated with the disease. The prevalence of type 1 DM (T1DM) is increasing globally, and it has a very significant burden on countries and at an individual level. T1DM is a chronic illness that requires ongoing medical care and patient self-management to prevent complications. This study aims to discuss the health benefits of physical activity (PA) in T1DM patients. The present review article was performed following a comprehensive literature search. The search was conducted using the following electronic databases: "Cochrane Library", Web of Science, PubMed, HINARI, EMBASE, Google for grey literature, Scopus, African journals Online, and Google Scholar for articles published up to June 21, 2021. The present review focused on the effects of PA on many outcomes such as blood glucose (BG) control, physical fitness, endothelial function, insulin sensitivity, well-being, the body defense system, blood lipid profile, insulin resistance, cardiovascular diseases (CVDs), insulin requirements, blood pressure (BP), and mortality. It was found that many studies recommended the use of PA for the effective management of T1DM. PA is a component of comprehensive lifestyle modifications, which is a significant approach for the management of T1DM. It provides several health benefits, such as improving BG control, physical fitness, endothelial function, insulin sensitivity, well-being, and the body defense system. Besides this, it reduces the blood lipid profile, insulin resistance, CVDs, insulin requirements, BP, and mortality. Overall, PA has significant and essential protective effects against the health risks associated with T1DM. Even though PA has several health benefits for patients with T1DM, these patients are not well engaged in PA due to barriers such as a fear of exercise-induced hypoglycemia in particular. However, several effective strategies have been identified to control exercise-induced hypoglycemia in these patients. Finally, the present review concludes that PA should be recommended for the management of patients with T1DM due to its significant health benefits and protective effects against associated health risks. It also provides suggestions for the future direction of research in this field.
Collapse
Affiliation(s)
- Addisu Dabi Wake
- Department of Nursing, College of Health Sciences, Arsi University, Asella 193/4, Ethiopia
| |
Collapse
|
19
|
Zaharieva DP, Riddell MC. Advances in Exercise and Nutrition as Therapy in Diabetes. Diabetes Technol Ther 2022; 24:S129-S142. [PMID: 35475701 DOI: 10.1089/dia.2022.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Dessi P Zaharieva
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- LMC Diabetes & Endocrinology, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Pujalte G, Alhumaidi HM, Ligaray KPL, Vomer RP, Israni K, Abadin AA, Meek SE. Considerations in the Care of Athletes With Type 1 Diabetes Mellitus. Cureus 2022; 14:e22447. [PMID: 35345701 PMCID: PMC8942069 DOI: 10.7759/cureus.22447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
Type 1 diabetes mellitus is an autoimmune disease caused by affected individuals’ autoimmune response to their own pancreatic beta-cell. It affects millions of people worldwide. Exercise has numerous health and social benefits for patients with type 1 diabetes mellitus; however, careful management of blood glucose is crucial to minimize the risk of hypoglycemia and hyperglycemia. Anaerobic and aerobic exercises cause different glycemic responses during and after exercise, each of which will affect athletes’ ability to reach their target blood glucose ranges. The optimization of the patient’s macronutrient consumption, especially carbohydrates, the dosage of basal and short-acting insulin, and the frequent monitoring of blood glucose, will enable athletes to perform at peak levels while reducing their risk of dysglycemia. Despite best efforts, hypoglycemia can occur. Recognition of symptoms and rapid treatment with either fast-acting carbohydrates or glucagon is important. Continuous glucose monitoring devices have become more widely used in preventing hypoglycemia.
Collapse
|
21
|
Paldus B, Morrison D, Zaharieva DP, Lee MH, Jones H, Obeyesekere V, Lu J, Vogrin S, La Gerche A, McAuley SA, MacIsaac RJ, Jenkins AJ, Ward GM, Colman P, Smart CEM, Seckold R, King BR, Riddell MC, O'Neal DN. A Randomized Crossover Trial Comparing Glucose Control During Moderate-Intensity, High-Intensity, and Resistance Exercise With Hybrid Closed-Loop Insulin Delivery While Profiling Potential Additional Signals in Adults With Type 1 Diabetes. Diabetes Care 2022; 45:194-203. [PMID: 34789504 DOI: 10.2337/dc21-1593] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To compare glucose control with hybrid closed-loop (HCL) when challenged by high intensity exercise (HIE), moderate intensity exercise (MIE), and resistance exercise (RE) while profiling counterregulatory hormones, lactate, ketones, and kinetic data in adults with type 1 diabetes. RESEARCH DESIGN AND METHODS This study was an open-label multisite randomized crossover trial. Adults with type 1 diabetes undertook 40 min of HIE, MIE, and RE in random order while using HCL (Medtronic MiniMed 670G) with a temporary target set 2 h prior to and during exercise and 15 g carbohydrates if pre-exercise glucose was <126 mg/dL to prevent hypoglycemia. Primary outcome was median (interquartile range) continuous glucose monitoring time-in-range (TIR; 70-180 mg/dL) for 14 h post-exercise commencement. Accelerometer data and venous glucose, ketones, lactate, and counterregulatory hormones were measured for 280 min post-exercise commencement. RESULTS Median TIR was 81% (67, 93%), 91% (80, 94%), and 80% (73, 89%) for 0-14 h post-exercise commencement for HIE, MIE, and RE, respectively (n = 30), with no difference between exercise types (MIE vs. HIE; P = 0.11, MIE vs. RE, P = 0.11; and HIE vs. RE, P = 0.90). Time-below-range was 0% for all exercise bouts. For HIE and RE compared with MIE, there were greater increases, respectively, in noradrenaline (P = 0.01 and P = 0.004), cortisol (P < 0.001 and P = 0.001), lactate (P ≤ 0.001 and P ≤ 0.001), and heart rate (P = 0.007 and P = 0.015). During HIE compared with MIE, there were greater increases in growth hormone (P = 0.024). CONCLUSIONS Under controlled conditions, HCL provided satisfactory glucose control with no difference between exercise type. Lactate, counterregulatory hormones, and kinetic data differentiate type and intensity of exercise, and their measurement may help inform insulin needs during exercise. However, their potential utility as modulators of insulin dosing will be limited by the pharmacokinetics of subcutaneous insulin delivery.
Collapse
Affiliation(s)
- Barbora Paldus
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Dale Morrison
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Dessi P Zaharieva
- 3School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Melissa H Lee
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Hannah Jones
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Varuni Obeyesekere
- 2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Jean Lu
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sara Vogrin
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - André La Gerche
- 4Department of Cardiology, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia.,5Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Sybil A McAuley
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Richard J MacIsaac
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Alicia J Jenkins
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,6NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Glenn M Ward
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Colman
- 7Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Carmel E M Smart
- 8John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Rowen Seckold
- 8John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Bruce R King
- 8John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Michael C Riddell
- 3School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - David N O'Neal
- 1Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,2Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Physical Activity, Dietary Patterns, and Glycemic Management in Active Individuals with Type 1 Diabetes: An Online Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179332. [PMID: 34501920 PMCID: PMC8431360 DOI: 10.3390/ijerph18179332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Individuals with type 1 diabetes (T1D) are able to balance their blood glucose levels while engaging in a wide variety of physical activities and sports. However, insulin use forces them to contend with many daily training and performance challenges involved with fine-tuning medication dosing, physical activity levels, and dietary patterns to optimize their participation and performance. The aim of this study was to ascertain which variables related to the diabetes management of physically active individuals with T1D have the greatest impact on overall blood glucose levels (reported as A1C) in a real-world setting. A total of 220 individuals with T1D completed an online survey to self-report information about their glycemic management, physical activity patterns, carbohydrate and dietary intake, use of diabetes technologies, and other variables that impact diabetes management and health. In analyzing many variables affecting glycemic management, the primary significant finding was that A1C values in lower, recommended ranges (<7%) were significantly predicted by a very-low carbohydrate intake dietary pattern, whereas the use of continuous glucose monitoring (CGM) devices had the greatest predictive ability when A1C was above recommended (≥7%). Various aspects of physical activity participation (including type, weekly time, frequency, and intensity) were not significantly associated with A1C for participants in this survey. In conclusion, when individuals with T1D are already physically active, dietary changes and more frequent monitoring of glucose may be most capable of further enhancing glycemic management.
