1
|
Porret R, Alcaraz-Serna A, Peter B, Bernier-Latmani J, Cecchin R, Alfageme-Abello O, Ermellino L, Hafezi M, Pace E, du Pré MF, Lana E, Golshayan D, Velin D, Eyquem J, Tang Q, Petrova TV, Coukos G, Irving M, Pot C, Pantaleo G, Sollid LM, Muller YD. T cell receptor precision editing of regulatory T cells for celiac disease. Sci Transl Med 2025; 17:eadr8941. [PMID: 40106579 DOI: 10.1126/scitranslmed.adr8941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Celiac disease, a gluten-sensitive enteropathy, demonstrates a strong human leukocyte antigen (HLA) association, with more than 90% of patients carrying the HLA-DQ2.5 allotype. No therapy is available for the condition except for a lifelong gluten-free diet. To address this gap, we explored the therapeutic potential of regulatory T cells (Tregs). By orthotopic replacement of T cell receptors (TCRs) through homology-directed repair, we generated gluten-reactive HLA-DQ2.5-restricted CD4+ engineered (e) T effector cells (Teffs) and eTregs and performed in vivo experiments in HLA-DQ2.5 transgenic mice. Of five validated TCRs, TCRs specific for two immunodominant and deamidated gluten epitopes (DQ2.5-glia-α1a and DQ2.5-glia-α2) were selected for further evaluation. CD4+ eTeffs exposed to deamidated gluten through oral gavage colocalized with dendritic and B cells in the Peyer's patches and gut-draining lymph nodes and specifically migrated to the intestine. The suppressive function of human eTregs correlated with high TCR functional activity. eTregs specific for one epitope suppressed the proliferation and gut migration of CD4+ eTeffs specific for the same and the other gluten epitope, demonstrating bystander suppression. The suppression requires an antigen-specific activation of eTregs given that polyclonal Tregs failed to suppress CD4+ eTeffs. These findings highlight the potential of gluten-reactive eTregs as a therapeutic for celiac disease.
Collapse
Affiliation(s)
- Raphaël Porret
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ana Alcaraz-Serna
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Rebecca Cecchin
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Oscar Alfageme-Abello
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Laura Ermellino
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Morteza Hafezi
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Eleonora Pace
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - M Fleur du Pré
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Erica Lana
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dela Golshayan
- Transplantation Center, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Justin Eyquem
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tatiana V Petrova
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Yannick D Muller
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
- Centre for Human Immunology Lausanne, Lausanne CH-1005, Switzerland
| |
Collapse
|
2
|
Mitchell JS, Spanier JA, Dwyer AJ, Knutson TP, Alkhatib MH, Qian G, Weno ME, Chen Y, Shaheen ZR, Tucker CG, Kangas TO, Morales MS, Silva N, Kaisho T, Farrar MA, Fife BT. CD4 + T cells reactive to a hybrid peptide from insulin-chromogranin A adopt a distinct effector fate and are pathogenic in autoimmune diabetes. Immunity 2024; 57:2399-2415.e8. [PMID: 39214091 DOI: 10.1016/j.immuni.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
T cell-mediated islet destruction is a hallmark of autoimmune diabetes. Here, we examined the dynamics and pathogenicity of CD4+ T cell responses to four different insulin-derived epitopes during diabetes initiation in non-obese diabetic (NOD) mice. Single-cell RNA sequencing of tetramer-sorted CD4+ T cells from the pancreas revealed that islet-antigen-specific T cells adopted a wide variety of fates and required XCR1+ dendritic cells for their activation. Hybrid-insulin C-chromogranin A (InsC-ChgA)-specific CD4+ T cells skewed toward a distinct T helper type 1 (Th1) effector phenotype, whereas the majority of insulin B chain and hybrid-insulin C-islet amyloid polypeptide-specific CD4+ T cells exhibited a regulatory phenotype and early or weak Th1 phenotype, respectively. InsC-ChgA-specific CD4+ T cells were uniquely pathogenic upon transfer, and an anti-InsC-ChgA:IAg7 antibody prevented spontaneous diabetes. Our findings highlight the heterogeneity of T cell responses to insulin-derived epitopes in diabetes and argue for the feasibility of antigen-specific therapies that blunts the response of pathogenic CD4+ T cells causing autoimmunity.
