1
|
Szegő ÉM, Höfs L, Antoniou A, Dinter E, Bernhardt N, Schneider A, Di Monte DA, Falkenburger BH. Intermittent fasting reduces alpha-synuclein pathology and functional decline in a mouse model of Parkinson's disease. Nat Commun 2025; 16:4470. [PMID: 40368903 DOI: 10.1038/s41467-025-59249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (aSyn) accumulation. Environmental factors play a significant role in PD progression, highlighting the potential of non-pharmacological interventions. This study investigates the therapeutic effects of intermittent fasting (IF) in an rAAV-aSyn mouse model of PD. IF, initiated four weeks post-induction of aSyn pathology, improved motor function and reduced dopaminergic neuron and axon terminal degeneration. Additionally, IF preserved dopamine levels and synaptic integrity in the striatum. Mechanistically, IF enhanced autophagic activity, promoting phosphorylated-aSyn clearance and reducing its accumulation in insoluble brain fractions. Transcriptome analysis revealed IF-induced modulation of inflammation-related genes and microglial activation. Validation in primary cultures confirmed that autophagy activation and inflammatory modulators (CCL17, IL-36RN) mitigate aSyn pathology. These findings suggest that IF exerts neuroprotective effects, supporting further exploration of IF and IF-mimicking therapies as potential PD treatments.
Collapse
Affiliation(s)
- Éva M Szegő
- Department of Neurology, TU Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Lennart Höfs
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Anna Antoniou
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Elisabeth Dinter
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Björn H Falkenburger
- Department of Neurology, TU Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| |
Collapse
|
2
|
Choueiry F, Xu R, Gold A, Jung H, Zhu J. Online monitoring and stable isotope tracing of cancer associated volatiles in murine model captures tumor associated markers in vivo. Anal Chim Acta 2025; 1349:343826. [PMID: 40074456 DOI: 10.1016/j.aca.2025.343826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND The imperative need for early cancer detection, which is crucial for improved survival rates in many severe cancers such as lung cancer, remains challenging due to the lack of reliable early-diagnosis technologies and robust biomarkers. To address this gap, innovative screening platforms are essential to unveil the chemical signatures of lung cancer and its treatments. It is established that the oxidative tumor environment induces alterations in host metabolic processes and influences endogenous volatile synthesis. Despite efforts, consensus on unique volatile markers for cancer detection has been elusive, partly due to genetic variation leading to metabolic heterogeneity in humans and the lack of standardized procedures for analytical analyses. RESULTS In this study, we utilized advanced secondary electrospray ionization (SESI) technique coupled with a high-resolution mass spectrometer (HRMS) to non-invasively monitor lung cancer volatiles in a pre-clinical mouse model in real time. Our findings revealed 651 dysregulated volatile features upon cancer onset and identified 36 features correlated with tumor size. Endogenous tracing of glucose metabolism highlighted the γ-glutamyl cycle as a downstream pathway implicated in lung cancer, driven by an imbalance in glutathione metabolism due to reactive oxygen species (ROS) accumulation. Notably, our study unveiled unique volatile changes associated with gemcitabine and cisplatin treatment, which significantly abrogated tumor growth in vivo. Furthermore, we identified 5-oxoproline as a volatile metabolite indicative of lung cancer response to treatment. SIGNIFICANCE In conclusion, our SESI-HRMS based analysis of pre-clinical model systematically explores the volatile signatures of lung cancer, and provides a novel non-invasive platform that possess great potential for the real-time, confident, and sensitive detection and monitoring of lung cancer.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Rui Xu
- Department of Human Sciences, The Ohio State University, USA
| | - Andrew Gold
- Department of Human Sciences, The Ohio State University, USA
| | - Hyein Jung
- Department of Human Sciences, The Ohio State University, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Chandler LC, Gardner A, Cepko CL. RPE-specific MCT2 expression promotes cone survival in models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2025; 122:e2421978122. [PMID: 40178895 PMCID: PMC12002273 DOI: 10.1073/pnas.2421978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration worldwide. It is characterized by the sequential death of rod and cone photoreceptors, the cells responsible for night and daylight vision, respectively. Although the expression of most RP genes occurs only in rods, there is a secondary degeneration of cones. One possible mechanism of cone death is metabolic dysregulation. Photoreceptors are highly metabolically active, consuming large quantities of glucose and producing substantial amounts of lactate. The retinal pigment epithelium (RPE) mediates the transport of glucose from the blood to photoreceptors and, in turn, removes lactate, which can influence the rate of consumption of glucose by the RPE. One model for metabolic dysregulation in RP suggests that following the death of rods, lactate levels are substantially diminished causing the RPE to withhold glucose, resulting in nutrient deprivation for cones. Here, we present adeno-associated viral vector-mediated delivery of monocarboxylate transporter 2 (MCT2, Slc16a7) into the eye, with expression limited to RPE cells, with the aim of promoting lactate uptake from the blood and encouraging the passage of glucose to cones. We demonstrate prolonged survival and function of cones in rat and mouse RP models, revealing a possible gene-agnostic therapy for preserving vision in RP. We also present the use of fluorescence lifetime imaging-based biosensors for lactate and glucose within the eye. Using this technology, we show changes to lactate and glucose levels within MCT2-expressing RPE, suggesting that cone survival is impacted by changes in RPE metabolism.
Collapse
Affiliation(s)
- Laurel C. Chandler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| | - Apolonia Gardner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
- Virology Program, Harvard Medical School, Boston, MA02115
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
4
|
Shibao CA, Peche VS, Pietka TA, Samovski D, Williams IM, Abumrad NN, Gamazon ER, Goldberg IJ, Wasserman DH, Abumrad NA. Microvascular insulin resistance with enhanced muscle glucose disposal in CD36 deficiency. Diabetologia 2025; 68:662-675. [PMID: 39503770 PMCID: PMC11832635 DOI: 10.1007/s00125-024-06292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 11/13/2024]
Abstract
AIMS/HYPOTHESIS Microvascular dysfunction contributes to insulin resistance. CD36, a fatty acid transporter and modulator of insulin signalling, is abundant in microvascular endothelial cells. Humans carrying the minor allele (G) of CD36 coding variant rs3211938 have 50% reduced CD36 expression and show endothelial dysfunction. We aimed to determine whether G allele carriers have microvascular resistance to insulin and, if so, how this affects glucose disposal. METHODS Our multi-disciplinary approach included hyperinsulinaemic-euglycaemic clamps in Cd36-/- and wild-type mice, and in individuals with 50% CD36 deficiency, together with control counterparts, in addition to primary human-derived microvascular endothelial cells with/without CD36 depletion. RESULTS Insulin clamps showed that Cd36-/- mice have enhanced insulin-stimulated glucose disposal but reduced vascular compliance and capillary perfusion. Intravital microscopy of the gastrocnemius showed unaltered transcapillary insulin flux. CD36-deficient humans had better insulin-stimulated glucose disposal but insulin-unresponsive microvascular blood volume (MBV). Human microvascular cells depleted of CD36 showed impaired insulin activation of Akt, endothelial NO synthase and NO generation. Thus, in CD36 deficiency, microvascular insulin resistance paradoxically associated with enhanced insulin sensitivity of glucose disposal. CONCLUSIONS/INTERPRETATION CD36 deficiency was previously shown to reduce muscle/heart fatty acid uptake, whereas here we showed that it reduced vascular compliance and the ability of insulin to increase MBV for optimising glucose and oxygen delivery. The muscle and heart respond to these energy challenges by transcriptional remodelling priming the tissue for insulin-stimulated glycolytic flux. Reduced oxygen delivery activating hypoxia-induced factors, endothelial release of growth factors or small intracellular vesicles might mediate this adaptation. Targeting NO bioavailability in CD36 deficiency could benefit the microvasculature and muscle/heart metabolism. TRIAL REGISTRATION Clinicaltrials.gov NCT03012386 DATA AVAILABILITY: The RNAseq data generated in this study have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/ ) under accession code GSE235988 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235988 ).
Collapse
Affiliation(s)
- Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Vivek S Peche
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St Louis, MO, USA
| | - Terri A Pietka
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St Louis, MO, USA
| | - Dmitri Samovski
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St Louis, MO, USA
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ira J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nada A Abumrad
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St Louis, MO, USA.
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
5
|
Gonzalez MB, Andreas E, Winstanley YE, Connaughton HS, Loring KE, Shoubridge C, Robker RL. Maternal aging reduces female fecundity and alters offspring phenotype in a sex-specific manner. Reprod Fertil Dev 2025; 37:RD24164. [PMID: 40048313 DOI: 10.1071/rd24164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/15/2025] [Indexed: 05/13/2025] Open
Abstract
Context The age of childbearing in women has increased, with more babies born to women over 30years old than to those in their 20s. However, increasing maternal age is associated with a range of pregnancy and perinatal complications, such as reduced chance of conception, and higher risk of miscarriage or fetal death. Further, epidemiological studies indicate that advanced maternal age is also linked to a higher incidence of metabolic and neurodevelopmental disorders in offspring, such as Type 1 diabetes and autism spectrum disorder (ASD). Aims Mature female mice recapitulate many of the fertility characteristics seen in older women, such as reduced egg number and quality, providing a robust experimental model. This study examined fertility and offspring phenotypes in female mice at the onset of reproductive aging. Methods Firstly, fecundity in mice was measured from 3 to 18months of age. Secondly, reproductive outcomes in aged female mice (12months old) were compared to those of young females (3months of age). Growth of the offspring was assessed, as well as metabolism, behaviour, and immune function in adulthood. Key results Female aging reduced pregnancy rate, litter size and pup survival to weaning. Maternal age did not affect adult offspring immune function; however, female offspring had higher body weights, and male littermates presented dysregulated glucose tolerance and hyperactivity. Conclusions Maternal age affects offspring survival and health in a sex-specific manner. Implications These findings expand our understanding of maternal programming of offspring health, particularly the effects of increased age at pregnancy.
