1
|
Liu B, Hu Y, Wang S, Wang M, Rimm EB, Sun Q. Lignan Intake and Mortality Among Adults with Incident Type 2 Diabetes-Prospective Cohort Studies. Am J Clin Nutr 2025; 121:675-684. [PMID: 39798669 PMCID: PMC11923372 DOI: 10.1016/j.ajcnut.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Lignans are polyphenolic compounds abundant in plant-based foods such as seeds, whole grains, and certain fruits and vegetables and may lead to favorable metabolic health. It remains to be elucidated regarding the role of lignan consumption in the etiology of premature deaths among individuals with diabetes. OBJECTIVES To prospectively examine the association between postdiagnosis lignan intake and mortality among individuals with type 2 diabetes (T2D). METHODS We analyzed data from 2 prospective United States cohorts, the Nurses' Health Study (1984-2020) and Health Professionals Follow-up Study (1986-2022). Mean daily consumption of total and individual lignans was calculated, and postdiagnosis lignan intakes were cumulatively averaged. Multivariable-adjusted Cox models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between lignan intake and mortality. RESULTS Among 8465 incident T2D cases contributing 116,026 person-years of follow-up, 4372 deaths were documented, including 1318 from cardiovascular disease (CVD) and 752 from cancer. The pooled multivariable-adjusted HRs (95% CIs) of all-cause mortality comparing the highest compared with the lowest quintiles of postdiagnosis lignan intake were 0.83 (0.74, 0.94) for total lignans, 0.89 (0.80, 0.99) for matairesinol (MAT), 0.78 (0.69, 0.87) for secoisolariciresinol (SECO), 0.91 (0.81, 1.01) for pinoresinol (PINO), and 0.92 (0.82, 1.03) for lariciresinol (LARIC). Higher postdiagnosis SECO intake was also significantly associated with lower CVD and cancer mortality. Changes in lignan intake from pre- to postdiagnosis showed similar favorable associations: 0.83 (0.75, 0.93) for total lignans, 0.86 (0.77, 0.96) for MAT, and 0.81 (0.72, 0.90) for SECO. The associations of lignan intake were significantly stronger among nonwhite individuals. CONCLUSIONS Among individuals with T2D, a higher intake of lignans, particularly SECO, was significantly associated with reduced overall CVD and cancer mortality. Minority groups may particularly benefit from lignan intake, although further studies are warranted to substantiate this observation.
Collapse
Affiliation(s)
- Binkai Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Siyue Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
2
|
Martiniakova M, Sarocka A, Penzes N, Biro R, Kovacova V, Mondockova V, Sevcikova A, Ciernikova S, Omelka R. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients 2025; 17:275. [PMID: 39861406 PMCID: PMC11767469 DOI: 10.3390/nu17020275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers. Polyphenols such as flavonoids, phenolic acids, stilbenes, tannins, and lignans constitute an extensive and heterogeneous group of phytochemicals in fresh fruits, vegetables and their products. Various in vitro studies, animal model studies and available clinical trials revealed that flavonoids (e.g., quercetin, kaempferol, rutin, epicatechin, genistein, daidzein, anthocyanins), phenolic acids (e.g., chlorogenic, caffeic, ellagic, gallic acids, curcumin), stilbenes (e.g., resveratrol), tannins (e.g., procyanidin B2, seaweed phlorotannins), lignans (e.g., pinoresinol) have the ability to lower hyperglycemia, enhance insulin sensitivity and improve insulin secretion, scavenge reactive oxygen species, reduce chronic inflammation, modulate gut microbiota, and alleviate secondary complications of T2DM. The interaction between polyphenols and conventional antidiabetic drugs offers a promising strategy in the management and treatment of T2DM, especially in advanced disease stages. Synergistic effects of polyphenols with antidiabetic drugs have been documented, but also antagonistic interactions that may impair drug efficacy. Therefore, additional research is required to clarify mutual interactions in order to use the knowledge in clinical applications. Nevertheless, dietary polyphenols can be successfully applied as part of supportive treatment for T2DM, as they reduce both obvious clinical symptoms and secondary complications.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| |
Collapse
|
3
|
Liu Y, Jia Y, Wu Y, Zhang H, Ren F, Zhou S. Review on mechanisms of hypoglycemic effects of compounds from highland barley and potential applications. Food Funct 2024; 15:11365-11382. [PMID: 39495067 DOI: 10.1039/d4fo00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The rising prevalence of metabolic diseases, such as diabetes and obesity, presents a significant global health challenge. Dietary interventions, with their minimal side effects, hold great promise as effective strategies for blood sugar management. Highland barley (HB) boasts a comprehensive and unique nutritional composition, characterized by high protein, high fiber, high vitamins, low fat, low sugar, and diverse bioactive components. These attributes make it a promising candidate for alleviating high blood sugar. This review explores the mechanisms underlying the glucose-lowering properties of HB, emphasizing its nutritional profile and bioactive constituents. Additionally, it examines the impact of common HB processing techniques on its nutrient composition and highlights its applications in food products. By advancing the understanding of HB's value and mechanisms in diabetes prevention, this review aims to facilitate the development of HB-based foods suitable for diabetic patients.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Wang S, Hu Y, Liu B, Li Y, Wang M, Sun Q. Lignan Intake and Type 2 Diabetes Incidence Among US Men and Women. JAMA Netw Open 2024; 7:e2426367. [PMID: 39110458 PMCID: PMC11307137 DOI: 10.1001/jamanetworkopen.2024.26367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/09/2024] [Indexed: 08/10/2024] Open
Abstract
Importance Lignans are phytoestrogens abundant in Western diets and may be associated with type 2 diabetes (T2D) risk. Objective To prospectively investigate associations between lignan intake and T2D incidence. Design, Setting, and Participants Population-based cohort study of US men and women enrolled in the Nurses' Health Study (NHS, 1984-2018), NHSII (1991-2019), and Health Professionals Follow-Up Study (HPFS, 1986-2020), as well as 496 participants from the Men's Lifestyle Validation Study (MLVS). Participants were free of T2D, cardiovascular disease, and cancer at baseline. Data were analyzed from November 2022 to July 2023. Exposures Total and individual lignans were assessed using a validated food frequency questionnaire, which was updated every 2 to 4 years. In the MLVS, lignan intake was measured using 2 sets of 7-day diet records (7DDRs). Main Outcomes and Measures Incident T2D cases were confirmed using American Diabetes Association diagnostic criteria. Cox proportional hazards models were used to assess multivariable-adjusted associations. Results The current study included 201 111 participants (mean [SD] age, 44.7 [10.1] years; 161 169 female participants [80.2%]; 2614 African American participants [1.3%], 1609 Asian participants [0.8%], 2414 Hispanic and other race or ethnicity participants [1.2%], and 194 474 White participants [96.7%]) from the HPFS, NHS, and NHSII studies. The median (IQR) total lignan intake of the highest quintile ranged from 355.1 (330.2-396.9) μg/d in NHS to 459.9 (422.2-519.5) μg/d in HPFS at the median follow-up time. Over 5 068 689 person-years, 20 291 incident cases of T2D were identified. Higher lignan intake was inversely associated with T2D incidence, except for lariciresinol. The multivariable-adjusted pooled hazard ratios (HRs) for the highest vs lowest quintiles were 0.87 (95% CI, 0.83-0.91) for total lignans, 0.72 (95% CI, 0.69-0.76) for secoisolariciresinol, 0.92 (95% CI, 0.87-0.96) for pinoresinol, 0.93 (95% CI, 0.89-0.98) for matairesinol, and 0.99 (95% CI, 0.94-1.04) for lariciresinol. Secoisolariciresinol intake exhibited a significant inverse association with T2D risk among individuals with obesity (HR, 0.75 for body mass index [BMI] ≥30; 95% CI, 0.71-0.79 vs HR, 0.82 for BMI <25; 95% CI, 0.81-0.83; P < .001 for interaction) and premenopausal women (HR, 0.67 for premenopausal women; 95% CI, 0.65-0.69 vs HR, 0.82 for the past use of hormones; 95% CI, 0.76-0.88; P = .003 for interaction). Dietary lignan assessed with 7DDRs was associated with lower HbA1c levels (percentage change range from -0.92% to 1.50%), as well as lower C-reactive protein levels and better lipid profiles. Conclusions and Relevance This cohort study found that long-term lignan consumption was associated with a lower T2D risk, particularly among individuals with obesity and premenopausal women.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Binkai Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Joslin Diabetes Center, Boston, Massachusetts
| |
Collapse
|
5
|
Rishabh, Bansal S, Goel A, Gupta S, Malik D, Bansal N. Unravelling the Crosstalk between Estrogen Deficiency and Gut-biotaDysbiosis in the Development of Diabetes Mellitus. Curr Diabetes Rev 2024; 20:e240124226067. [PMID: 38275037 DOI: 10.2174/0115733998275953231129094057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Estrogens are classically considered essential hormonal signals, but they exert profound effects in a number of physiological and pathological states, including glucose homeostasis and insulin resistance. Estrogen deficiency after menopause in most women leads to increased androgenicity and changes in body composition, and it is recommended to manipulate the β-cell function of the pancreas, insulin-induced glucose transport, and hepatic glucose output, hence, the increasing incidence of type 2 diabetes mellitus. Recently, studies have reported that gut biota alteration due to estrogen deficiency contributes to altered energy metabolism and, hence, accentuates the pathology of diabetes mellitus. Emerging research suggests estrogen deficiency via genetic disposition or failure of ovaries to function in old age modulates the insulin resistance and glucose secretion workload on pancreatic beta cells by decreasing the levels of good bacteria such as Akkermansia muciniphila, Bifidobacterium spp., Lactobacillus spp., Faecalibacterium prausnitzii, Roseburia spp., and Prevotella spp., and increasing the levels of bad bacteria's such as Bacteroides spp., Clostridium difficile, Escherichia coli, and Enterococcus spp. Alteration in these bacteria's concentrations in the gut further leads to the development of impaired glucose uptake by the muscles, increased gluconeogenesis in the liver, and increased lipolysis and inflammation in the adipose tissues. Thus, the present review paper aims to clarify the intricate interactions between estrogen deficiency, gut microbiota regulation, and the development of diabetes mellitus.
Collapse
Affiliation(s)
- Rishabh
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Seema Bansal
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Akriti Goel
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Deepti Malik
- Department of Biochemistry, All India Institute of Medical Sciences Bilaspur, HP, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| |
Collapse
|
6
|
Parilli-Moser I, Domínguez-López I, Vallverdú-Queralt A, Hurtado-Barroso S, Lamuela-Raventós RM. Urinary Phenolic Metabolites Associated with Peanut Consumption May Have a Beneficial Impact on Vascular Health Biomarkers. Antioxidants (Basel) 2023; 12:antiox12030698. [PMID: 36978946 PMCID: PMC10045820 DOI: 10.3390/antiox12030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Phenolic compounds in peanuts may moderate inflammation and endothelial function. Thus, the aim of this study was to evaluate the association of urinary phenolic metabolites (UPMs) with vascular biomarkers after peanut product consumption. A three-arm parallel-group randomized controlled trial was conducted in 63 healthy young adults who consumed 25 g/day of skin roasted peanuts (SRP), 32 g/day of peanut butter (PB), or 32 g/day of a control butter for six months. UPMs were analyzed by liquid chromatography coupled to mass spectrometry. Additionally, urinary eicosanoids, prostacyclin I2 (PGI2), and thromboxane A2 (TXA2) were determined using two competitive enzyme-linked immunosorbent assay kits. Consumers of SRP and PB presented significantly higher excretion of UPMs (enterodiol glucuronide (p = 0.018 and p = 0.031), 3-hydroxybenzoic acid (p = 0.002 and p < 0.001), vanillic acid sulfate (p = 0.048 and p = 0.006), p-coumaric acid (p = 0.046 and p = 0.016), coumaric acid glucuronide I (p = 0.001 and p = 0.030) and II (p = 0.003 and p = 0.036), and isoferulic acid (p = 0.013 and p = 0.015) in comparison with the control group. An improvement in PGI2 (p = 0.037) levels and the TXA2:PGI2 ratio (p = 0.008) was also observed after the peanut interventions compared to the control. Interestingly, UPMs with significantly higher post-intervention levels were correlated with an improvement in vascular biomarkers, lower TXA2 (r from −0.25 to −0.48, p < 0.050) and TXA2:PGI2 ratio (r from −0.25 to −0.43, p < 0.050) and higher PGI2 (r from 0.24 to 0.36, p < 0.050). These findings suggest that the UPMs with higher excretion after peanut product consumption could have a positive impact on vascular health.