Collapse
Affiliation(s)
- Jason S Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Justin A Spanier
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA; Center for Autoimmune Disease Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander J Dwyer
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Todd P Knutson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mohannad H Alkhatib
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Gina Qian
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Matthew E Weno
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Yixin Chen
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Zachary R Shaheen
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, Division of Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Christopher G Tucker
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Takashi O Kangas
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Milagros Silva Morales
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Nubia Silva
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Tsuneyasu Kaisho
- Department of Immunology Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA; Center for Autoimmune Disease Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Faust MA, Gibbs L, Oviedo JM, Cornwall DH, Fairfax KC, Zhou Z, Lamb TJ, Evavold BD. B Cells Influence Encephalitogenic T Cell Frequency to Myelin Oligodendrocyte Glycoprotein (MOG)38-49 during Full-length MOG Protein-Induced Demyelinating Disease. Immunohorizons 2024; 8:729-739. [PMID: 39330967 PMCID: PMC11447661 DOI: 10.4049/immunohorizons.2400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Although T cells are encephalitogenic during demyelinating disease, B cell-depleting therapies are a successful treatment for patients with multiple sclerosis. Murine models of demyelinating disease utilizing myelin epitopes, such as myelin oligodendrocyte glycoprotein (MOG)35-55, induce a robust CD4 T cell response but mitigate the contribution of pathological B cells. This limits their efficacy for investigating how B cell depletion affects T cells. Furthermore, induction of experimental autoimmune encephalomyelitis with a single CD4 T cell epitope does not reflect the breadth of epitopes observed in the clinic. To better model the adaptive immune response, mice were immunized with the full-length MOG protein or the MOG1-125 extracellular domain (ECD) and compared with MOG35-55. Mature MOG-reactive B cells were generated only by full-length MOG or ECD. The CNS-localized T cell response induced by full-length MOG is characterized by a reduction in frequency and the percentage of low-affinity T cells with reactivity toward the core epitope of MOG35-55. B cell depletion with anti-CD20 before full-length MOG-induced, but not ECD-induced, demyelinating disease restored T cell reactivity toward the immunodominant epitope of MOG35-55, suggesting the B cell-mediated control of encephalitogenic epitopes. Ultimately, this study reveals that anti-CD20 treatment can influence T cell epitopes found in the CNS during demyelinating disease.
Collapse
Affiliation(s)
- Michael A. Faust
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Lisa Gibbs
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Juan M. Oviedo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Douglas H. Cornwall
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Keke C. Fairfax
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Zemin Zhou
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tracey J. Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Brian D. Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
4
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
5
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Spanier JA, Fung V, Wardell CM, Alkhatib MH, Chen Y, Swanson LA, Dwyer AJ, Weno ME, Silva N, Mitchell JS, Orban PC, Mojibian M, Verchere CB, Fife BT, Levings MK. Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. J Clin Invest 2023; 133:e168601. [PMID: 37561596 PMCID: PMC10503798 DOI: 10.1172/jci168601] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Adoptive immunotherapy with Tregs is a promising approach for preventing or treating type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B chain 10-23 peptide presented in the context of the IAg7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR redirected NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Cotransfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In WT NOD mice, InsB-g7 CAR Tregs prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising therapeutic approach for the prevention of autoimmune diabetes.
