1
|
Niu D, Wu X, Zhang Y, Wang X, Shiu-Hin Chan D, Jing S, Wong CY, Wang W, Leung CH. Tailoring obeticholic acid activity by iridium(III) complex conjugation to develop a farnesoid X receptor probe. J Adv Res 2025; 71:307-316. [PMID: 39490736 DOI: 10.1016/j.jare.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION The farnesoid X receptor (FXR) is a crucial regulator in the intestine, maintaining bile acid homeostasis. Inhibiting intestinal FXR shows promise in managing inflammatory bowel and liver diseases by reducing bile acid accumulation. Additionally, changes in FXR expression could serve as a potential biomarker for intestinal diseases. Therefore, developing an imaging probe for FXR holds significant potential for the early detection, simultaneous treatment, and monitoring of FXR-related diseases. OBJECTIVES The study aimed to develop a bioimaging probe for FXR by conjugating obeticholic acid (OCA), an FXR agonist, to an iridium(III) complex, and to investigate its application for targeting FXR in intestinal cells. METHODS OCA was conjugated to an iridium(III) complex to generate the novel complex 1. The effect of complex 1 on FXR activity, nuclear translocation, and downstream targets was investigated in intestinal epithelial cells using various biochemical and cellular assays. Additionally, the photophysical properties of complex 1 were assessed for FXR imaging. RESULTS Complex 1 retained the desirable photophysical properties for monitoring FXR in intestinal cells while reversing OCA's activity from agonistic to antagonistic. It disrupted FXR-RXR heterodimerization, inhibited FXR nuclear translocation, and downregulated downstream targets responsible for bile acid absorption, transport, and metabolism in intestinal epithelial cells. CONCLUSION The study successfully developed an imaging probe and modulator of FXR by conjugating OCA to an iridium(III) complex. Complex 1 retained the favorable photophysical properties of the iridium(III) complex, while reversing OCA's activity from agonistic to antagonistic. The findings highlight the exciting application of using metals to tailor the activity of nuclear receptor modulators in living systems.
Collapse
Affiliation(s)
- Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiaolei Wu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Yuxin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | | | - Shaozhen Jing
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
2
|
Li T, Fu C, Tang Z, Li C, Hua D, Liu B, Tao Z, Yang J, Zhang L, Cheng T, Wang S, Ning G, Gu Y. Disentangling Organ-Specific Roles of Farnesoid X Receptor in Bile Acid and Glucolipid Metabolism. Liver Int 2025; 45:e70027. [PMID: 40052709 PMCID: PMC11887529 DOI: 10.1111/liv.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND AND AIMS The farnesoid X receptor (FXR) is an attractive pharmaceutical target for metabolic dysfunction-associated steatotic liver disease (MASLD). However, its tissue-specific roles in energy metabolism remain controversial, hindering the development of effective therapies. To address this, new approaches are required. METHODS A novel mouse model was developed to facilitate the re-expression of endogenous FXR in specific tissues on a global FXR-null background. Liver-specific and gut-specific FXR re-expression models were generated. Mice were subjected to a high-fat diet (HFD) for 12 weeks, after which metabolic indices, bile acid (BA) profiles, and gut microbiota composition were analysed. Antibiotic treatment was used to mimic germ-free conditions. RESULTS The resistance of FXR-null mice to MASLD and most HFD-induced metabolic disorders, including increased body weight, adiposity, hepatic triglyceride (TG) accumulation, and hyperglycemia, was reversed by liver, but not gut, FXR re-expression. Gut FXR re-expression restored the increased intestinal TG absorption in FXR-null mice by limiting 12OH BA synthesis and inhibiting intestinal microsomal triglyceride transfer protein (MTTP). Moreover, gut FXR activity was essential for gut microbiota-driven promotion of diet-induced obesity (DIO) and MASLD. CONCLUSIONS Our study overcomes the limitations of traditional tissue-specific knockout models, providing a more comprehensive understanding of FXR's complex roles in metabolic homeostasis, encouraging the development of organ-specific FXR targeting strategy.
Collapse
Affiliation(s)
- Tingting Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenyang Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongzheng Tang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changkun Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Duanyi Hua
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bei Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheying Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tingting Cheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shujie Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Zhou W, Bandara SR, Ko K, Akinrotimi O, Hernández-Saavedra D, Richter E, Brauer N, Woodward TJ, Bradshaw HB, Leal C, Anakk S. Deleting adipose FXR exacerbates metabolic defects and induces endocannabinoid lipid, 2-oleoyl glycerol, in obesity. J Lipid Res 2025; 66:100754. [PMID: 39938865 PMCID: PMC11946508 DOI: 10.1016/j.jlr.2025.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
The nutrient sensor farnesoid X receptor (FXR) transcriptionally regulates whole-body lipid and glucose homeostasis. Several studies examined targeting FXR as a modality to treat obesity with varying conflicting results, emphasizing the need to study tissue-specific roles of FXR. We show that deletion of adipocyte Fxr results in increased adipocyte hypertrophy and suppression of several metabolic genes that is akin to some of the changes noted in high-fat diet (HFD)-fed control mice. Moreover, upon HFD challenge, these effects are worsened in adipocyte-specific Fxr knockout mice. We uncover that FXR regulates fatty acid amide hydrolase (Faah) such that its deletion lowers Faah expression. Conversely, FXR activation by its ligand, chenodeoxycholic acid, induces Faah transcription. Notably, HFD results in the reduction of adipose Faah expression in control mice and that Faah inhibition or deletion is linked to obesity. We report that the adipocyte FXR-Faah axis controls local 2-oleoyl glycerol and systemic N-acyl ethanolamine levels. Taken together, these findings show that loss of adipose FXR may contribute to the pathogenesis of obesity and subsequent metabolic defects.