Collapse
Affiliation(s)
- Isabella Parilli-Moser
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inés Domínguez-López
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sara Hurtado-Barroso
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-403-4843
| |
Collapse
|
7
|
Vázquez-Ruiz Z, Martínez-González MÁ, Vitelli-Storelli F, Bes-Rastrollo M, Basterra-Gortari FJ, Toledo E. Effect of Dietary Phenolic Compounds on Incidence of Type 2 Diabetes in the "Seguimiento Universidad de Navarra" (SUN) Cohort. Antioxidants (Basel) 2023; 12:antiox12020507. [PMID: 36830064 PMCID: PMC9952475 DOI: 10.3390/antiox12020507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The global incidence of type 2 diabetes (T2D) has been steadily increasing in recent decades. The Mediterranean dietary pattern has shown a preventive effect on the risk of T2D. Evaluating the association between bioactive compounds such as phenolic compounds (PC) in a Mediterranean cohort could help to better understand the mechanisms implicated in this protection. We evaluated the association between dietary intake of PC and the risk of T2D in a relatively young cohort of 17,821 Spanish participants initially free of T2D, through the University of Navarra Follow-up Project ("Seguimiento Universidad de Navarra" or SUN cohort) after 10 years of median follow-up using time-dependent Cox models. Intake of PC was estimated at baseline and repeatedly at 10-year follow-up using a 136-item validated food frequency and the Phenol-Explorer database. The incidence of T2D was identified by a biennial follow-up, and only medically confirmed cases were included. During 224,751 person-years of follow-up, 186 cases of T2D were confirmed. A suboptimal intake of stilbenes was independently associated with a higher risk of T2D in subjects over 50 years (HR: 1.75, 95% CI: 1.06-2.90, p value < 0.05) after adjusting for potential confounders. Our results suggest that a moderate-high intake of stilbenes can decrease the risk of developing T2D in subjects over 50 years in our cohort.
Collapse
Affiliation(s)
- Zenaida Vázquez-Ruiz
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Miguel Ángel Martínez-González
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Facundo Vitelli-Storelli
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS), Instituto de Biomedicina (IBIOMED), University of León, 24004 León, Spain
| | - Maira Bes-Rastrollo
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Francisco Javier Basterra-Gortari
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
9
|
Baldi S, Tristán Asensi M, Pallecchi M, Sofi F, Bartolucci G, Amedei A. Interplay between Lignans and Gut Microbiota: Nutritional, Functional and Methodological Aspects. Molecules 2023; 28:343. [PMID: 36615537 PMCID: PMC9822457 DOI: 10.3390/molecules28010343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Lignans are non-flavonoid polyphenols present in a wide range of foods frequently consumed in the Western world, such as seeds, vegetables and fruits, and beverages such as coffee, tea and wine. In particular, the human gut microbiota (GM) can convert dietary lignans into biologically active compounds, especially enterolignans (i.e., enterolactone and enterodiol), which play anti-inflammatory and anti-oxidant roles, act as estrogen receptor activators and modulate gene expression and/or enzyme activity. Interestingly, recent evidence documenting those dietary interventions involving foods enriched in lignans have shown beneficial and protective effects on various human pathologies, including colorectal and breast cancer and cardiovascular diseases. However, considering that more factors (e.g., diet, food transit time and intestinal redox state) can modulate the lignans bioactivation by GM, there are usually remarkable inter-individual differences in urine, fecal and blood concentrations of enterolignans; hence, precise and validated analytical methods, especially gas/liquid chromatography coupled to mass spectrometry, are needed for their accurate quantification. Therefore, this review aims to summarize the beneficial roles of enterolignans, their interaction with GM and the new methodological approaches developed for their evaluation in different biological samples, since they could be considered future promising nutraceuticals for the prevention of human chronic disorders.
Collapse
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marta Tristán Asensi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
10
|
Mueed A, Ibrahim M, Shibli S, Madjirebaye P, Deng Z, Jahangir M. The fate of flaxseed-lignans after oral administration: A comprehensive review on its bioavailability, pharmacokinetics, and food design strategies for optimal application. Crit Rev Food Sci Nutr 2022; 64:4312-4330. [PMID: 36345888 DOI: 10.1080/10408398.2022.2140643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lignans are one of the most important and abundant phytochemicals found in flaxseed-diets. These have shown to possess several health-benefits, including anticancer, antioxidant, neuroprotective, cardioprotective, and estrogenic-properties etc. The potential of lignans health-promoting effects are circumscribed due to their poor-bioavailability resulting from their bound structure. Recent studies have demonstrated that various food design strategies can enhance the release of bound-lignans from agro-industrial residues, resulting in a higher bioaccessibility and bioavailability. This review focuses primarily on the bioavailability of flaxseed lignans, key factors affecting it and their pharmacokinetics, different strategies to improve the contents of lignans, their release and delivery. Present study will help to deepen our understanding of the applications of lignans and their dietary-supplements in the prevention and treatment of diseases. Several absorption issues of lignans have been observed such as impaired-bioavailability and variability in pharmacokinetics and pharmacodynamics. Therefore, the development of novel strategies for optimizing lignan bioavailability is critical to ensure its successful application, such as the delivery of lignans to biological targets via "targeted designs." In addition, some detailed examination is required to identify and understand the basis of variation in lignans bioavailability caused by interactions with the gastrointestinal system.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Ibrahim
- Department of Forestry, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Philippe Madjirebaye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Wang WK, Fan L, Ge F, Li Z, Zhu J, Yin K, Xia J, Xue M. Effects of Danggui Buxue decoction on host gut microbiota and metabolism in GK rats with type 2 diabetes. Front Microbiol 2022; 13:1029409. [PMID: 36353458 PMCID: PMC9638067 DOI: 10.3389/fmicb.2022.1029409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 03/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by persistent abnormally elevated blood sugar levels. T2DM affects millions of people and exerts a significant global public health burden. Danggui Buxue decoction (DBD), a classical Chinese herbal formula composed of Astragalus membranaceus (Huangqi) and Angelica sinensis (Danggui), has been widely used in the clinical treatment of diabetes and its complications. However, the effect of DBD on the gut microbiota of individuals with diabetes and its metabolism are still poorly understood. In this study, a T2DM model was established in Goto-Kakizaki (GK) rats, which were then treated with a clinical dose of DBD (4 g/kg) through tube feeding for 6 weeks. Next, we used 16S rRNA sequencing and untargeted metabolomics by liquid chromatography with mass spectrometry (LC-MS) to detect changes in the composition of the microbiota and cecal metabolic products. Our data show that DBD mediates the continuous increase in blood glucose in GK rats, improves insulin sensitivity, reduces expression of inflammatory mediators, and improves systemic oxidative stress. Moreover, DBD also improves microbial diversity (e.g., Romboutsia, Firmicutes, and Bacilli) in the intestines of rats with T2DM. Further, DBD intervention also regulates various metabolic pathways in the gut microbiota, including alanine, aspartate, and glutamate metabolism. In addition, arginine biosynthesis and the isoflavone biosynthesis may be a unique mechanism by which DBD exerts its effects. Taken together, we show that DBD is a promising therapeutic agent that can restore the imbalance found in the gut microbiota of T2DM rats. DBD may modify metabolites in the microbiota to realize its antidiabetic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Wen-Kai Wang
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Fan
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Ge
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihang Li
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingtian Zhu
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Yin
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyan Xia
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Xue
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Zoclanclounon YAB, Rostás M, Chung NJ, Mo Y, Karlovsky P, Dossa K. Characterization of Peroxidase and Laccase Gene Families and In Silico Identification of Potential Genes Involved in Upstream Steps of Lignan Formation in Sesame. Life (Basel) 2022; 12:1200. [PMID: 36013379 PMCID: PMC9410177 DOI: 10.3390/life12081200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxidases and laccases are oxidative enzymes involved in physiological processes in plants, covering responses to biotic and abiotic stress as well as biosynthesis of health-promoting specialized metabolites. Although they are thought to be involved in the biosynthesis of (+)-pinoresinol, a comprehensive investigation of this class of enzymes has not yet been conducted in the emerging oil crop sesame and no information is available regarding the potential (+)-pinoresinol synthase genes in this crop. In the present study, we conducted a pan-genome-wide identification of peroxidase and laccase genes coupled with transcriptome profiling of diverse sesame varieties. A total of 83 and 48 genes have been identified as coding for sesame peroxidase and laccase genes, respectively. Based on their protein domain and Arabidopsis thaliana genes used as baits, the genes were classified into nine and seven groups of peroxidase and laccase genes, respectively. The expression of the genes was evaluated using dynamic transcriptome sequencing data from six sesame varieties, including one elite cultivar, white vs black seed varieties, and high vs low oil content varieties. Two peroxidase genes (SiPOD52 and SiPOD63) and two laccase genes (SiLAC1 and SiLAC39), well conserved within the sesame pan-genome and exhibiting consistent expression patterns within sesame varieties matching the kinetic of (+)-pinoresinol accumulation in seeds, were identified as potential (+)-pinoresinol synthase genes. Cis-acting elements of the candidate genes revealed their potential involvement in development, hormonal signaling, and response to light and other abiotic triggers. Transcription factor enrichment analysis of promoter regions showed the predominance of MYB binding sequences. The findings from this study pave the way for lignans-oriented engineering of sesame with wide potential applications in food, health and medicinal domains.
Collapse
Affiliation(s)
- Yedomon Ange Bovys Zoclanclounon
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Michael Rostás
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | - Nam-Jin Chung
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | - Komivi Dossa
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| |
Collapse
|
13
|
Marhuenda-Muñoz M, Domínguez-López I, Laveriano-Santos EP, Parilli-Moser I, Razquin C, Ruiz-Canela M, Basterra-Gortari FJ, Corella D, Salas-Salvadó J, Fitó M, Lapetra J, Arós F, Fiol M, Serra-Majem L, Pintó X, Gómez-Gracia E, Ros E, Estruch R, Lamuela-Raventós RM. One-Year Changes in Urinary Microbial Phenolic Metabolites and the Risk of Type 2 Diabetes-A Case-Control Study. Antioxidants (Basel) 2022; 11:1540. [PMID: 36009259 PMCID: PMC9405292 DOI: 10.3390/antiox11081540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The intake of polyphenols has been associated with a risk reduction of type 2 diabetes. Nevertheless, to the best of our knowledge, the molecules that might be metabolically active after ingestion are only starting to be investigated regarding this metabolic disease. To investigate the association between one-year changes in urinary microbial phenolic metabolites (MPM) and the incidence of type 2 diabetes, we performed a case-control study using data and samples of the PREDIMED trial including 46 incident type 2 diabetes cases of 172 randomly selected participants. Eight urinary MPMs were quantified in urine by liquid chromatography coupled to mass spectrometry and used to assess their associations with type 2 diabetes risk by multivariable logistic regression models. Compared to participants in the lowest tertile of one-year changes in hydroxybenzoic acid glucuronide, those in the highest tertile had a significantly lowered probability of developing type 2 diabetes (OR [95% CI], 0.39 [0.23−0.64]; p < 0.001 for trend). However, when additionally adjusting for fasting plasma glucose, the statistical significance was lost. Changes in the dietary pattern can increase the concentrations of this compound, derived from many (poly)phenol-rich foods, and might be changing the gut microbial population as well, promoting the production of the metabolite.
Collapse
Affiliation(s)
- María Marhuenda-Muñoz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Inés Domínguez-López
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Emily P. Laveriano-Santos
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Isabella Parilli-Moser
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Cristina Razquin
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31008 Pamplona, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31008 Pamplona, Spain
| | - Francisco Javier Basterra-Gortari
- Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31008 Pamplona, Spain
- Department of Endocrinology and Nutrition, IdiSNA, Navarra Institute for Health Research, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08003 Barcelona, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, 41013 Sevilla, Spain
| | - Fernando Arós
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cardiology, Hospital Txangorritxu, 01009 Vitoria, Spain
| | - Miquel Fiol
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), 07122 Palma de Mallorca, Spain
| | - Lluis Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department Clinical Sciences, University of Las Palmas de Gran Canaria, 35016 Palmas de Gran Canaria, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Lipid Unit, Department of Internal Medicine, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, FIPEC, 08908 Barcelona, Spain
| | - Enrique Gómez-Gracia
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Epidemiology, School of Medicine, University of Malaga, 29010 Málaga, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Internal Medicine Department, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
14
|
Singh P, Barman B, Thakur MK. Oxidative stress-mediated memory impairment during aging and its therapeutic intervention by natural bioactive compounds. Front Aging Neurosci 2022; 14:944697. [PMID: 35959291 PMCID: PMC9357995 DOI: 10.3389/fnagi.2022.944697] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aging and associated neurodegenerative diseases are accompanied by the decline of several brain functions including cognitive abilities. Progressive deleterious changes at biochemical and physiological levels lead to the generation of oxidative stress, accumulation of protein aggregates, mitochondrial dysfunctions, loss of synaptic connections, and ultimately neurodegeneration and cognitive decline during aging. Oxidative stress that arises due to an imbalance between the rates of production and elimination of free radicles is the key factor for age-associated neurodegeneration and cognitive decline. Due to high energy demand, the brain is more susceptible to free radicals-mediated damages as they oxidize lipids, proteins, and nucleic acids, thereby causing an imbalance in the homeostasis of the aging brain. Animal, as well as human subject studies, showed that with almost no or few side effects, dietary interventions and plant-derived bioactive compounds could be beneficial to recovering the memory or delaying the onset of memory impairment. As the plant-derived bioactive compounds have antioxidative properties, several of them were used to recover the oxidative stress-mediated changes in the aging brain. In the present article, we review different aspects of oxidative stress-mediated cognitive change during aging and its therapeutic intervention by natural bioactive compounds.
