1
|
Zhou J, Guo Y, Liu X, Yuan W. Bioinformatics analysis identifies key secretory protein-encoding differentially expressed genes in adipose tissue of metabolic syndrome. Adipocyte 2025; 14:2446243. [PMID: 39819282 DOI: 10.1080/21623945.2024.2446243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes. GO analyses of these SP-DEGs included proteolysis, angiogenesis, positive regulation of endothelial cell proliferation, immune response, protein processing, positive regulation of neuroblast proliferation, cell adhesion and ER to Golgi vesicle-mediated transport. KEGG pathway analysis of the SP-DEGs were involved in the TGF-beta signalling pathway, cytokine‒cytokine receptor interactions, the hippo signalling pathway, Malaria. Two modules were identified from the PPI network, namely, Module 1 (DNMT1, KDM1A, NCoR1, and E2F1) and Module 2 (IL-7 R, IL-12A, and CSF3). The gene DNMT1 was shared between the network modules and the WGCNA brown module. According to the single-gene GSEA results, DNMT1 was significantly positively correlated with histidine metabolism and phenylalanine metabolism. This study identified 7 key SP-DEGs in adipose tissue. DNMT1 was selected as the central gene in the development of metabolic syndrome and might be a potential therapeutic target.
Collapse
Affiliation(s)
- Jiandong Zhou
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yunshan Guo
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Xuan Liu
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
2
|
Saini D, Chaudhary PK, Verma GK, Chaudhary JK, Kumar R, Saha S, Roy P, Goyal B, Prasad R, Mirza-Shariff AA. Molecular mechanistic approach to reveal decitabine's effect on DNMT gene modulation and its inhibitory role in heavy metal-induced proliferation in urinary bladder cancer cell line. Toxicol In Vitro 2025; 108:106082. [PMID: 40414543 DOI: 10.1016/j.tiv.2025.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Heavy metals are pervasive environmental and occupational carcinogens known to induce uncontrolled cell proliferation. They influence a number of cellular processes, including proliferation, metabolism, apoptosis, and carcinogenesis. Among the several underlying mechanisms of carcinogenesis, metal-induced aberrant modulation of DNA methyltransferase (DNMT) activity may play crucial role. In this context, our study explored the proliferative and/or cytotoxic effects of heavy metals on the T24 urinary bladder cancer cell line. Additionally, we evaluated the effects of heavy metals and the chemotherapeutic agent decitabine on DNMT expression and activity. For investigative purposes, T24 cells were exposed to different heavy metals; namely, lead (Pb), chromium (Cr), cadmium (Cd), nickel (Ni), and arsenic (As) at concentrations ranging from 0.5 to 32 μM for 24, 48, and 72 h, as well as to decitabine (1 to 64 μM) for 72 h. Post-incubation, cell proliferation and migration increased, and mitochondrial membrane potential decreased significantly in the presence of heavy metals, especially Cr and Cd. Moreover, in the presence of Cr and Cd, expression of DNMT1 and DNMT3b genes enhanced significantly. Furthermore, decitabine treatment effectively inhibited Cd- and Cr-induced proliferation and downregulated expression of DNMT genes. In conclusion, heavy metals such as Cd and Cr may contribute to urinary bladder carcinogenesis through DNMT upregulation, while decitabine showedprotective effects by suppressing DNMT expression and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Deepika Saini
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh 249201, India
| | - Pankaj Kumar Chaudhary
- Molecular Biology & Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee 247667, India
| | - Ganesh Kumar Verma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh 249201, India
| | | | - Raman Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh 249201, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh 249201, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee 247667, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh 249201, India
| | - Ramasare Prasad
- Molecular Biology & Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee 247667, India.
| | - Anissa Atif Mirza-Shariff
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh 249201, India.