Collapse
Affiliation(s)
- Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sarith R Bandara
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kyungwon Ko
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Oludemilade Akinrotimi
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Diego Hernández-Saavedra
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Emily Richter
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Noah Brauer
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Taylor J Woodward
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Ferraz ÁAB, Vianna CFM, Henriques DF, Gorgulho GCF, Santa-Cruz F, Siqueira LT, Kreimer F. The Impact of Cholecystectomy on the Metabolic Profile of Patients Previously Submitted to Bariatric Surgery. Surg Laparosc Endosc Percutan Tech 2025; 35:e1348. [PMID: 39618187 DOI: 10.1097/sle.0000000000001348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To evaluate the influence of late cholecystectomy following bariatric surgery on the postoperative evolution of weight loss and biochemical, metabolic, and micronutrient parameters. METHODS A retrospective study that assessed 86 patients who underwent cholecystectomy after at least 18 months of bariatric surgery. The analyzed variables included demographic data, comorbidities, weight loss, and biochemical, metabolic, and micronutrient parameters. RESULTS Among the analyzed patients, 20 underwent gastric bypass (GB) and 66 underwent sleeve gastrectomy (SG). The GB group comprised 55% of women, with a mean age of 54.4 years and a mean preoperative body mass index (BMI) of 29.2 kg/m 2 . The mean time elapsed between GB and cholecystectomy was 118.3±43.9 months. The sample of SG comprised 83.3% of women, with a mean age of 41.1 years and a mean preoperative BMI of 28.7 kg/m 2 . The mean time elapsed between SG and cholecystectomy was 26.1±17.5 months. Both SG and GB groups showed a reduction in the mean BMI, but it was not statistically significant after cholecystectomy. In the metabolic, biochemical, and micronutrient evaluation, there was no statistically significant difference, except in the GB group, where an increase in vitamin D was observed after cholecystectomy with statistical significance. CONCLUSION Cholecystectomy does not negatively impact the clinical and anthropometric evolution of patients previously submitted to bariatric surgery.
Collapse
Affiliation(s)
| | - Cassio F M Vianna
- Medical School, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Yao L, Zhou X, Jiang X, Chen H, Li Y, Xiong X, Tang Y, Zhang H, Qiao P. High-fat diet promotes gestational diabetes mellitus through modulating gut microbiota and bile acid metabolism. Front Microbiol 2025; 15:1480446. [PMID: 39935515 PMCID: PMC11810896 DOI: 10.3389/fmicb.2024.1480446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Gestational diabetes mellitus (GDM) is a condition characterized by glucose intolerance during pregnancy, estimated to affect approximately 20% of the whole pregnancies and is increasing in prevalence globally. However, there is still a big gap in knowledge about the association between gut microbiota associated metabolism alterations and GDM development. Methods All the participants accomplished the validated internet-based dietary questionnaire for Chinese and serum, fecal samples were collected. HFD, control diet or colesevelam intervention was fed to GDM mice models or Fxr-/- mice models, with or without antibiotics cocktail treatment. Fecal microbiota transplantation were used for further validation. Gut microbiota and metabolites were detected by metagenomic sequencing and high-performance liquid chromatography-mass spectrometry, respectively. Bile acids of serum, fecal samples from human and mice were analysised. Body weight, average feed intake, blood glucose, insulin levels and oral glucose tolerance test was performed among each groups. Expression levels of Fxr, Shp and Fgf15 mRNA and protein were detected by quantitative reverse transcription polymerase chain reaction and western blot, respectively. Results Our data indicated that high fat diet (HFD) was linked with higher prevalence of GDM, and HFD was positively associated with poor prognosis in GDM patients. Moreover, compared with normal diet (ND) group, GDM patients from HFD group performed a loss of gut microbiota diversity and enrichment of Alistipes onderdonkii, Lachnospiraceae bacterium 1_7_58FAA, and Clostridium aspaaragiforme while ruduction of Akkermansiaceae, Paraprevotell xylaniphila, and Prevotella copri. Additionally, HFD aggravated GDM in mice and gut microbiota depletion by antibiotics crippled the effect of excess fat intake. BAs profile altered in HFD GDM patients and mice models. Fecal microbiota transplantation (FMT) further confirmed that gut microbiota contributed to bile acids (BAs) metabolic dysfunction during HFD-associated GDM development. Mechanically, HFD-FMT administration activated Fxr, Shp, and Fgf15 activity, disturbed the glucose metabolism and aggravated insulin resistance but not in HFD-FMT Fxr-/- mice and ND-FMT Fxr-/- mice. Furthermore, colesevelam intervention alleviated HFD-associated GDM development, improved BAs metabolism, suppressed Fxr, Shp, and Fgf15 activity only in WT mice but not in the Fxr-/- HFD + Colesevelam group and Fxr-/- HFD group. HFD induced GDM and contributed to poor prognosis in GDM parturients through inducing gut microbial dysbiosis and metabolic alteration, especially appeared in BAs profile. Moreover, Fxr pathway participated in regulating HFD-associated gut microbiota disordered BAs metabolites and aggravating GDM in mice. Discussion Modulating gut microbiota and BAs metabolites could be a potential therapeutic strategy in the prevention and treatment of HFD-associated GDM.
Collapse
Affiliation(s)
- Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Zhou
- Department of Gynaecology and Obstetrics, The Center of Red Cross Hospital of Harbin, Harbin, China
| | - Xianqi Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanliang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Xiong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Tang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haogang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Qiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Fuchs CD, Simbrunner B, Baumgartner M, Campbell C, Reiberger T, Trauner M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025; 82:134-153. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) serve as signalling molecules, efficiently regulating their own metabolism and transport, as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolised by microbiota. Disruption of BA transport, metabolism and physiological signalling functions contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and MASLD (metabolic dysfunction-associated steatotic liver disease), as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signalling may also affect the intestine and kidney, thereby contributing to failure of gut integrity and driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. In this review, we will summarise recent advances in the understanding of BA signalling, metabolism and transport, focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campbell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Chen J, Yang H, Qin Y, Zhou X, Ma Q. Tryptophan Ameliorates Metabolic Syndrome by Inhibiting Intestinal Farnesoid X Receptor Signaling: The Role of Gut Microbiota-Bile Acid Crosstalk. RESEARCH (WASHINGTON, D.C.) 2024; 7:0515. [PMID: 39679283 PMCID: PMC11638488 DOI: 10.34133/research.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024]
Abstract
Background and Aims: Metabolic syndrome (MS) is a progressive metabolic disease characterized by obesity and multiple metabolic disorders. Tryptophan (Trp) is an essential amino acid, and its metabolism is linked to numerous physiological functions and diseases. However, the mechanisms by which Trp affects MS are not fully understood. Methods and Results: In this study, experiments involving a high-fat diet (HFD) and fecal microbiota transplantation (FMT) were conducted to investigate the role of Trp in regulating metabolic disorders. In a mouse model, Trp supplementation inhibited intestinal farnesoid X receptor (FXR) signaling and promoted hepatic bile acid (BA) synthesis and excretion, accompanied by elevated levels of conjugated BAs and the ratio of non-12-OH to 12-OH BAs in hepatic and fecal BA profiles. As Trp alters the gut microbiota and the abundance of bile salt hydrolase (BSH)-enriched microbes, we collected fresh feces from Trp-supplemented mice and performed FMT and sterile fecal filtrate (SFF) inoculations in HFD-treated mice. FMT and SFF not only displayed lipid-lowering properties but also inhibited intestinal FXR signaling and increased hepatic BA synthesis. This suggests that the gut microbiota play a beneficial role in improving BA metabolism through Trp. Furthermore, fexaramine (a gut-specific FXR agonist) reversed the therapeutic effects of Trp, suggesting that Trp acts through the FXR signaling pathway. Finally, validation in a finishing pig model revealed that Trp improved lipid metabolism, enlarged the hepatic BA pool, and altered numerous glycerophospholipid molecules in the hepatic lipid profile. Conclusion: Our studies suggest that Trp inhibits intestinal FXR signaling mediated by the gut microbiota-BA crosstalk, which in turn promotes hepatic BA synthesis, thereby ameliorating MS.