Collapse
Affiliation(s)
- Padmanabh Singh
- Department of Zoology, Banaras Hindu University, Varanasi, India
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Bhabotosh Barman
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Mahendra Kumar Thakur
- Department of Zoology, Banaras Hindu University, Varanasi, India
- *Correspondence: Mahendra Kumar Thakur,
| |
Collapse
|
15
|
Associations of Urinary Phytoestrogen Concentrations with Nonalcoholic Fatty Liver Disease among Adults. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4912961. [PMID: 35399831 PMCID: PMC8989597 DOI: 10.1155/2022/4912961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Phytoestrogens can alleviate some pathological processes related to nonalcoholic fatty liver disease (NAFLD). However, there are limited and contradictory studies on the relationships between phytoestrogens (especially single phytoestrogen) and NAFLD. The purpose of this study was to explore the relationships between urinary phytoestrogen concentrations and NAFLD in American adults. This cross-sectional study used the data of the National Health and Nutrition Examination Survey from 1999 to 2010, and 2294 adults were finally enrolled in this study. The concentrations of phytoestrogens were measured in urine samples, and urinary phytoestrogens were divided into tertiles according to the concentration distributions. The diagnosis of NAFLD was determined by the United States fatty liver index. The main analysis used a multivariate logistic regression model. The fully adjusted models included gender, age, race, education, marriage, poverty, body mass index, waist circumference, smoking, diabetes, hypertension, total cholesterol, high-density lipoprotein cholesterol, triglycerides, and other five phytoestrogens. In the fully adjusted model, the urinary enterolactone (ENL) concentration was negatively correlated with NAFLD (OR of Tertile 3 : 0.48, 95% CI 0.25–0.94). When stratified by age and gender, the urinary ENL concentration was negatively correlated with NAFLD in males aged 40–59 years (OR of Tertile 3 : 0.08, 95% CI 0.01–0.82), while the urinary equol concentration was positively correlated with NAFLD in such population (OR of Tertile 3 : 4.27, 95% CI 1.02–17.85). In addition, a negative correlation between enterodiol (END) concentration and NAFLD was observed in males aged 60 years or over (OR of Tertile 2 : 0.18, 95% CI 0.05–0.69). Collectively, in middle-aged males, urinary ENL may be associated with a lower risk of NAFLD, while urinary equol may be related to a higher risk. In addition, urinary END has a possible relationship with a reduced risk of NAFLD in elder males. Definitely, clinical randomized controlled trials are needed to further verify the conclusions.
Collapse
|
16
|
Yao W, Gong Y, Li L, Hu X, You L. The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview. Food Chem X 2022; 13:100252. [PMID: 35498986 PMCID: PMC9040006 DOI: 10.1016/j.fochx.2022.100252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
The physicochemical properties of DFs are related to their digestive behaviors. DFs are degraded in the intestines due to the fermentation of gut microbiota. DFs and their metabolites exert beneficial effects on gut microbiota. The fermentation of DFs improve gut barrier function and immune function. Whole grain is the primary food providing abundant dietary fibers (DFs) in the human diet. DFs from rice bran and wheat bran have been well documented in modulating gut microbiota. This review aims to summarize the physicochemical properties and digestive behaviors of DFs from rice bran and wheat bran and their effects on host gut microbiota. The physicochemical properties of DFs are closely related to their fermentability and digestive behaviors. DFs from rice bran and wheat bran modulate specific bacteria and promote SAFCs-producing bacteria to maintain host health. Moreover, their metabolites stimulate the production of mucus-associated bacteria to enhance the intestinal barrier and regulate the immune system. They also reduce the level of related inflammatory cytokines and regulate Tregs activation. Therefore, DFs from rice bran and wheat bran will serve as prebiotics, and diets rich in whole grain will be a biotherapeutic strategy for human health.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yufeng Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
17
|
Li Y, Wang F, Li J, Ivey KL, Wilkinson JE, Wang DD, Li R, Liu G, Eliassen HA, Chan AT, Clish CB, Huttenhower C, Hu FB, Sun Q, Rimm EB. Dietary lignans, plasma enterolactone levels, and metabolic risk in men: exploring the role of the gut microbiome. BMC Microbiol 2022; 22:82. [PMID: 35350985 PMCID: PMC8966171 DOI: 10.1186/s12866-022-02495-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The conversion of plant lignans to bioactive enterolignans in the gastrointestinal tract is mediated through microbial processing. The goal of this study was to examine the relationships between lignan intake, plasma enterolactone concentrations, gut microbiome composition, and metabolic risk in free-living male adults. RESULTS In 303 men participating in the Men's Lifestyle Validation Study (MLVS), lignan intake was assessed using two sets of 7-day diet records, and gut microbiome was profiled through shotgun sequencing of up to 2 pairs of fecal samples (n = 911). A score was calculated to summarize the abundance of bacteria species that were significantly associated with plasma enterolactone levels. Of the 138 filtered species, plasma enterolactone levels were significantly associated with the relative abundances of 18 species at FDR < 0.05 level. Per SD increment of lignan intake was associated with 20.7 nM (SEM: 2.3 nM) higher enterolactone concentrations among participants with a higher species score, whereas the corresponding estimate was 4.0 nM (SEM: 1.7 nM) among participants with a lower species score (P for interaction < 0.001). A total of 12 plasma metabolites were also significantly associated with these enterolactone-predicting species. Of the association between lignan intake and metabolic risk, 19.8% (95%CI: 7.3%-43.6%) was explained by the species score alone, 54.5% (95%CI: 21.8%-83.7%) by both species score and enterolactone levels, and 79.8% (95%CI: 17.7%-98.6%) by further considering the 12 plasma metabolites. CONCLUSION We identified multiple gut bacteria species that were enriched or depleted at higher plasma levels of enterolactone in men. These species jointly modified the associations of lignan intake with plasma enterolactone levels and explained the majority of association between lignan intake and metabolic risk along with enterolactone levels and certain plasma metabolites.
Collapse
Affiliation(s)
- Yanping Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Fenglei Wang
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Jun Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Kerry L. Ivey
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.430453.50000 0004 0565 2606Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000 Australia ,grid.1014.40000 0004 0367 2697Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Jeremy E. Wilkinson
- grid.38142.3c000000041936754X Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Dong D. Wang
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ruifeng Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Gang Liu
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Heather A. Eliassen
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Andrew T. Chan
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Clary B. Clish
- grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
| | - Curtis Huttenhower
- grid.38142.3c000000041936754X Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
| | - Frank B. Hu
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Qi Sun
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Eric B. Rimm
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
18
|
Tresserra-Rimbau A, Castro-Barquero S, Becerra-Tomás N, Babio N, Martínez-González MÁ, Corella D, Fitó M, Romaguera D, Vioque J, Alonso-Gomez AM, Wärnberg J, Martínez JA, Serra-Majem L, Estruch R, Tinahones FJ, Lapetra J, Pintó X, Tur JA, López-Miranda J, Cano-Ibáñez N, Delgado-Rodríguez M, Matía-Martín P, Daimiel L, Martín Sánchez V, Vidal J, Vázquez C, Ros E, Basterra FJ, Fernández de la Puente M, Asensio EM, Castañer O, Bullón-Vela V, Tojal-Sierra L, Gómez-Gracia E, Cases-Pérez E, Konieczna J, García-Ríos A, Casañas-Quintana T, Bernal-Lopez MR, Santos-Lozano JM, Esteve-Luque V, Bouzas C, Vázquez-Ruiz Z, Palau-Galindo A, Barragan R, López Grau M, Razquín C, Goicolea-Güemez L, Toledo E, Vergaz MV, Lamuela-Raventós RM, Salas-Salvadó J. Adopting a High-Polyphenolic Diet Is Associated with an Improved Glucose Profile: Prospective Analysis within the PREDIMED-Plus Trial. Antioxidants (Basel) 2022; 11:316. [PMID: 35204199 PMCID: PMC8868059 DOI: 10.3390/antiox11020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Previous studies suggested that dietary polyphenols could reduce the incidence and complications of type-2 diabetes (T2D); although the evidence is still limited and inconsistent. This work analyzes whether changing to a diet with a higher polyphenolic content is associated with an improved glucose profile. At baseline, and at 1 year of follow-up visits, 5921 participants (mean age 65.0 ± 4.9, 48.2% women) who had overweight/obesity and metabolic syndrome filled out a validated 143-item semi-quantitative food frequency questionnaire (FFQ), from which polyphenol intakes were calculated. Energy-adjusted total polyphenols and subclasses were categorized in tertiles of changes. Linear mixed-effect models with random intercepts (the recruitment centers) were used to assess associations between changes in polyphenol subclasses intake and 1-year plasma glucose or glycosylated hemoglobin (HbA1c) levels. Increments in total polyphenol intake and some classes were inversely associated with better glucose levels and HbA1c after one year of follow-up. These associations were modified when the analyses were run considering diabetes status separately. To our knowledge, this is the first study to assess the relationship between changes in the intake of all polyphenolic groups and T2D-related parameters in a senior population with T2D or at high-risk of developing T2D.
Collapse
Affiliation(s)
- Anna Tresserra-Rimbau
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, INSA, University of Barcelona, 08921 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
| | - Sara Castro-Barquero
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Nerea Becerra-Tomás
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Miguel Ángel Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), 08007 Barcelona, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (N.C.-I.); (M.D.-R.); (V.M.S.)
- Alicante Institute for Health and Biomedical Research, University Miguel Hernandez (ISABIAL-UMH), 03010 Alicante, Spain
| | - Angel M. Alonso-Gomez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Nursing, Institute of Biomedical Research in Málaga (IBIMA), University of Málaga, 29010 Malaga, Spain
| | - José Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Luís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, 35016 Las Palmas de Gran Canaria, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Francisco J. Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Regional University Hospital of Malaga, Instituto de Investigación Biomédica de Malaga (IBIMA), University of Malaga, 29010 Malaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41010 Sevilla, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, 08908 Hospitalet de Llobregat, Spain;
| | - Josep A. Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Naomi Cano-Ibáñez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (N.C.-I.); (M.D.-R.); (V.M.S.)
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria, Complejo Hospitales Universitarios de Granada, Universidad de Granada, 18016 Granada, Spain
| | - Miguel Delgado-Rodríguez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (N.C.-I.); (M.D.-R.); (V.M.S.)
- Division of Preventive Medicine, Faculty of Medicine, University of Jaén, 23071 Jaen, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, 28029 Madrid, Spain;
| | - Vicente Martín Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (N.C.-I.); (M.D.-R.); (V.M.S.)
- Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Endocrinology, Institut d’Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Clotilde Vázquez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz, Instituto de Investigaciones Biomédicas IISFJD, University Autonoma, 28040 Madrid, Spain
| | - Emili Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain
| | - Francisco Javier Basterra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
| | - María Fernández de la Puente
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
| | - Eva M. Asensio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), 08007 Barcelona, Spain
| | - Vanessa Bullón-Vela
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
| | - Lucas Tojal-Sierra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Enrique Gómez-Gracia
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, Instituto de Investigación Biomédica de Málaga-IBIMA, School of Medicine, University of Málaga, 29071 Malaga, Spain
| | | | - Jadwiga Konieczna
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Antonio García-Ríos
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Tamara Casañas-Quintana
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, 35016 Las Palmas de Gran Canaria, Spain
| | - María Rosa Bernal-Lopez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Regional University Hospital of Malaga, Instituto de Investigación Biomédica de Malaga (IBIMA), University of Malaga, 29010 Malaga, Spain
| | - José Manuel Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41010 Sevilla, Spain
| | - Virginia Esteve-Luque
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, 08908 Hospitalet de Llobregat, Spain;
| | - Cristina Bouzas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain
| | - Zenaida Vázquez-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
| | - Antoni Palau-Galindo
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
- ABS Reus V. Centre d’Assistència Primària Marià Fortuny, SAGESSA, 43205 Reus, Spain
| | - Rocio Barragan
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Mercè López Grau
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), 08007 Barcelona, Spain
| | - Cristina Razquín
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Leire Goicolea-Güemez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Estefanía Toledo
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manel Vila Vergaz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), 08007 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, INSA, University of Barcelona, 08921 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| |
Collapse
|
19
|
Rizzolo-Brime L, Caro-Garcia EM, Alegre-Miranda CA, Felez-Nobrega M, Zamora-Ros R. Lignan exposure: a worldwide perspective. Eur J Nutr 2021; 61:1143-1165. [PMID: 34799775 DOI: 10.1007/s00394-021-02736-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Dietary lignans are phytoestrogens that are mostly found in plant-based foods, especially whole grains, seeds, nuts, legumes and vegetables. An accurate assessment of lignan exposure is crucial to evaluate their potential health benefits and to establish future recommendations and dietary guidelines. This narrative review aimed to (i) summarize the pros and the cons of the current main assessment methods for lignan exposure─i.e., dietary questionnaires, food composition tables and biomarkers, (ii) describe the individual lignans more consumed from a worldwide perspective, as well as their main food sources, (iii) determine the lignans concentrations in both urine and blood, and explore their heterogeneity among countries, and finally (iv) discuss the main determinants of lignan exposure.