Collapse
|
23
|
Franc S, Benhamou P, Borot S, Chaillous L, Delemer B, Doron M, Guerci B, Hanaire H, Huneker E, Jeandidier N, Amadou C, Renard E, Reznik Y, Schaepelynck P, Simon C, Thivolet C, Thomas C, Hannaert P, Charpentier G. No more hypoglycaemia on days with physical activity and unrestricted diet when using a closed-loop system for 12 weeks: A post hoc secondary analysis of the multicentre, randomized controlled Diabeloop WP7 trial. Diabetes Obes Metab 2021; 23:2170-2176. [PMID: 34009725 PMCID: PMC8453744 DOI: 10.1111/dom.14442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
A post hoc analysis of the Diabeloop WP7 multicentre, randomized controlled trial was performed to investigate the efficacy of the Diabeloop Generation-1 (DBLG1) closed-loop system in controlling the hypoglycaemia induced by physical activity (PA) in real-life conditions. Glycaemic outcomes were compared between days with and without PA in 56 patients with type 1 diabetes (T1D) using DBLG1 for 12 weeks. After the patient announces a PA, DBLG1 reduces insulin delivery and, if necessary, calculates the amount of preventive carbohydrates (CHO). Daily time spent in the interstitial glucose range less than 70 mg/dL was not significantly different between days with and without PA (2.0% ± 1.5% vs. 2.2% ± 1.1%), regardless of the intensity or duration of the PA. Preventive CHO intake recommended by the system was significantly higher in days with PA (41.1 ± 35.5 vs. 21.8 ± 28.5 g/day; P < .0001), and insulin delivery was significantly lower (31.5 ± 10.5 vs. 34.0 ± 10.5 U/day; P < .0001). The time spent in hyperglycaemia and the glycaemic variation coefficient increased significantly on days with PA. In real-life conditions, the use of DBLG1 avoids PA-induced hypoglycaemia. Insulin adjustments and preventive CHO recommendation may explain this therapeutic benefit.
Collapse
Affiliation(s)
- Sylvia Franc
- Department of DiabetesSud‐Francilien HospitalCorbeil‐EssonnesFrance
- Centre d'Etude et de Recherche pour l'Intensification du Traitement du Diabète (CERITD)EvryFrance
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry Val d'Essonne, Institut de Recherches Biomédicales des Armées, Université Paris SaclayEvryFrance
| | | | - Sophie Borot
- Department of Endocrinology, Metabolism, Diabetes and NutritionCentre Hospitalier Universitaire Jean MinjozBesançonFrance
| | | | - Brigitte Delemer
- Department of Endocrinology, Diabetes and NutritionReims University HospitalReimsFrance
| | - Maeva Doron
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Laboratoire d'électronique et de technologie de l'information, Département micro Technologies pour la Biologie et la SantéGrenobleFrance
| | - Bruno Guerci
- Endocrinology‐Diabetes Care UnitUniversity of LorraineVandoeuvre Lès NancyFrance
| | - Hélène Hanaire
- Department of Diabetology, Metabolic Diseases and NutritionCHU Toulouse, University of ToulouseToulouseFrance
| | | | - Nathalie Jeandidier
- Department of Endocrinology, Diabetes and NutritionCHRU of Strasbourg (UDS)StrasbourgFrance
| | - Coralie Amadou
- Department of DiabetesSud‐Francilien HospitalCorbeil‐EssonnesFrance
- University Paris‐SaclayOrsayFrance
| | - Eric Renard
- Department of Endocrinology, Diabetes and NutritionMontpellier University Hospital, and Institute of Functional Genomics, CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Yves Reznik
- Department of EndocrinologyUniversity of Caen Côte de Nacre Regional Hospital CenterCaenFrance
| | - Pauline Schaepelynck
- Department of Nutrition‐Endocrinology‐Metabolic DisordersMarseille University Hospital, Sainte Marguerite HospitalMarseilleFrance
| | - Chantal Simon
- Department of Endocrinology, Diabetes and NutritionCentre Hospitalier Lyon SudLyonFrance
| | | | - Claire Thomas
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry Val d'Essonne, Institut de Recherches Biomédicales des Armées, Université Paris SaclayEvryFrance
| | - Patrick Hannaert
- School of Medicine and Pharmacy of PoitiersIschémie Reperfusion en Transplantation d'Organes Mécanismes et Innovations Thérapeutiques, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1082PoitiersFrance
| | - Guillaume Charpentier
- Centre d'Etude et de Recherche pour l'Intensification du Traitement du Diabète (CERITD)EvryFrance
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry Val d'Essonne, Institut de Recherches Biomédicales des Armées, Université Paris SaclayEvryFrance
| |
Collapse
|
24
|
Särnblad S, Ponsot E, Leprêtre PM, Kadi F. Acute effects of aerobic continuous, intermittent, and resistance exercise on glycemia in adolescents males with type 1 diabetes. Pediatr Diabetes 2021; 22:610-617. [PMID: 33650298 DOI: 10.1111/pedi.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Increased levels of physical activity is often associated with reduced HbA1c in individuals with diabetes. However, the effect on glycemic control differs between different programs of exercise. The aim of this study was to compare the acute effects on glycemia of resistance and two aerobic continuous and intermittent exercise bouts in adolescent males with type 1 diabetes. RESEARCH DESIGN AND METHODS Eight active males with type 1 diabetes (17.5 ± 0.8 years, BMI: 20.8 ± 2.2 kg/m2 , HbA1c: 7.2 ± 0.5% [54.9 ± 5.3 mmol/mol]) performed four experimental sessions-nonexercise (control), resistance exercise (RE) and two isocaloric continuous (CE) and intermittent (IE) cycling exercise trials-in a randomized order. Each session consisted of 45 min of exercise (except for the control modality) and 60 min of passive recovery. Venous blood was drawn for assessment of plasma glucose (PG). A two-way repeated-measures ANOVA was used for statistical comparisons. RESULTS A significant time-to-exercise interaction effect on PG was detected. PG significantly decreased during IE (-5.1 ± 1.6 mmol/L) and CE (-5.4 ± 1.8 mmol/L) but not during RE (-1.0 ± 1.4 mmol/L, ns). Additionally, decreases in PG after IE and CE were sustained throughout the recovery period. CONCLUSIONS While intermittent and continuous aerobic exercises are associated with a lowering of glycemia in male adolescents with type 1 diabetes, glycemia remained stable without significant alterations after resistance exercise. These findings hold important implications related to clinical exercise advice and disease management in adolescents with type 1 diabetes.
Collapse
Affiliation(s)
- Stefan Särnblad
- Department of Pediatrics, School of Medical Sciences, Örebro University, Örebro, SE, Sweden
| | - Elodie Ponsot
- School of Health Sciences, Örebro University, Örebro, SE, Sweden
| | - Pierre-Marie Leprêtre
- School of Health Sciences, Örebro University, Örebro, SE, Sweden.,Faculty of Sport Sciences, University of Picardie Jules Verne, Amiens, France.,Cardiovascular Rehabilitation Unit, Hospital center of Corbie, Corbie, France
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro, SE, Sweden
| |
Collapse
|
25
|
Garcia-Tirado J, Brown SA, Laichuthai N, Colmegna P, Koravi CL, Ozaslan B, Corbett JP, Barnett CL, Pajewski M, Oliveri MC, Myers H, Breton MD. Anticipation of Historical Exercise Patterns by a Novel Artificial Pancreas System Reduces Hypoglycemia During and After Moderate-Intensity Physical Activity in People with Type 1 Diabetes. Diabetes Technol Ther 2021; 23:277-285. [PMID: 33270531 PMCID: PMC7994426 DOI: 10.1089/dia.2020.0516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective: Physical activity is a major challenge to glycemic control for people with type 1 diabetes. Moderate-intensity exercise often leads to steep decreases in blood glucose and hypoglycemia that closed-loop control systems have so far failed to protect against, despite improving glycemic control overall. Research Design and Methods: Fifteen adults with type 1 diabetes (42 ± 13.5 years old; hemoglobin A1c 6.6% ± 1.0%; 10F/5M) participated in a randomized crossover clinical trial comparing two hybrid closed-loop (HCL) systems, a state-of-the-art hybrid model predictive controller and a modified system designed to anticipate and detect unannounced exercise (APEX), during two 32-h supervised admissions with 45 min of planned moderate activity, following 4 weeks of data collection. Primary outcome was the number of hypoglycemic episodes during exercise. Continuous glucose monitor (CGM)-based metrics and hypoglycemia are also reported across the entire admissions. Results: The APEX system reduced hypoglycemic episodes overall (9 vs. 33; P = 0.02), during exercise (5 vs. 13; P = 0.04), and in the 4 h following (2 vs. 11; P = 0.02). Overall CGM median percent time <70 mg/dL decreased as well (0.3% vs. 1.6%; P = 0.004). This protection was obtained with no significant increase in time >180 mg/dL (18.5% vs. 16.6%, P = 0.15). Overnight control was notable for both systems with no hypoglycemia, median percent in time 70-180 mg/dL at 100% and median percent time 70-140 mg/dL at ∼96% for both. Conclusions: A new closed-loop system capable of anticipating and detecting exercise was proven to be safe and feasible and outperformed a state-of-the-art HCL, reducing participants' exposure to hypoglycemia during and after moderate-intensity physical activity. ClinicalTrials.gov NCT03859401.