Collapse
Affiliation(s)
- Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eryk Andreas
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Haley S Connaughton
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Karagh E Loring
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cheryl Shoubridge
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Moro C, Magnan C. Revisited guidelines for metabolic tolerance tests in mice. Lab Anim (NY) 2025; 54:16-23. [PMID: 39587363 PMCID: PMC11695259 DOI: 10.1038/s41684-024-01473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Preclinical mouse models are extensively used in biomedical research to gain insight into disease mechanisms and to test new drug treatments. Glucose and insulin tolerance tests are simple experimental tests frequently used worldwide to assess glucose metabolism in mice. Various guidelines and methodological considerations have been published to help researchers standardize procedures and optimize research outcomes. Yet, there is still important experimental heterogeneity in the way these simple procedures are performed, with no real consensus on what the best practices are to achieve high-quality research and reproducible results. Here we critically examine several published guidelines and recent technical reports on how to perform these metabolic tests in laboratory mice and discuss the influence of various confounding factors on test results. We hope this work will help scientists establish more consensual guidelines for maximizing the relevance and clinical translation of studies using mouse models in metabolic research.
Collapse
Affiliation(s)
- Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Team MetaDiab, Paul Sabatier University, UMR1297, Toulouse, France.
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France
| |
Collapse
|
7
|
Laughlin M, McIndoe R, Adams SH, Araiza R, Ayala JE, Kennedy L, Lanoue L, Lantier L, Macy J, Malabanan E, McGuinness OP, Perry R, Port D, Qi N, Elias CF, Shulman GI, Wasserman DH, Lloyd KCK. The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity. Mamm Genome 2024; 35:485-496. [PMID: 39191872 PMCID: PMC11522164 DOI: 10.1007/s00335-024-10067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The Mouse Metabolic Phenotyping Center (MMPC)Live Program was established in 2023 by the National Institute for Diabetes, Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high quality phenotyping services for mouse models of diabetes and obesity. Emerging as the next iteration of the MMPC Program which served the biomedical research community for 20 years (2001-2021), MMPCLive is designed as an outwardly-facing consortium of service cores that collaborate to provide reduced-cost consultation and metabolic, physiologic, and behavioral phenotyping tests on live mice for U.S. biomedical researchers. Four MMPCLive Centers located at universities around the country perform complex and often unique procedures in vivo on a fee for service basis, typically on mice shipped from the client or directly from a repository or vendor. Current areas of expertise include energy balance and body composition, insulin action and secretion, whole body carbohydrate and lipid metabolism, cardiovascular and renal function, food intake and behavior, microbiome and xenometabolism, and metabolic pathway kinetics. Additionally, an opportunity arose to reduce barriers to access and expand the diversity of the biomedical research workforce by establishing the VIBRANT Program. Directed at researchers historically underrepresented in the biomedical sciences, VIBRANT-eligible investigators have access to testing services, travel and career development awards, expert advice and experimental design consultation, and short internships to learn test technologies. Data derived from experiments run by the Centers belongs to the researchers submitting mice for testing which can be made publicly available and accessible from the MMPCLive database following publication. In addition to services, MMPCLive staff provide expertise and advice to researchers, develop and refine test protocols, engage in outreach activities, publish scientific and technical papers, and conduct educational workshops and training sessions to aid researchers in unraveling the heterogeneity of diabetes and obesity.
Collapse
Affiliation(s)
- Maren Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, USA
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Davis, USA
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Davis, USA
| | - Renee Araiza
- Mouse Biology Program, University of California Davis, Davis, USA
| | | | - Lucy Kennedy
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California Davis, Davis, USA
| | | | - James Macy
- Department of Comparative Medicine, Yale School of Medicine, New Haven, USA
| | | | | | - Rachel Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Daniel Port
- Mouse Biology Program, University of California Davis, Davis, USA
| | - Nathan Qi
- Department of Molecular & Integrated Physiology, University of Michigan, Ann Arbor, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, USA
| | - Carol F Elias
- Department of Molecular & Integrated Physiology, University of Michigan, Ann Arbor, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | | | - K C Kent Lloyd
- Department of Surgery, School of Medicine, University of California Davis, Davis, USA.
- Mouse Biology Program, University of California Davis, Davis, USA.
| |
Collapse
|
8
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
9
|
LaPoint A, Singer JM, Ferguson D, Shew TM, Renkemeyer MK, Palacios HH, Field RL, Yerrathota S, Kumari R, Shankaran M, Smith GI, Yoshino J, He M, Patti GJ, Hellerstein MK, Klein S, Brestoff JR, Morris EM, Finck BN, Lutkewitte AJ. Adipocyte lipin 1 expression associates with human metabolic health and regulates systemic metabolism in mice. J Clin Invest 2024; 134:e169722. [PMID: 39405118 PMCID: PMC11601902 DOI: 10.1172/jci169722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects, and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1-/- mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of metabolically associated steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health, and its loss predisposes mice to metabolically associated steatohepatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rachael L. Field
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sireesha Yerrathota
- Department of Medicine, Division of Endocrinology, Diabetes, and Clinical Pharmacology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Roshan Kumari
- Department of Medicine, Division of Endocrinology, Diabetes, and Clinical Pharmacology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | | | - Jun Yoshino
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
- Center for Integrated Kidney Research and Advance (IKRA), Shimane University, Izumo, Shimane, Japan
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gary J. Patti
- Department of Medicine and
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | | | - Jonathan R. Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - E. Matthew Morris
- Department of Cell Biology and Physiology and
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Children’s Healthy Lifestyles and Nutrition, Kansas City, Missouri, USA
| | | | - Andrew J. Lutkewitte
- Department of Medicine, Division of Endocrinology, Diabetes, and Clinical Pharmacology, University of Kansas Medical Center, Kansas City, Kansas, USA
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
10
|
Schott C, Germain A, Lacombe J, Pata M, Faubert D, Boulais J, Carmeliet P, Côté JF, Ferron M. GAS6 and AXL Promote Insulin Resistance by Rewiring Insulin Signaling and Increasing Insulin Receptor Trafficking to Endosomes. Diabetes 2024; 73:1648-1661. [PMID: 39046834 DOI: 10.2337/db23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Growth arrest-specific 6 (GAS6) is a secreted protein that acts as a ligand for TAM receptors (TYRO3, AXL, and MERTK). In humans, GAS6 circulating levels and genetic variations in GAS6 are associated with hyperglycemia and increased risk of type 2 diabetes. However, the mechanisms by which GAS6 influences glucose metabolism are not understood. Here, we show that Gas6 deficiency in mice increases insulin sensitivity and protects from diet-induced insulin resistance. Conversely, increasing GAS6 circulating levels is sufficient to reduce insulin sensitivity in vivo. GAS6 inhibits the activation of the insulin receptor (IR) and reduces insulin response in muscle cells in vitro and in vivo. Mechanistically, AXL and IR form a complex, while GAS6 reprograms signaling pathways downstream of IR. This results in increased IR endocytosis following insulin treatment. This study contributes to a better understanding of the cellular and molecular mechanisms by which GAS6 and AXL influence insulin sensitivity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline Schott
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montreal, Quebec, Canada
| | - Amélie Germain
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Lacombe
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Monica Pata
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Denis Faubert
- Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Jonathan Boulais
- Cytoskeletal Organization and Cell Migration Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute, KU Leuven, VIB Center for Cancer Biology, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jean-François Côté
- Programme de Biologie Moléculaire, Université de Montréal, Montreal, Quebec, Canada
- Cytoskeletal Organization and Cell Migration Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Département de Médicine, Université de Montréal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Mathieu Ferron
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montreal, Quebec, Canada
- Département de Médicine, Université de Montréal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Chajadine M, Laurans L, Radecke T, Mouttoulingam N, Al-Rifai R, Bacquer E, Delaroque C, Rytter H, Bredon M, Knosp C, Vilar J, Fontaine C, Suffee N, Vandestienne M, Esposito B, Dairou J, Launay JM, Callebert J, Tedgui A, Ait-Oufella H, Sokol H, Chassaing B, Taleb S. Harnessing intestinal tryptophan catabolism to relieve atherosclerosis in mice. Nat Commun 2024; 15:6390. [PMID: 39080345 PMCID: PMC11289133 DOI: 10.1038/s41467-024-50807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Tryptophan (Trp) is an essential amino acid, whose metabolism is a key gatekeeper of intestinal homeostasis. Yet, its systemic effects, particularly on atherosclerosis, remain unknown. Here we show that high-fat diet (HFD) increases the activity of intestinal indoleamine 2, 3-dioxygenase 1 (IDO), which shifts Trp metabolism from the production of microbiota-derived indole metabolites towards kynurenine production. Under HFD, the specific deletion of IDO in intestinal epithelial cells leads to intestinal inflammation, impaired intestinal barrier, augmented lesional T lymphocytes and atherosclerosis. This is associated with an increase in serotonin production and a decrease in indole metabolites, thus hijacking Trp for the serotonin pathway. Inhibition of intestinal serotonin production or supplementation with indole derivatives alleviates plaque inflammation and atherosclerosis. In summary, we uncover a pivotal role of intestinal IDO in the fine-tuning of Trp metabolism with systemic effects on atherosclerosis, paving the way for new therapeutic strategies to relieve gut-associated inflammatory diseases.