Collapse
Affiliation(s)
- Lucia Rizzolo-Brime
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Av Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elida M Caro-Garcia
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Av Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cynthia A Alegre-Miranda
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Av Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Av Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
20
|
Szałabska-Rąpała K, Borymska W, Kaczmarczyk-Sedlak I. Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities-A Review. Int J Mol Sci 2021; 22:10050. [PMID: 34576213 PMCID: PMC8467064 DOI: 10.3390/ijms221810050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by disturbances in carbohydrate, protein, and lipid metabolism, often accompanied by oxidative stress. Diabetes treatment is a complicated process in which, in addition to the standard pharmacological action, it is necessary to append a comprehensive approach. Introducing the aspect of non-pharmacological treatment of diabetes allows one to alleviate its many adverse complications. Therefore, it seems important to look for substances that, when included in the daily diet, can improve diabetic parameters. Magnolol, a polyphenolic compound found in magnolia bark, is known for its health-promoting activities and multidirectional beneficial effects on the body. Accordingly, the goal of this review is to systematize the available scientific literature on its beneficial effects on type 2 diabetes and its complications. Taking the above into consideration, the article collects data on the favorable effects of magnolol on parameters related to glycemia, lipid metabolism, or oxidative stress in the course of diabetes. After careful analysis of many scientific articles, it can be concluded that this lignan is a promising agent supporting the conventional therapies with antidiabetic drugs in order to manage diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (I.K.-S.)
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (I.K.-S.)
| |
Collapse
|
21
|
Hu Y, Li Y, Sampson L, Wang M, Manson JE, Rimm E, Sun Q. Lignan Intake and Risk of Coronary Heart Disease. J Am Coll Cardiol 2021; 78:666-678. [PMID: 34384548 PMCID: PMC8432598 DOI: 10.1016/j.jacc.2021.05.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Evidence regarding lignan consumption in relation to coronary heart disease (CHD) risk remains limited and mixed. OBJECTIVES The aim of this study was to prospectively examine associations between lignan intake and CHD risk in U.S. men and women. METHODS We prospectively followed 214,108 men and women in 3 cohorts who did not have cardiovascular disease or cancer at baseline. Diet was repeatedly assessed using a validated food frequency questionnaire every 2-4 years since baseline. RESULTS During 5,517,225 person-years of follow-up, we documented 10,244 CHD cases, including 6,283 nonfatal myocardial infarction and 3,961 fatal CHD cases. In multivariable-adjusted analyses, comparing extreme quintiles, the pooled hazard ratios of CHD were 0.85 (95% CI: 0.79-0.92) for total lignans, 0.76 (95% CI: 0.71-0.82) for matairesinol, 0.87 (95% CI: 0.81-0.93) for secoisolariciresinol, 0.89 (95% CI: 0.83-0.95) for pinoresinol, and 0.89 (95% CI: 0.83-0.95) for lariciresinol (all P values for trend ≤0.003). Nonlinear relationships were found for total lignan, matairesinol, and secoisolariciresinol: the risk reduction plateaued at intakes above approximately 300 μg/d, 10 μg/d, and 100 μg/d, respectively (P < 0.01 for all nonlinearity). The inverse associations for total lignan intake appeared to be more apparent among participants with higher total fiber intake (P = 0.04 for interaction). In addition, lignan intake was more strongly associated with plasma concentrations of enterolactone when fiber intake was higher. CONCLUSIONS Increased long-term intake of lignans was associated with a significantly lower risk of total CHD in both men and women. Possible synergistic effects may exist between lignan and fiber intake in relation to CHD risk reduction, possibly through enhancing the production of enterolignans.
Collapse
Affiliation(s)
- Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Laura Sampson
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Joslin Diabetes Center, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 2021; 14:806. [PMID: 34451903 PMCID: PMC8398612 DOI: 10.3390/ph14080806] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most widespread form of diabetes, characterized by chronic hyperglycaemia, insulin resistance, and inefficient insulin secretion and action. Primary care in T2DM is pharmacological, using drugs of several groups that include insulin sensitisers (e.g., biguanides, thiazolidinediones), insulin secretagogues (e.g., sulphonylureas, meglinides), alpha-glucosidase inhibitors, and the newest incretin-based therapies and sodium-glucose co-transporter 2 inhibitors. However, their long-term application can cause many harmful side effects, emphasising the importance of the using natural therapeutic products. Natural health substances including non-flavonoid polyphenols (e.g., resveratrol, curcumin, tannins, and lignans), flavonoids (e.g., anthocyanins, epigallocatechin gallate, quercetin, naringin, rutin, and kaempferol), plant fruits, vegetables and other products (e.g., garlic, green tea, blackcurrant, rowanberry, bilberry, strawberry, cornelian cherry, olive oil, sesame oil, and carrot) may be a safer alternative to primary pharmacological therapy. They are recommended as food supplements to prevent and/or ameliorate T2DM-related complications. In the advanced stage of T2DM, the combination therapy of synthetic agents and natural compounds with synergistic interactions makes the treatment more efficient. In this review, both pharmaceutical drugs and selected natural products, as well as combination therapies, are characterized. Mechanisms of their action and possible negative side effects are also provided.
Collapse
Affiliation(s)
- Jana Blahova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| |
Collapse
|
23
|
Fang Q, Liu N, Zheng B, Guo F, Zeng X, Huang X, Ouyang D. Roles of Gut Microbial Metabolites in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 12:636175. [PMID: 34093430 PMCID: PMC8173181 DOI: 10.3389/fendo.2021.636175] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a highly prevalent metabolic disease that has emerged as a global challenge due to its increasing prevalence and lack of sustainable treatment. Diabetic kidney disease (DKD), which is one of the most frequent and severe microvascular complications of diabetes, is difficult to treat with contemporary glucose-lowering medications. The gut microbiota plays an important role in human health and disease, and its metabolites have both beneficial and harmful effects on vital physiological processes. In this review, we summarize the current findings regarding the role of gut microbial metabolites in the development and progression of DKD, which will help us better understand the possible mechanisms of DKD and explore potential therapeutic approaches for DKD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Na Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Binjie Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Fei Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
24
|
Dingeo G, Brito A, Samouda H, Iddir M, La Frano MR, Bohn T. Phytochemicals as modifiers of gut microbial communities. Food Funct 2021; 11:8444-8471. [PMID: 32996966 DOI: 10.1039/d0fo01483d] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A healthy gut microbiota (GM) is paramount for a healthy lifestyle. Alterations of the GM have been involved in the aetiology of several chronic diseases, including obesity and type 2 diabetes, as well as cardiovascular and neurodegenerative diseases. In pathological conditions, the diversity of the GM is commonly reduced or altered, often toward an increased Firmicutes/Bacteroidetes ratio. The colonic fermentation of dietary fiber has shown to stimulate the fraction of bacteria purported to have beneficial health effects, acting as prebiotics, and to increase the production of short chain fatty acids, e.g. propionate and butyrate, while also improving gut epithelium integrity such as tight junction functionality. However, a variety of phytochemicals, often associated with dietary fiber, have also been proposed to modulate the GM. Many phytochemicals possess antioxidant and anti-inflammatory properties that may positively affect the GM, including polyphenols, carotenoids, phytosterols/phytostanols, lignans, alkaloids, glucosinolates and terpenes. Some polyphenols may act as prebiotics, while carotenoids have been shown to alter immunoglobulin A expression, an important factor for bacteria colonization. Other phytochemicals may interact with the mucosa, another important factor for colonization, and prevent its degradation. Certain polyphenols have shown to influence bacterial communication, interacting with quorum sensing. Finally, phytochemicals can be metabolized in the gut into bioactive constituents, e.g. equol from daidzein and enterolactone from secoisolariciresinol, while bacteria can use glycosides for energy. In this review, we strive to highlight the potential interactions between prominent phytochemicals and health benefits related to the GM, emphasizing their potential as adjuvant strategies for GM-related diseases.
Collapse
Affiliation(s)
| | - Alex Brito
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg. and Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia.
| | - Hanen Samouda
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| | - Mohammed Iddir
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA. and Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA.
| | - Torsten Bohn
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| |
Collapse
|
25
|
Liu G, Li J, Li Y, Hu Y, Franke AA, Liang L, Hu FB, Chan AT, Mukamal KJ, Rimm EB, Sun Q. Gut microbiota-derived metabolites and risk of coronary artery disease: a prospective study among US men and women. Am J Clin Nutr 2021; 114:238-247. [PMID: 33829245 PMCID: PMC8277432 DOI: 10.1093/ajcn/nqab053] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulating evidence has suggested that human gut microbiota metabolize certain dietary compounds and subsequently produce bioactive metabolites that may exert beneficial or harmful effects on coronary artery disease (CAD) risk. OBJECTIVES This study examined the joint association of 2 gut microbiota metabolites, enterolactone and trimethylamine N-oxide (TMAO), that originate from intake of plant-based foods and animal products, respectively, in relation to CAD risk. METHODS A prospective nested case-control study of CAD was conducted among participants who were free of diabetes, cardiovascular disease, and cancer in the Nurses' Health Study II and the Health Professionals Follow-up Study. Plasma concentrations of enterolactone and TMAO, as well as choline and L-carnitine, were assayed among 608 CAD case-control pairs. RESULTS A high enterolactone and low TMAO profile was associated with better diet quality, especially higher intake of whole grains and fiber and lower intake of red meats, as well as lower concentrations of plasma triglycerides and C-reactive protein. Participants with a high enterolactone/low TMAO profile had a significantly lower risk of CAD: the multivariate-adjusted OR was 0.58 (95% CI: 0.38, 0.90), compared with participants with a low enterolactone/high TMAO profile. No significant interaction between enterolactone and TMAO on CAD risk was observed. Neither TMAO nor enterolactone alone were associated with CAD risk in pooled analyses. In women, a higher enterolactone concentration was significantly associated with a 54% lower CAD risk (P trend = 0.03), although the interaction by sex was not significant. CONCLUSIONS Our results show that a profile characterized by high enterolactone and low TMAO concentrations in plasma is linked to a healthful dietary pattern and significantly associated with a lower risk of CAD. Overall, these data suggest that, compared with individual markers, multiple microbiota-derived metabolites may facilitate better differentiation of CAD risk and characterization of the relations between diet, microbiota, and CAD risk.
Collapse
Affiliation(s)
- Gang Liu
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA,Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food
Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School
of Public Health, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Jun Li
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA
| | - Yanping Li
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA
| | - Yang Hu
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA
| | - Adrian A Franke
- Department of Food Science and Human Nutrition, College of Tropical
Agriculture and Human Resources, University of Hawaii at Manoa,
Honolulu, HI, USA
| | - Liming Liang
- Department of Epidemiology, Harvard TH Chan School of Public
Health, Boston, MA, USA,Department of Biostatistics, Harvard TH Chan School of Public
Health, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, MA, USA,Department of Epidemiology, Harvard TH Chan School of Public
Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and
Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and
Women's Hospital and Harvard Medical School, Boston, MA, USA,Clinical and Translational Epidemiology Unit, Massachusetts General
Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and
Harvard, Cambridge, MA, USA
| | - Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard
Medical School, Boston, MA, USA
| | | | - Qi Sun
- Address correspondence to QS (e-mail: )
| |
Collapse
|
26
|
Ramírez-Alarcón K, Victoriano M, Mardones L, Villagran M, Al-Harrasi A, Al-Rawahi A, Cruz-Martins N, Sharifi-Rad J, Martorell M. Phytochemicals as Potential Epidrugs in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:656978. [PMID: 34140928 PMCID: PMC8204854 DOI: 10.3389/fendo.2021.656978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes Mellitus (T2DM) prevalence has significantly increased worldwide in recent years due to population age, obesity, and modern sedentary lifestyles. The projections estimate that 439 million people will be diabetic in 2030. T2DM is characterized by an impaired β-pancreatic cell function and insulin secretion, hyperglycemia and insulin resistance, and recently the epigenetic regulation of β-pancreatic cells differentiation has been underlined as being involved. It is currently known that several bioactive molecules, widely abundant in plants used as food or infusions, have a key role in histone modification and DNA methylation, and constituted potential epidrugs candidates against T2DM. In this sense, in this review the epigenetic mechanisms involved in T2DM and protein targets are reviewed, with special focus in studies addressing the potential use of phytochemicals as epidrugs that prevent and/or control T2DM in vivo and in vitro. As main findings, and although some controversial results have been found, bioactive molecules with epigenetic regulatory function, appear to be a potential replacement/complementary therapy of pharmacological hypoglycemic drugs, with minimal side effects. Indeed, natural epidrugs have shown to prevent or delay the T2DM development and the morbidity associated to dysfunction of blood vessels, eyes and kidneys due to sustained hyperglycemia in T2DM patients.