| |
Collapse
|
3
|
Liu L, Ni S, Zhang L, Chen Y, Xie M, Huang X. Molecular insights and clinical implications of DNA methylation in sepsis-associated acute kidney injury: a narrative review. BMC Nephrol 2025; 26:253. [PMID: 40405102 PMCID: PMC12100964 DOI: 10.1186/s12882-025-04179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Sepsis-induced acute kidney injury (S-AKI) is a life-threatening complication of sepsis, marked by dysregulated inflammation, metabolic derangements, and immune dysfunction, driving high mortality. Its multifactorial pathogenesis increasingly implicates DNA methylation-a core epigenetic mechanism-as a critical disease modulator. This review synthesizes current knowledge of DNA methylation in S-AKI, covering molecular mechanisms, cellular dysfunction, and translational potential. In immune cells, sepsis-induced aberrant DNA methylation promotes hypomethylation of pro-inflammatory genes and hypermethylation of anti-inflammatory loci, exacerbating cytokine storms and immunosuppression. In renal tubular epithelial cells, abnormal methylation disrupts apoptosis, oxidative stress responses, and mitochondrial bioenergetics, impairing repair and accelerating S-AKI progression. Renal vascular endothelial cells exhibit methylation-dependent dysregulation of vasoactive and inflammatory pathways, compromising microvascular homeostasis and renal hemodynamics. DNA methylation signatures offer promise as early S-AKI biomarkers, with cell-type-specific patterns reflecting severity, injury, and prognosis. Targeting DNA methyltransferases with epigenetic modifiers represents a novel therapy, though challenges arise from sepsis's complex epigenetic landscape-bidirectional methylation changes, histone crosstalk, and context-dependent responses. A key paradox lies in DNA methylation's dual traits: stability underpinning biomarker reliability and plasticity enabling dynamic inflammatory adaptation, yet introducing therapeutic heterogeneity. Future research should prioritize dissecting cell-specific methylation mechanisms, integrating multi-omics to identify epigenetic subnetworks, and developing real-time monitoring tools for precision diagnosis and tailored interventions. Advancing these frontiers may translate epigenetic insights into transformative strategies to improve outcomes for this devastating condition.
Collapse
Affiliation(s)
- Lili Liu
- Department of Emergency Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China.
| | - Saisai Ni
- Department of Emergency Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| | - Lianna Zhang
- Department of Emergency Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| | - Yingying Chen
- Department of Emergency Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| | - Mengqi Xie
- Department of Emergency Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| | - Xiaojing Huang
- Department of Emergency Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Xiong S, Wang X, Yang Y, Gan Y, Gao A. Dendritic Poly(l-lysine)-Based Nanoparticle Loading with siDNMT1 to Alleviate Basal Cell Carcinoma Progression by Inhibiting Methylation of AXIN2. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29119-29131. [PMID: 40338193 DOI: 10.1021/acsami.5c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Basal cell carcinoma (BCC) is a highly invasive and metastatic non-melanoma skin tumor. Traditional treatments, such as surgery, radiation, and chemotherapy, often result in severe side effects. Recent advances in RNA interference (RNAi) have highlighted its potential in targeting cancer-causing genes. To address the complex pathology of BCC, we developed a multifunctional gene delivery system using benzylthio-modified dendritic polylysine nanoparticles loaded with siDNMT1 (siDNMT1@PDPs). This system exhibits excellent dispersibility, with over 85% of particles measuring between 50 and 80 nm, and high stability, with a zeta potential of +57.10 mV. This design enables efficient penetration into tumor cells and controlled release of siDNMT1 in the tumor microenvironment (TME), thereby improving therapeutic outcomes. Our results demonstrate that siDNMT1@PDPs significantly inhibit tumor progression and metastasis in BCC by reducing AXIN2 promoter methylation, thereby increasing AXIN2 expression. Compared to existing treatments, siDNMT1@PDPs exhibit superior biocompatibility, both in vitro and in vivo, and provide a more targeted and effective therapeutic approach. These findings suggest that siDNMT1@PDPs represent a promising advancement in RNAi-based therapies for BCC, offering potential clinical benefits over current treatment modalities.
Collapse
Affiliation(s)
- Siying Xiong
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, Guangdong 510095, China
| | - Xue Wang
- Department of Laser Cosmetology, Foshan Fosun Chanchiang Hospital, Foshan, Guangdong 528000, China
| | - Yan Yang
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, Guangdong 510095, China
| | - Yizhuan Gan
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, Guangdong 510095, China
| | - Aili Gao
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, Guangdong 510095, China
| |
Collapse
|
5
|
Obanya DI, Wootton LM, Morgan EL. Advances in understanding the mechanisms of the human papillomavirus oncoproteins. Biochem Soc Trans 2025:BST20253041. [PMID: 40380881 DOI: 10.1042/bst20253041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
High-risk human papillomaviruses (HPVs) are responsible for almost all cervical cancer cases and a growing number of oropharyngeal and anogenital cancers. The primary HPV oncoproteins, E6 and E7, act together to manipulate multiple cellular pathways that can ultimately result in malignant transformation. This includes the deregulation of several signalling pathways that regulate cell proliferation, cell cycle progression and cell survival. Although multiple functions of HPV E6 and E7 in driving oncogenesis are well known, recent studies have uncovered novel oncogenic functions of the HPV oncoproteins, including the manipulation of emerging mechanisms of cancer development, such as epigenetic modifications, cellular plasticity and genomic instability. This review explores current advances in understanding how the HPV oncoproteins interact with these cellular processes, highlighting potential therapeutic targets in HPV-associated cancers.