Collapse
Affiliation(s)
- Mouna Chajadine
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Tobias Radecke
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Rida Al-Rifai
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Emilie Bacquer
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Clara Delaroque
- Microbiome-Host interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Université Paris Cité, Paris, France
| | - Héloïse Rytter
- Microbiome-Host interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Université Paris Cité, Paris, France
| | - Marius Bredon
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Knosp
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - José Vilar
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Coralie Fontaine
- Inserm U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, cedex, France
| | - Nadine Suffee
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Bruno Esposito
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Julien Dairou
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France. 45 rue des Saints Pères, 75006, Paris, France
| | - Jean Marie Launay
- Assistance Publique Hôpitaux de Paris, Service de Biochimie and INSERM U942, Hôpital Lariboisière, Paris, France
| | - Jacques Callebert
- Assistance Publique Hôpitaux de Paris, Service de Biochimie and INSERM U942, Hôpital Lariboisière, Paris, France
| | - Alain Tedgui
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France
| | - Benoit Chassaing
- Microbiome-Host interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Université Paris Cité, Paris, France
| | - Soraya Taleb
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
| |
Collapse
|
12
|
Toorie A, Hall CD, Vassoler FM, Peltz G, Byrnes EM. Preconception opioids interact with mouse strain to alter morphine withdrawal in the next generation. Psychopharmacology (Berl) 2024; 241:1435-1446. [PMID: 38503843 DOI: 10.1007/s00213-024-06574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
RATIONALE Transgenerational effects of preconception morphine exposure in female rats have been reported which suggest that epigenetic modifications triggered by female opioid exposure, even when that exposure ends several weeks prior to pregnancy, has significant ramifications for their future offspring. OBJECTIVE The current study compares two mouse strains with well-established genetic variation in their response to mu opioid receptor agonists, C57BL/6J (BL6) and 129S1/svlmJ (129) to determine whether genetic background modifies the impact of preconception opioid exposure. METHODS Adolescent females from both strains were injected daily with morphine for a total of 10 days using an increasing dosing regimen with controls receiving saline. Several weeks after their final injection, aged-matched BL6 and 129 morphine (Mor-F0) or saline (Sal-F0) females were mated with drug naïve males to generate Mor-F1 and Sal-F1 offspring, respectively. As adults, F1 mice were made morphine dependent using thrice daily morphine injections for 4 days. On day 5, mice were administered either saline or morphine followed 3 h later by naloxone. Behavioral and physiological signs of withdrawal were then measured. RESULTS Regardless of strain or sex, morphine-dependent Mor-F1 mice had significantly lower levels of withdrawal-induced corticosterone but significantly higher glucose levels when compared to Sal-F1 controls. In contrast, both strain- and preconception opioid exposure effects on physical signs of morphine dependence were observed.
Collapse
Affiliation(s)
- Anika Toorie
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd, North Grafton, MA, USA
- Department of Biology, Rhode Island College, 600 Mount Pleasant Ave, Providence, RI, USA
| | - Claire Davidson Hall
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd, North Grafton, MA, USA
| | - Fair M Vassoler
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd, North Grafton, MA, USA
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, USA
| | - Elizabeth M Byrnes
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd, North Grafton, MA, USA.
| |
Collapse
|
13
|
Barinda AJ, Hardi H, Louisa M, Khatimah NG, Marliau RM, Felix I, Fadhillah MR, Jamal AK. Repurposing effect of cardiovascular-metabolic drug to increase lifespan: a systematic review of animal studies and current clinical trial progress. Front Pharmacol 2024; 15:1373458. [PMID: 38966557 PMCID: PMC11223003 DOI: 10.3389/fphar.2024.1373458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
With the increase in life expectancy, aging has emerged as a significant health concern. Due to its various mechanisms of action, cardiometabolic drugs are often repurposed for other indications, including aging. This systematic review analyzed and highlighted the repositioning potential of cardiometabolic drugs to increase lifespan as an aging parameter in animal studies and supplemented by information from current clinical trial registries. Systematic searching in animal studies was performed based on PICO: "animal," "cardiometabolic drug," and "lifespan." All clinical trial registries were also searched from the WHO International Clinical Trial Registry Platform (ICTRP). Analysis of 49 animal trials and 10 clinical trial registries show that various cardiovascular and metabolic drugs have the potential to target lifespan. Metformin, acarbose, and aspirin are the three most studied drugs in animal trials. Aspirin and acarbose are the promising ones, whereas metformin exhibits various results. In clinical trial registries, metformin, omega-3 fatty acid, acarbose, and atorvastatin are currently cardiometabolic drugs that are repurposed to target aging. Published clinical trial results show great potential for omega-3 and metformin in healthspan. Systematic Review Registration: crd.york.ac.uk/prospero/display_record.php?RecordID=457358, identifier: CRD42023457358.
Collapse
Affiliation(s)
- Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Harri Hardi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nurul Gusti Khatimah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Rheza Meida Marliau
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Immanuel Felix
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Muhamad Rizqy Fadhillah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Arief Kurniawan Jamal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
14
|
Šterk M, Zhang Y, Pohorec V, Leitgeb EP, Dolenšek J, Benninger RKP, Stožer A, Kravets V, Gosak M. Network representation of multicellular activity in pancreatic islets: Technical considerations for functional connectivity analysis. PLoS Comput Biol 2024; 20:e1012130. [PMID: 38739680 PMCID: PMC11115366 DOI: 10.1371/journal.pcbi.1012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Yaowen Zhang
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Viljem Pohorec
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Richard K. P. Benninger
- Department of Bioengineering, Barbara Davis Center for Diabetes, Aurora, Colorado, United States of America
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Vira Kravets
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor
| |
Collapse
|
15
|
E Drigo RA, Habashy A, Acree C, Kim KY, Deerinck T, Patterson E, Lantier L, McGuinness O, Ellisman M. Mesoscale Metabolic Channeling Revealed by Multimodal Microscopy. RESEARCH SQUARE 2024:rs.3.rs-4096781. [PMID: 38699373 PMCID: PMC11065083 DOI: 10.21203/rs.3.rs-4096781/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Metabolic homeostasis within cells and tissues requires engagement of catabolic and anabolic pathways consuming nutrients needed to generate energy to drive these and other subcellular processes. However, the current understanding of cell homeostasis and metabolism, including how cells utilize nutrients, comes largely from tissue and cell models analyzed after fractionation. These bulk strategies do not reveal the spatial characteristics of cell metabolism at the single cell level, and how these aspects relate to the location of cells and organelles within the complexity of the tissue they reside within. Here we pioneer the use of high-resolution electron and stable isotope microscopy (MIMS-EM) to quantitatively map the fate of nutrient-derived 13C atoms at subcellular scale. When combined with machine-learning image segmentation, our approach allows us to establish the cellular and organellar spatial pattern of glucose 13C flux in hepatocytes in situ. We applied network analysis algorithms to chart the landscape of organelle-organelle contact networks and identified subpopulations of mitochondria and lipid droplets that have distinct organelle interactions and 13C enrichment levels. In addition, we revealed a new relationship between the initiation of glycogenesis and proximity of lipid droplets. Our results establish MIMS-EM as a new tool for tracking and quantifying nutrient metabolism at the subcellular scale, and to identify the spatial channeling of nutrient-derived atoms in the context of organelle-organelle interactions in situ.
Collapse
|
16
|
Hahn MK, Giacca A, Pereira S. In vivo techniques for assessment of insulin sensitivity and glucose metabolism. J Endocrinol 2024; 260:e230308. [PMID: 38198372 PMCID: PMC10895285 DOI: 10.1530/joe-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Metabolic tests are vital to determine in vivo insulin sensitivity and glucose metabolism in preclinical models, usually rodents. Such tests include glucose tolerance tests, insulin tolerance tests, and glucose clamps. Although these tests are not standardized, there are general guidelines for their completion and analysis that are constantly being refined. In this review, we describe metabolic tests in rodents as well as factors to consider when designing and performing these tests.
Collapse
Affiliation(s)
- Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Toronto, Ontario, Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Shibao C, Peche VS, Williams IM, Samovski D, Pietka TA, Abumrad NN, Gamazon E, Goldberg IJ, Wasserman D, Abumrad NA. Microvascular insulin resistance associates with enhanced muscle glucose disposal in CD36 deficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302950. [PMID: 38405702 PMCID: PMC10889024 DOI: 10.1101/2024.02.16.24302950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Dysfunction of endothelial insulin delivery to muscle associates with insulin resistance. CD36, a fatty acid transporter and modulator of insulin signaling is abundant in endothelial cells, especially in capillaries. Humans with inherited 50% reduction in CD36 expression have endothelial dysfunction but whether it is associated with insulin resistance is unclear. Using hyperinsulinemic/euglycemic clamps in Cd36-/- and wildtype mice, and in 50% CD36 deficient humans and matched controls we found that Cd36-/- mice have enhanced systemic glucose disposal despite unaltered transendothelial insulin transfer and reductions in microvascular perfusion and blood vessel compliance. Partially CD36 deficient humans also have better glucose disposal than controls with no capillary recruitment by insulin. CD36 knockdown in primary human-derived microvascular cells impairs insulin action on AKT, endothelial nitric oxide synthase, and nitric oxide release. Thus, insulin resistance of microvascular function in CD36 deficiency paradoxically associates with increased glucose utilization, likely through a remodeling of muscle gene expression.
Collapse
Affiliation(s)
- Cyndya Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville TN
| | - Vivek S. Peche
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Ian M. Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville TN
| | - Dmitri Samovski
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Terri A. Pietka
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN
| | - Eric Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY
| | - David Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville TN
| | - Nada A. Abumrad
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
18
|
Jacobo-Piqueras N, Theiner T, Geisler SM, Tuluc P. Molecular mechanism responsible for sex differences in electrical activity of mouse pancreatic β cells. JCI Insight 2024; 9:e171609. [PMID: 38358819 PMCID: PMC11063940 DOI: 10.1172/jci.insight.171609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
In humans, type 2 diabetes mellitus shows a higher prevalence in men compared with women, a phenotype that has been attributed to a lower peripheral insulin sensitivity in men. Whether sex-specific differences in pancreatic β cell function also contribute is largely unknown. Here, we characterized the electrophysiological properties of β cells in intact male and female mouse islets. Elevation of glucose concentration above 5 mM triggered an electrical activity with a similar glucose dependence in β cells of both sexes. However, female β cells had a more depolarized membrane potential and increased firing frequency compared with males. The higher membrane depolarization in female β cells was caused by approximately 50% smaller Kv2.1 K+ currents compared with males but otherwise unchanged KATP, large-conductance and small-conductance Ca2+-activated K+ channels, and background TASK1/TALK1 K+ current densities. In female β cells, the higher depolarization caused a membrane potential-dependent inactivation of the voltage-gated Ca2+ channels (CaV), resulting in reduced Ca2+ entry. Nevertheless, this reduced Ca2+ influx was offset by a higher action potential firing frequency. Because exocytosis of insulin granules does not show a sex-specific difference, we conclude that the higher electrical activity promotes insulin release in females, improving glucose tolerance.