Collapse
Affiliation(s)
| | | | | | | | - Qingquan Ma
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Guo D, Ning X, Bai T, Tan L, Zhou Y, Guo Z, Li X. Interaction between Vitamin D homeostasis, gut microbiota, and central precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1449033. [PMID: 39717097 PMCID: PMC11663660 DOI: 10.3389/fendo.2024.1449033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Central precocious puberty (CPP) is an endocrine disease in children, characterized by rapid genital development and secondary sexual characteristics before the age of eight in girls and nine in boys. The premature activation of the hypothalamic-pituitary-gonadal axis (HPGA) limits the height of patients in adulthood and is associated with a higher risk of breast cancer. How to prevent and improve the prognosis of CPP is an important problem. Vitamin D receptor (VDR) is widely expressed in the reproductive system, participates in the synthesis and function of regulatory sex hormones, and affects the development and function of gonads. In addition, gut microbiota plays an important role in human health by mainly regulating metabolites, energy homeostasis, and hormone regulation. This review aims to clarify the effect of vitamin D deficiency on the occurrence and development of CPP and explore the role of gut microbiota in it. Although evidence on the interaction between vitamin D deficiency, gut microbiota, and sexual development remains limited, vitamin D supplementation and gut microbiota interventions offer a promising, non-invasive strategy for managing CPP.
Collapse
Affiliation(s)
- Doudou Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ning
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichen Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Qin G, Pan M, Huang D, Li X, Liu Y, Yu X, Mai K, Zhang W. The Molecular Mechanism of Farnesoid X Receptor Alleviating Glucose Intolerance in Turbot ( Scophthalmus maximus). Cells 2024; 13:1949. [PMID: 39682699 PMCID: PMC11640315 DOI: 10.3390/cells13231949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
To explore the molecular targets for regulating glucose metabolism in carnivorous fish, the turbot (Scophthalmus maximus) was selected as the research object to study. Farnesoid X receptor (FXR; NR1H4), as a ligand-activated transcription factor, plays an important role in glucose metabolism in mammals. However, the mechanisms controlling glucose metabolism mediated by FXR in fish are not understood. It was first found that the protein levels of FXR and its target gene, small heterodimer partner (SHP), were significantly decreased in the high-glucose group (50 mM, HG) compared with those in the normal glucose group (15 mM, CON) in primary hepatocytes of turbot. By further exploring the function of FXR in turbot, the full length of FXR in turbot was cloned, and its nuclear localization function was characterized by subcellular localization. The results revealed that the FXR had the highest expression in the liver, and its capability to activate SHP expression through heterodimer formation with retinoid X receptor (RXR) was proved, which proved RXR could bind to 15 binding sites of FXR by forming hydrogen bonds. Activation of FXR in both the CON and HG groups significantly increased the expression of glucokinase (gk) and pyruvate kinase (pk), while it decreased the expression of cytosolic phosphoenolpyruvate carboxykinase (cpepck), mitochondrial phosphoenolpyruvate carboxykinase (mpepck), glucose-6-phosphatase 1 (g6pase1) and glucose-6-phosphatase 2 (g6pase2), and caused no significant different in glycogen synthetase (gs). ELISA experiments further demonstrated that under the condition of high glucose with activated FXR, it could significantly decrease the activity of PEPCK and G6PASE in hepatocytes. In a dual-luciferase reporter assay, the FXR could significantly inhibit the activity of G6PASE2 and cPEPCK promoters by binding to the binding site 'ATGACCT'. Knockdown of SHP after activation of FXR reduced the inhibitory effect on gluconeogenesis. In summary, FXR can bind to the mpepck and g6pase2 promoters to inhibit their expression, thereby directly inhibiting the gluconeogenesis pathway. FXR can also indirectly inhibit the gluconeogenesis pathway by activating shp. These findings suggest the possibility of FXR as a molecular target to regulate glucose homeostasis in turbot.
Collapse
Affiliation(s)
- Gaochan Qin
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China; (G.Q.)
| | - Mingzhu Pan
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China; (G.Q.)
| | - Xinxin Li
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China; (G.Q.)
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China; (G.Q.)
| | - Xiaojun Yu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China; (G.Q.)
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China; (G.Q.)
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China; (G.Q.)
| |
Collapse
|
10
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
11
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
12
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
13
|
Zhao Z, Chen R, Ng K. Effects of Differently Processed Tea on the Gut Microbiota. Molecules 2024; 29:4020. [PMID: 39274868 PMCID: PMC11397556 DOI: 10.3390/molecules29174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.
Collapse
Affiliation(s)
- Zimo Zhao
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruofan Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Li X, Lu C, Mao X, Fan J, Yao J, Jiang J, Wu L, Ren J, Shen J. Bibliometric analysis of research on gut microbiota and bile acids: publication trends and research frontiers. Front Microbiol 2024; 15:1433910. [PMID: 39234549 PMCID: PMC11371755 DOI: 10.3389/fmicb.2024.1433910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
The gut microbiota is widely regarded as a "metabolic organ" that could generate myriad metabolites to regulate human metabolism. As the microbiota metabolites, bile acids (BAs) have recently been identified as the critical endocrine molecules that mediate the cross-talk between the host and intestinal microbiota. This study provided a comprehensive insight into the gut microbiota and BA research through bibliometric analysis from 2003 to 2022. The publications on this subject showed a dramatic upward trend. Although the USA and China have produced the most publications, the USA plays a dominant role in this expanding field. Specifically, the University of Copenhagen was the most productive institution. Key research hotspots are the gut-liver axis, short-chain fatty acids (SCFAs), cardiovascular disease (CVD), colorectal cancer (CRC), and the farnesoid x receptor (FXR). The molecular mechanisms and potential applications of the gut microbiota and BAs in cardiometabolic disorders and gastrointestinal cancers have significant potential for further research.