Collapse
Affiliation(s)
- Jose Garcia-Tirado
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Sue A. Brown
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Nitchakarn Laichuthai
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
- Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, and Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patricio Colmegna
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Chaitanya L.K. Koravi
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Basak Ozaslan
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - John P. Corbett
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Charlotte L. Barnett
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Pajewski
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Mary C. Oliveri
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Helen Myers
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Marc D. Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
- Address correspondence to: Marc D. Breton, PhD, Center for Diabetes Technology, University of Virginia, PO Box 400888, Charlottesville, VA 22904-4888, USA
| |
Collapse
|
26
|
Modelling glucose dynamics during moderate exercise in individuals with type 1 diabetes. PLoS One 2021; 16:e0248280. [PMID: 33770092 PMCID: PMC7996980 DOI: 10.1371/journal.pone.0248280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The artificial pancreas is a closed-loop insulin delivery system that automatically regulates glucose levels in individuals with type 1 diabetes. In-silico testing using simulation environments accelerates the development of better artificial pancreas systems. Simulation environments need an accurate model that captures glucose dynamics during exercise to simulate real-life scenarios. We proposed six variations of the Bergman Minimal Model to capture the physiological effects of moderate exercise on glucose dynamics in individuals with type 1 diabetes. We estimated the parameters of each model with clinical data using a Bayesian approach and Markov chain Monte Carlo methods. The data consisted of measurements of plasma glucose, plasma insulin, and oxygen consumption collected from a study of 17 adults with type 1 diabetes undergoing aerobic exercise sessions. We compared the models based on the physiological plausibility of their parameters estimates and the deviance information criterion. The best model features (i) an increase in glucose effectiveness proportional to exercise intensity, and (ii) an increase in insulin action proportional to exercise intensity and duration. We validated the selected model by reproducing results from two previous clinical studies. The selected model accurately simulates the physiological effects of moderate exercise on glucose dynamics in individuals with type 1 diabetes. This work offers an important tool to develop strategies for exercise management with the artificial pancreas.
Collapse
|
27
|
Jones J, Reneau P, Dos Santos JM. Metabolically healthy obese vs. Metabolic syndrome - The crosslink between nutritional exposure to bisphenols and physical exercise. Med Hypotheses 2021; 149:110542. [PMID: 33662862 DOI: 10.1016/j.mehy.2021.110542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
Obesity has become a worldwide pandemic as well as a major contributing factor to the increasing rate of type 2 diabetes (T2D). However, there is an intriguing variance demonstrated by a subset of obesity defined as metabolically healthy obesity (MHO). MHO individuals are less prone to develop obesity-related metabolic complications, such as metabolic syndrome (MetS) and further T2D. The exact reason why an MHO person does not present the cluster of risk factors associated with insulin resistance is unknown due to the challenge to mimic MHO in experimental settings. However, MHO individuals present lower sedentary behaviors in comparison to individuals with MetS, which might indicate that an adaptation to skeletal muscle, such as increased insulin sensitivity and glucose transporter (GLUT4), could play a major role in their healthy characteristics. The hypothesis invoked in this paper is that lower exposure to bisphenol together with increased levels of physical exercise underlie the physiological aspects behind MHO characteristics. Evidence suggests that exposure to "obseogens," such as bisphenol A (BPA), appears to impair insulin secretion and insulin response in cells containing GLUT4. Epidemiological studies have associated higher levels of BPA, as well as bisphenol S and F, in children with a risk for MetS development. Therefore, the combination between low bisphenol exposure and increased physical exercise may not necessarily affect body weight, but it could modify several metabolic pathways inhibiting insulin resistance, which characterize the heathy status of the MHO. If confirmed, this hypothesis could lead to therapeutic approaches to reverse MetS and inhibit T2D onset.
Collapse
Affiliation(s)
- Jessica Jones
- School of Education Health and Human Performance, Fairmont State University, United States
| | - Paul Reneau
- School of Education Health and Human Performance, Fairmont State University, United States
| | | |
Collapse
|
28
|
McGaugh SM, Zaharieva DP, Pooni R, D'Souza NC, Vienneau T, Ly TT, Riddell MC. Carbohydrate Requirements for Prolonged, Fasted Exercise With and Without Basal Rate Reductions in Adults With Type 1 Diabetes on Continuous Subcutaneous Insulin Infusion. Diabetes Care 2021; 44:610-613. [PMID: 33328284 PMCID: PMC7818338 DOI: 10.2337/dc20-1554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/16/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Exercising while fasted with type 1 diabetes facilitates weight loss; however, the best strategy to maintain glucose stability remains unclear. RESEARCH DESIGN AND METHODS Fifteen adults on continuous subcutaneous insulin infusion completed three sessions of fasted walking (120 min at 45% VO2max) in a randomized crossover design: 50% basal rate reduction, set 90 min pre-exercise (-90min50%BRR); usual basal rate with carbohydrate intake of 0.3 g/kg/h (CHO-only); and combined 50% basal rate reduction set at exercise onset with carbohydrate intake of 0.3 g/kg/h (Combo). RESULTS Combo had a smaller change in glucose (5 ± 47 mg/dL) versus CHO-only (-49 ± 61 mg/dL, P = 0.03) or -90min50%BRR (-34 ± 45 mg/dL). The -90min50%BRR strategy produced higher β-hydroxybutyrate levels (0.4 ± 0.3 vs. 0.1 ± 0.1 mmol/L) and greater fat oxidation (0.51 ± 0.2 vs. 0.39 ± 0.1 g/min) than CHO-only (both P < 0.05). CONCLUSIONS All strategies examined produced stable glycemia for fasted exercise, but a 50% basal rate reduction, set 90 min pre-exercise, eliminates carbohydrate needs and enhances fat oxidation better than carbohydrate feeding with or without a basal rate reduction set at exercise onset.
Collapse
Affiliation(s)
- Sarah M McGaugh
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Dessi P Zaharieva
- Department of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA
| | - Rubin Pooni
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ninoschka C D'Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Todd Vienneau
- Insulet Canada Corporation, Oakville, Ontario, Canada
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada .,LMC Diabetes & Endocrinology, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Molveau J, Rabasa-Lhoret R, Taleb N, Heyman E, Myette-Côté É, Suppère C, Berthoin S, Tagougui S. Minimizing the Risk of Exercise-Induced Glucose Fluctuations in People Living With Type 1 Diabetes Using Continuous Subcutaneous Insulin Infusion: An Overview of Strategies. Can J Diabetes 2021; 45:666-676. [PMID: 33744123 DOI: 10.1016/j.jcjd.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
Physical activity (PA) is important for individuals living with type 1 diabetes (T1D) due to its various health benefits. Nonetheless, maintaining adequate glycemic control around PA remains a challenge for many individuals living with T1D because of the difficulty in properly managing circulating insulin levels around PA. Although the most common problem is increased incidence of hypoglycemia during and after most types of PA, hyperglycemia can also occur. Accordingly, a large proportion of people living with T1D are sedentary partly due to the fear of PA-associated hypoglycemia. Continuous subcutaneous insulin infusion (CSII) offers a higher precision and flexibility to adjust insulin basal rates and boluses according to the individual's specific needs around PA practice. Indeed, for physically active patients with T1D, CSII can be a preferred option to facilitate glucose regulation. To our knowledge, there are no guidelines to manage exercise-induced hypoglycemia during PA, specifically for individuals living with T1D and using CSII. In this review, we highlight the current state of knowledge on exercise-related glucose variations, especially hypoglycemic risk and its underlying physiology. We also detail the current recommendations for insulin modulations according to the different PA modalities (type, intensity, duration, frequency) in individuals living with T1D using CSII.