Collapse
|
19
|
Weidemann BJ, Marcheva B, Kobayashi M, Omura C, Newman MV, Kobayashi Y, Waldeck NJ, Perelis M, Lantier L, McGuinness OP, Ramsey KM, Stein RW, Bass J. Repression of latent NF-κB enhancers by PDX1 regulates β cell functional heterogeneity. Cell Metab 2024; 36:90-102.e7. [PMID: 38171340 PMCID: PMC10793877 DOI: 10.1016/j.cmet.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified β cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). β cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in β cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1β receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single β cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.
Collapse
Affiliation(s)
- Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikoto Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Louise Lantier
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Owen P McGuinness
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Belcik JT, Xie A, Muller M, Lindner JR. Influence of Atherosclerotic Risk Factors on the Effectiveness of Therapeutic Ultrasound Cavitation for Flow Augmentation. J Am Soc Echocardiogr 2024; 37:100-107. [PMID: 37678655 DOI: 10.1016/j.echo.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Shear created by inertial cavitation of microbubbles by ultrasound augments limb and myocardial perfusion and can reverse tissue ischemia. Our aim was to determine whether this therapeutic bioeffect is attenuated by atherosclerotic risk factors that are known to impair shear-mediated vasodilation and adversely affect microvascular reactivity. METHODS In mice, lipid-stabilized decafluorobutane microbubbles (2 × 108) were administered intravenously while exposing a proximal hind limb to ultrasound (1.3 MHz, 1.3 mechanical index, pulsing interval 5 seconds) for 10 minutes. Murine strains included wild-type mice and severely hyperlipidemic mice at 15, 35, or 52 weeks of age as a model of aging and elevated cholesterol, and obese db/db mice (≈15 weeks) with severe insulin resistance. Quantitative contrast-enhanced ultrasound perfusion imaging was performed to assess microvascular perfusion in the control and ultrasound-exposed limb. An in situ electrochemical probe and in vivo biophotonic imaging were used to assess limb nitric oxide (NO) and adenosine triphosphosphate concentrations, respectively. RESULTS Microvascular perfusion was significantly increased by several fold in the cavitation-exposed limb versus control limb for all murine strains and ages (P < .001). In wild-type and hyperlipidemic mice, hyperemia from cavitation was attenuated in the 2 older age groups (P < .01). In young mice (15 weeks), perfusion in cavitation-exposed muscle was less in both the hyperlipidemic mice and the obese db/db mice compared with corresponding wild-type mice. Using young hyperlipidemic mice as a model for flow impairment, limb NO production after cavitation was reduced but adenosine triphosphosphate production was unaltered when compared with age-matched wild-type mice. CONCLUSIONS In mice, ultrasound cavitation of microbubbles increases limb perfusion by several fold even in the presence of traditional atherosclerotic risk factors. However, older age, hyperlipidemia, and insulin resistance modestly attenuate the degree of flow augmentation, which could impact the degree of flow response in current clinical trials in patients with critical limb ischemia.
Collapse
Affiliation(s)
- J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Aris Xie
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Matthew Muller
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Jonathan R Lindner
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
21
|
Lin TY, Ramsamooj S, Perrier T, Liberatore K, Lantier L, Vasan N, Karukurichi K, Hwang SK, Kesicki EA, Kastenhuber ER, Wiederhold T, Yaron TM, Huntsman EM, Zhu M, Ma Y, Paddock MN, Zhang G, Hopkins BD, McGuinness O, Schwartz RE, Ersoy BA, Cantley LC, Johnson JL, Goncalves MD. Epinephrine inhibits PI3Kα via the Hippo kinases. Cell Rep 2023; 42:113535. [PMID: 38060450 PMCID: PMC10809223 DOI: 10.1016/j.celrep.2023.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Shakti Ramsamooj
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tiffany Perrier
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Louise Lantier
- Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Neil Vasan
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Seo-Kyoung Hwang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | | | | | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mengmeng Zhu
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Owen McGuinness
- Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Baran A Ersoy
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
22
|
Zhang AMY, Xia YH, Lin JSH, Chu KH, Wang WCK, Ruiter TJJ, Yang JCC, Chen N, Chhuor J, Patil S, Cen HH, Rideout EJ, Richard VR, Schaeffer DF, Zahedi RP, Borchers CH, Johnson JD, Kopp JL. Hyperinsulinemia acts via acinar insulin receptors to initiate pancreatic cancer by increasing digestive enzyme production and inflammation. Cell Metab 2023; 35:2119-2135.e5. [PMID: 37913768 DOI: 10.1016/j.cmet.2023.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/02/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.
Collapse
Affiliation(s)
- Anni M Y Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey S H Lin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ken H Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wei Chuan K Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Titine J J Ruiter
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jenny C C Yang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nan Chen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Justin Chhuor
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shilpa Patil
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Rene P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada; Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H4A 3T2, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
23
|
Laurans L, Mouttoulingam N, Chajadine M, Lavelle A, Diedisheim M, Bacquer E, Creusot L, Suffee N, Esposito B, Melhem NJ, Le Goff W, Haddad Y, Paul JL, Rainteau D, Tedgui A, Ait-Oufella H, Zitvogel L, Sokol H, Taleb S. An obesogenic diet increases atherosclerosis through promoting microbiota dysbiosis-induced gut lymphocyte trafficking into the periphery. Cell Rep 2023; 42:113350. [PMID: 37897726 DOI: 10.1016/j.celrep.2023.113350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Although high-fat diet (HFD)-induced gut microbiota dysbiosis is known to affect atherosclerosis, the underlying mechanisms remain to be fully explored. Here, we show that the progression of atherosclerosis depends on a gut microbiota shaped by an HFD but not a high-cholesterol (HC) diet and, more particularly, on low fiber (LF) intake. Mechanistically, gut lymphoid cells impacted by HFD- or LF-induced microbiota dysbiosis highly proliferate in mesenteric lymph nodes (MLNs) and migrate from MLNs to the periphery, which fuels T cell accumulation within atherosclerotic plaques. This is associated with the induction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) within plaques and the presence of enterotropic lymphocytes expressing β7 integrin. MLN resection or lymphocyte deficiency abrogates the pro-atherogenic effects of a microbiota shaped by LF. Our study shows a pathological link between a diet-shaped microbiota, gut immune cells, and atherosclerosis, suggesting that a diet-modulated microbiome might be a suitable therapeutic target to prevent atherosclerosis.
Collapse
Affiliation(s)
- Ludivine Laurans
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Nirmala Mouttoulingam
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Mouna Chajadine
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Aonghus Lavelle
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Marc Diedisheim
- Clinique Saint Gatien Alliance (NCT+), 37540 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, 75015 Paris, France
| | - Emilie Bacquer
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Laura Creusot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nadine Suffee
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France; INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, 75013 Paris, France
| | - Bruno Esposito
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Nada Joe Melhem
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Wilfried Le Goff
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, 75013 Paris, France
| | - Yacine Haddad
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France; Gustave Roussy, Villejuif, France; Institut National de la Santé et de la Recherche Médicale, Gustave Roussy, UMR1015, Villejuif, France
| | - Jean-Louis Paul
- Université Paris-Sud, Equipe d'Accueil 4529, UFR de Pharmacie, Chatenay-Malabry, France and Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Dominique Rainteau
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Clinical Metabolomics Department, 75012 Paris, France
| | - Alain Tedgui
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Hafid Ait-Oufella
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France; Institut National de la Santé et de la Recherche Médicale, Gustave Roussy, UMR1015, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France; Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France; INRAe, Micalis & AgroParisTech, Jouy en Josas, France
| | - Soraya Taleb
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France.
| |
Collapse
|
24
|
Wang F, Ko CW, Qu J, Wu D, Zhu Q, Liu M, Tso P. Apolipoprotein A-IV-Deficient Mice in 129/SvJ Background Are Susceptible to Obesity and Glucose Intolerance. Nutrients 2023; 15:4840. [PMID: 38004234 PMCID: PMC10674380 DOI: 10.3390/nu15224840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Apolipoprotein A-IV (apoA-IV), synthesized by enterocytes, is potentially involved in regulating lipid absorption and metabolism, food intake, and glucose metabolism. In this study, we backcrossed apoA-IV knockout (apoA-IV-/-) mice onto the 129/SvJ background for eight generations. Compared to the wild-type (WT) mice, the 129/SvJ apoA-IV-/- mice gained more weight and exhibited delayed glucose clearance even on the chow diet. During a 16-week high-fat diet (20% by weight of fat) study, apoA-IV-/- mice were more obese than the WT mice, which was associated with their increased food intake as well as reduced energy expenditure and physical activity. In addition, apoA-IV-/- mice developed significant insulin resistance (indicated by HOMA-IR) with severe glucose intolerance even though their insulin levels were drastically higher than the WT mice. In conclusion, we have established a model of apoA-IV-/- mice onto the 129/SvJ background. Unlike in the C57BL/6J strain, apoA-IV-/- 129/SvJ mice become significantly more obese and insulin-resistant than WT mice. Our current investigations of apoA-IV in the 129/SvJ strain and our previous studies in the C57BL/6J strain underline the impact of genetic background on apoA-IV metabolic effects.