Collapse
Affiliation(s)
- Xin Li
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of General Practice, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Can Lu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Mao
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiahong Fan
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianting Yao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjie Jiang
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lele Wu
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Ren
- Department of General Practice, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Shen
- Department of General Medicine and Geriatrics, Linping Campus, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Chuanboding, Wang N, He H, Sun X, Bi X, Li A, Sun P, Li J, Yan L, Gao Y, Shen L, Ting Z, Zhang S. Advances in the treatment of type 2 diabetes mellitus by natural plant polysaccharides through regulation of gut microbiota and metabolism: A review. Int J Biol Macromol 2024; 274:133466. [PMID: 38942411 DOI: 10.1016/j.ijbiomac.2024.133466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The prevalence and impact of type 2 diabetes mellitus (T2DM) is a major global health problem. The treatment process of T2DM is long and difficult to cure. Therefore, it is necessary to explore alternative or complementary methods to deal with the various challenges brought by T2DM. Natural plant polysaccharides (NPPs) have certain potential in the treatment of T2DM. However, many studies have not considered the relationship between the structure of NPPs and their anti-T2DM activity. This paper reviews the relevant anti-T2DM mechanisms of NPPs, including modulation of insulin action, promotion of glucose metabolism and modulation of postprandial glucose levels, anti-inflammation and modulation of gut microbiota (GM) and metabolism. This paper provides an in-depth study of the conformational relationships of NPPs and facilitates the development of anti-T2DM drugs or dietary supplements with NPPs.
Collapse
Affiliation(s)
- Chuanboding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Huiying He
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohang Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyu Bi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Pingping Sun
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Jianguo Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Li Yan
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Baishan 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Baishan 134600, China
| | - Zhao Ting
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
16
|
Martínez-Álvaro M, Zubiri-Gaitán A, Hernández P, Casto-Rebollo C, Ibáñez-Escriche N, Santacreu MA, Artacho A, Pérez-Brocal V, Blasco A. Correlated Responses to Selection for Intramuscular Fat on the Gut Microbiome in Rabbits. Animals (Basel) 2024; 14:2078. [PMID: 39061540 PMCID: PMC11273372 DOI: 10.3390/ani14142078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Intramuscular fat (IMF) content is important for meat production and human health, where the host genetics and its microbiome greatly contribute to its variation. The aim of this study is to describe the consequences of the genetic modification of IMF by selecting the taxonomic composition of the microbiome, using rabbits from the 10th generation of a divergent selection experiment for IMF (high (H) and low (L) lines differ by 3.8 standard deviations). The selection altered the composition of the gut microbiota. Correlated responses were better distinguished at the genus level (51 genera) than at the phylum level (10 phyla). The H-line was enriched in Hungateiclostridium, Limosilactobacillus, Legionella, Lysinibacillus, Phorphyromonas, Methanosphaera, Desulfovibrio, and Akkermansia, while the L-line was enriched in Escherichia, Methanobrevibacter, Fonticella, Candidatus Amulumruptor, Methanobrevibacter, Exiguobacterium, Flintibacter, and Coprococcus, among other genera with smaller line differences. A microbial biomarker generated from the abundance of four of these genera classified the lines with 78% accuracy in a logit regression. Our results demonstrate different gut microbiome compositions in hosts with divergent IMF genotypes. Furthermore, we provide a microbial biomarker to be used as an indicator of hosts genetically predisposed to accumulate muscle lipids, which opens up the opportunity for research to develop probiotics or microbiome-based breeding strategies targeting IMF.
Collapse
Affiliation(s)
- Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Agostina Zubiri-Gaitán
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Maria Antonia Santacreu
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Alejandro Artacho
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46022 Valencia, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46022 Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
17
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
18
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
19
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
20
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
21
|
Feng L, Zhang Y, Liu W, Du D, Jiang W, Wang Z, Li N, Hu Z. Altered rumen microbiome and correlations of the metabolome in heat-stressed dairy cows at different growth stages. Microbiol Spectr 2023; 11:e0331223. [PMID: 37971264 PMCID: PMC10714726 DOI: 10.1128/spectrum.03312-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Heat stress is one of the main causes of economic losses in the dairy industry worldwide; however, the mechanisms associated with the metabolic and microbial changes in heat stress remain unclear. Here, we characterized both the changes in metabolites, rumen microbial communities, and their functional potential indices derived from rumen fluid and serum samples from cows at different growth stages and under different climates. This study highlights that the rumen microbe may be involved in the regulation of lipid metabolism by modulating the fatty acyl metabolites. Under heat stress, the changes in the metabolic status of growing heifers, heifers, and lactating cows were closely related to arachidonic acid metabolism, fatty acid biosynthesis, and energy metabolism. Moreover, this study provides new markers for further research to understand the effects of heat stress on the physiological metabolism of Holstein cows and the time-dependent changes associated with growth stages.
Collapse
Affiliation(s)
- Lei Feng
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yu Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wei Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Dewei Du
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wenbo Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zihua Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
22
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
23
|
de Wit DF, Hanssen NMJ, Wortelboer K, Herrema H, Rampanelli E, Nieuwdorp M. Evidence for the contribution of the gut microbiome to obesity and its reversal. Sci Transl Med 2023; 15:eadg2773. [PMID: 37992156 DOI: 10.1126/scitranslmed.adg2773] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/27/2023] [Indexed: 11/24/2023]
Abstract
Obesity has become a worldwide pandemic affecting more than 650 million people and is associated with a high burden of morbidity. Alongside traditional risk factors for obesity, the gut microbiome has been identified as a potential factor in weight regulation. Although rodent studies suggest a link between the gut microbiome and body weight, human evidence for causality remains scarce. In this Review, we postulate that existing evidence remains to establish a contribution of the gut microbiome to the development of obesity in humans but that modified probiotic strains and supraphysiological dosages of microbial metabolites may be beneficial in combatting obesity.
Collapse
Affiliation(s)
- Douwe F de Wit
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
| | - Nordin M J Hanssen
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
| | - Koen Wortelboer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
| | - Hilde Herrema
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105AZ Amsterdam, Netherlands
| | - Elena Rampanelli
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, 1105AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, 1105AZ Amsterdam, Netherlands
- Amsterdam UMC location Vrije Universiteit Medical Center, Department of Internal Medicine, Diabetes Center, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
24
|
Genchi VA, Palma G, Sorice GP, D'Oria R, Caccioppoli C, Marrano N, Biondi G, Caruso I, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Pharmacological modulation of adaptive thermogenesis: new clues for obesity management? J Endocrinol Invest 2023; 46:2213-2236. [PMID: 37378828 PMCID: PMC10558388 DOI: 10.1007/s40618-023-02125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.