Collapse
Affiliation(s)
- Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Lorena Mardones
- Department of Basic Science, Faculty of Medicine, Universidad Catolica de la Santisima Concepcion, Concepción, Chile
| | - Marcelo Villagran
- Department of Basic Science, Faculty of Medicine, Universidad Catolica de la Santisima Concepcion, Concepción, Chile
- Scientific-Technological Center for the Sustainable Development of the Coastline, Universidad Catolica de la Santisima Concepcion, Concepción, Chile
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Oman
- *Correspondence: Ahmed Al-Harrasi, ; Natália Cruz-Martins, ; Javad Sharifi-Rad, ; Miquel Martorell,
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Oman
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
- *Correspondence: Ahmed Al-Harrasi, ; Natália Cruz-Martins, ; Javad Sharifi-Rad, ; Miquel Martorell,
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
- *Correspondence: Ahmed Al-Harrasi, ; Natália Cruz-Martins, ; Javad Sharifi-Rad, ; Miquel Martorell,
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
- *Correspondence: Ahmed Al-Harrasi, ; Natália Cruz-Martins, ; Javad Sharifi-Rad, ; Miquel Martorell,
| |
Collapse
|
27
|
Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants (Basel) 2020; 9:E982. [PMID: 33066106 PMCID: PMC7601951 DOI: 10.3390/antiox9100982] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lifestyle factors, especially diet and nutrition, are currently regarded as essential avenues to decrease modern-day cardiometabolic disorders (CMD), including obesity, metabolic syndrome, type 2 diabetes, and atherosclerosis. Many groups around the world attribute these trends, at least partially, to bioactive plant polyphenols given their anti-oxidant and anti-inflammatory actions. In fact, polyphenols can prevent or reverse the progression of disease processes through many distinct mechanisms. In particular, the crosstalk between polyphenols and gut microbiota, recently unveiled thanks to DNA-based tools and next generation sequencing, unravelled the central regulatory role of dietary polyphenols and their intestinal micro-ecology metabolites on the host energy metabolism and related illnesses. The objectives of this review are to: (1) provide an understanding of classification, structure, and bioavailability of dietary polyphenols; (2) underline their metabolism by gut microbiota; (3) highlight their prebiotic effects on microflora; (4) discuss the multifaceted roles of their metabolites in CMD while shedding light on the mechanisms of action; and (5) underscore their ability to initiate host epigenetic regulation. In sum, the review clearly documents whether dietary polyphenols and micro-ecology favorably interact to promote multiple physiological functions on human organism.
Collapse
Affiliation(s)
- Mireille Koudoufio
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francis Feldman
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Biochemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
28
|
Gao Q, Zhong C, Zhou X, Chen R, Xiong T, Hong M, Li Q, Kong M, Xiong G, Han W, Sun G, Yang X, Yang N, Hao L. Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: A prospective cohort study. Clin Nutr 2020; 40:550-559. [PMID: 32593522 DOI: 10.1016/j.clnu.2020.05.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIMS Emerging evidence has shown the inverse association between dietary polyphenols intake and type 2 diabetes mellitus risk, however, few studies focus on the prospective effects of polyphenols on gestational diabetes mellitus (GDM). Thus, the aim was to evaluate whether higher polyphenols intake and the intake from fruits and vegetables was correlated to a lower risk of GDM. METHODS Dietary intake of polyphenols of women with a singleton pregnancy and without any history of diabetes were obtained by a validated food frequency questionnaire from Tongji Maternal and Child Health Cohort study. Oral glucose tolerance tests were conducted at 24-28 weeks to screen for GDM. Logistic regression models were used to evaluate the association between dietary intake of polyphenols, and the results were presented as odds ratios (ORs) with 95% confidence interval (CIs). Generalized linear models were adopted to determine the association of polyphenols intake with blood glucose concentrations, and the results were presented as coefficients (β) with 95% CIs. RESULTS 185 (8.3%) of 2231 pregnant women were diagnosed with GDM. The intake of total polyphenols was 319.9 (217.8-427.0) mg/d, and the intake from fruits and vegetables was 201.6 (115.3-281.8) mg/d and 63.2 (41.1-92.7) mg/d, respectively. Compared with the lowest quartile, the adjusted ORs (95% CIs) of GDM risk for women with the highest quartile of total polyphenols and flavonoids intake was 0.55 (0.30, 0.99), and 0.57 (0.32, 0.99). The adjusted ORs (95% CIs) of GDM risk was 0.55 0.51 (0.30, 0.87) (Pfor trend = 0.017) for polyphenols from fruits, 0.58 (0.34, 0.99) (Pfor trend = 0.038) for flavonoids from fruits, and 0.62 (0.38, 1.00) (Pfor trend = 0.065) for anthocyanidins from fruits comparing the highest versus lowest quartile. In addition, each 100 mg increase of total polyphenols and polyphenols from fruits was associated with 0.054 (0.008, 0.096) (P = 0.021) and 0.061 (0.012, 0.109) (P = 0.015) decrease in 2-h post-load blood glucose. No significant association was found between total polyphenols from vegetables intake and the risk of GDM. CONCLUSIONS Higher dietary intake of total polyphenols and flavonoids and the intake from fruits was associated with lower GDM risk. This study was registered at clinicaltrials.gov as NCT03099837.
Collapse
Affiliation(s)
- Qin Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China; Department of Public Health, Jining Medical University, China
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xuezhen Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renjuan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ting Xiong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Miao Hong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Man Kong
- The Central Hospital of Wuhan, China
| | | | | | | | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition; and Safety, China; Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
29
|
Eriksen AK, Brunius C, Mazidi M, Hellström PM, Risérus U, Iversen KN, Fristedt R, Sun L, Huang Y, Nørskov NP, Knudsen KEB, Kyrø C, Olsen A, Tjønneland A, Dicksved J, Landberg R. Effects of whole-grain wheat, rye, and lignan supplementation on cardiometabolic risk factors in men with metabolic syndrome: a randomized crossover trial. Am J Clin Nutr 2020; 111:864-876. [PMID: 32097450 DOI: 10.1093/ajcn/nqaa026] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A whole-grain (WG)-rich diet has shown to have potential for both prevention and treatment of the metabolic syndrome (MetS), which is a cluster of risk factors that increase the risk of type 2 diabetes and cardiovascular disease. Different WGs may have different health effects. WG rye, in particular, may improve glucose homeostasis and blood lipids, possibly mediated through fermentable dietary fiber and lignans. Recent studies have also suggested a crucial role of the gut microbiota in response to WG. OBJECTIVES The aim was to investigate WG rye, alone and with lignan supplements [secoisolariciresinol diglucoside (SDG)], and WG wheat diets on glucose tolerance [oral-glucose-tolerance test (OGTT)], other cardiometabolic outcomes, enterolignans, and microbiota composition. Moreover, we exploratively evaluated the role of gut microbiota enterotypes in response to intervention diets. METHODS Forty men with MetS risk profile were randomly assigned to WG diets in an 8-wk crossover study. The rye diet was supplemented with 280 mg SDG at weeks 4-8. Effects of treatment were evaluated by mixed-effects modeling, and effects on microbiota composition and the role of gut microbiota as a predictor of response to treatment were analyzed by random forest plots. RESULTS The WG rye diet (± SDG supplements) did not affect the OGTT compared with WG wheat. Total and LDL cholesterol were lowered (-0.06 and -0.09 mmol/L, respectively; P < 0.05) after WG rye compared with WG wheat after 4 wk but not after 8 wk. WG rye resulted in higher abundance of Bifidobacterium [fold-change (FC) = 2.58, P < 0.001] compared with baseline and lower abundance of Clostridium genus compared with WG wheat (FC = 0.54, P = 0.02). The explorative analyses suggest that baseline enterotype is associated with total and LDL-cholesterol response to diet. CONCLUSIONS WG rye, alone or with SDG supplementation, compared with WG wheat did not affect glucose metabolism but caused transient LDL-cholesterol reduction. The effect of WG diets appeared to differ according to enterotype. This trial was registered at www.clinicaltrials.gov as NCT02987595.
Collapse
Affiliation(s)
- Anne K Eriksen
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Carl Brunius
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mohsen Mazidi
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Kia N Iversen
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Li Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yi Huang
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | | | - Cecilie Kyrø
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anja Olsen
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anne Tjønneland
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
30
|
From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Mol Cell 2020; 78:584-596. [PMID: 32234490 DOI: 10.1016/j.molcel.2020.03.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Many genomic studies have revealed associations between the gut microbiota composition and host metabolism. These observations led to the idea that a causal relationship could exist between the microbiota and metabolic diseases, a concept supported by studies showing compositional changes in the microbial community in metabolic diseases and transmissibility of host phenotype via microbiota transfer. Accumulating data suggest that the microbiota may affect host metabolic phenotypes through the production of metabolites. These bioactive microbial metabolites, sensitive fingerprints of microbial function, can act as inter-kingdom signaling messengers via penetration into host blood circulation and tissues. These fingerprints may be used for diagnostic purposes, and increased understanding of strain specificity in producing microbial metabolites can identify bacterial strains or specific metabolites that can be used for therapeutic purposes. Here, we will review data supporting the causal role of the gut microbiota in metabolism and discuss mechanisms and potential clinical implications.
Collapse
|
31
|
Dietary Fiber, Gut Microbiota, and Metabolic Regulation-Current Status in Human Randomized Trials. Nutrients 2020; 12:nu12030859. [PMID: 32210176 PMCID: PMC7146107 DOI: 10.3390/nu12030859] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
New knowledge about the gut microbiota and its interaction with the host's metabolic regulation has emerged during the last few decades. Several factors may affect the composition of the gut microbiota, including dietary fiber. Dietary fiber is not hydrolyzed by human digestive enzymes, but it is acted upon by gut microbes, and metabolites like short-chain fatty acids are produced. The short-chain fatty acids may be absorbed into the circulation and affect metabolic regulation in the host or be a substrate for other microbes. Some studies have shown improved insulin sensitivity, weight regulation, and reduced inflammation with increases in gut-derived short-chain fatty acids, all of which may reduce the risk of developing metabolic diseases. To what extent a dietary intervention with fiber may affect the human gut microbiota and hence metabolic regulation, is however, currently not well described. The aim of the present review is to summarize recent research on human randomized, controlled intervention studies investigating the effect of dietary fiber on gut microbiota and metabolic regulation. Metabolic regulation is discussed with respect to markers relating to glycemic regulation and lipid metabolism. Taken together, the papers on which the current review is based, suggest that dietary fiber has the potential to change the gut microbiota and alter metabolic regulation. However, due to the heterogeneity of the studies, a firm conclusion describing the causal relationship between gut microbiota and metabolic regulation remains elusive.
Collapse
|
32
|
|
33
|
Panee J, Pomozi V, Franke AA, Le Saux O, Gerschenson M. Chronic marijuana use moderates the correlations of serum cholesterol with systemic mitochondrial function and fluid cognition. Mitochondrion 2020; 52:135-143. [PMID: 32169611 DOI: 10.1016/j.mito.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 11/24/2022]
Abstract
Activating type 1 cannabinoid (CB1) receptor decreases the particle size of high-density lipoprotein (HDL) and inhibits reverse cholesterol transport (RCT). This study examined whether marijuana (MJ) use is associated with changes of RCT, and how the latter is associated with mitochondrial function and fluid cognition. We recruited 19 chronic MJ users and 20 nonusers with matched age, BMI, sex, ethnicity, and education. We measured their fluid cognition, mitochondrial function (basal and max respiration, ATP production) in peripheral blood mononuclear cells, cholesterol content in serum lipoprotein fractions, enterolactone/creatinine ratio in urine as a marker for dietary polyphenol intake, and lipase activity in serum. We found that higher percentage of large HDL cholesterol (HDL-C) correlated positively, while that of small HDL-C correlated inversely, with mitochondrial function among MJ users, but correlations of the opposite directions were found among nonusers. The concentrations of large and intermediate HDL-C correlated positively with mitochondrial function and fluid cognition among MJ users, but not among nonusers. Both percentage and concentration of large HDL-C correlated positively, while those of small HDL-C correlated inversely, with amounts of daily and lifetime MJ use. In all participants, higher urinary enterolactone/creatinine ratio and lower serum lipase activity were associated with higher large HDL-C/small HDL-C ratio, implying greater RCT. This study suggests that high MJ use may compromise RCT, which is strongly associated with mitochondrial function and fluid cognition among MJ users.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA.