Collapse
Affiliation(s)
- Joséphine Molveau
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada; Département de Nutrition, Faculté de Médicine, Université de Montréal, Montreal, Québec, Canada
| | - Rémi Rabasa-Lhoret
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada; Département de Nutrition, Faculté de Médicine, Université de Montréal, Montreal, Québec, Canada; Département des Sciences Biomédicales, Faculté de Médicine, Université de Montréal, Montreal, Québec, Canada; Division of Endocrinology, McGill University, Montreal, Québec, Canada; Endocrinology Division, Montreal Diabetes Research Center, Montreal, Québec, Canada
| | - Nadine Taleb
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada; Département des Sciences Biomédicales, Faculté de Médicine, Université de Montréal, Montreal, Québec, Canada
| | - Elsa Heyman
- Université Lille, Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France; Université Artois, Artois, France; Université Littoral Côte d'Opale, Dunkerque, France
| | - Étienne Myette-Côté
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada; Department of Medicine, McGill University, Montreal, Québec, Canada
| | - Corinne Suppère
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Serge Berthoin
- Université Lille, Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France; Université Artois, Artois, France; Université Littoral Côte d'Opale, Dunkerque, France
| | - Sémah Tagougui
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada; Département de Nutrition, Faculté de Médicine, Université de Montréal, Montreal, Québec, Canada; Université Lille, Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France; Université Artois, Artois, France; Université Littoral Côte d'Opale, Dunkerque, France.
| |
Collapse
|
30
|
Müller-Korbsch M, Frühwald L, Heer M, Fangmeyer-Binder M, Reinhart-Mikocki D, Fasching P. Assessment of the "Second Day" Exercise Effect on Glycemic Control, Insulin Requirements, and CHO Intake in Type 1 Diabetes Adults. J Diabetes Sci Technol 2021; 15:127-133. [PMID: 31583900 PMCID: PMC7783009 DOI: 10.1177/1932296819879419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Glucose control during consecutive days of aerobic exercise has not been well studied. We assessed glycemia, insulin requirements, and carbohydrate (CHO) needs during two consecutive days of prolonged cycling in type 1 diabetes (T1D) adults using sensor-augmented insulin pump therapy. METHODS Twenty adults with well-controlled T1D and six healthy adults (for comparison) were enrolled. Assessments were made during two consecutive days of cycling activities (30 miles per day). On day 1 (D1), basal rates were reduced 50% and CHO intake was guided by real-time continuous glucose monitoring (rtCGM) data to maintain a target range (70-180 mg/dL). On day 2 (D2), basal insulin infusion was stopped for the first hour of biking and resumed at a minimal rate during biking. Carbohydrate intake one hour before, during, and ten minutes after biking was recorded. Times within/below target range, glycemic variability, and mean glucose were calculated from rtCGM data. RESULTS Among 17 T1D participants who completed the study, mean glucose levels at the start of cycling were slightly lower on D2 vs D1: 138 ± 16 mg/dL and 122 ± 16, respectively, P = NS. Type 1 diabetes participants achieved near-normal glucose levels at the end of both cycling events; however, the reduction in glucose was most notable at one hour into the event on D2 vs D1. Carbohydrate intake was notably lower during D2 vs D1 with no difference in time <54 mg/dL (both P = NS). CONCLUSIONS Type 1 diabetes individuals using rtCGM-augmented insulin pump therapy can safely engage in consecutive days of prolonged aerobic exercise by significantly reducing insulin dosages with no increase in CHO intake.
Collapse
Affiliation(s)
- Michael Müller-Korbsch
- MedVienna Ärztezentrum, Austria
- Michael Müller-Korbsch, MD, MedVienna Ärztezentrum, Sensengasse 3, Vienna 1090, Austria.
| | - Lisa Frühwald
- 5th Medizinische Abteilung für Endokrinologie und Rheumatologie, Wilhelminenspital Austria, Vienna, Austria
| | - Michael Heer
- University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Maria Fangmeyer-Binder
- 5th Medizinische Abteilung für Endokrinologie und Rheumatologie, Wilhelminenspital Austria, Vienna, Austria
| | - David Reinhart-Mikocki
- 5th Medizinische Abteilung für Endokrinologie und Rheumatologie, Wilhelminenspital Austria, Vienna, Austria
| | - Peter Fasching
- 5th Medizinische Abteilung für Endokrinologie und Rheumatologie, Wilhelminenspital Austria, Vienna, Austria
| |
Collapse
|
31
|
Buckley JP, Riddell M, Mellor D, Bracken RM, Ross MK, LaGerche A, Poirier P. Acute glycaemic management before, during and after exercise for cardiac rehabilitation participants with diabetes mellitus: a joint statement of the British and Canadian Associations of Cardiovascular Prevention and Rehabilitation, the International Council for Cardiovascular Prevention and Rehabilitation and the British Association of Sport and Exercise Sciences. Br J Sports Med 2020; 55:bjsports-2020-102446. [PMID: 33361136 DOI: 10.1136/bjsports-2020-102446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Type 1 (T1) and type 2 (T2) diabetes mellitus (DM) are significant precursors and comorbidities to cardiovascular disease and prevalence of both types is still rising globally. Currently,~25% of participants (and rising) attending cardiac rehabilitation in Europe, North America and Australia have been reported to have DM (>90% have T2DM). While there is some debate over whether improving glycaemic control in those with heart disease can independently improve future cardiovascular health-related outcomes, for the individual patient whose blood glucose is well controlled, it can aid the exercise programme in being more efficacious. Good glycaemic management not only helps to mitigate the risk of acute glycaemic events during exercising, it also aids in achieving the requisite physiological and psycho-social aims of the exercise component of cardiac rehabilitation (CR). These benefits are strongly associated with effective behaviour change, including increased enjoyment, adherence and self-efficacy. It is known that CR participants with DM have lower uptake and adherence rates compared with those without DM. This expert statement provides CR practitioners with nine recommendations aimed to aid in the participant's improved blood glucose control before, during and after exercise so as to prevent the risk of glycaemic events that could mitigate their beneficial participation.
Collapse
Affiliation(s)
- John P Buckley
- Shrewsbury Centre for Active Living, University of Chester Faculty of Medicine and Life Sciences, Chester, Cheshire West and Chester, UK
- Institute of Sport Exercise and Health, University College London, London, UK
| | - Michael Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- LMC Healthcare, Diabetes and Endocrinology, Toronto, Ontario, Canada
| | - Duane Mellor
- Aston Medical School, Aston University, Birmingham, West Midlands, UK
- Sport and Exercise Science, Swansea University College of Engineering, Swansea, Wales, UK
| | - Richard M Bracken
- Sport and Exercise Science, Swansea University College of Engineering, Swansea, Wales, UK
| | - Marie-Kristelle Ross
- Hotel-Dieu de Levis, Laval University Faculty of Medicine, Quebec city, Quebec, Canada
| | - Andre LaGerche
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- St Vincent's Hospital Melbourne Pty Ltd, Fitzroy, Victoria, Australia
| | - Paul Poirier
- Cardiology, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
32
|
Zaharieva DP, Addala A, Simmons KM, Maahs DM. Weight Management in Youth with Type 1 Diabetes and Obesity: Challenges and Possible Solutions. Curr Obes Rep 2020; 9:412-423. [PMID: 33108635 PMCID: PMC8087153 DOI: 10.1007/s13679-020-00411-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW This review highlights challenges associated with weight management in children and adolescents with type 1 diabetes (T1D). Our purpose is to propose potential solutions to improve weight outcomes in youth with T1D. RECENT FINDINGS A common barrier to weight management in T1D is reluctance to engage in exercise for fear of hypoglycemia. Healthcare practitioners generally provide limited guidance for insulin dosing and carbohydrate modifications to maintain stable glycemia during exercise. Adherence to dietary guidelines is associated with improved glycemia; however, youth struggle to meet recommendations. When psychosocial factors are addressed in combination with glucose trends, this often leads to successful T1D management. Newer medications also hold promise to potentially aid in glycemia and weight management, but further research is necessary. Properly addressing physical activity, nutrition, pharmacotherapy, and psychosocial factors while emphasizing weight management may reduce the likelihood of obesity development and its perpetuation in this population.