Collapse
Affiliation(s)
- Justin A. Spanier
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vivian Fung
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine M. Wardell
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohannad H. Alkhatib
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Yixin Chen
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Linnea A. Swanson
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Alexander J. Dwyer
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Matthew E. Weno
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Nubia Silva
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jason S. Mitchell
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Paul C. Orban
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - C. Bruce Verchere
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian T. Fife
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan K. Levings
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Sun F, Yang CL, Wang FX, Rong SJ, Luo JH, Lu WY, Yue TT, Wang CY, Liu SW. Pancreatic draining lymph nodes (PLNs) serve as a pathogenic hub contributing to the development of type 1 diabetes. Cell Biosci 2023; 13:156. [PMID: 37641145 PMCID: PMC10464122 DOI: 10.1186/s13578-023-01110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained β cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN-centered view of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or peripheral circulation, undergo immune remodeling within the local microenvironment and export effector cell components into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory β cell damage, enhance gut integrity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the outputs of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Fei Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Devision of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Faust MA, Rasé VJ, Lamb TJ, Evavold BD. What's the Catch? The Significance of Catch Bonds in T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:333-342. [PMID: 37459191 PMCID: PMC10732538 DOI: 10.4049/jimmunol.2300141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 07/20/2023]
Abstract
One of the main goals in T cell biology has been to investigate how TCR recognition of peptide:MHC (pMHC) determines T cell phenotype and fate. Ag recognition is required to facilitate survival, expansion, and effector function of T cells. Historically, TCR affinity for pMHC has been used as a predictor for T cell fate and responsiveness, but there have now been several examples of nonfunctional high-affinity clones and low-affinity highly functional clones. Recently, more attention has been paid to the TCR being a mechanoreceptor where the key biophysical determinant is TCR bond lifetime under force. As outlined in this review, the fundamental parameters between the TCR and pMHC that control Ag recognition and T cell triggering are affinity, bond lifetime, and the amount of force at which the peak lifetime occurs.
Collapse
Affiliation(s)
- Michael A Faust
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Viva J Rasé
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tracey J Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
9
|
Spanier JA, Fung V, Wardell CM, Alkhatib MH, Chen Y, Swanson LA, Dwyer AJ, Weno ME, Silva N, Mitchell JS, Orban PC, Mojibian M, Verchere CB, Fife BT, Levings MK. Insulin B peptide-MHC class II-specific chimeric antigen receptor-Tregs prevent autoimmune diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529737. [PMID: 36865264 PMCID: PMC9980092 DOI: 10.1101/2023.02.23.529737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Adoptive immunotherapy with Tregs is a promising approach for prevention or treatment of type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B-chain 10-23 peptide presented in the context of the IA g7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR re-directed NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Co-transfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In wild type NOD mice, InsB-g7 CAR Tregs stably expressed Foxp3 and prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising new therapeutic approach for the prevention of autoimmune diabetes. Brief Summary Chimeric antigen receptor Tregs specific for an insulin B-chain peptide presented by MHC class II prevent autoimmune diabetes.
Collapse
Affiliation(s)
- Justin A. Spanier
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Vivian Fung
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christine M. Wardell
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mohannad H. Alkhatib
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yixin Chen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Linnea A. Swanson
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexander J. Dwyer
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew E. Weno
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nubia Silva
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jason S. Mitchell
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Paul C. Orban
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Majid Mojibian
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - C. Bruce Verchere
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Brian T. Fife
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Megan K. Levings
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Jing Y, Kong Y, Allard D, Liu B, Kolawole E, Sprouse M, Evavold B, Bettini M, Bettini M. Increased TCR signaling in regulatory T cells is disengaged from TCR affinity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.523999. [PMID: 36711832 PMCID: PMC9882247 DOI: 10.1101/2023.01.17.523999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) are capable suppressors of aberrant self-reactivity. However, TCR affinity and specificities that support Treg function, and how these compare to autoimmune T cells remain unresolved. In this study, we used antigen agnostic and epitope-focused analyses to compare TCR repertoires of regulatory and effector T cells that spontaneously infiltrate pancreatic islets of non-obese diabetic mice. We show that effector and regulatory T cell-derived TCRs possess similar wide-ranging reactivity for self-antigen. Treg-derived TCRs varied in their capacity to confer optimal protective function, and Treg suppressive capacity was in part determined by effector TCR affinity. Interestingly, when expressing the same TCR, Tregs showed higher Nur77-GFP expression than Teffs, suggesting Treg-intrinsic ability to compete for antigen. Our findings provide a new insight into TCR-dependent and independent mechanisms that regulate Treg function and indicate a TCR-intrinsic insufficiency in tissue-specific Tregs that may contribute to the pathogenesis of type 1 diabetes.