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| | - Adrian A Franke
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA
| |
Collapse
|
34
|
Castro-Barquero S, Tresserra-Rimbau A, Vitelli-Storelli F, Doménech M, Salas-Salvadó J, Martín-Sánchez V, Rubín-García M, Buil-Cosiales P, Corella D, Fitó M, Romaguera D, Vioque J, Alonso-Gómez ÁM, Wärnberg J, Martínez JA, Serra-Majem L, Tinahones FJ, Lapetra J, Pintó X, Tur JA, Garcia-Rios A, García-Molina L, Delgado-Rodriguez M, Matía-Martín P, Daimiel L, Vidal J, Vázquez C, Cofán M, Romanos-Nanclares A, Becerra-Tomas N, Barragan R, Castañer O, Konieczna J, González-Palacios S, Sorto-Sánchez C, Pérez-López J, Zulet MA, Bautista-Castaño I, Casas R, Gómez-Perez AM, Santos-Lozano JM, Rodríguez-Sanchez MÁ, Julibert A, Martín-Calvo N, Hernández-Alonso P, Sorlí JV, Sanllorente A, Galmés-Panadés AM, Cases-Pérez E, Goicolea-Güemez L, Ruiz-Canela M, Babio N, Hernáez Á, Lamuela-Raventós RM, Estruch R. Dietary Polyphenol Intake is Associated with HDL-Cholesterol and A Better Profile of other Components of the Metabolic Syndrome: A PREDIMED-Plus Sub-Study. Nutrients 2020; 12:689. [PMID: 32143308 PMCID: PMC7146338 DOI: 10.3390/nu12030689] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/20/2022] Open
Abstract
Dietary polyphenol intake is associated with improvement of metabolic disturbances. The aims of the present study are to describe dietary polyphenol intake in a population with metabolic syndrome (MetS) and to examine the association between polyphenol intake and the components of MetS. This cross-sectional analysis involved 6633 men and women included in the PREDIMED (PREvención con DIeta MEDiterranea-Plus) study. The polyphenol content of foods was estimated from the Phenol-Explorer 3.6 database. The mean of total polyphenol intake was 846 ± 318 mg/day. Except for stilbenes, women had higher polyphenol intake than men. Total polyphenol intake was higher in older participants (>70 years of age) compared to their younger counterparts. Participants with body mass index (BMI) >35 kg/m2 reported lower total polyphenol, flavonoid, and stilbene intake than those with lower BMI. Total polyphenol intake was not associated with a better profile concerning MetS components, except for high-density lipoprotein cholesterol (HDL-c), although stilbenes, lignans, and other polyphenols showed an inverse association with blood pressure, fasting plasma glucose, and triglycerides. A direct association with HDL-c was found for all subclasses except lignans and phenolic acids. To conclude, in participants with MetS, higher intake of several polyphenol subclasses was associated with a better profile of MetS components, especially HDL-c.
Collapse
Grants
- PI13/00673, PI13/00492, PI13/00272, PI13/01123, PI13/00462, PI13/00233, PI13/02184, PI13/00728, PI13/01090, PI13/01056, PI14/01722, PI14/00636, PI14/00618, PI14/00696, PI14/01206, PI14/01919, PI14/00853, PI14/01374, PI14/00972, PI14/00728, PI14/01471, PI1 Fondo de Investigación para la Salud (FIS)
- PI044003 Fundació la Marató de TV3
- AGL2016-75329-R Consejería de Salud de la Junta de Andalucía
- CB06/03 European Regional Development Fund
- 2013ACUP00194 Recercaixa
Collapse
Affiliation(s)
- Sara Castro-Barquero
- Department of Medicine, Faculty of Medicine and Life Sciences, University of Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (M.D.); (R.C.); (Á.H.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
| | - Anna Tresserra-Rimbau
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, 43204 Reus, Spain
- University Hospital of Sant Joan de Reus, Nutrition Unit, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Facundo Vitelli-Storelli
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain; (F.V.-S.); (V.M.-S.); (M.R.-G.)
| | - Mónica Doménech
- Department of Medicine, Faculty of Medicine and Life Sciences, University of Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (M.D.); (R.C.); (Á.H.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, 43204 Reus, Spain
- University Hospital of Sant Joan de Reus, Nutrition Unit, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Vicente Martín-Sánchez
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain; (F.V.-S.); (V.M.-S.); (M.R.-G.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (L.G.-M.); (S.G.-P.)
| | - María Rubín-García
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain; (F.V.-S.); (V.M.-S.); (M.R.-G.)
| | - Pilar Buil-Cosiales
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- University of Navarra, Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Servicio Navarro de Salud-Osasunbidea-Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Cardiovascular Risk and Nutrition Research group, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08007 Barcelona, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (Research Unit), 07120 Palma de Mallorca, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (L.G.-M.); (S.G.-P.)
- Miguel Hernandez University, ISABIAL-FISABIO, 03010 Alicante, Spain;
| | - Ángel María Alonso-Gómez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Nursing. University of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - José Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain;
| | - Luís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, 35016 Las Palmas de Gran Canaria, Spain
| | - Francisco José Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA). University of Málaga, 29010 Málaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41010 Sevilla, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Josep Antonio Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (Research Unit), 07120 Palma de Mallorca, Spain
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antonio Garcia-Rios
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain;
| | - Laura García-Molina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (L.G.-M.); (S.G.-P.)
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| | - Miguel Delgado-Rodriguez
- Miguel Hernandez University, ISABIAL-FISABIO, 03010 Alicante, Spain;
- Division of Preventive Medicine, Faculty of Medicine, University of Jaén, 23071 Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lidia Daimiel
- Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain;
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Endocrinology, Institut d’Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Clotilde Vázquez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz, Instituto de Investigaciones Biomédicas IISFJD. University Autonoma, 28040 Madrid, Spain
| | - Montserrat Cofán
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain
| | - Andrea Romanos-Nanclares
- University of Navarra, Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Nerea Becerra-Tomas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, 43204 Reus, Spain
- University Hospital of Sant Joan de Reus, Nutrition Unit, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Rocio Barragan
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Cardiovascular Risk and Nutrition Research group, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08007 Barcelona, Spain
| | - Jadwiga Konieczna
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (Research Unit), 07120 Palma de Mallorca, Spain
| | - Sandra González-Palacios
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (L.G.-M.); (S.G.-P.)
- Miguel Hernandez University, ISABIAL-FISABIO, 03010 Alicante, Spain;
| | - Carolina Sorto-Sánchez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Jessica Pérez-López
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Nursing. University of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - María Angeles Zulet
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain;
| | - Inmaculada Bautista-Castaño
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, 35016 Las Palmas de Gran Canaria, Spain
| | - Rosa Casas
- Department of Medicine, Faculty of Medicine and Life Sciences, University of Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (M.D.); (R.C.); (Á.H.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
| | - Ana María Gómez-Perez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA). University of Málaga, 29010 Málaga, Spain
| | - José Manuel Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41010 Sevilla, Spain
| | - María Ángeles Rodríguez-Sanchez
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Alicia Julibert
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (Research Unit), 07120 Palma de Mallorca, Spain
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Nerea Martín-Calvo
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- University of Navarra, Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Pablo Hernández-Alonso
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, 43204 Reus, Spain
- University Hospital of Sant Joan de Reus, Nutrition Unit, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - José V Sorlí
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Albert Sanllorente
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Cardiovascular Risk and Nutrition Research group, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08007 Barcelona, Spain
| | - Aina María Galmés-Panadés
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (Research Unit), 07120 Palma de Mallorca, Spain
| | | | - Leire Goicolea-Güemez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- University of Navarra, Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, 43204 Reus, Spain
- University Hospital of Sant Joan de Reus, Nutrition Unit, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Álvaro Hernáez
- Department of Medicine, Faculty of Medicine and Life Sciences, University of Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (M.D.); (R.C.); (Á.H.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
| | - Rosa María Lamuela-Raventós
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Ramon Estruch
- Department of Medicine, Faculty of Medicine and Life Sciences, University of Barcelona, Barcelona, Spain. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (M.D.); (R.C.); (Á.H.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain (J.S.-S.); (P.B.-C.); (D.C.); (M.F.); (D.R.); (Á.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (C.V.); (M.C.); (N.B.-T.); (R.B.); (O.C.); (J.K.); (C.S.-S.); (J.P.-L.); (M.A.Z.); (I.B.-C.); (A.M.G.-P.); (J.M.S.-L.); (A.J.); (N.M.-C.); (P.H.-A.); (J.V.S.); (A.S.); (A.M.G.-P.); (L.G.-G.); (M.R.-C.); (N.B.); (R.M.L.-R.)
- Department of Internal Medicine, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
35
|
Esfandiar Z, Hosseini-Esfahani F, Mirmiran P, Yuzbashian E, Azizi F. The Association of Dietary Polyphenol Intake with the Risk of Type 2 Diabetes: Tehran Lipid and Glucose Study. Diabetes Metab Syndr Obes 2020; 13:1643-1652. [PMID: 32523364 PMCID: PMC7234961 DOI: 10.2147/dmso.s238483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The current study aimed to investigate the relationship between daily consumption of total polyphenol and its subclasses and the incidence of diabetes. MATERIALS AND METHODS Eligible adults (n=6,547) were chosen from among participants of the Tehran Lipid and Glucose Study (TLGS) with an average follow-up of 3.0±1.6 years. Dietary intakes were evaluated using a valid and reliable semi-quantitative food frequency questionnaire. Biochemical variables and anthropometrics were evaluated at baseline and follow-up examinations. Multivariate Cox proportional hazard regression models were used to estimate the development of type 2 diabetes mellitus (T2DM) in relation to total intake of polyphenol and its subclasses (flavonoids, phenolic acids, stilbenes, and lignans). RESULTS This study was conducted on 2,882 men and 3,665 women, aged 41.3±14.6 and 39.0±13.4 years, respectively. The number of participants with the new-onset T2DM was 253. Mean intake of total polyphenol was 346±245 mg/1000 kcal. Risk of type 2 diabetes decreased from quartiles 1 to 4 for total polyphenols (HR: 1.00, 0.37, 0.61, 0.50, P trend<0.01), phenolic acids (HR: 1.00, 0.57, 0.49, 0.45, P trend<0.01), and lignans (HR: 1.00, 0.67, 0.61, 0.60, P trend<0.01), whereas non-significant results were found for flavonoids and stilbenes. This study suggests an inverse association between total intake of polyphenols, phenolic acids, and lignin, and the risk of T2DM. CONCLUSION These results emphasize the potential protective role of polyphenol rich food groups (especially fruits and vegetables) in the prevention of T2DM.
Collapse
Affiliation(s)
- Zohreh Esfandiar
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Firoozeh Hosseini-Esfahani Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Email
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Correspondence: Parvin Mirmiran Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IranTel +98 21 22432500Fax +98 21 22402463 Email
| | - Emad Yuzbashian
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Tresserra-Rimbau A, Castro-Barquero S, Vitelli-Storelli F, Becerra-Tomas N, Vázquez-Ruiz Z, Díaz-López A, Corella D, Castañer O, Romaguera D, Vioque J, Alonso-Gómez ÁM, Wärnberg J, Martínez JA, Serra-Majem L, Estruch R, Tinahones FJ, Lapetra J, Pintó X, Tur JA, López-Miranda J, García-Molina L, Delgado-Rodríguez M, Matía-Martín P, Daimiel L, Rubín-García M, Vidal J, Galdon A, Ros E, Basterra-Gortari FJ, Babio N, Sorlí JV, Hernáez Á, Konieczna J, Notario-Barandiaran L, Tojal-Sierra L, Pérez-López J, Abete I, Álvarez-Pérez J, Fernández-García JC, Santos-Lozano JM, Galera-Cusí A, Julibert A, Ruiz-Canela M, Martinez-Lacruz R, Pérez-Vega KA, Galmes-Panades AM, Pastor-Polo C, Moreno-Rodriguez A, Gea A, Fitó M, Lamuela-Raventós RM, Salas-Salvadó J. Associations between Dietary Polyphenols and Type 2 Diabetes in a Cross-Sectional Analysis of the PREDIMED-Plus Trial: Role of Body Mass Index and Sex. Antioxidants (Basel) 2019; 8:537. [PMID: 31717390 PMCID: PMC6912253 DOI: 10.3390/antiox8110537] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023] Open
Abstract
Overweight and obesity are important risk factors for type 2 diabetes (T2D). Moving towards healthier diets, namely, diets rich in bioactive compounds, could decrease the odds of suffering T2D. However, those individuals with high body mass index (BMI) may have altered absorption or metabolism of some nutrients and dietary components, including polyphenols. Therefore, we aimed to assess whether high intakes of some classes of polyphenols are associated with T2D in a population with metabolic syndrome and how these associations depend on BMI and sex. This baseline cross-sectional analysis includes 6633 participants from the PREDIMED-Plus trial. Polyphenol intakes were calculated from food frequency questionnaires (FFQ). Cox regression models with constant time at risk and robust variance estimators were used to estimate the prevalence ratios (PRs) for polyphenol intake and T2D prevalence using the lowest quartile as the reference group. Analyses were stratified by sex and BMI groups (overweight and obese) to evaluate potential effect modification. Catechins, proanthocyanidins, hydroxybenzoic acids, and lignans were inversely associated with T2D. Hydroxycinnamic acids were directly related in men. These associations were different depending on sex and BMI, that is, women and overweight obtained stronger inverse associations.