Collapse
Affiliation(s)
- Dessi P Zaharieva
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, USA.
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kimber M Simmons
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford, CA, USA
| |
Collapse
|
33
|
Glucose Control During Physical Activity and Exercise Using Closed Loop Technology in Adults and Adolescents with Type 1 Diabetes. Can J Diabetes 2020; 44:740-749. [DOI: 10.1016/j.jcjd.2020.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
|
34
|
Dovc K, Battelino T. Closed-loop insulin delivery systems in children and adolescents with type 1 diabetes. Expert Opin Drug Deliv 2020; 17:157-166. [PMID: 32077342 DOI: 10.1080/17425247.2020.1713747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Optimal glycemic control remains challenging in children and adolescents with type 1 diabetes due to highly variable day-to-day and night-to-night insulin requirements. This hurdle could be addressed by glucose-responsive insulin delivery based on real-time continuous glucose measurements.Areas covered: This review summaries recent advances of closed-loop systems in children and adolescents with type 1 diabetes, using both single- and dual-hormone closed-loop systems. The main outcomes, proportions of time spent in target range 70-180 mg/dl, and time spent in hypoglycemia below 70 mg/dl, are assessed particularly during unsupervised free-living randomized controlled trials.Expert opinion: Noteworthy and clinically meaningful translation of experimental investigations from controlled in-hospital settings to unrestricted home studies have been achieved over the past years, resulting in the regulatory approval of the first hybrid closed-loop system also in the pediatric population and with several other advanced devices in the pipeline. Large multinational and pivotal clinical trials including broad age populations are underway to facilitate the use of closed-loop systems in routine clinical practice.
Collapse
Affiliation(s)
- Klemen Dovc
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Moser O, Eckstein ML, West DJ, Goswami N, Sourij H, Hofmann P. Type 1 Diabetes and Physical Exercise: Moving (forward) as an Adjuvant Therapy. Curr Pharm Des 2020; 26:946-957. [PMID: 31912769 DOI: 10.2174/1381612826666200108113002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes is characterized by an autoimmune β-cell destruction resulting in endogenous insulin deficiency, potentially leading to micro- and macrovascular complications. Besides an exogenous insulin therapy and continuous glucose monitoring, physical exercise is recommended in adults with type 1 diabetes to improve overall health. The close relationship between physical exercise, inflammation, muscle contraction, and macronutrient intake has never been discussed in detail about type 1 diabetes. The aim of this narrative review was to detail the role of physical exercise in improving clinical outcomes, physiological responses to exercise and different nutrition and therapy strategies around exercise. Physical exercise has several positive effects on glucose uptake and systemic inflammation in adults with type 1 diabetes. A new approach via personalized therapy adaptations must be applied to target beneficial effects on complications as well as on body weight management. In combination with pre-defined macronutrient intake around exercise, adults with type 1 diabetes can expect similar physiological responses to physical exercise, as seen in their healthy counterparts. This review highlights interesting findings from recent studies related to exercise and type 1 diabetes. However, there is limited research available accompanied by a proper number of participants in the cohort of type 1 diabetes. Especially for this group of patients, an increased understanding of the impact of physical exercise can improve its effectiveness as an adjuvant therapy to move (forward).
Collapse
Affiliation(s)
- Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Max L Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel J West
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| |
Collapse
|
36
|
Tagougui S, Taleb N, Legault L, Suppère C, Messier V, Boukabous I, Shohoudi A, Ladouceur M, Rabasa-Lhoret R. A single-blind, randomised, crossover study to reduce hypoglycaemia risk during postprandial exercise with closed-loop insulin delivery in adults with type 1 diabetes: announced (with or without bolus reduction) vs unannounced exercise strategies. Diabetologia 2020; 63:2282-2291. [PMID: 32740723 DOI: 10.1007/s00125-020-05244-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS For individuals living with type 1 diabetes, closed-loop insulin delivery improves glycaemic control. Nonetheless, maintenance of glycaemic control during exercise while a prandial insulin bolus remains active is a challenge even to closed-loop systems. We investigated the effect of exercise announcement on the efficacy of a closed-loop system, to reduce hypoglycaemia during postprandial exercise. METHODS A single-blind randomised, crossover open-label trial was carried out to compare three strategies applied to a closed-loop system at mealtime in preparation for exercise taken 90 min after eating at a research testing centre: (1) announced exercise to the closed-loop system (increases target glucose levels) in addition to a 33% reduction in meal bolus (A-RB); (2) announced exercise to the closed-loop system and a full meal bolus (A-FB); (3) unannounced exercise and a full meal bolus (U-FB). Participants performed 60 min of exercise at 60% [Formula: see text] 90 min after eating breakfast. The investigators were not blinded to the interventions. However, the participants were blinded to the sensor glucose readings and to the insulin infusion rates throughout the intervention visits. RESULTS The trial was completed by 37 adults with type 1 diabetes, all using insulin pumps: mean±SD, 40.0 ± 15.0 years of age, HbA1c 57.1 ± 10.8 mmol/mol (7.3 ± 1.0%). Reported results were based on plasma glucose values. During exercise and the following 1 h recovery period, time spent in hypoglycaemia (<3.9 mmol/l; primary outcome) was reduced with A-RB (mean ± SD; 2.0 ± 6.2%) and A-FB (7.0 ± 12.6%) vs U-FB (13.0 ± 19.0%; p < 0.0001 and p = 0.005, respectively). During exercise, A-RB had the least drop in plasma glucose levels: A-RB -0.3 ± 2.8 mmol/l, A-FB -2.6 ± 2.9 mmol/l vs U-FB -2.4 ± 2.7 mmol/l (p < 0.0001 and p = 0.5, respectively). Comparison of A-RB vs U-FB revealed a decrease in the time spent in target (3.9-10 mmol/l) by 12.7% (p = 0.05) and an increase in the time spent in hyperglycaemia (>10 mmol/l) by 21% (p = 0.001). No side effects were reported during the applied strategies. CONCLUSIONS/INTERPRETATION Combining postprandial exercise announcement, which increases closed-loop system glucose target levels, with a 33% meal bolus reduction significantly reduced time spent in hypoglycaemia compared with the other two strategies, yet at the expense of more time spent in hyperglycaemia. TRIAL REGISTRATION ClinicalTrials.gov NCT0285530 FUNDING: JDRF (2-SRA-2016-210-A-N), the Canadian Institutes of Health Research (354024) and the Fondation J.-A. DeSève chair held by RR-L.
Collapse
Affiliation(s)
- Sémah Tagougui
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS), Lille, France
| | - Nadine Taleb
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - Laurent Legault
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada
- Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada
| | - Corinne Suppère
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada
| | - Virginie Messier
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada
| | - Inès Boukabous
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada
| | | | - Martin Ladouceur
- École de Santé Publique de l'Université de Montréal, Montreal, QC, Canada
| | - Rémi Rabasa-Lhoret
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada.
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada.
- Montreal Diabetes Research Center, Montreal, QC, Canada.