Collapse
|
11
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
12
|
Kong Y, Jing Y, Allard D, Scavuzzo MA, Sprouse ML, Borowiak M, Bettini ML, Bettini M. A dormant T cell population with autoimmune potential exhibits low self-reactivity and infiltrates islets in type 1 diabetes. Eur J Immunol 2022; 52:1158-1170. [PMID: 35389516 DOI: 10.1002/eji.202149690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
The contribution of low affinity T cells to autoimmunity in the context of polyclonal T cell responses is understudied due to the limitations in their capture by tetrameric reagents and low level of activation in response to antigenic stimulation. As a result, low affinity T cells are often disregarded as non-antigen specific cells irrelevant to the immune response. Our study aimed to assess how the level of self-antigen reactivity shapes T cell lineage and effector responses in the context of spontaneous tissue specific autoimmunity observed in NOD mice. Using multi-color flow cytometry in combination with Nur77GFP reporter of TCR signaling we identified a dormant population of T cells that infiltrated the pancreatic islets of pre-diabetic NOD mice, which exhibited reduced level of self-tissue reactivity based on expression of CD5 and Nur77GFP . We showed that these CD5low T cells had a unique TCR repertoire, exhibited low activation and minimal effector function; however, induced rapid diabetes upon transfer. The CD4+ CD5low T cell population displayed transcriptional signature of central memory T cells, consistent with the ability to acquire effector function post-transfer. Transcriptional profile of CD5low T cells was similar to T cells expressing a low affinity TCR, indicating TCR affinity to be the important factor in shaping CD5low T cell phenotype and function at the tissue site. Overall, our study suggests that autoimmune tissue can maintain a reservoir of undifferentiated central memory-like autoreactive T cells with pathogenic effector potential that might be an important source for effector T cells during long-term chronic autoimmunity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuelin Kong
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030
| | - Yi Jing
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Maran L Sprouse
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,McNair Medical Institute, Houston, TX, 77030
| | - Matthew L Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112.,McNair Medical Institute, Houston, TX, 77030
| | - Maria Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112.,McNair Medical Institute, Houston, TX, 77030
| |
Collapse
|
13
|
Herold Z, Doleschall M, Somogyi A. Role and function of granin proteins in diabetes mellitus. World J Diabetes 2021; 12:1081-1092. [PMID: 34326956 PMCID: PMC8311481 DOI: 10.4239/wjd.v12.i7.1081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The granin glycoprotein family consists of nine acidic proteins; chromogranin A (CgA), chromogranin B (CgB), and secretogranin II-VIII. They are produced by a wide range of neuronal, neuroendocrine, and endocrine cells throughout the human body. Their major intracellular function is to sort peptides and proteins into secretory granules, but their cleavage products also take part in the extracellular regulation of diverse biological processes. The contribution of granins to carbohydrate metabolism and diabetes mellitus is a recent research area. CgA is associated with glucose homeostasis and the progression of type 1 diabetes. WE-14, CgA10-19, and CgA43-52 are peptide derivates of CgA, and act as CD4+ or CD8+ autoantigens in type 1 diabetes, whereas pancreastatin (PST) and catestatin have regulatory effects in carbohydrate metabolism. Furthermore, PST is related to gestational and type 2 diabetes. CgB has a crucial role in physiological insulin secretion. Secretogranins II and III have angiogenic activity in diabetic retinopathy (DR), and are novel targets in recent DR studies. Ongoing studies are beginning to investigate the potential use of granin derivatives as drugs to treat diabetes based on the divergent relationships between granins and different types of diabetes.
Collapse
Affiliation(s)
- Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest 1083, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| | - Marton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest 1089, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
14
|
Bettini M, Bettini ML. Function, Failure, and the Future Potential of Tregs in Type 1 Diabetes. Diabetes 2021; 70:1211-1219. [PMID: 34016597 PMCID: PMC8275894 DOI: 10.2337/dbi18-0058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
Critical insights into the etiology of type 1 diabetes (T1D) came from genome-wide association studies that unequivocally connected genetic susceptibility to immune cell function. At the top of the susceptibility are genes involved in regulatory T-cell (Treg) function and development. The advances in epigenetic and transcriptional analyses have provided increasing evidence for Treg dysfunction in T1D. These are well supported by functional studies in mouse models and analysis of peripheral blood during T1D. For these reasons, Treg-based therapies are at the forefront of research and development and have a tangible probability to deliver a long-sought-after successful immune-targeted treatment for T1D. The current challenge in the field is whether we can directly assess Treg function at the tissue site or make informative interpretations based on peripheral data. Future studies focused on Treg function in pancreatic lymph nodes and pancreas could provide key insight into the ultimate mechanisms underlying Treg failure in T1D. In this Perspective we will provide an overview of current literature regarding Treg development and function in T1D and how this knowledge has been applied to Treg therapies.