Collapse
Affiliation(s)
- V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G P Sorice
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - R D'Oria
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - C Caccioppoli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - N Marrano
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Biondi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Caruso
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
25
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
26
|
Fiorucci S, Sepe V, Biagioli M, Fiorillo B, Rapacciuolo P, Distrutti E, Zampella A. Development of bile acid activated receptors hybrid molecules for the treatment of inflammatory and metabolic disorders. Biochem Pharmacol 2023; 216:115776. [PMID: 37659739 DOI: 10.1016/j.bcp.2023.115776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The farnesoid-x-receptor (FXR) and the G protein bile acid activated receptor (GPBAR)1 are two bile acid activated receptors highly expressed in entero-hepatic, immune, adipose and cardiovascular tissues. FXR and GPBAR1 are clinically validated targets in the treatment of metabolic disorders and FXR agonists are currently trialled in patients with non-alcoholic steato-hepatitis (NASH). Results of these trials, however, have raised concerns over safety and efficacy of selective FXR ligands suggesting that the development of novel agent designed to impact on multiple targets might have utility in the treatment of complex, multigenic, disorders. Harnessing on FXR and GPBAR1 agonists, several novel hybrid molecules have been developed, including dual FXR and GPBAR1 agonists and antagonists, while exploiting the flexibility of FXR agonists toward other nuclear receptors, dual FXR and peroxisome proliferators-activated receptors (PPARs) and liver-X-receptors (LXRs) and Pregnane-X-receptor (PXR) agonists have been reported. In addition, modifications of FXR agonists has led to the discovery of dual FXR agonists and fatty acid binding protein (FABP)1 and Leukotriene B4 hydrolase (LTB4H) inhibitors. The GPBAR1 binding site has also proven flexible to accommodate hybrid molecules functioning as GPBAR1 agonist and cysteinyl leukotriene receptor (CYSLTR)1 antagonists, as well as dual GPBAR1 agonists and retinoid-related orphan receptor (ROR)γt antagonists, dual GPBAR1 agonist and LXR antagonists and dual GPBAR1 agonists endowed with inhibitory activity on dipeptidyl peptidase 4 (DPP4). In this review we have revised the current landscape of FXR and GPBAR1 based hybrid agents focusing on their utility in the treatment of metabolic associated liver disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Valentina Sepe
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
27
|
Gao Y, Lin J, Ye C, Guo S, Jiang C. Microbial transformations of bile acids and their receptors in the regulation of metabolic dysfunction-associated steatotic liver disease. LIVER RESEARCH 2023; 7:165-176. [PMID: 39958385 PMCID: PMC11792070 DOI: 10.1016/j.livres.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 01/03/2025]
Abstract
Bile acids (BAs) play important roles in the digestion of dietary fats and molecular signal transduction, and modulation of the BA composition usually affects the progression of metabolic diseases. While the liver produces primary BAs, the gut microbiota modifies these products into various forms that greatly increase their diversity and biological functions. Mechanistically, BAs can regulate their own metabolism and transport as well as other key aspects of metabolic processes via dedicated BA receptors. Disruption of BA transport and homeostasis leads to the progression of liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). Here, we summarize the microbial transformations of BAs and their downstream signaling in the development of metabolic diseases and present new insights into novel therapeutic strategies targeting BA pathways that may contribute to these diseases.
Collapse
Affiliation(s)
- Yuhua Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Siqi Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Meyer RK, Duca FA. RISING STARS: Endocrine regulation of metabolic homeostasis via the intestine and gut microbiome. J Endocrinol 2023; 258:e230019. [PMID: 37171833 PMCID: PMC10524498 DOI: 10.1530/joe-23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and they regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects on the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.
Collapse
Affiliation(s)
- Rachel K Meyer
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
30
|
Fogelson KA, Dorrestein PC, Zarrinpar A, Knight R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023; 164:1069-1085. [PMID: 36841488 PMCID: PMC10205675 DOI: 10.1053/j.gastro.2023.02.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
The human gut microbiome has been linked to numerous digestive disorders, but its metabolic products have been much less well characterized, in part due to the expense of untargeted metabolomics and lack of ability to process the data. In this review, we focused on the rapidly expanding information about the bile acid repertoire produced by the gut microbiome, including the impacts of bile acids on a wide range of host physiological processes and diseases, and discussed the role of short-chain fatty acids and other important gut microbiome-derived metabolites. Of particular note is the action of gut microbiome-derived metabolites throughout the body, which impact processes ranging from obesity to aging to disorders traditionally thought of as diseases of the nervous system, but that are now recognized as being strongly influenced by the gut microbiome and the metabolites it produces. We also highlighted the emerging role for modifying the gut microbiome to improve health or to treat disease, including the "engineered native bacteria'' approach that takes bacterial strains from a patient, modifies them to alter metabolism, and reintroduces them. Taken together, study of the metabolites derived from the gut microbiome provided insights into a wide range of physiological and pathophysiological processes, and has substantial potential for new approaches to diagnostics and therapeutics of disease of, or involving, the gastrointestinal tract.
Collapse
Affiliation(s)
- Kelly A Fogelson
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California.
| | - Amir Zarrinpar
- Center for Microbiome Innovation, University of California San Diego, San Diego, California; Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California; Division of Gastroenterology, University of California San Diego, San Diego, California; Institute of Diabetes and Metabolic Health, University of California San Diego, San Diego, California.
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Department of Bioengineering, University of California San Diego, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California.
| |
Collapse
|
31
|
Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol 2023; 256:e220111. [PMID: 36458804 PMCID: PMC9874984 DOI: 10.1530/joe-22-0111] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70-90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.
Collapse
Affiliation(s)
- Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
32
|
Dehondt H, Marino A, Butruille L, Mogilenko DA, Nzoussi Loubota AC, Chávez-Talavera O, Dorchies E, Vallez E, Haas J, Derudas B, Bongiovanni A, Tardivel M, Kuipers F, Lefebvre P, Lestavel S, Tailleux A, Dombrowicz D, Caron S, Staels B. Adipocyte-specific FXR-deficiency protects adipose tissue from oxidative stress and insulin resistance and improves glucose homeostasis. Mol Metab 2023; 69:101686. [PMID: 36746333 PMCID: PMC9958065 DOI: 10.1016/j.molmet.2023.101686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function. METHODS We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR-/-) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR-/-) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR-/- mice. RESULTS eWAT from HFD-fed whole-body FXR-/- and Ad-FXR-/- mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR-/- mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR-/- mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter. CONCLUSIONS These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.