Collapse
Affiliation(s)
| | | | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
6
|
Lukić MJ, Milovanović A, Mazalica N, Westenberger A, Pešić AT, Petrović I, Marković V, Kresojević N, Klein C, Kostić VS, Dragašević‐Mišković N. An Unusual Presentation of a DNMT1 Mutation: Progressive Supranuclear Palsy Look-Alike Disorder. Mov Disord Clin Pract 2025; 12:673-676. [PMID: 39895394 PMCID: PMC12070179 DOI: 10.1002/mdc3.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Affiliation(s)
- Milica Ječmenica Lukić
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- School of MedicineUniversity of BelgradeBelgradeSerbia
| | | | - Nina Mazalica
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
| | | | - Aleksandra Tomić Pešić
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- School of MedicineUniversity of BelgradeBelgradeSerbia
| | - Igor Petrović
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- School of MedicineUniversity of BelgradeBelgradeSerbia
| | - Vladana Marković
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- School of MedicineUniversity of BelgradeBelgradeSerbia
| | - Nikola Kresojević
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- School of MedicineUniversity of BelgradeBelgradeSerbia
| | | | - Vladimir S. Kostić
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- School of MedicineUniversity of BelgradeBelgradeSerbia
| | - Nataša Dragašević‐Mišković
- Clinic for NeurologyUniversity Clinical Center of SerbiaBelgradeSerbia
- School of MedicineUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
7
|
Wu W, Wu W, Xie X, Li J, Gao Y, Xie L, Zhong C, Xiao J, Cai M, Yin D, Hu K. DNMT1 is required for efficient DSB repair and maintenance of replication fork stability, and its loss reverses resistance to PARP inhibitors in cancer cells. Oncogene 2025:10.1038/s41388-025-03409-w. [PMID: 40234721 DOI: 10.1038/s41388-025-03409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Cancer cells with breast cancer susceptibility gene (BRCA) mutations inevitably acquire resistance to PARP inhibitors (PARPi), and new strategies to maximize the efficacy of PARPi are urgently needed for the treatment of patients with BRCA1/2-mutant cancers. Here, we provide evidence that DNMT1 plays essential roles in DNA repair and the maintenance of replication fork stability by associating with the RPA complex and the SFPQ/NONO/FUS complex. DNMT1 depletion impairs RPA1 recruitment to stalled replication forks and inhibits DNA‒RNA hybrid (R-loop) resolution as well as the retention of RPA1 and SFPQ/NONO/FUS complexes at double-stranded DNA breaks (DSBs). Moreover, PARP1 activity is required for DNMT1 retention at DSB sites by modulating its protein stability, which is tightly and dynamically regulated by PARP1-mediated PARylation and PARG- and NUDT16-mediated dePARylation. DNMT1 PARylation further recruits the E3 ubiquitin ligase CHFR to enhance its ubiquitination and target it for proteasome-dependent degradation. Notably, DNMT1 is also required for irradiation (IR)-mediated and PARPi-induced activation of the G2 arrest checkpoint. The combination of DNMT1i with PARPi significantly attenuates PARPi-induced ATR-Chk1 signaling and enhances the degradation of the stalled replication fork mediated by PARPi, resulting in increased chromosomal aberrations and cell death in BRCA-proficient and BRCA-deficient cancer cells. Therefore, our findings provide novel insights into the mechanism by which DNMT1 inhibitors (DNMT1i) reverse PARPi resistance and indicate that targeting the PARP-DNMT1 pathway is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojuan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Caixia Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianhong Xiao
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Manbo Cai
- Department of Oncology Radiotherapy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Zou L, Xu S, Wang C, Wu P, Xu C, Shi H. Methylated MFGE8 Promotes Early Brain Injury After Subarachnoid Hemorrhage and Inhibiting Autophagy of Nerve Cell. Transl Stroke Res 2025; 16:350-367. [PMID: 38095841 DOI: 10.1007/s12975-023-01217-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 04/08/2025]
Abstract