- Endocrinology Division, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
37
|
Moser O, Dietrich M, McCarthy O, Bracken RM, Eckstein ML. Bolus insulin dose depends on previous-day race intensity during 5 days of professional road-cycle racing in athletes with type 1 diabetes: A prospective observational study. Diabetes Obes Metab 2020; 22:1714-1721. [PMID: 32383791 PMCID: PMC7540083 DOI: 10.1111/dom.14083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
AIMS To assess insulin therapy, macronutrient intake and glycaemia in professional cyclists with type 1 diabetes (T1D) over a 5-day Union Cycliste Internationale road-cycle race. MATERIAL AND METHODS In this prospective observational study, seven professional cyclists with T1D (age 28 ± 4 years, body mass index 20.9 ± 0.9 kg/m2 , glycated haemoglobin concentration 56 ± 7 mmol/mol [7.3% ± 0.6%]) were monitored during a five-stage professional road cycling race. Real-time continuous glucose monitoring (rtCGM) data, smart insulin pen dose data and macronutrient intake were assessed by means of repeated-measure one-way ANOVA and post hoc testing. Associations between exercise physiological markers and rtCGM data, insulin doses and macronutrient intake were assessed via linear regression modelling (P ≤ 0.05). RESULTS Bolus insulin dose was significantly reduced over the 5-day period (P = 0.03), while carbohydrate intake (P = 0.24) and basal insulin doses remained unchanged (P = 0.64). A higher mean previous-day race intensity was associated with a lower mean sensor glucose level (P = 0.03), less time above range level 2 (>13.9 mmol/L [250 mg/dL]; P = 0.05) and lower doses of bolus insulin (P = 0.04) on the subsequent day. No significant associations were found for any other glycaemic range and glycaemic variability (P > 0.05). CONCLUSIONS This is the first study to demonstrate the influence of previous-day race intensity on subsequent bolus insulin dose requirements in professional cyclists with T1D. These data may help inform therapeutic strategies to ensure safe exercise performance.
Collapse
Affiliation(s)
- Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazGrazAustria
| | - Marlene Dietrich
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazGrazAustria
| | - Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre (A‐STEM), College of EngineeringSwansea UniversitySwanseaUK
| | - Richard M. Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A‐STEM), College of EngineeringSwansea UniversitySwanseaUK
| | - Max L. Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazGrazAustria
| |
Collapse
|
38
|
Moser O, Mueller A, Eckstein ML, Ziko H, Aberer F, Treiber G, Unteregger C, Kojzar H, Mader JK, Sourij C, Pferschy P, Obermayer A, Tripolt N, Sourij H. Improved glycaemic variability and basal insulin dose reduction during a running competition in recreationally active adults with type 1 diabetes-A single-centre, prospective, controlled observational study. PLoS One 2020; 15:e0239091. [PMID: 32915897 PMCID: PMC7485886 DOI: 10.1371/journal.pone.0239091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/29/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION To investigate the glycaemic response, macronutrient intake and insulin management in people with type 1 diabetes (T1D) compared to healthy individuals around a running competition. MATERIAL AND METHODS This was a single-centre, prospective, controlled observational study performed in individuals with T1D and healthy people. 24 people (12 T1D) were included in this study (age: T1D 41±12 vs. healthy 38±6 years, females: 3 vs. 6, BMI: 25.53.0 vs. 22.9±2.8 kg/m2). Both groups received an intermittently scanned continuous glucose monitoring (isCGM; FreeStyle Libre 1, Abbott, USA) system to assess glycaemia 24 hours before, during and 24 hours after a running competition. During this period, participants recorded their food intake and insulin administration. Data were analysed via ANOVA and mixed model analyses with post-hoc testing (p≤0.05). RESULTS For overall glycaemic ranges in comparison of groups, significant differences were found for time in range (T1D 63±21% vs. healthy 89±13%, p = 0.001), time above range (TAR) 1 (T1D 21±15% vs. healthy 0±0%, p<0.001) and TAR 2 (T1D 8 [0-16%] vs. healthy 0±0%, p<0.001). When glycaemic variability was assessed, people with T1D had a higher glycaemic variability compared to healthy individuals (p<0.0001). Basal insulin dose was significantly reduced when compared against the regular pre-study basal insulin dose (pre-study 22±6 vs. pre-competition day 11±9 (-50±41%), p = 0.02; competition day 15±5 (-32± 1%)). CONCLUSION People with T1D have impaired glucose responses around a running competition compared to healthy individuals. However, basal insulin dose reductions were sufficient to prevent further dysglycaemia. CLINICAL TRIAL ID drks.de; DRKS00019886.
Collapse
Affiliation(s)
- Othmar Moser
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Alexander Mueller
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| | - Max L. Eckstein
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Haris Ziko
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Felix Aberer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerlies Treiber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Christina Unteregger
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Kojzar
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia K. Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Caren Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Pferschy
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Anna Obermayer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Norbert Tripolt
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
39
|
Romeres D, Olson K, Carter R, Cobelli C, Dalla Man C, Basu A, Basu R. Hyperglycemia But Not Hyperinsulinemia Is Favorable for Exercise in Type 1 Diabetes: A Pilot Study. Diabetes Care 2020; 43:2176-2182. [PMID: 32661106 PMCID: PMC7440891 DOI: 10.2337/dc20-0611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/09/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To distinguish the effects of hyperglycemia and hyperinsulinemia on exercise-induced increases in Rd and endogenous glucose production (EGP) in type 1 diabetes. RESEARCH DESIGN AND METHODS We studied six participants without diabetes and six participants with type 1 diabetes on three visits in random order for the following: euglycemia, low insulin (EuLoI); euglycemia, high insulin (EuHiI); and hyperglycemia, low insulin (HyLoI). Glucose fluxes were measured using [6,6-2H2] glucose before, during, and after 60 min of exercise. RESULTS Rd increased (P < 0.01) with exercise within groups, while peak Rd during exercise was lower (P < 0.01) in participants with type 1 diabetes than participants without diabetes during all visits. In type 1 diabetes participants, EGP increased (P < 0.001) with exercise during EuLoI and HyLoI but not during EuHiI. This demonstrates that hyperinsulinemia, but not hyperglycemia, blunts the compensatory exercise-induced increase in EGP in type 1 diabetes. CONCLUSIONS The data from this pilot study indicate that 1) exercise-induced compensatory increase in EGP was inhibited in participants with type 1 diabetes with hyperinsulinemia but not with hyperglycemia; 2) in contrast, in participants without diabetes, exercise-induced increase in EGP was inhibited only during combined hyperinsulinemia and hyperglycemia. Taken together, these results suggest that low insulin coupled with euglycemia or modest hyperglycemia appear to be the most favorable milieu for type 1 diabetes during exercise.
Collapse
Affiliation(s)
- Davide Romeres
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Karen Olson
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA
| | - Rickey Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ananda Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
40
|
Riddell MC, Scott SN, Fournier PA, Colberg SR, Gallen IW, Moser O, Stettler C, Yardley JE, Zaharieva DP, Adolfsson P, Bracken RM. The competitive athlete with type 1 diabetes. Diabetologia 2020; 63:1475-1490. [PMID: 32533229 PMCID: PMC7351823 DOI: 10.1007/s00125-020-05183-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Regular exercise is important for health, fitness and longevity in people living with type 1 diabetes, and many individuals seek to train and compete while living with the condition. Muscle, liver and glycogen metabolism can be normal in athletes with diabetes with good overall glucose management, and exercise performance can be facilitated by modifications to insulin dose and nutrition. However, maintaining normal glucose levels during training, travel and competition can be a major challenge for athletes living with type 1 diabetes. Some athletes have low-to-moderate levels of carbohydrate intake during training and rest days but tend to benefit, from both a glucose and performance perspective, from high rates of carbohydrate feeding during long-distance events. This review highlights the unique metabolic responses to various types of exercise in athletes living with type 1 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre and Physical Activity & Chronic Disease Unit, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
- LMC Diabetes & Endocrinology, Toronto, ON, Canada.