Collapse
MESH Headings
- Animals
- Autoimmunity/physiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Endocrinology/methods
- Endocrinology/trends
- Humans
- Immune Tolerance/physiology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Mice
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Pancreas/immunology
- Pancreas/metabolism
- Pancreas/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/physiology
- T-Lymphocytes, Regulatory/transplantation
Collapse
Affiliation(s)
- Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Matthew L Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
15
|
Felton JL, Conway H, Bonami RH. B Quiet: Autoantigen-Specific Strategies to Silence Raucous B Lymphocytes and Halt Cross-Talk with T Cells in Type 1 Diabetes. Biomedicines 2021; 9:biomedicines9010042. [PMID: 33418839 PMCID: PMC7824835 DOI: 10.3390/biomedicines9010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Islet autoantibodies are the primary biomarkers used to predict type 1 diabetes (T1D) disease risk. They signal immune tolerance breach by islet autoantigen-specific B lymphocytes. T-B lymphocyte interactions that lead to expansion of pathogenic T cells underlie T1D development. Promising strategies to broadly prevent this T-B crosstalk include T cell elimination (anti-CD3, teplizumab), B cell elimination (anti-CD20, rituximab), and disruption of T cell costimulation/activation (CTLA-4/Fc fusion, abatacept). However, global disruption or depletion of immune cell subsets is associated with significant risk, particularly in children. Therefore, antigen-specific therapy is an area of active investigation for T1D prevention. We provide an overview of strategies to eliminate antigen-specific B lymphocytes as a means to limit pathogenic T cell expansion to prevent beta cell attack in T1D. Such approaches could be used to prevent T1D in at-risk individuals. Patients with established T1D would also benefit from such targeted therapies if endogenous beta cell function can be recovered or islet transplant becomes clinically feasible for T1D treatment.
Collapse
Affiliation(s)
- Jamie L. Felton
- Department of Pediatrics, Division of Pediatric Endocrinology and the Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA; (J.L.F.); (H.C.)
| | - Holly Conway
- Department of Pediatrics, Division of Pediatric Endocrinology and the Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA; (J.L.F.); (H.C.)
| | - Rachel H. Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
16
|
Kolawole EM, Lamb TJ, Evavold BD. Relationship of 2D Affinity to T Cell Functional Outcomes. Int J Mol Sci 2020; 21:E7969. [PMID: 33120989 PMCID: PMC7662510 DOI: 10.3390/ijms21217969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are critical for a functioning adaptive immune response and a strong correlation exists between T cell responses and T cell receptor (TCR): peptide-loaded MHC (pMHC) binding. Studies that utilize pMHC tetramer, multimers, and assays of three-dimensional (3D) affinity have provided advancements in our understanding of T cell responses across different diseases. However, these technologies focus on higher affinity and avidity T cells while missing the lower affinity responders. Lower affinity TCRs in expanded polyclonal populations almost always constitute a significant proportion of the response with cells mediating different effector functions associated with variation in the proportion of high and low affinity T cells. Since lower affinity T cells expand and are functional, a fully inclusive view of T cell responses is required to accurately interpret the role of affinity for adaptive T cell immunity. For example, low affinity T cells are capable of inducing autoimmune disease and T cells with an intermediate affinity have been shown to exhibit an optimal anti-tumor response. Here, we focus on how affinity of the TCR may relate to T cell phenotype and provide examples where 2D affinity influences functional outcomes.
Collapse
Affiliation(s)
| | | | - Brian D. Evavold
- Department of Pathology, University of Utah, 15 N Medical Drive, Salt Lake City, UT 84112, USA; (E.M.K.); (T.J.L.)
| |
Collapse
|