Collapse
Grants
- Advanced Research Grant 2014-2019, 340918 European Research Council
- 2013ACUP00194 Resercaixa
- PI0458/2013, PS0358/2016, and PI0137/2018 Consejería de Salud de la Junta de Andalucía
- PROMETEO/2017/017 Generalitat Valenciana
- AGL2016-75329-R Ministerio de Ciencia, Innovación y Universidades
- CB06/03 European Regional Development Fund
- FSE 2014-2020 Operational Program of the Balearic Islands
- PI13/00673, PI13/00492, PI13/00272, PI13/01123, PI13/00462, PI13/00233, PI13/02184, PI13/00728, PI13/01090, PI13/01056, PI14/01722, PI14/00636, PI14/00618, PI14/00696, PI14/01206, PI14/01919, PI14/00853, PI14/01374, PI14/00972, PI14/00728, PI14/01471, PI1 CIBER Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III (ISCIII) through the Fondo de Investigación para la Salud (FIS), which is co-funded by the European Regional Development Fund
Collapse
Affiliation(s)
- Anna Tresserra-Rimbau
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Sara Castro-Barquero
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | | | - Nerea Becerra-Tomas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Zenaida Vázquez-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
| | - Andrés Díaz-López
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiovascular Risk and Nutrition Group, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08007 Barcelona, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Miguel Hernandez University, ISABIAL-FISABIO, 03010 Alicante, Spain
| | - Ángel María Alonso-Gómez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU; 01009 Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Nursing. Institute of Biomedical Research in Málaga (IBIMA), University of Málaga, 29010 Málaga, Spain
| | - José Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Nutritional Genomics and Epigenomics Group, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Lluís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, 35016 Las Palmas de Gran Canaria, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Francisco José Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA). University of Málaga, 29010 Málaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41010 Sevilla, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge-Idibell-Universitat de Barcelona, 08908 Hospitalet de Llobregat, Spain
| | - Josep Antoni Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Laura García-Molina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| | - Miguel Delgado-Rodríguez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Division of Preventive Medicine, Faculty of Medicine, University of Jaén, 23071 Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Lidia Daimiel
- Nutritional Genomics and Epigenomics Group, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - María Rubín-García
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Endocrinology, Institut d’Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Alba Galdon
- Hospital Universitario Fundación Jimenez Díaz, 28040 Madrid, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain
| | - Francisco Javier Basterra-Gortari
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
- Department of Internal Medicine (Endocrinology), Hospital Reina Sofía, 31500 Tudela, Spain
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - José Vicente Sorlí
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Álvaro Hernáez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Jadwiga Konieczna
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | | | - Lucas Tojal-Sierra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU; 01009 Vitoria-Gasteiz, Spain
| | - Jessica Pérez-López
- Department of Nursing. Institute of Biomedical Research in Málaga (IBIMA), University of Málaga, 29010 Málaga, Spain
| | - Itziar Abete
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Nutritional Genomics and Epigenomics Group, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Jacqueline Álvarez-Pérez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, 35016 Las Palmas de Gran Canaria, Spain
| | - José Carlos Fernández-García
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA). University of Málaga, 29010 Málaga, Spain
| | - José Manuel Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41010 Sevilla, Spain
| | - Ana Galera-Cusí
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge-Idibell-Universitat de Barcelona, 08908 Hospitalet de Llobregat, Spain
| | - Alicia Julibert
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
| | - Raul Martinez-Lacruz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Karla-Alejandra Pérez-Vega
- Cardiovascular Risk and Nutrition Group, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08007 Barcelona, Spain
| | - Aina María Galmes-Panades
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | | | - Anai Moreno-Rodriguez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country UPV/EHU; 01009 Vitoria-Gasteiz, Spain
| | - Alfredo Gea
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiovascular Risk and Nutrition Group, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08007 Barcelona, Spain
| | - Rosa María Lamuela-Raventós
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| |
Collapse
|
37
|
Affiliation(s)
- H. M. Roager
- Department of Nutrition, Exercise and Sports University of Copenhagen Frederiksberg Denmark
| | - L. O. Dragsted
- Department of Nutrition, Exercise and Sports University of Copenhagen Frederiksberg Denmark
| |
Collapse
|
38
|
Diet and Oxidative Status. The Dietary Pattern and Urinary 8-Isoprostane in Healthy Spanish Women. Antioxidants (Basel) 2019; 8:antiox8080271. [PMID: 31382522 PMCID: PMC6720264 DOI: 10.3390/antiox8080271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/21/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022] Open
Abstract
The Mediterranean diet is associated with a low incidence of physiologic and metabolic non-communicable diseases such as hypertension, obesity, and insulin resistance. These chronic diseases are closely related to oxidative status, which is determined by the balance between oxidant and antioxidant levels. The Mediterranean diet is rich in foods with important antioxidant properties, such as fruits and extra virgin olive oil. The aim of this work was to establish the relationship between dietary patterns, the total intake of polyphenols, and the levels of 8-isoprostanes in urine, as a marker of lipid peroxidation, in a group of healthy Spanish women. The main sources of dietary polyphenols were fruits, vegetables, pulses, nuts, and extra virgin olive oil. There was a significant and positive correlation between the estimated intake of polyphenols, total polyphenols excreted in urine, adherence to the Mediterranean diet, and the intake of specific food groups. A positive correlation was established between the total polyphenols in urine and the intake of raw extra virgin olive oil. However, a negative correlation was established between the amount of 8-isoprostanes in urine, total intake of polyphenols, adherence to the Mediterranean diet, and the intake of fruits and nuts. These results indicate an association between oxidative status and the intake of foods that are typical of the Mediterranean diet, in healthy women. Furthermore, the results demonstrate the use of urine 8-isoprostanes as a marker of adherence to the Mediterranean diet.
Collapse
|
39
|
O'Keefe SJD. Plant-based foods and the microbiome in the preservation of health and prevention of disease. Am J Clin Nutr 2019; 110:265-266. [PMID: 31268135 PMCID: PMC6669048 DOI: 10.1093/ajcn/nqz127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Stephen J D O'Keefe
- Division of Gastroenterology, University of Pittsburgh, Pittsburgh, PA, USA,African Microbiome Institute, University of Stellenbosch, Stellenbosch, South Africa,Address correspondence to SJDO (e-mail: )
| |
Collapse
|
40
|
Zelicha H, Kaplan A, Yaskolka Meir A, Tsaban G, Rinott E, Shelef I, Tirosh A, Brikner D, Pupkin E, Qi L, Thiery J, Stumvoll M, Kloting N, von Bergen M, Ceglarek U, Blüher M, Stampfer MJ, Shai I. The Effect of Wolffia globosa Mankai, a Green Aquatic Plant, on Postprandial Glycemic Response: A Randomized Crossover Controlled Trial. Diabetes Care 2019; 42:1162-1169. [PMID: 31076421 DOI: 10.2337/dc18-2319] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/28/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To compare the postprandial and overnight glycemic response using a novel green aquatic plant thought to provide a dietary source for high-quality protein, with an iso-carbohydrate/protein/caloric dairy shake. RESEARCH DESIGN AND METHODS This is a randomized controlled crossover trial among 20 abdominally obese participants (age 51.4 years; fasting plasma glucose 110.9 mg/dL), who were allocated to replace dinner with either, first, a green shake containing Wolffia globosa duckweed (Mankai: specific-strain) or an iso-carbohydrate/protein/calorie yogurt shake. A 2-week flash glucose-monitoring system was used to assess postmeal glucose dynamics (6 net administration days; 97 observation days in total). We further obtained from each participant dietary/daily activity/satiety scale/sleep logs. Participants were recruited from the green-Mediterranean diet arm of the 18-month Dietary Intervention Randomized Controlled Trial-Polyphenols Unprocessed (DIRECT-PLUS) study. RESULTS Wolffia globosa Mankai elicited a lower postprandial glucose peak compared with yogurt (∆peak = 13.4 ± 9.2 vs. 19.3 ± 15.1 mg/dL; P = 0.044), which occurred later (77.5 ± 29.2 vs. 59.2 ± 28.4 min; P = 0.037) and returned faster to baseline glucose levels (135.8 ± 53.1 vs. 197.5 ± 70.2 min; P = 0.012). The mean post-net incremental area under the curve (netAUC) was lower with Wolffia globosa up to 60 and 180 min (netAUC 60 min: 185.1 ± 340.1 vs. 441.4 ± 336.5 mg/dL/min, P = 0.005; netAUC 180 min: 707.9 ± 1,428.5 vs. 1,576.6 ± 1,810.1 mg/dL/min, P = 0.037). A Wolffia globosa-based shake replacing dinner resulted in lower next-morning fasting glucose levels (83.2 ± 0.8 vs. 86.6 ± 13 mg/dL; P = 0.041). Overall, postprandial glucose levels from the shake administration until the next morning were lower in the Wolffia globosa Mankai green shake compared with the yogurt shake (P < 0.001). Overnight sleep duration was similar (378.2 ± 22.4 vs. 375.9 ± 28.4 min; P = 0.72), and satiety rank was slightly higher for the Wolffia globosa shake compared with the yogurt shake (7.5 vs. 6.5; P = 0.035). CONCLUSIONS Wolffia globosa Mankai duckweed may serve as an emerging alternative plant protein source with potential beneficial postprandial glycemic effects.
Collapse
Affiliation(s)
- Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ehud Rinott
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilan Shelef
- Soroka University Medical Center, Beer Sheva, Israel
| | - Amir Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Israel; and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dov Brikner
- Department of Medicine, Nuclear Research Center Negev, Dimona, Israel
| | - Efrat Pupkin
- Department of Medicine, Nuclear Research Center Negev, Dimona, Israel
| | - Lu Qi
- Department of Epidemiology, Tulane University, New Orleans, LA
| | - Joachim Thiery
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Nora Kloting
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Uta Ceglarek
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Meir J Stampfer
- Harvard T.H. Chan School of Public Health and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
41
|
Peirotén Á, Bravo D, Landete JM. Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health. Crit Rev Food Sci Nutr 2019; 60:1922-1937. [PMID: 31161778 DOI: 10.1080/10408398.2019.1622505] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytoestrogens (PE) are compounds found in plants such as soy (isoflavones), flax seeds and cereals (lignans) and pomegranates (ellagitannins). PE have shown estrogenic/antiestrogenic, antioxidant, anti-inflammatory, antineoplastic and apoptotic activities. The human studies are showing promising although inconsistent results about the beneficial effects of PE on ameliorating the menopausal symptoms or reducing the risk of certain cancers, cardiovascular disease or diabetes. The effects of PE on the organism are mediated by the intestinal microbiota, which transforms them into bioactive PE such as genistein, equol, enterolignans and certain urolithins. In this work, we review the most recent findings about the bacteria able to metabolize PE, together with the latest studies on the effects of PE on health. In addition, we describe the possible factors hindering the demonstration of the beneficial effect of PE on health, evincing the importance of measuring the actual circulating PE in order to encompass the variability of PE metabolism due to the intestinal microbiota. With this in mind, we also explore an approach to ensure the access to bioactive PE.
Collapse
Affiliation(s)
- Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Daniel Bravo
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - José M Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
42
|
Hålldin E, Eriksen AK, Brunius C, da Silva AB, Bronze M, Hanhineva K, Aura AM, Landberg R. Factors Explaining Interpersonal Variation in Plasma Enterolactone Concentrations in Humans. Mol Nutr Food Res 2019; 63:e1801159. [PMID: 30817848 PMCID: PMC7317467 DOI: 10.1002/mnfr.201801159] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/15/2019] [Indexed: 11/25/2022]
Abstract
Lignans are diphenolic plant compounds with potential health modulating properties that are absorbed to the circulation and metabolized to the enterolignans enterodiol (END) and enterolactone (ENL) by gut microbiota. Epidemiological studies have inconsistently shown that a high lignan intake and circulating ENL are associated with reduced risk of breast‐, prostate‐, and colorectal cancer as well as cardiovascular disease and total and cause‐specific mortality. Inconsistencies can be due to interpersonal variation of ENL formation or responses. The aim of this review is to identify and evaluate the impact of factors influencing variability in plasma concentrations of the main enterolignan, ENL. The main determinants of plasma ENL concentrations are intake of lignan and lignan‐rich foods, composition and activity of intestinal microflora, antimicrobial use, nutrient intake, BMI, smoking, sex, and age. Composition and activity of the intestinal microbiota appear to be the most critical factor governing interpersonal variability in plasma ENL concentration followed by the use of antibiotics. Future studies with combined data from gut microbiota and metabolomics with food intake and life style data can be used to estimate the relative contribution of the different factors to ENL concentration in quantitative terms.
Collapse
Affiliation(s)
- Elin Hålldin
- Department of Molecular Science, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Anne Kirstine Eriksen
- Department of Molecular Science, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.,Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, DK, 2100, Copenhagen Ø, Denmark
| | - Carl Brunius
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Andreia Bento da Silva
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,Faculty of Pharmacy of the University of Lisbon, Portugal
| | - Maria Bronze
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,Faculty of Pharmacy of the University of Lisbon, Portugal.,Instituto de Biologia Experimental Tecnológica (iBET), Apartado 12, 2781-901, Oeiras, Portugal
| | - Kati Hanhineva
- LC-MS Metabolomics Center, Kuopio, Finland.,Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd, Post Office Box 1000, Tietotie 2, Espoo, FI-02044 VTT, Finland
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
43
|
De Bruyne T, Steenput B, Roth L, De Meyer GRY, Santos CND, Valentová K, Dambrova M, Hermans N. Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabolism. Nutrients 2019; 11:E578. [PMID: 30857217 PMCID: PMC6471395 DOI: 10.3390/nu11030578] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Increased arterial stiffness is a degenerative vascular process, progressing with age that leads to a reduced capability of arteries to expand and contract in response to pressure changes. This progressive degeneration mainly affects the extracellular matrix of elastic arteries and causes loss of vascular elasticity. Recent studies point to significant interference of dietary polyphenols with mechanisms involved in the pathophysiology and progression of arterial stiffness. This review summarizes data from epidemiological and interventional studies on the effect of polyphenols on vascular stiffness as an illustration of current research and addresses possible etiological factors targeted by polyphenols, including pathways of vascular functionality, oxidative status, inflammation, glycation, and autophagy. Effects can either be inflicted directly by the dietary polyphenols or indirectly by metabolites originated from the host or microbial metabolic processes. The composition of the gut microbiome, therefore, determines the resulting metabolome and, as a consequence, the observed activity. On the other hand, polyphenols also influence the intestinal microbial composition, and therefore the metabolites available for interaction with relevant targets. As such, targeting the gut microbiome is another potential treatment option for arterial stiffness.