Collapse
Affiliation(s)
- Hélène Dehondt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Arianna Marino
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Laura Butruille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Denis A Mogilenko
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | - Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Emilie Dorchies
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Joel Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Meryem Tardivel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Folkert Kuipers
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Sandrine Caron
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| |
Collapse
|
33
|
Yang J, van Dijk TH, Koehorst M, Havinga R, de Boer JF, Kuipers F, van Zutphen T. Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. Int J Mol Sci 2023; 24:ijms24044132. [PMID: 36835544 PMCID: PMC9961586 DOI: 10.3390/ijms24044132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Bile acids facilitate the intestinal absorption of dietary lipids and act as signalling molecules in the maintenance of metabolic homeostasis. Farnesoid X receptor (FXR) is a bile acid-responsive nuclear receptor involved in bile acid metabolism, as well as lipid and glucose homeostasis. Several studies have suggested a role of FXR in the control of genes regulating intestinal glucose handling. We applied a novel dual-label glucose kinetic approach in intestine-specific FXR-/- mice (iFXR-KO) to directly assess the role of intestinal FXR in glucose absorption. Although iFXR-KO mice showed decreased duodenal expression of hexokinase 1 (Hk1) under obesogenic conditions, the assessment of glucose fluxes in these mice did not show a role for intestinal FXR in glucose absorption. FXR activation with the specific agonist GS3972 induced Hk1, yet the glucose absorption rate remained unaffected. FXR activation increased the duodenal villus length in mice treated with GS3972, while stem cell proliferation remained unaffected. Accordingly, iFXR-KO mice on either chow, short or long-term HFD feeding displayed a shorter villus length in the duodenum compared to wild-type mice. These findings indicate that delayed glucose absorption reported in whole-body FXR-/- mice is not due to the absence of intestinal FXR. Yet, intestinal FXR does have a role in the small intestinal surface area.
Collapse
Affiliation(s)
- Jiufang Yang
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Theo H. van Dijk
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Correspondence: (F.K.); (T.v.Z.); Tel.: +31-58-288-2132 (F.K.)
| | - Tim van Zutphen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Faculty Campus Fryslân, University of Groningen, 8911CE Leeuwarden, The Netherlands
- Correspondence: (F.K.); (T.v.Z.); Tel.: +31-58-288-2132 (F.K.)
| |
Collapse
|
34
|
Role of bile acid receptor FXR in development and function of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159257. [PMID: 36402299 DOI: 10.1016/j.bbalip.2022.159257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Bile acids act as signalling molecules that contribute to maintenance of energy homeostasis in mice and humans. Activation of G-protein-coupled bile acid receptor TGR5 induces energy expenditure in brown adipose tissue (BAT). However, a role for the nuclear bile acid receptor Farnesoid X receptor (FXR) in BAT has remained ambiguous. We aimed to study the potential role of FXR in BAT development and functioning. Here we demonstrate low yet detectable expression of the α1/2 isoforms of FXR in murine BAT that markedly decreases upon cold exposure. Moderate adipose tissue-specific FXR overexpression in mice induces pronounced BAT whitening, presenting with large intracellular lipid droplets and extracellular collagen deposition. Expression of thermogenic marker genes including the target of Tgr5, Dio2, was significantly lower in BAT of chow-fed aP2-hFXR mice compared to wild-type controls. Transcriptomic analysis revealed marked up-regulation of extracellular matrix formation and down-regulation of mitochondrial functions in BAT from aP2-hFXR mice. In addition, markers of cell type lineages deriving from the dermomyotome, such as myocytes, as well as markers of cellular senescence were strongly induced. The response to cold and β3-adrenergic receptor agonism was blunted in these mice, yet resolved BAT whitening. Newborn cholestatic Cyp2c70-/- mice with a human-like bile acid profile also showed distinct BAT whitening and upregulation of myocyte-specific genes, while thermogenic markers were down-regulated. Ucp1 expression inversely correlated with plasma bile acid levels. Therefore, bile acid signalling via FXR has a role in BAT function already early in tissue development. Functionally, FXR activation appears to oppose TGR5-mediated thermogenesis.
Collapse
|
35
|
Abstract
Striving to optimize surgical outcomes, the Enhanced Recovery After Surgery (ERAS) pathway mitigates patients' stress through the implementation of evidence-based practices during the pre-, intra-, and postoperative periods. Intestinal flora is a sophisticated ecosystem integrating with the host and the external environment, which serves as a mediator in diverse interventions of ERAS to regulate human metabolism and inflammation. This review linked gut microbes and their metabolites with ERAS interventions, offering novel high-quality investigative proponents for ERAS. ERAS could alter the composition and function of intestinal flora in patients by alleviating various perioperative stress responses. Modifying gut flora through multiple modalities, such as diet and nutrition, to accelerate recovery might be a complementary approach when exploring novel ERAS initiatives. Meanwhile, the pandemic of COVID-19 and the availability of promising qualitative evidence created both challenges and opportunities for the establishment of ERAS mode.
Collapse
|
36
|
Freitas IN, da Silva Jr JA, de Oliveira KM, Lourençoni Alves B, Dos Reis Araújo T, Camporez JP, Carneiro EM, Davel AP. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol (Lausanne) 2023; 14:1090039. [PMID: 36896173 PMCID: PMC9989466 DOI: 10.3389/fendo.2023.1090039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.
Collapse
Affiliation(s)
- Israelle Netto Freitas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- *Correspondence: Ana Paula Davel,
| |
Collapse
|
37
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Keles U, Ow JR, Kuentzel KB, Zhao LN, Kaldis P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol Life Sci 2022; 80:4. [PMID: 36477411 PMCID: PMC9729146 DOI: 10.1007/s00018-022-04658-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
Excessive fat accumulation in the liver has become a major health threat worldwide. Unresolved fat deposition in the liver can go undetected until it develops into fatty liver disease, followed by steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Lipid deposition in the liver is governed by complex communication, primarily between metabolic organs. This can be mediated by hormones, organokines, and also, as has been more recently discovered, metabolites. Although how metabolites from peripheral organs affect the liver is well documented, the effect of metabolic players released from the liver during the development of fatty liver disease or associated comorbidities needs further attention. Here we focus on interorgan crosstalk based on metabolites released from the liver and how these molecules act as signaling molecules in peripheral tissues. Due to the liver's specific role, we are covering lipid and bile mechanism-derived metabolites. We also discuss the high sucrose intake associated with uric acid release from the liver. Excessive fat deposition in the liver during fatty liver disease development reflects disrupted metabolic processes. As a response, the liver secretes a variety of signaling molecules as well as metabolites which act as a footprint of the metabolic disruption. In the coming years, the reciprocal exchange of metabolites between the liver and other metabolic organs will gain further importance and will help to better understand the development of fatty liver disease and associated diseases.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Katharina Barbara Kuentzel
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden. .,Lund University Diabetes Centre (LUDC), Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
39
|
Abstract
Diabetes represents one of the most significant, and rapidly escalating, global healthcare crises we face today. Diabetes already affects one-tenth of the world's adults-more than 537 million people, numbers that have tripled since 2000 and are estimated to reach 643 million by 2030. Type 2 diabetes (T2D), the most prevalent form, is a complex disease with numerous contributing factors, including genetics, epigenetics, diet, lifestyle, medication use, and socioeconomic factors. In addition, the gut microbiome has emerged as a significant potential contributing factor in T2D development and progression. Gut microbes and their metabolites strongly influence host metabolism and immune function, and are now known to contribute to vitamin biosynthesis, gut hormone production, satiety, maintenance of gut barrier integrity, and protection against pathogens, as well as digestion and nutrient absorption. In turn, gut microbes are influenced by diet and lifestyle factors such as alcohol and medication use, including antibiotic use and the consumption of probiotics and prebiotics. Here we review current evidence regarding changes in microbial populations in T2D and the mechanisms by which gut microbes influence glucose metabolism and insulin resistance, including inflammation, gut permeability, and bile acid production. We also explore the interrelationships between gut microbes and different T2D medications and other interventions, including prebiotics, probiotics, and bariatric surgery. Lastly, we explore the particular role of the small bowel in digestion and metabolism and the importance of studying small bowel microbes directly in our search to find metabolically relevant biomarkers and therapeutic targets for T2D.