Collapse
Affiliation(s)
- Fei Wang
- Norton Healthcare, 4910 Chamberlain Lane, Louisville, KY 40202, USA;
| | - Chih-Wei Ko
- Chroma Medicine, 201 Brookine Ave, Suite 1101, Boston, MA 02215, USA;
| | - Jie Qu
- Medpace Reference Laboratories, LLC., 5365 Medpace Way, Cincinnati, OH 45227, USA;
| | - Dong Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Qi Zhu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| |
Collapse
|
25
|
Qu J, Wu D, Ko CW, Zhu Q, Liu M, Tso P. Deficiency of apoA-IV in Female 129X1/SvJ Mice Leads to Diet-Induced Obesity, Insulin Resistance, and Decreased Energy Expenditure. Nutrients 2023; 15:4655. [PMID: 37960308 PMCID: PMC10650794 DOI: 10.3390/nu15214655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is one of the main risk factors for cardiovascular diseases, type II diabetes, hypertension, and certain cancers. Obesity in women at the reproductive stage adversely affects contraception, fertility, maternal well-being, and the health of their offspring. Being a major protein component in chylomicrons and high-density lipoproteins, apolipoprotein A-IV (apoA-IV) is involved in lipid metabolism, food intake, glucose homeostasis, prevention against atherosclerosis, and platelet aggregation. The goal of the present study is to determine the impact of apoA-IV deficiency on metabolic functions in 129X1/SvJ female mouse strain. After chronic high-fat diet feeding, apoA-IV-/- mice gained more weight with a higher fat percentage than wild-type (WT) mice, as determined by measuring their body composition. Increased adiposity and adipose cell size were also observed with a microscope, particularly in periovarian fat pads. Based on plasma lipid and adipokine assays, we found that obesity in apoA-IV-/- mice was not associated with hyperlipidemia but with higher leptin levels. Compared to WT mice, apoA-IV deficiency displayed glucose intolerance and elevated insulin levels, according to the data of the glucose tolerance test, and increased HOMA-IR values at fasting, suggesting possible insulin resistance. Lastly, we found obesity in apoA-IV-/- mice resulting from reduced energy expenditure but not food intake. Together, we established a novel and excellent female mouse model for future mechanistic study of obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Jie Qu
- Medpace Reference Laboratories, LLC, 5365 Medpace Way, Cincinnati, OH 45227, USA;
| | - Dong Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Chih-Wei Ko
- Chroma Medicine, 201 Brookline Ave, Suite 1101, Boston, MA 02215, USA;
| | - Qi Zhu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| |
Collapse
|
26
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
27
|
Hurst CD, Dunn AR, Dammer EB, Duong DM, Shapley SM, Seyfried NT, Kaczorowski CC, Johnson ECB. Genetic background influences the 5XFAD Alzheimer's disease mouse model brain proteome. Front Aging Neurosci 2023; 15:1239116. [PMID: 37901791 PMCID: PMC10602695 DOI: 10.3389/fnagi.2023.1239116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
There is an urgent need to improve the translational validity of Alzheimer's disease (AD) mouse models. Introducing genetic background diversity in AD mouse models has been proposed as a way to increase validity and enable the discovery of previously uncharacterized genetic contributions to AD susceptibility or resilience. However, the extent to which genetic background influences the mouse brain proteome and its perturbation in AD mouse models is unknown. In this study, we crossed the 5XFAD AD mouse model on a C57BL/6J (B6) inbred background with the DBA/2J (D2) inbred background and analyzed the effects of genetic background variation on the brain proteome in F1 progeny. Both genetic background and 5XFAD transgene insertion strongly affected protein variance in the hippocampus and cortex (n = 3,368 proteins). Protein co-expression network analysis identified 16 modules of highly co-expressed proteins common across the hippocampus and cortex in 5XFAD and non-transgenic mice. Among the modules strongly influenced by genetic background were those related to small molecule metabolism and ion transport. Modules strongly influenced by the 5XFAD transgene were related to lysosome/stress responses and neuronal synapse/signaling. The modules with the strongest relationship to human disease-neuronal synapse/signaling and lysosome/stress response-were not significantly influenced by genetic background. However, other modules in 5XFAD that were related to human disease, such as GABA synaptic signaling and mitochondrial membrane modules, were influenced by genetic background. Most disease-related modules were more strongly correlated with AD genotype in the hippocampus compared with the cortex. Our findings suggest that the genetic diversity introduced by crossing B6 and D2 inbred backgrounds influences proteomic changes related to disease in the 5XFAD model, and that proteomic analysis of other genetic backgrounds in transgenic and knock-in AD mouse models is warranted to capture the full range of molecular heterogeneity in genetically diverse models of AD.
Collapse
Affiliation(s)
- Cheyenne D. Hurst
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Amy R. Dunn
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Eric B. Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Duc M. Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Sarah M. Shapley
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Nicholas T. Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Catherine C. Kaczorowski
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States
- Department of Neurology, The University of Michigan, Ann Arbor, MI, United States
| | - Erik C. B. Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
28
|
Ting IJ, Psomas A, Skene DJ, Van der Veen DR. Reduced glucose concentration enhances ultradian rhythms in Pdcd5 promoter activity in vitro. Front Physiol 2023; 14:1244497. [PMID: 37904794 PMCID: PMC10613464 DOI: 10.3389/fphys.2023.1244497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Intrinsically driven ultradian rhythms in the hourly range are often co-expressed with circadian rhythms in various physiological processes including metabolic processes such as feeding behaviour, gene expression and cellular metabolism. Several behavioural observations show that reduced energy intake or increased energy expenditure leads to a re-balancing of ultradian and circadian timing, favouring ultradian feeding and activity patterns when energy availability is limited. This suggests a close link between ultradian rhythmicity and metabolic homeostasis, but we currently lack models to test this hypothesis at a cellular level. We therefore transduced 3T3-L1 pre-adipocyte cells with a reporter construct that drives a destabilised luciferase via the Pdcd5 promotor, a gene we previously showed to exhibit robust ultradian rhythms in vitro. Ultradian rhythmicity in Pdcd5 promotor driven bioluminescence was observed in >80% of all cultures that were synchronised with dexamethasone, whereas significantly lower numbers exhibited ultradian rhythmicity in non-synchronised cultures (∼11%). Cosine fits to ultradian bioluminescence rhythms in cells cultured and measured in low glucose concentrations (2 mM and 5 mM), exhibited significantly higher amplitudes than all other cultures, and a shorter period (6.9 h vs. 8.2 h, N = 12). Our findings show substantial ultradian rhythmicity in Pdcd5 promotor activity in cells in which the circadian clocks have been synchronised in vitro, which is in line with observations of circadian synchronisation of behavioural ultradian rhythms. Critically, we show that the amplitude of ultradian rhythms is enhanced in low glucose conditions, suggesting that low energy availability enhances ultradian rhythmicity at the cellular level in vitro.
Collapse
|
29
|
Bauer BM, Bhattacharya S, Bloom-Saldana E, Irimia-Dominguez JM, Fueger PT. Dose-dependent progression of multiple low-dose streptozotocin-induced diabetes in mice. Physiol Genomics 2023; 55:381-391. [PMID: 37458461 PMCID: PMC10642924 DOI: 10.1152/physiolgenomics.00032.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and although both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function, and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, whereas pathways that were upregulated in both doses were more upregulated in the 35 mg/kg-treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.
Collapse
Affiliation(s)
- Brandon M Bauer
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, United States
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Supriyo Bhattacharya
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Elizabeth Bloom-Saldana
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, United States
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Jose M Irimia-Dominguez
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, United States
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Patrick T Fueger
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, United States
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, California, United States
| |
Collapse
|
30
|
Tixi W, Maldonado M, Chang YT, Chiu A, Yeung W, Parveen N, Nelson MS, Hart R, Wang S, Hsu WJ, Fueger P, Kopp JL, Huising MO, Dhawan S, Shih HP. Coordination between ECM and cell-cell adhesion regulates the development of islet aggregation, architecture, and functional maturation. eLife 2023; 12:e90006. [PMID: 37610090 PMCID: PMC10482429 DOI: 10.7554/elife.90006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Pancreatic islets are three-dimensional cell aggregates consisting of unique cellular composition, cell-to-cell contacts, and interactions with blood vessels. Cell aggregation is essential for islet endocrine function; however, it remains unclear how developing islets establish aggregation. By combining genetic animal models, imaging tools, and gene expression profiling, we demonstrate that islet aggregation is regulated by extracellular matrix signaling and cell-cell adhesion. Islet endocrine cell-specific inactivation of extracellular matrix receptor integrin β1 disrupted blood vessel interactions but promoted cell-cell adhesion and the formation of larger islets. In contrast, ablation of cell-cell adhesion molecule α-catenin promoted blood vessel interactions yet compromised islet clustering. Simultaneous removal of integrin β1 and α-catenin disrupts islet aggregation and the endocrine cell maturation process, demonstrating that establishment of islet aggregates is essential for functional maturation. Our study provides new insights into understanding the fundamental self-organizing mechanism for islet aggregation, architecture, and functional maturation.
Collapse
Affiliation(s)
- Wilma Tixi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Maricela Maldonado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
- Department of Biomedical Engineering, College of Engineering, California State University, Long BeachLong BeachUnited States
| | - Ya-Ting Chang
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Amy Chiu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Wilson Yeung
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Michael S Nelson
- Light Microscopy Core, Beckman Research Institute, City of HopeDuarteUnited States
| | - Ryan Hart
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Shihao Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Wu Jih Hsu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Patrick Fueger
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
- Department of Physiology and Membrane Biology, School of Medicine, University of California, DavisDavisUnited States
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Hung Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| |
Collapse
|
31
|
Peche VS, Pietka TA, Jacome-Sosa M, Samovski D, Palacios H, Chatterjee-Basu G, Dudley AC, Beatty W, Meyer GA, Goldberg IJ, Abumrad NA. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun 2023; 14:4029. [PMID: 37419919 PMCID: PMC10329018 DOI: 10.1038/s41467-023-39752-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.