| | - Sam N Scott
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Paul A Fournier
- School of Human Sciences, Division Sport Science, Exercise and Health, University of Western Australia, Crawley, WA, Australia
| | - Sheri R Colberg
- Human Movement Sciences Department, Old Dominion University, Norfolk, VA, USA
| | - Ian W Gallen
- Royal Berkshire NHS Foundation Trust Centre for Diabetes and Endocrinology, Royal Berkshire Hospital, Reading, UK
| | - Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jane E Yardley
- Augustana Faculty, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, Edmonton, AB, Canada
- Women's and Children's Health Research Institute, Edmonton, AB, Canada
| | - Dessi P Zaharieva
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Adolfsson
- Department of Pediatrics, The Hospital of Halland, Kungsbacka, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, A111 Engineering East, Fabian Way, Crymlyn Burrows, Swansea, SA1 8EN, UK.
| |
Collapse
|
41
|
Major S, El Fathi A, Palisaitis E, Kearney R, Von Oettingen JE, Krishnamoorthy P, Legault L, Haidar A. Postprandial hyperglycaemia following insulin suspensions by the artificial pancreas: Implications for bolus calculators. Diabetes Obes Metab 2020; 22:1474-1477. [PMID: 32533655 DOI: 10.1111/dom.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 11/29/2022]
Abstract
Conventional bolus calculators apply negative prandial corrections when premeal glucose levels are low. However, no study has evaluated the need for this negative correction with closed-loop systems. We analysed data retrospectively from a cohort study evaluating a closed-loop artificial pancreas system conducted in a diabetes camp over a period of 11 days. Meal boluses with negative correction (n = 98) of 47 participants aged 8 to 22 years were examined. If there was no insulin-on-board from previous boluses at mealtime, the postprandial hyperglycaemia rate increased with increased duration of insulin suspension (P = .03), with odds ratios being exaggerated by 17% per 10 minutes of suspension. However, if there was insulin-on-board from previous boluses, the hyperglycaemia rate did not change with increased duration of insulin suspension (P = .24). When there was no insulin-on-board, the rate of hyperglycaemia after meals preceded by no suspension was 21% (3/14), compared with 52% (12/23) and 64% (9/14) after meals preceded by suspensions of ≥50 and ≥70 minutes, respectively. Meal size did not influence these results. We conclude that, in the absence of insulin-on-board, negative prandial corrections may not be necessary following long insulin suspensions.
Collapse
Affiliation(s)
- Sandrine Major
- Department of Biomedical Engineering, McGill University, Montréal, Quebec, Canada
| | - Anas El Fathi
- Department of Electrical and Computer Engineering, McGill University, Montréal, Quebec, Canada
| | - Emilie Palisaitis
- Department of Biomedical Engineering, McGill University, Montréal, Quebec, Canada
| | - Robert Kearney
- Department of Biomedical Engineering, McGill University, Montréal, Quebec, Canada
| | - Julia E Von Oettingen
- Montreal Children's Hospital, McGill University Health Centre, Montréal, Quebec, Canada
- The Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
| | | | - Laurent Legault
- Montreal Children's Hospital, McGill University Health Centre, Montréal, Quebec, Canada
| | - Ahmad Haidar
- Department of Biomedical Engineering, McGill University, Montréal, Quebec, Canada
- The Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
| |
Collapse
|
42
|
Eckstein ML, McCarthy O, Tripolt NJ, Müller A, Birnbaumer P, Pferschy PN, Hofmann P, Bracken RM, Sourij H, Moser O. Efficacy of Carbohydrate Supplementation Compared With Bolus Insulin Dose Reduction Around Exercise in Adults With Type 1 Diabetes: A Retrospective, Controlled Analysis. Can J Diabetes 2020; 44:697-700. [PMID: 32565070 DOI: 10.1016/j.jcjd.2020.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Individuals with type 1 diabetes try to manage the risk of exercise-induced hypoglycemia by either pre-exercise/pre-meal bolus insulin dose reductions and/or consuming additional carbohydrates during exercise. Both strategies have proven to be effective in offsetting hypoglycemia, but it remains unclear which one is more beneficial. The aim of this study was to assess the efficacy of carbohydrate supplementation vs bolus insulin dose reduction in prevention of hypoglycemia during moderate-intensity exercise in those with type 1 diabetes. METHODS This investigation was a retrospective, controlled analysis of 2 independent clinical trials. All participants performed continuous, moderate-intensity cycle ergometer exercise for ∼45 minutes. Two therapy management groups and a control group were compared. Group A was supplemented with 15 to 30 g carbohydrates at a glycemic threshold of 7.0 mmol/L during exercise, group B reduced their individual bolus insulin dose by 50% with their last meal before exercise and group C served as a control. RESULTS No hypoglycemic events occurred in group A, whereas 4 events were recorded in groups B (p=0.02) and C (p=0.02). CONCLUSIONS Carbohydrate supplementation was superior to bolus insulin reduction for prevention of hypoglycemia during exercise in people with type 1 diabetes.
Collapse
Affiliation(s)
- Max L Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom
| | - Norbert J Tripolt
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Alexander Müller
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| | - Philipp Birnbaumer
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| | - Peter N Pferschy
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria; Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
43
|
Tyler NS, Jacobs PG. Artificial Intelligence in Decision Support Systems for Type 1 Diabetes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3214. [PMID: 32517068 PMCID: PMC7308977 DOI: 10.3390/s20113214] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is a chronic health condition resulting from pancreatic beta cell dysfunction and insulin depletion. While automated insulin delivery systems are now available, many people choose to manage insulin delivery manually through insulin pumps or through multiple daily injections. Frequent insulin titrations are needed to adequately manage glucose, however, provider adjustments are typically made every several months. Recent automated decision support systems incorporate artificial intelligence algorithms to deliver personalized recommendations regarding insulin doses and daily behaviors. This paper presents a comprehensive review of computational and artificial intelligence-based decision support systems to manage T1D. Articles were obtained from PubMed, IEEE Xplore, and ScienceDirect databases. No time period restrictions were imposed on the search. After removing off-topic articles and duplicates, 562 articles were left to review. Of those articles, we identified 61 articles for comprehensive review based on algorithm evaluation using real-world human data, in silico trials, or clinical studies. We grouped decision support systems into general categories of (1) those which recommend adjustments to insulin and (2) those which predict and help avoid hypoglycemia. We review the artificial intelligence methods used for each type of decision support system, and discuss the performance and potential applications of these systems.