Collapse
Affiliation(s)
- Tess De Bruyne
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| | - Bieke Steenput
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium.
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium.
| | - Claudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia.
| | - Nina Hermans
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| |
Collapse
|
44
|
Rodríguez-García C, Sánchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019; 24:E917. [PMID: 30845651 PMCID: PMC6429205 DOI: 10.3390/molecules24050917] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary guidelines universally advise adherence to plant-based diets. Plant-based foods confer considerable health benefits, partly attributable to their abundant micronutrient (e.g., polyphenol) content. Interest in polyphenols is largely focused on the contribution of their antioxidant activity to the prevention of various disorders, including cardiovascular disease and cancer. Polyphenols are classified into groups, such as stilbenes, flavonoids, phenolic acids, lignans and others. Lignans, which possess a steroid-like chemical structure and are defined as phytoestrogens, are of particular interest to researchers. Traditionally, health benefits attributed to lignans have included a lowered risk of heart disease, menopausal symptoms, osteoporosis and breast cancer. However, the intake of naturally lignan-rich foods varies with the type of diet. Consequently, based on the latest humans' findings and gathered information on lignan-rich foods collected from Phenol Explorer database this review focuses on the potential health benefits attributable to the consumption of different diets containing naturally lignan-rich foods. Current evidence highlight the bioactive properties of lignans as human health-promoting molecules. Thus, dietary intake of lignan-rich foods could be a useful way to bolster the prevention of chronic illness, such as certain types of cancers and cardiovascular disease.
Collapse
Affiliation(s)
- Carmen Rodríguez-García
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
| | - Cristina Sánchez-Quesada
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- Agri-food Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Miguel Delgado-Rodríguez
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - José J Gaforio
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- Agri-food Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
45
|
Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules 2018; 23:molecules23123251. [PMID: 30544820 PMCID: PMC6321438 DOI: 10.3390/molecules23123251] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/12/2023] Open
Abstract
The study aims to communicate the current status regarding the development and management of the databases on dietary lignans; within the phytochemicals, the class of the lignan compounds is of increasing interest because of their potential beneficial properties, i.e., anticancerogenic, antioxidant, estrogenic, and antiestrogenic activities. Furthermore, an introductory overview of the main characteristics of the lignans is described here. In addition to the importance of the general databases, the role and function of a food composition database is explained. The occurrence of lignans in food groups is described; the initial construction of the first lignan databases and their inclusion in harmonized databases at national and/or European level is presented. In this context, some examples of utilization of specific databases to evaluate the intake of lignans are reported and described.
Collapse
|
46
|
Charytoniuk T, Iłowska N, Berk K, Drygalski K, Chabowski A, Konstantynowicz-Nowicka K. The effect of enterolactone on sphingolipid pathway and hepatic insulin resistance development in HepG2 cells. Life Sci 2018; 217:1-7. [PMID: 30468835 DOI: 10.1016/j.lfs.2018.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022]
Abstract
AIMS Obesity and type 2 diabetes mellitus, correlate with increased tissue concentration of sphingolipids, which directly interfere with insulin signaling pathway. Phytoestrogens are a group of plant-derived compounds that have been studied in the case of metabolic disorders treatment. Therefore, the aim of this study was to ascertain whether enterolactone (ENL), a commonly known phytoestrogen, may affect sphingolipid metabolism and decrease hepatic insulin resistance development in a lipid overload state. MAIN METHODS The study was conducted on HepG2 cells incubated with ENL and/or palmitic acid (PA) for 16 h. Intra- and extracellular sphingolipid concentrations were assessed by high performance liquid chromatography. The expression of sphingolipid pathway enzymes, apoptosis and insulin signaling pathway proteins and glucose metabolism regulators were evaluated by Western Blot. KEY FINDINGS In HepG2 cells, a considerable augmentation of intracellular ceramide and sphingosine concentration in ENL with PA group were indicated with simultaneous increase in extracellular ceramide concentration. The ENL treatment increased expression of selected enzymes from de novo ceramide synthesis pathway with lower expression of ceramide transfer protein. We also observed a decreased expression of insulin-stimulated phosphorylation of AKT and AMPK after exposure to ENL with PA. Our research demonstrated that ENL with PA resulted in an increased expression of caspase-3. SIGNIFICANCE Enterolactone, in a higher fatty acids availability, led to the development of hepatic IR in HepG2 cells. This phenomenon may be the result of elevated intracellular ceramide accumulation caused by increased de novo synthesis pathway what led to enhanced apoptosis of HepG2 cells.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Nicoletta Iłowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Klaudia Berk
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Krzysztof Drygalski
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | | |
Collapse
|
47
|
Are Total and Individual Dietary Lignans Related to Cardiovascular Disease and Its Risk Factors in Postmenopausal Women? A Nationwide Study. Nutrients 2018; 10:nu10070865. [PMID: 29973570 PMCID: PMC6073341 DOI: 10.3390/nu10070865] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/14/2023] Open
Abstract
The study objectives were to examine total and individual lignan intakes and their dietary sources in postmenopausal Polish women and to investigate the relationship between lignan intake and the prevalence of cardiovascular disease (CVD), hypertension, hypercholesterolemia and central obesity. A total of 2599 postmenopausal women, participants of the Multi-centre National Population Health Examination Surveys (WOBASZ and WOBASZ II) were selected. Of them, 916 had a history of CVD. Nutritional data were collected using a single 24-h dietary recall. Data on lignan content in food, i.e., lariciresinol (LARI), matairesinol (MAT), pinoresinol (PINO) and secoisolariciresinol (SECO), were collected from the available lignan databases. In postmenopausal women, total and individual lignan intakes (SECO, PINO, MAT) were not associated with the prevalence of CVD and its risk factors. The intake of LARI was linked by 30% to the reduced odds for hypercholestrolemia. This study reinforces the existing concept that dietary total lignans are not associated with the prevalence of CVD, and provides further evidence that they are not linked to CVD risk factors such as hypertension, hypercholesterolemia and central obesity. However, the intake of LARI should be taken into consideration in further studies with regard to its potentially beneficial effect in hypercholesterolemia.
Collapse
|
48
|
Rienks J, Barbaresko J, Oluwagbemigun K, Schmid M, Nöthlings U. Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. Am J Clin Nutr 2018; 108:49-61. [PMID: 29931039 DOI: 10.1093/ajcn/nqy083] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Background Type 2 diabetes is characterized by impaired glucose metabolism. Bioactive compounds in fruits and vegetables such as polyphenols have been suggested to influence glucose metabolism. Objective The aim of the current study was to systematically review the literature and conduct dose-response meta-analyses to summarize evidence of polyphenol exposure in association with incident type 2 diabetes. Design Prospective epidemiologic studies published before January 2018 were searched through 2 databases. Log-transformed multivariable adjusted hazard and odds ratios were combined in a random-effects model. Meta-analyses comparing extreme quantiles of polyphenol exposure were further explored with the use of linear and nonlinear dose-response meta-analyses. Results Eighteen studies investigated the association between polyphenols (51 different compounds in total) and type 2 diabetes. A comparison of extreme quantiles revealed inverse associations for intakes of polyphenols (HR: 0.56; 95% CI: 0.34, 0.93), flavonoids (HR: 0.88; 95% CI: 0.81, 0.96), flavonols (HR: 0.92; 95% CI: 0.85, 0.98), flavan-3-ols (HR: 0.89; 95% CI: 0.81, 0.99), catechins (HR: 0.86; 95% CI: 0.75, 0.97), anthocyanidins (HR: 0.86; 95% CI: 0.81, 0.91), isoflavones (HR: 0.92; 0.86, 0.97), daidzein (HR: 0.89; 95% CI: 0.83, 0.95), genistein (HR: 0.92; 95% CI: 0.86, 0.99), and stilbenes (HR: 0.44; 95% CI: 0.26, 0.72), and biomarkers of daidzein (HR: 0.81; 95% CI: 0.66, 0.99) and genistein (HR: 0.79; 95% CI: 0.62, 0.99). In the dose-response meta-analysis, nonlinear associations were observed for intakes of polyphenols, flavonoids, flavanones, anthocyanidins, anthocyanins, and biomarkers of genistein. A linear dose-response association was observed for phenolic acids. Conclusions This study adds to the evidence showing that diets rich in polyphenols, and particularly flavonoids, play a role in the prevention of type 2 diabetes. For most associations evidence for nonlinearity was found, suggesting a recommendable amount of intake associated with the lowest risk of type 2 diabetes. Therefore, future studies are warranted in which nonlinear associations are further explored.
Collapse
Affiliation(s)
- Johanna Rienks
- University of Bonn, Department of Nutrition and Food Sciences, Nutritional Epidemiology, Bonn, North Rhine-Westphalia, Germany
| | - Janett Barbaresko
- University of Bonn, Department of Nutrition and Food Sciences, Nutritional Epidemiology, Bonn, North Rhine-Westphalia, Germany
| | - Kolade Oluwagbemigun
- University of Bonn, Department of Nutrition and Food Sciences, Nutritional Epidemiology, Bonn, North Rhine-Westphalia, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Ute Nöthlings
- University of Bonn, Department of Nutrition and Food Sciences, Nutritional Epidemiology, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
49
|
Banerjee A, Dhar P. Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 2018; 59:2903-2926. [PMID: 29787290 DOI: 10.1080/10408398.2018.1478795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The residing microbiome with its vast repertoire of genes provide distinctive properties to the host by which they can degrade and utilise nutrients that otherwise pass the gastro-intestinal tract unchanged. The polyphenols in our diet have selective growth promoting effects which is of utmost importance as the state of good health has been linked to dominance of particular microbial genera. The polyphenols in native form might more skilfully exert anti-oxidative and anti-inflammatory properties but in a living system it is the microbial derivatives of polyphenol that play a key role in determining health outcome. This two way interaction has invoked great interest among researchers who have commenced several clinical surveys and numerous studies in in-vitro, simulated environment and living systems to find out in detail about the biomolecules involved in such interaction along with their subsequent physiological benefits. In this review, we have thoroughly discussed these studies to develop a fair idea on how the amalgamation of probiotics and polyphenol has an immense potential as an adjuvant therapeutic for disease prevention as well as treatment.
Collapse
Affiliation(s)
- Arpita Banerjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| |
Collapse
|
50
|
Liu S, Sun Q. Sex differences, endogenous sex-hormone hormones, sex-hormone binding globulin, and exogenous disruptors in diabetes and related metabolic outcomes. J Diabetes 2018; 10:428-441. [PMID: 27990781 DOI: 10.1111/1753-0407.12517] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022] Open
Abstract
In assessing clinical and pathophysiological development of type 2 diabetes (T2D), the critical role of the sex steroids axis is underappreciated, particularly concerning the sex-specific relationships with many relevant cardiometabolic outcomes. In this issue of the Journal of Diabetes, we provide a comprehensive overview of these significant associations of germline variants in the genes governing the sex steroid pathways, plasma levels of steroid hormones, and sex hormone-binding globulin (SHBG) with T2D risk that have been observed in many clinical and high-quality large prospective cohorts of men and women across ethnic populations. Together, this body of evidence indicates that sex steroids and SHBG should be routinely incorporated into clinical characterization of T2D patients, particularly in screening prediabetic patients, such as those with metabolic syndrome, using plasma levels of SHBG. Given that several germline mutations in the SHBG gene have also been directly related to both plasma concentrations of SHBG and clinical manifestation of T2D, targeting signals in the sex steroid axis, particularly SHBG, may have significant utility in the prediction and treatment of T2D. Further, many of the environmental endocrine disrupting chemicals may exert their potential adverse effects on cardiometabolic outcomes via either estrogenic or androgenic signaling pathways, highlighting the importance of using the sex steroids and SHBG as important biochemical markers in both clinical and population studies in studying sex-specific mechanisms in the pathogenesis of T2D and its complications, as well as the need to equitably allocate resources in studying both men and women.
Collapse
Affiliation(s)
- Simin Liu
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- Departments of Epidemiology, Brown University, Providence, Rhode Island, USA
- Departments of Medicine, Brown University, Providence, Rhode Island, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, Rhode Island, USA
- Departments of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qi Sun
- Departments of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|