Collapse
Affiliation(s)
- V S Peche
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - T A Pietka
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Jacome-Sosa
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - D Samovski
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Palacios
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Chatterjee-Basu
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Beatty
- Department of Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G A Meyer
- Departments of Physical Therapy, Neurology and Orthopedic Surgery, Washington University School of Medicine, St. Louis, 63110, USA
| | - I J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - N A Abumrad
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
32
|
Hurst CD, Dunn AR, Dammer EB, Duong DM, Seyfried NT, Kaczorowski CC, Johnson ECB. Genetic background influences the 5XFAD Alzheimer's disease mouse model brain proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544646. [PMID: 37398142 PMCID: PMC10312637 DOI: 10.1101/2023.06.12.544646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
There is a pressing need to improve the translational validity of Alzheimer's disease (AD) mouse models. Introducing genetic background diversity in AD mouse models has been proposed as a way to increase validity and enable discovery of previously uncharacterized genetic contributions to AD susceptibility or resilience. However, the extent to which genetic background influences the mouse brain proteome and its perturbation in AD mouse models is unknown. Here we crossed the 5XFAD AD mouse model on a C57BL/6J (B6) inbred background with the DBA/2J (D2) inbred background and analyzed the effects of genetic background variation on the brain proteome in F1 progeny. Both genetic background and 5XFAD transgene insertion strongly affected protein variance in hippocampus and cortex (n=3,368 proteins). Protein co-expression network analysis identified 16 modules of highly co-expressed proteins common across hippocampus and cortex in 5XFAD and non-transgenic mice. Among the modules strongly influenced by genetic background were those related to small molecule metabolism and ion transport. Modules strongly influenced by the 5XFAD transgene were related to lysosome/stress response and neuronal synapse/signaling. The modules with the strongest relationship to human disease-neuronal synapse/signaling and lysosome/stress response-were not significantly influenced by genetic background. However, other modules in 5XFAD that were related to human disease, such as GABA synaptic signaling and mitochondrial membrane modules, were influenced by genetic background. Most disease-related modules were more strongly correlated to AD genotype in hippocampus compared to cortex. Our findings suggest that genetic diversity introduced by crossing B6 and D2 inbred backgrounds influences proteomic changes related to disease in the 5XFAD model, and that proteomic analysis of other genetic backgrounds in transgenic and knock-in AD mouse models is warranted to capture the full range of molecular heterogeneity in genetically diverse models of AD.
Collapse
Affiliation(s)
- Cheyenne D. Hurst
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Eric B. Dammer
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Duc M. Duong
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T. Seyfried
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Catherine C. Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- The University of Michigan, Ann Arbor, MI 48105 USA
| | - Erik C. B. Johnson
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
33
|
Grizzanti J, Moritz WR, Pait MC, Stanley M, Kaye SD, Carroll CM, Constantino NJ, Deitelzweig LJ, Snipes JA, Kellar D, Caesar EE, Pettit-Mee RJ, Day SM, Sens JP, Nicol NI, Dhillon J, Remedi MS, Kiraly DD, Karch CM, Nichols CG, Holtzman DM, Macauley SL. KATP channels are necessary for glucose-dependent increases in amyloid-β and Alzheimer's disease-related pathology. JCI Insight 2023; 8:e162454. [PMID: 37129980 PMCID: PMC10386887 DOI: 10.1172/jci.insight.162454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-β (Aβ) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aβ pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aβ, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aβ pathology in patients with diabetes or prediabetes.
Collapse
Affiliation(s)
- John Grizzanti
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - William R. Moritz
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Morgan C. Pait
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Molly Stanley
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, Vermont, USA
| | - Sarah D. Kaye
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Caitlin M. Carroll
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholas J. Constantino
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lily J. Deitelzweig
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James A. Snipes
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Derek Kellar
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily E. Caesar
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | | | | | - Noelle I. Nicol
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jasmeen Dhillon
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maria S. Remedi
- Department of Physiology and Pharmacology and
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | | | - Celeste M. Karch
- Department of Psychiatry
- Hope Center for Neurological Disorders
- Knight Alzheimer’s Disease Research Center, Department of Neurology; and
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders
- Knight Alzheimer’s Disease Research Center, Department of Neurology; and
| | - Shannon L. Macauley
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Alzheimer’s Disease Research Center
- Center on Diabetes, Obesity and Metabolism
- Center for Precision Medicine; and
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
34
|
Bauer BM, Bhattacharya S, Bloom-Saldana E, Irimia JM, Fueger PT. Dose-dependent progression of multiple low dose streptozotocin-induced diabetes in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536122. [PMID: 37066233 PMCID: PMC10104175 DOI: 10.1101/2023.04.08.536122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and while both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, while pathways that were upregulated in both doses were more upregulated in the 35 mg/kg treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.
Collapse
Affiliation(s)
- Brandon M Bauer
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Bloom-Saldana
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jose M Irimia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick T Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
35
|
Massey WJ, Varadharajan V, Banerjee R, Brown AL, Horak AJ, Hohe RC, Jung BM, Qiu Y, Chan ER, Pan C, Zhang R, Allende DS, Willard B, Cheng F, Lusis AJ, Brown JM. MBOAT7-driven lysophosphatidylinositol acylation in adipocytes contributes to systemic glucose homeostasis. J Lipid Res 2023; 64:100349. [PMID: 36806709 PMCID: PMC10041558 DOI: 10.1016/j.jlr.2023.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023] Open
Abstract
We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of ∼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.
Collapse
Affiliation(s)
- William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony J Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel C Hohe
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bryan M Jung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Calvin Pan
- Departments of Medicine, Microbiology, and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
36
|
LaPoint A, Singer JM, Ferguson D, Shew TM, Renkemeyer MK, Palacios H, Field R, Shankaran M, Smith GI, Yoshino J, He M, Patti GJ, Hellerstein MK, Klein S, Brestoff JR, Finck BN, Lutkewitte AJ. Adipocyte lipin 1 is positively associated with metabolic health in humans and regulates systemic metabolism in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526676. [PMID: 36778276 PMCID: PMC9915639 DOI: 10.1101/2023.02.01.526676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1-/- mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of nonalcoholic steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health and its loss predisposes mice to nonalcoholic steatohepatitis.
Collapse
|
37
|
Becerril S, Rodríguez A, Catalán V, Ramírez B, Mentxaka A, Neira G, Gómez-Ambrosi J, Frühbeck G. Sex- and Age-Dependent Changes in the Adiponectin/Leptin Ratio in Experimental Diet-Induced Obesity in Mice. Nutrients 2022; 15:73. [PMID: 36615734 PMCID: PMC9823624 DOI: 10.3390/nu15010073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Biological sex and aging impact obesity development and type 2 diabetes, changing the secretion of leptin and adiponectin. The balance between these factors has been propounded as a reliable biomarker of adipose tissue dysfunction. Our proposal was to study sexual differences and aging on the adiponectin/leptin (Adpn/Lep) ratio in order to acquire a broader view of the impact of consuming an high-fat diet (HFD) on energy metabolism according to sex and age. Male and female C57BL/6J mice were fed a normal chow diet or an HFD for 12 or 32 weeks (n = 7−10 per group) and evolution of body weight, food intake and metabolic profile were registered. The HFD triggered an increase in body weight (p < 0.001), body weight gain (p < 0.01) and adiposity index (p < 0.01) in both sexes at 32 weeks of age, but female mice fed the HFD exhibited these changes to a significantly lower extent than males. Aged female mice showed an increase (p < 0.01) in the Adpn/Lep ratio, which was negatively correlated with body weight gain, changes in different fat depots and insulin resistance. Females were more metabolically protected from obesity development and its related comorbidities than males regardless of age, making the Adpn/Lep ratio a relevant factor for body composition and glucose metabolism.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Amaia Mentxaka
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
38
|
Buckels EJ, Hsu HL, Buchanan CM, Matthews BG, Lee KL. Genetic ablation of the preptin-coding portion of Igf2 impairs pancreatic function in female mice. Am J Physiol Endocrinol Metab 2022; 323:E467-E479. [PMID: 36459047 DOI: 10.1152/ajpendo.00401.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preptin is a 34-amino acid peptide derived from the E-peptide of pro-insulin-like growth factor 2 and is co-secreted with insulin from β-cells. Little is understood about the effects of endogenous preptin on whole body glucose metabolism. We developed a novel mouse model in which the preptin portion of Igf2 was genetically ablated in all tissues, hereafter referred to as preptin knockout (KO), and tested the hypothesis that the removal of preptin will lead to a decreased insulin response to a metabolic challenge. Preptin KO and wild-type (WT) mice underwent weekly fasting blood glucose measurements, intraperitoneal insulin tolerance tests (ITT) at 9, 29, and 44 wk of age, and an oral glucose tolerance test (GTT) at 45 wk of age. Preptin KO mice of both sexes had similar Igf2 exon 2-3 mRNA expression in the liver and kidney compared with WT mice, but Igf2 exon 3-4 (preptin) expression was not detectable. Western blot analysis of neonatal serum indicated that processing of pro-IGF2 translated from the KO allele may be altered. Preptin KO mice had similar body weight, body composition, β-cell area, and fasted glucose concentrations compared with WT mice in both sexes up to 47 wk of age. Female KO mice had a diminished ability to mount an insulin response following glucose stimulation in vivo. This effect was absent in male KO mice. Although preptin is not essential for glucose homeostasis, when combined with previous in vitro and ex vivo findings, these data show that preptin positively impacts β-cell function.NEW & NOTEWORTHY This is the first study to describe a model in which the preptin-coding portion of the Igf2 gene has been genetically ablated in mice. The mice do not show reduced size at birth associated with Igf2 knockout suggesting that IGF2 functionality is maintained, yet we demonstrate a change in the processing of mature Igf2. Female knockout mice have diminished glucose-stimulated insulin secretion, whereas the insulin response in males is not different to wild type.