Collapse
Affiliation(s)
- Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Correspondence: Ruchi Mathur, MD, FRCPC, Director, Clinical Diabetes, Cedars-Sinai, 700 N San Vicente, Ste G271, West Hollywood, CA 90069, USA.
| |
Collapse
|
40
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
41
|
Gao R, Meng X, Xue Y, Mao M, Liu Y, Tian X, Sui B, Li X, Zhang P. Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus. Front Pharmacol 2022; 13:1027212. [PMID: 36386219 PMCID: PMC9640995 DOI: 10.3389/fphar.2022.1027212] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 10/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) occurs that cannot effectively use the insulin. Insulin Resistance (IR) is a significant characteristic of T2DM which is also an essential treatment target in blood glucose regulation to prevent T2DM and its complications. Bile acids (BAs) are one group of bioactive metabolites synthesized from cholesterol in liver. BAs play an important role in mutualistic symbiosis between host and gut microbiota. It is shown that T2DM is associated with altered bile acid metabolism which can be regulated by gut microbiota. Simultaneously, BAs also reshape gut microbiota and improve IR and T2DM in the bidirectional communications of the gut-liver axis. This article reviewed the findings on the interaction between BAs and gut microbiota in improving T2DM, which focused on gut microbiota and its debinding function and BAs regulated gut microbiota through FXR/TGR5. Meanwhile, BAs and their derivatives that are effective for improving T2DM and other treatments based on bile acid metabolism were also summarized. This review highlighted that BAs play a critical role in the glucose metabolism and may serve as therapeutic targets in T2DM, providing a reference for discovering and screening novel therapeutic drugs.
Collapse
Affiliation(s)
- Ruolin Gao
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yili Xue
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Min Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Yaru Liu
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Bo Sui
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Pengyi Zhang
- School of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
42
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
43
|
Kang P, Li S. Makisterone A attenuates experimental cholestasis by activating the farnesoid X receptor. Biochem Biophys Res Commun 2022; 623:162-169. [DOI: 10.1016/j.bbrc.2022.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022]
|
44
|
Zhou Y, Feng Y, Yang L, Zheng P, Hang L, Jiang F, Yuan J, Zhu L. High-fat diet combined with dextran sulfate sodium failed to induce a more serious NASH phenotype than high-fat diet alone. Front Pharmacol 2022; 13:1022172. [PMID: 36238563 PMCID: PMC9551200 DOI: 10.3389/fphar.2022.1022172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aims: Animal models are essential tools to investigate the pathogenesis of diseases. Disruption in the intestinal epithelial barrier and gut vascular barrier is an early event in the development of non-alcoholic fatty liver disease (NAFLD). Intestinal epithelial barrier can be destroyed by dextran sulfate sodium (DSS) oral administration. High fat diet (HFD)-induced non-alcoholic steatohepatitis (NASH) rat model has been widely used. Recently, the combination of HFD with DSS induced NASH model has also been reported. The present study aimed to evaluate whether this composite NASH animal model is more ideal than that induced by HFD alone. Methods: Rats were divided into control, HFD and HFD combined with DSS (DSS + HFD) groups. They were fed with routine diet, high-fat diet, and HFD combined with DSS drinking, respectively, for 22 weeks. Histopathological analysis (HE staining, Oil-Red O staining, Masson staining), lipid parameters testing (TG, TC, GLU, NEFA, TRIG, LDL, HDL), testing on indicators of inflammation (TNF-α, ALT, AST, ALP, LDH) and oxidative stress (MDA, SOD, CAT) were performed. Results: Rats in HFD and DSS + HFD group displayed increase in the body weight, liver weight, lipids accumulation and the levels of TNF-α, ALT, AST, ALP, MDA in serum and liver accompanied with impaired glucose tolerance, obvious hepatitis, and decreased levels of SOD and CAT in serum and liver compared to those in control group. Moreover, in the DSS + HFD group, but not in the HFD group, proliferation of fibrous tissue in the portal area and the hepatic lobules was found. Conclusion: The addition of DSS on high-fat diet did not exacerbate lipid accumulation and inflammation, but induced NASH-related liver fibrosis.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengru Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Yoshinobu S, Hasuzawa N, Nagayama A, Iwata S, Yasuda J, Tokubuchi R, Kabashima M, Gobaru M, Hara K, Murotani K, Moriyama Y, Ashida K, Nomura M. Effects of Elobixibat, an Inhibitor of Ileal Bile Acid Transporter, on Glucose and Lipid Metabolism: A Single-Arm Pilot Study in Patients with T2DM. Clin Ther 2022; 44:1418-1426. [PMID: 36117045 DOI: 10.1016/j.clinthera.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE The ileal bile acid transporter inhibitor elobixibat was recently approved in Japan for use in the treatment of patients with chronic constipation. Elobixibat has been associated with increased plasma glucagon-like peptide 1 level through Takeda G protein receptor 5, which is a membrane receptor of bile acids. The present study assessed the metabolic effects of elobixibat in patients with type 2 diabetes mellitus (T2DM)-related constipation. METHODS In this single-arm pilot study, 21 patients with T2DM and constipation were administered elobixibat 10 mg/d for 12 weeks (period 1). The primary end point was the change in hemoglobin (Hb) A1c at week 12. Secondary end points included physical parameters; constipation symptoms; and blood parameters, such as low-density lipoprotein cholesterol (LDL-C), arachidonic acid (AA), and fatty acid fractions. Thereafter, the study participants chose whether to continue therapy for an additional 12 weeks (period 2), at which point HbA1c and lipid levels were reevaluated. Safety information, including adverse events, discontinuation and interruption of the drug, was collected at each visit during the trial. FINDINGS Period 1: the levels of HbA1c, LDL-C, and AA were significantly reduced after administration of elobixibat for 12 weeks (-0.2%, -21.4 mg/dL, and -16.1 µg/dL, respectively; P = 0.016, P < 0.001, and P = 0.010). Period 2: at week 24, the change from baseline in HbA1c was significantly greater among those who continued elobixibat treatment than in those who discontinued after 12 weeks (-0.23% vs +0.21%; P = 0.038). No serious or severe adverse events were observed. IMPLICATIONS Elobixibat may benefit patients with T2DM by improving glucose metabolism and lowering serum LDL-C and AA levels, in addition to ameliorating constipation. This single-arm pilot study was of a small sample size. The findings provide a basis for designing a larger-scale study to confirm the effects of elobixibat on glucose and lipid metabolism. (UMIN Clinical Trials Registry identifier: UMIN000045508; https://www.umin.ac.jp/ctr/index.htm).