Collapse
Affiliation(s)
| | - Peter G. Jacobs
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA;
| |
Collapse
|
44
|
Aronson R, Li A, Brown RE, McGaugh S, Riddell MC. Flexible insulin therapy with a hybrid regimen of insulin degludec and continuous subcutaneous insulin infusion with pump suspension before exercise in physically active adults with type 1 diabetes (FIT Untethered): a single-centre, open-label, proof-of-concept, randomised crossover trial. Lancet Diabetes Endocrinol 2020; 8:511-523. [PMID: 32445738 DOI: 10.1016/s2213-8587(20)30114-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND People with type 1 diabetes who use continuous subcutaneous insulin infusion (CSII, or insulin pump therapy) often remove their pump before extended periods of exercise, but this approach might result in reduced glycaemic control and increased risk of hyperglycaemia and ketogenesis. We aimed to assess the efficacy and safety of a hybrid approach, in which basal insulin delivery was divided between CSII and a daily injection of insulin degludec. METHODS In this single-centre, open-label, proof-of-concept, randomised crossover trial done at the LMC Diabetes & Endocrinology research centre, we recruited physically active and aerobically fit participants aged 18 years or older with type 1 diabetes who were using CSII. Participants were randomly assigned (1:1) by use of a computer-generated sequence to one of two sequences of either usual CSII, involving the continuation of the participant's usual CSII regimen, followed by crossover to hybrid CSII, in which the delivery of the participant's usual daily basal insulin dose was split (50% delivered by CSII and 50% delivered by a once-daily morning injection of 100 U/mL insulin degludec), or the opposite sequence (ie, hybrid CSII followed by crossover to usual CSII). Treatment was not masked to the investigators or participants. For each intervention, participants completed a moderate-intensity and a high-intensity in-clinic exercise session in the first week, followed by four high-intensity and two moderate-intensity home-based exercise sessions in the subsequent 3 weeks. Insulin pumps were suspended or disconnected 60 min before exercise and reconnected immediately after exercise during both treatment regimens. The coprimary outcomes were: (1) time spent in the target control range of 4·0-10·0 mmol/L blood glucose after high-intensity exercise, and (2) time spent in target control range of 4·0-10·0 mmol/L blood glucose after moderate-intensity exercise, measured by continuous glucose monitoring in the 6-h period from the start of the high-intensity and moderate-intensity in-clinic exercise sessions. Outcomes were assessed in a modified intention-to-treat population that included all participants who started both intervention phases and completed all of the in-clinic exercise visits. This trial is registered with ClinicalTrials.gov, NCT03838783, and is complete. FINDINGS Between May 15, 2018, and March 5, 2019, we assessed 43 patients for eligibility, of whom 31 were randomly assigned to receive the usual CSII regimen (n=14) or hybrid CSII regimen (n=17) in the first phase (before crossover). The analysis population consisted of 24 participants who completed both study phases. Compared with the usual CSII regimen, participants on the hybrid CSII regimen had a significantly longer time in blood glucose range of 4-10 mmol/L during the 6-h period from the start of both moderate-intensity (mean difference 86 min [95% CI 61-147], p=0·005; percentage time in range 64% [SD 35] vs 40% [35]) and high-intensity in-clinic exercise session (60 min [11-109], p=0·01; 66% [32] vs 50% [27]). Participants on the hybrid CSII regimen also showed a higher time in blood glucose range of 4-10 mmol/L during home-based exercise sessions (mean difference 23 min [95% CI -1 to 46], p=0·055), with significantly lower time spent in hyperglycaemia than participants on the usual CSII regimen (mean difference 25 min [2-48], p=0·04). These exploratory outcomes also showed no significant difference in the amount of time spent in hypoglycaemia, nor the number of hypoglycaemic events, between the two interventions. There were three study-related adverse events reported with the usual CSII regimen (two hypotension events and one nausea event) and four with the hybrid CSII regimen (two hypotension events and two nausea events). INTERPRETATION A hybrid regimen of injected insulin degludec and CSII (with pump removal during exercise) appears to be safe and effective in adults with type 1 diabetes who exercise regularly. This approach could offer improved glycaemic control immediately after exercise and should be further assessed in a larger-scale randomised trial. FUNDING Novo Nordisk.
Collapse
Affiliation(s)
| | - Aihua Li
- LMC Diabetes & Endocrinology, Toronto, ON, Canada
| | - Ruth E Brown
- LMC Diabetes & Endocrinology, Toronto, ON, Canada
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
45
|
Wade M, Delawder V, Reneau P, Dos Santos JM. The effect of BPA exposure on insulin resistance and type 2 diabetes - The impact of muscle contraction. Med Hypotheses 2020; 140:109675. [PMID: 32200183 DOI: 10.1016/j.mehy.2020.109675] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is considered one of the leading causes of death worldwide. In addition to physical inactivity and obesity, established risk factors for T2D, chemical contaminants consumed in industrialized food such as BPA might also be a contributor to the development of T2D. Epidemiological studies have shown that BPA concentrations are higher in human specimens of T2D when compared to healthy subjects, while experimental studies suggested that bisphenol A (BPA) impairs the pathway by which insulin stimulates glucose uptake. In skeletal muscle and adipocytes, insulin resistance is developed by the impairment of the insulin pathway to stimulate the translocation of glucose transporter, GLUT4, to the cell membrane. Recent results demonstrated that BPA impairs several components of insulin-induced glucose uptake pathway and affect the expression of GLUT4. Regular physical exercise delays or inhibits the development of T2D due to the physiologic processes taking place during muscle contraction, and the fact that skeletal muscle is the site for almost 80% of the glucose transported under insulin stimulation. In fact, the mechanism by which contraction induces glucose uptake in skeletal muscle is partially independent of the insulin pathway, therefore, the effect of BPA on this mechanism is unknown. We hypothesize that during the development of insulin resistance, BPA contributes to the impairment of the molecular pathway by which insulin induces glucose uptake while contraction-induced glucose uptake is not impaired. At the late stages of T2D, BPA may affect GLUT4 expression that will decrease the ability of muscle contraction to induce glucose uptake.
Collapse
Affiliation(s)
- Madison Wade
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Virginia Delawder
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Paul Reneau
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Julia M Dos Santos
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States; Detroit R&D, Inc, Detroit, MI, United States.
| |
Collapse
|
46
|
Yardley JE. Exercise and the Artificial Pancreas: Trying to Predict the Unpredictable in Patients With Type 1 Diabetes? Can J Diabetes 2020; 44:119-120. [DOI: 10.1016/j.jcjd.2020.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
No Disadvantage to Insulin Pump Off vs Pump On During Intermittent High-Intensity Exercise in Adults With Type 1 Diabetes. Can J Diabetes 2020; 44:162-168. [DOI: 10.1016/j.jcjd.2019.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022]
|
48
|
Abstract
Advances in technologies such as glucose monitors, exercise wearables, closed-loop systems, and various smartphone applications are helping many people with diabetes to be more physically active. These technologies are designed to overcome the challenges associated with exercise duration, mode, relative intensity, and absolute intensity, all of which affect glucose homeostasis in people living with diabetes. At present, optimal use of these technologies depends largely on motivation, competence, and adherence to daily diabetes care requirements. This article discusses recent technologies designed to help patients with diabetes to be more physically active, while also trying to improve glucose control around exercise.
Collapse
Affiliation(s)
- Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; LMC Diabetes & Endocrinology, 1929 Bayview Avenue, Toronto, ON M4G 3E8, Canada; York University, 347 Bethune College, North York, Ontario M3J 1P3, Canada.
| | - Rubin Pooni
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; York University, 347 Bethune College, North York, Ontario M3J 1P3, Canada
| | - Federico Y Fontana
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati, 43, 37121 Verona, Italy; Team Novo Nordisk Professional Cycling Team, 2144 Hills Avenue NW, Atlanta, 30318 GA, USA. https://twitter.com/FeedYourFlock
| | - Sam N Scott
- Team Novo Nordisk Professional Cycling Team, 2144 Hills Avenue NW, Atlanta, 30318 GA, USA; Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland. https://twitter.com/SamNathanScott
| |
Collapse
|
49
|
Zaharieva DP, McGaugh S, Davis EA, Riddell MC. Advances in Exercise, Physical Activity, and Diabetes. Diabetes Technol Ther 2020; 22:S109-S118. [PMID: 32069147 DOI: 10.1089/dia.2020.2508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Dessi P Zaharieva
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sarah McGaugh
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Elizabeth A Davis
- Children's Diabetes Centre, Perth Children's Hospital, Perth, WA, Australia
- University of Western Australia Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- LMC Diabetes & Endocrinology, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Yardley JE. The Athlete with Type 1 Diabetes: Transition from Case Reports to General Therapy Recommendations. Open Access J Sports Med 2019; 10:199-207. [PMID: 31827338 PMCID: PMC6902845 DOI: 10.2147/oajsm.s149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 12/03/2022] Open
Abstract
Fear of hypoglycemia is a common barrier to exercise and physical activity for individuals with type 1 diabetes. While some of the earliest studies in this area involved only one or two participants, the link between exercise, exogenous insulin, and hypoglycemia was already clear, with the only suggested management strategies being to decrease insulin dosage and/or consume carbohydrates before and after exercise. Over the past 50 years, a great deal of knowledge has been developed around the impact of different types and intensities of exercise on blood glucose levels in this population. Recent decades have also seen the development of technologies such as continuous glucose monitors, faster-acting insulins and commercially available insulin pumps to allow for the real-time observation of interstitial glucose levels, and more precise adjustments to insulin dosage before, during and after activity. As such, there are now evidence-based exercise and physical activity guidelines for individuals with type 1 diabetes. While the risk of hypoglycemia has not been completely eliminated, therapy recommendations have evolved considerably. This review discusses the evolution of the knowledge and the technology related to type 1 diabetes and exercise that have allowed this evolution to take place.
Collapse
Affiliation(s)
- Jane E Yardley
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute, Edmonton, Canada.,Augustana Faculty, University of Alberta, Camrose, Canada.,Women's and Children's Research Institute, Edmonton, Canada
| |
Collapse
|