Collapse
Affiliation(s)
- E J Buckels
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - H-L Hsu
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | - C M Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - B G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - K L Lee
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| |
Collapse
|
39
|
Stekelenburg C, Blouin JL, Santoni F, Zaghloul N, O'Hare EA, Dusaulcy R, Maechler P, Schwitzgebel VM. Loss of Nexmif results in the expression of phenotypic variability and loss of genomic integrity. Sci Rep 2022; 12:13815. [PMID: 35970867 PMCID: PMC9378738 DOI: 10.1038/s41598-022-17845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
We identified two NEXMIF variants in two unrelated individuals with non-autoimmune diabetes and autistic traits, and investigated the expression of Nexmif in mouse and human pancreas and its function in pancreatic beta cells in vitro and in vivo. In insulin-secreting INS-1E cells, Nexmif expression increased strongly in response to oxidative stress. CRISPR Cas9-generated Nexmif knockout mice exhibited a reduced number of proliferating beta cells in pancreatic islets. RNA sequencing of pancreatic islets showed that the downregulated genes in Nexmif mutant islets are involved in stress response and the deposition of epigenetic marks. They include H3f3b, encoding histone H3.3, which is associated with the regulation of beta-cell proliferation and maintains genomic integrity by silencing transposable elements, particularly LINE1 elements. LINE1 activity has been associated with autism and neurodevelopmental disorders in which patients share characteristics with NEXMIF patients, and can cause genomic instability and genetic variation through retrotransposition. Nexmif knockout mice exhibited various other phenotypes. Mortality and phenotypic abnormalities increased in each generation in both Nexmif mutant and non-mutant littermates. In Nexmif mutant mice, LINE1 element expression was upregulated in the pancreas, brain, and testis, possibly inducing genomic instability in Nexmif mutant mice and causing phenotypic variability in their progeny.
Collapse
Affiliation(s)
- Caroline Stekelenburg
- Pediatric Endocrine and Diabetes Unit, Division of Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Children's University Hospital, 6, Rue Willy Donze, 1205, Geneva, Switzerland.,Faculty Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Louis Blouin
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, 1211, Geneva, Switzerland.,Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Federico Santoni
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Norann Zaghloul
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Elisabeth A O'Hare
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Rodolphe Dusaulcy
- Pediatric Endocrine and Diabetes Unit, Division of Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Children's University Hospital, 6, Rue Willy Donze, 1205, Geneva, Switzerland.,Faculty Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Maechler
- Faculty Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206, Geneva, Switzerland
| | - Valerie M Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Division of Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Children's University Hospital, 6, Rue Willy Donze, 1205, Geneva, Switzerland. .,Faculty Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
40
|
Deletion of LDLRAP1 Induces Atherosclerotic Plaque Formation, Insulin Resistance, and Dysregulated Insulin Response in Adipose Tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1092-1108. [PMID: 35460615 PMCID: PMC9253916 DOI: 10.1016/j.ajpath.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022]
Abstract
Dyslipidemia, vascular inflammation, obesity, and insulin resistance often overlap and exacerbate each other. Mutations in low density lipoprotein receptor adaptor protein-1 (LDLRAP1) lead to LDLR malfunction and are associated with the autosomal recessive hypercholesterolemia disorder in humans. However, direct causality on atherogenesis in a defined preclinical model has not been reported. The objective of this study was to test the hypothesis that deletion of LDLRAP1 will lead to hypercholesteremia and atherosclerosis. LDLRAP1-/- mice fed a high-fat Western diet had significantly increased plasma cholesterol and triglyceride concentrations accompanied with significantly increased plaque burden compared with wild-type controls. Unexpectedly, LDLRAP1-/- mice gained significantly more weight compared with controls. Even on a chow diet, LDLRAP1-/- mice were insulin-resistant, and calorimetric studies suggested an altered metabolic profile. The study showed that LDLRAP1 is highly expressed in visceral adipose tissue, and LDLRAP1-/- adipocytes are significantly larger, have reduced glucose uptake and AKT phosphorylation, but have increased CD36 expression. Visceral adipose tissue from LDLRAP1-/- mice was hypoxic and had gene expression signatures of dysregulated lipid storage and energy homeostasis. These data are the first to indicate that lack of LDLRAP1 directly leads to atherosclerosis in mice and also plays an unanticipated metabolic regulatory role in adipose tissue. LDLRAP1 may link atherosclerosis and hypercholesterolemia with common comorbidities of obesity and insulin resistance.
Collapse
|
41
|
Affiliation(s)
- Julio E Ayala
- Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA
- Mouse Diabetes Clinic at Vanderbilt, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Louise Lantier
- Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA
- Mouse Diabetes Clinic at Vanderbilt, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Owen P McGuinness
- Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA
- Mouse Diabetes Clinic at Vanderbilt, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - David H Wasserman
- Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA.
- Mouse Diabetes Clinic at Vanderbilt, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
42
|
Wu Y, Hu S, Yang D, Li L, Li B, Wang L, Li M, Wang G, Li J, Xu Y, Zhang X, Niu C, Speakman JR. Increased Variation in Body Weight and Food Intake Is Related to Increased Dietary Fat but Not Increased Carbohydrate or Protein in Mice. Front Nutr 2022; 9:835536. [PMID: 35360679 PMCID: PMC8963818 DOI: 10.3389/fnut.2022.835536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
A variety of inbred mouse strains have been used for research in metabolic disorders. Despite being inbred, they display large inter-individual variability for many traits like food intake and body weight. However, the relationship between dietary macronutrients and inter-individual variation in body weight and food intake of different mouse strains is still unclear. We investigated the association between macronutrient content of the diet and variations in food intake, body composition, and glucose tolerance by exposing five different mouse strains (C57BL/6, BALB/c, C3H, DBA/2, and FVB) to 24 different diets with variable protein, fat, and carbohydrate contents. We found only increasing dietary fat, but not protein or carbohydrate had a significant association (positive) with variation in both food intake and body weight. The highest variation in both body weight and food intake occurred with 50% dietary fat. However, there were no significant relationships between the variation in fat and lean mass with dietary protein, fat, or carbohydrate levels. In addition, none of the dietary macronutrients had significant impacts on the variation in glucose tolerance ability in C57BL/6 mice. In conclusion, the variations in food intake and body weight changes increased with the elevation of dietary fat levels.
Collapse
Affiliation(s)
- Yingga Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Sumei Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Min Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Yanchao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xueying Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chaoqun Niu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - John R. Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China
- *Correspondence: John R. Speakman
| |
Collapse
|
43
|
Lyngsø KS, Jensen BL, Hansen PBL, Dimke H. Endothelial mineralocorticoid receptor ablation confers protection towards endothelial dysfunction in experimental diabetes in mice. Acta Physiol (Oxf) 2022; 234:e13731. [PMID: 34519423 DOI: 10.1111/apha.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
AIM With diabetes comes a significant risk of macrovascular and microvascular complications. Circulating aldosterone levels increase in patients with diabetes. Aldosterone can directly affect vascular function via activation of the mineralocorticoid receptor (MR). We hypothesized that aldosterone via endothelial MR impairs endothelial function in a murine model of experimental diabetes. METHOD Endothelial cell-specific mineralocorticoid receptor knockout MRflox/flox ; Tie2-Cre mice (ECMR-KO) and wild-type FVB littermates were subjected to an experimental type-1 diabetic model by low dose streptozotocin injections (55mg/kg/day) for five consecutive days. After 10 weeks of diabetes, second-order mesenteric resistance arteries were perfused ex vivo to evaluate vessel contractility and endothelial function. The effect of ex vivo incubation with aldosterone with and without the antagonist, spironolactone was determined. RESULTS Diabetic ECMR-KO and wild-type mice had similar, elevated, plasma aldosterone concentration while only diabetic wild-type mice displayed elevated urine albumin excretion and cardiac and kidney hypertrophy at 10 weeks. There were no differences in contraction (Emax and EC50 ) to thromboxane receptor agonist (U46619) and elevated K+ between groups. Wild-type diabetic mice showed impaired acetylcholine (ACh)-dependent relaxation, while diabetic ECMR-KO mice had intact ACh-mediated relaxation. Aldosterone incubation ex vivo impaired ACh mediated relaxation and rendered responses similar to diabetic WT arteries. Direct, ex vivo aldosterone effects were absent in ECMR-KO animals. Ex vivo inhibitory effects of aldosterone on endothelial relaxation in arteries from WT were abolished by spironolactone. CONCLUSION These findings show that endothelial cell mineralocorticoid receptor activation accounts for diabetes-induced systemic endothelial dysfunction in experimental diabetes and may explain the cardiovascular protection by MR antagonists in diabetes.