Collapse
Affiliation(s)
- Satoko Yoshinobu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes.
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Shimpei Iwata
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Junichi Yasuda
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Rie Tokubuchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Masaharu Kabashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Mizuki Gobaru
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Kento Hara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Kenta Murotani
- Biostatistics Center, Graduate School of Medicine, Kurume University, Kurume, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Kenji Ashida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurumes
| |
Collapse
|
46
|
Xia X, Xie Y, Gong Y, Zhan M, He Y, Liang X, Jin Y, Yang Y, Ding W. Electroacupuncture promoted intestinal defensins and rescued the dysbiotic cecal microbiota of high-fat diet-induced obese mice. Life Sci 2022; 309:120961. [PMID: 36116529 DOI: 10.1016/j.lfs.2022.120961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 10/31/2022]
Abstract
Obesity is currently one of the most important challenges to public health worldwide. Acupuncture has been widely used to treat obesity. However, whether acupuncture regulates intestinal innate immunity via intestinal microbiota against obesity remains to be elucidated. In this study, electroacupuncture (EA) effectively reduced body weight and fat accumulation in obese mice persistently fed a high-fat diet. Full-length 16S rDNA sequencing showed dysbiotic microbiota in the cecum of obese mice. The composition and function of the cecal microbiota of obese mice were markedly restored after EA treatment. After 21 d of EA intervention, the expression of defensin alpha 5 (Defa5) was restored to healthy controls, whereas fat digestion and absorption genes including fabp1 were markedly decreased in the jejunum of obese mice. The Defa5 levels were positively correlated with the family Lachnospiraceae and negatively correlated with obesity indexes. EA also reduced tissue inflammation, ameliorated misaligned glucose tolerance, and inhibited key genes for intestinal lipid absorption. In summary, EA exerted an anti-obesity effect by promoting intestinal defensins, rescuing dysbiotic cecal microbiota, and reducing lipid absorption in a synergistic mode. We present for the first time the key role of alpha defensins in the relationship between gut microbiota and disease during electroacupuncture treatment of obesity. The mucosal innate immunity seems to have a stronger ability to shape the microbiota than dietary factors.
Collapse
Affiliation(s)
- Xiuwen Xia
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China.
| | - Ya Xie
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China
| | - Yanju Gong
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China
| | - Meng Zhan
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China
| | - Yan He
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China
| | - Xinyu Liang
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China
| | - Yue Jin
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China
| | - Youjun Yang
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China
| | - Weijun Ding
- Chengdu University of Traditional Chinese Medicine, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
47
|
Zhang C, Liu Y, Wang Y, Ge X, Jiao T, Yin J, Wang K, Li C, Guo S, Xie X, Xie C, Nan F. Discovery of Betulinic Acid Derivatives as Potent Intestinal Farnesoid X Receptor Antagonists to Ameliorate Nonalcoholic Steatohepatitis. J Med Chem 2022; 65:13452-13472. [DOI: 10.1021/acs.jmedchem.2c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Wang
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xiu Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xin Xie
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
48
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
49
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
50
|
Wang A, Guan B, Shao C, Zhao L, Li Q, Hao H, Gao Z, Chen K, Hou Y, Xu H. Qing-Xin-Jie-Yu Granule alleviates atherosclerosis by reshaping gut microbiota and metabolic homeostasis of ApoE-/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154220. [PMID: 35675748 DOI: 10.1016/j.phymed.2022.154220] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a key pathological factor in cardiovascular disease (CVD) and is characterized by high mortality and morbidity worldwide. Metabolic disorders, including pathoglycemia and dyslipidemia that lead to chronic inflammation, represent the prominent pathological characteristics of atherosclerotic CVD, Qing-Xin-Jie-Yu Granule (QXJYG) is a Chinese traditional decoction that has been clinically proven to be effective for patients with CVD. However, the underlying mechanisms have not been completely elucidated. PURPOSE To investigate the protective effects of QXJYG against AS and its potential mechanisms. METHODS QXJYG was orally administered at doses of 1.664 and 4.992 g·kg-1·d-1 in a high-fat diet (HFD)-induced AS model using ApoE-/- mice. Histopathological and immunohistochemical analyses, ELISA, untargeted and targeted metabolomics analysis, 16S rRNA analysis, and RT-qPCR were performed to identify the therapeutic effects and mechanisms of QXJYG in treating HFD-induced AS. RESULTS QXJYG retarded HFD-induced weight gain and reduced the increased serum levels of total cholesterol, triglycerides, and low-density lipoprotein-cholesterol, whereas high-dose QXJYG increased the serum level of high-density lipoprotein-cholesterol in HFD-fed ApoE-/- mice. Meanwhile, QXJYG reduced the serum levels, as well as aortas mRNA levels of the inflammatory cytokines, IL-1β and IL-6, which indicates that QXJYG is effective against metaflammation. Mechanistically, QXJYG reshaped the gut microbiota and its associated bile acids (BAs) metabolomic phenotype, partly by increasing the levels of BA synthesis enzymes, hepatic CYP7A1, and CYP27A1, while decreasing ileal FGF15 and β-Klotho mRNA expression, favoring facilitated de novo BAs synthesis and thereby driving cholesterol catabolic excretion. CONCLUSION Our findings indicate that QXJYG is effective against HFD-triggered chronic inflammation, and contributes to the alleviation of AS development, and the antiatherogenic properties of QXJYG may be partly due to the remodeling of the gut microbiota and BA metabolism. Although the results are encouraging, further clinical studies of anti-AS herbal medicines are required to elucidate the full potential of the gut microbiota and BA metabolism.
Collapse
Affiliation(s)
- Anlu Wang
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Chang Shao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Zhao
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Qiuyi Li
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuye Gao
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Keji Chen
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Xu
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|