Collapse
Affiliation(s)
- Kristina S. Lyngsø
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense C Denmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense C Denmark
| | - Pernille B. L. Hansen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense C Denmark
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense C Denmark
- Department of Nephrology Odense University Hospital Odense Denmark
| |
Collapse
|
44
|
Zietzer A, Jahnel AL, Bulic M, Gutbrod K, Düsing P, Hosen MR, Dörmann P, Werner N, Nickenig G, Jansen F. Activation of neutral sphingomyelinase 2 through hyperglycemia contributes to endothelial apoptosis via vesicle-bound intercellular transfer of ceramides. Cell Mol Life Sci 2021; 79:48. [PMID: 34951654 PMCID: PMC8739297 DOI: 10.1007/s00018-021-04049-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Background Pro-apoptotic and pro-inflammatory ceramides are crucially involved in atherosclerotic plaque development. Local cellular ceramide accumulation mediates endothelial apoptosis, especially in type 2 diabetes mellitus, which is a major cardiovascular risk factor. In recent years, large extracellular vesicles (lEVs) have been identified as an important means of intercellular communication and as regulators of cardiovascular health and disease. A potential role for lEVs as vehicles for ceramide transfer and inductors of diabetes-associated endothelial apoptosis has never been investigated. Methods and Results A mass-spectrometric analysis of human coronary artery endothelial cells (HCAECs) and their lEVs revealed C16 ceramide (d18:1–16:0) to be the most abundant ceramide in lEVs and to be significantly increased in lEVs after hyperglycemic injury to HCAECs. The increased packaging of ceramide into lEVs after hyperglycemic injury was shown to be dependent on neutral sphingomyelinase 2 (nSMase2), which was upregulated in glucose-treated HCAECs. lEVs from hyperglycemic HCAECs induced apoptosis in the recipient HCAECs compared to native lEVs from untreated HCAECs. Similarly, lEVs from hyperglycemic mice after streptozotocin injection induced higher rates of apoptosis in murine endothelial cells compared to lEVs from normoglycemic mice. To generate lEVs with high levels of C16 ceramide, ceramide was applied exogenously and shown to be effectively packaged into the lEVs, which then induced apoptosis in lEV-recipient HCAECs via activation of caspase 3. Intercellular transfer of ceramide through lEVs was confirmed by use of a fluorescently labeled ceramide analogue. Treatment of HCAECs with a pharmacological inhibitor of nSMases (GW4869) or siRNA-mediated downregulation of nSMase2 abrogated the glucose-mediated effect on apoptosis in lEV-recipient cells. In contrast, for small EVs (sEVs), hyperglycemic injury or GW4869 treatment had no effect on apoptosis induction in sEV-recipient cells. Conclusion lEVs mediate the induction of apoptosis in endothelial cells in response to hyperglycemic injury through intercellular transfer of ceramides. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00018-021-04049-5.
Collapse
Affiliation(s)
- Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Alina Lisann Jahnel
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Marko Bulic
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Krankenhaus der Barmherzigen Brüder Trier, Nordallee 1, 54292, Trier, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
45
|
Daniels Gatward LF, Kennard MR, Smith LIF, King AJF. The use of mice in diabetes research: The impact of physiological characteristics, choice of model and husbandry practices. Diabet Med 2021; 38:e14711. [PMID: 34614258 DOI: 10.1111/dme.14711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is characterised by hyperglycaemia, which results from an absolute or relative lack of insulin. Chronic and acute hyperglycaemia are associated with a range of health complications and an overall increased risk of mortality. Mouse models are vital in understanding the pathogenesis of this disease and its complications, as well as for developing new diabetes therapeutics. However, for experimental questions to be suitably tested, it is critical that factors inherent to the animal model are considered, as these can have profound impacts on experimental outcome, data reproducibility and robustness. In this review, we discuss key considerations relating to model choice, physiological characteristics (such as age, sex and genetic background) and husbandry practices and explore the impact of these on common experimental readouts used in preclinical diabetes research.
Collapse
|
46
|
Nunez-Salces M, Li H, Young RL, Page AJ. The secretion of total and acyl ghrelin from the mouse gastric mucosa: Role of nutrients and the lipid chemosensors FFAR4 and CD36. Peptides 2021; 146:170673. [PMID: 34627956 DOI: 10.1016/j.peptides.2021.170673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
AIMS This study investigated the nutrient-mediated modulation of total ghrelin (TG) and acyl ghrelin (AG) secretion from the mouse gastric mucosa, and the role of long-chain fatty acid chemosensors, FFAR4 and CD36, in lipid-mediated modulation of TG and AG release. METHODS Ex-vivo experiments were conducted using mouse gastric mucosa to examine the effects of nutrients (D-glucose, L-phenylalanine, peptone (mixture of oligopeptides & single amino acids), D-mannitol, α-linolenic acid and fat emulsion (intralipid)) on TG and AG secretion. Additionally, inhibition of FFAR4 and CD36 on α-linolenic acid and intralipid-mediated regulation of TG and AG secretion was assessed. RESULTS TG and AG secretion were unaffected by glucose and D-mannitol. Peptone stimulated the release of TG and AG. In contrast, L-phenylalanine reduced AG secretion only. Intralipid reduced TG secretion and stimulated AG secretion, and α-linolenic acid reduced AG release, without affecting TG mobilisation. Modulation of ghrelin secretion by lipids occurred in an FFAR4 and CD36-independent manner. CONCLUSION Ghrelin secretion is modulated in a nutrient-specific manner by proteins and lipids, with TG and AG displaying independent responses to the same stimuli. In addition, FFAR4 and CD36 do not participate in modulation of TG and AG secretion by α-linolenic acid and intralipid.
Collapse
Affiliation(s)
- Maria Nunez-Salces
- Vagal Afferent Research Group, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Hui Li
- Vagal Afferent Research Group, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Richard L Young
- Intestinal Nutrient Sensing Group, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| |
Collapse
|
47
|
Hinds CE, Owen BM, Hope DCD, Pickford P, Jones B, Tan TM, Minnion JS, Bloom SR. A glucagon analogue decreases body weight in mice via signalling in the liver. Sci Rep 2021; 11:22577. [PMID: 34799628 PMCID: PMC8604983 DOI: 10.1038/s41598-021-01912-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Glucagon receptor agonists show promise as components of next generation metabolic syndrome pharmacotherapies. However, the biology of glucagon action is complex, controversial, and likely context dependent. As such, a better understanding of chronic glucagon receptor (GCGR) agonism is essential to identify and mitigate potential clinical side-effects. Herein we present a novel, long-acting glucagon analogue (GCG104) with high receptor-specificity and potent in vivo action. It has allowed us to make two important observations about the biology of sustained GCGR agonism. First, it causes weight loss in mice by direct receptor signalling at the level of the liver. Second, subtle changes in GCG104-sensitivity, possibly due to interindividual variation, may be sufficient to alter its effects on metabolic parameters. Together, these findings confirm the liver as a principal target for glucagon-mediated weight loss and provide new insights into the biology of glucagon analogues.
Collapse
Affiliation(s)
- Charlotte E Hinds
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Bryn M Owen
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - David C D Hope
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Philip Pickford
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Ben Jones
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - James S Minnion
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Stephen R Bloom
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
48
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
49
|
van Liempd S, Cabrera D, Pilzner C, Kollmus H, Schughart K, Falcón-Pérez JM. Impaired beta-oxidation increases vulnerability to influenza A infection. J Biol Chem 2021; 297:101298. [PMID: 34637789 PMCID: PMC8564733 DOI: 10.1016/j.jbc.2021.101298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) infection casts a significant burden on society. It has particularly high morbidity and mortality rates in patients suffering from metabolic disorders. The aim of this study was to relate metabolic changes with IAV susceptibility using well-characterized inbred mouse models. We compared the highly susceptible DBA/2J (D2) mouse strain for which IAV infection is lethal with the C57BL/6J (B6) strain, which exhibits a moderate course of disease and survives IAV infection. Previous studies showed that D2 has higher insulin and glucose levels and is predisposed to develop diet-induced type 2 diabetes. Using high-resolution liquid chromatography–coupled MS, the plasma metabolomes of individual animals were repeatedly measured up to 30 days postinfection. The biggest metabolic difference between these strains in healthy and infected states was in the levels of malonylcarnitine, which was consistently increased 5-fold in D2. Other interstrain and intrastrain differences in healthy and infected animals were observed for acylcarnitines, glucose, branched-chain amino acids, and oxidized fatty acids. By mapping metabolic changes to canonical pathways, we found that mitochondrial beta-oxidation is likely disturbed in D2 animals. In noninfected D2 mice, this leads to increased glycerolipid production and reduced acylcarnitine production, whereas in infected D2 animals, peroxisomal beta-oxidation becomes strongly increased. From these studies, we conclude that metabolic changes caused by a distortion of mitochondrial and peroxisomal metabolism might impact the innate immune response in D2, leading to high viral titers and mortality.
Collapse
Affiliation(s)
| | - Diana Cabrera
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Juan M Falcón-Pérez
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
50
|
Jain S, Barella LF, Wess J, Reitman ML, Jacobson KA. Adenosine A 1 receptor is dispensable for hepatocyte glucose metabolism and insulin sensitivity. Biochem Pharmacol 2021; 192:114739. [PMID: 34418353 PMCID: PMC8478863 DOI: 10.1016/j.bcp.2021.114739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Hepatic insulin resistance (IR) and enhanced hepatic glucose production (HGP) are key features of type 2 diabetes (T2D), contributing to fasting hyperglycemia. Adenosine receptors (ARs) are G protein-coupled and expressed in hepatocytes. Here, we explored the role of hepatic Gi/o-coupled A1AR on insulin resistance and glucose fluxes associated with obesity. We generated a mouse model with hepatocyte-specific deletion of A1AR (A1LΔ/Δ), which was compared with whole body knockout of A1AR or A1AR/A3AR (both Gi-coupled). Selective deletion of hepatic A1AR resulted in a modest improvement in insulin sensitivity. In addition, HFD A1LΔ/Δ mice showed decreased fasting glucose levels. Hyperinsulinemic-euglycemic clamp studies demonstrated enhanced insulin sensitivity with no change in HGP in HFD A1LΔ/Δ mice. Similar to A1LΔ/Δ, fasting blood glucose levels were significantly reduced in whole body A1Δ/Δ and A1Δ/ΔA3Δ/Δ compared to wild-type mice. Taken together, our data support the concept that blocking hepatic A1AR may decrease fasting blood glucose levels without directly affecting hepatocyte glucose metabolism and insulin sensitivity.
Collapse
Affiliation(s)
- Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|