BACKGROUND Spontaneous subarachnoid hemorrhage (SAH) is a relatively common clinical hemorrhagic stroke crisis. The important role of early brain injury (EBI) and autophagy in SAH has been increasingly recognized in recent years. This study aims to investigate the function and the undergoing mechanism of MFGE8 in EBI after SAH. METHODS SAH model was established using C57BL/6 mice, and the SAH cell model was constructed by oxy-hemoglobin (Oxy-Hb) induced BV2 and SH-SY5Y co-culture system. Various methods were used to detect EBI and autophagy after SAH in mouse/cell lines, including mouse neurological function score, wet/dry method, HE and Evans blue staining, etc. The effect on EBI was explored after knockdown or overexpression of key genes DNMT1, MFGE8, and P2X7R. MSP was used to detect the methylation of MFGE8 promoter region, and ChIP was used to detect the binding relationship between DNMT1 and MFGE8 promoter region. RESULTS The results showed that the activation of autophagy attenuates EBI in SAH mice. Increased level of DNMT1 and decreased level of MFGE8 were observed in brain tissues of SAH mice. Knockdown of DNMT1 or overexpression of MFGE8 attenuates EBI in mice by promoting autophagy. At the same time, we found that DNMT1 promotes methylation of MFGE8 promoter region and suppresses its protein levels. MFGE8 downregulates P2X7R levels and subsequently activates PI3k/Akt/mTOR axis, promotes autophagy, and attenuates EBI in SAH mice. CONCLUSION DNMT1 promotes the methylation of MFGE8 promoter region and downregulates MFGE8 level; restoring MFGE8 downregulates P2X7R, and promotes autophagy by limiting the activation of PI3k/Akt/mTOR, thus exerting a protective effect on brain tissue of SAH mice. HIGHLIGHTS • High expression of DNMT1 and P2X7R and low expression of MFGE8 were observed in SAH mice. • Activation of autophagy reduces EBI after SAH in mice. • DNMT1/MFGE8 reduces autophagy in EBI after SAH in both mouse and cell models. • DNMT1 targets the MFGE8 promoter to upregulate its methylation level. • MFGE8 inhibits P2X7R to activate PI3k/AKT/mTOR pathway and autophagy, thus inhibiting EBI after SAH.
Collapse
Affiliation(s)
- Liang Zou
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shancai Xu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chunlei Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Pei Wu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chao Xu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Huaizhang Shi
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
9
|
Damiano OM, Stevens AJ, Kenwright DN, Seddon AR. Chronic Inflammation to Cancer: The Impact of Oxidative Stress on DNA Methylation. FRONT BIOSCI-LANDMRK 2025; 30:26142. [PMID: 40152377 DOI: 10.31083/fbl26142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025]
Abstract
The genomic landscape of cancer cells is complex and heterogeneous, with aberrant DNA methylation being a common observation. Growing evidence indicates that oxidants produced from immune cells may interact with epigenetic processes, and this may represent a mechanism for the initiation of altered epigenetic patterns observed in both precancerous and cancerous cells. Around 20% of cancers are linked to chronic inflammatory conditions, yet the precise mechanisms connecting inflammation with cancer progression remain unclear. During chronic inflammation, immune cells release oxidants in response to stimuli, which, in high concentrations, can cause cytotoxic effects. Oxidants are known to damage DNA and proteins and disrupt normal signalling pathways, potentially initiating a sequence of events that drives carcinogenesis. While research on the impact of immune cell-derived oxidants on DNA methylation remains limited, this mechanism may represent a crucial link between chronic inflammation and cancer development. This review examines current evidence on inflammation-associated DNA methylation changes in cancers related to chronic inflammation.
Collapse
Affiliation(s)
- Olivia M Damiano
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Aaron J Stevens
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Diane N Kenwright
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Annika R Seddon
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, 8011 Christchurch, New Zealand
| |
Collapse
|
10
|
Xiao RJ, Wang TJ, Wu DY, Yang SF, Gao H, Gan PD, Yi YY, Zhang YL. N6-methyladenosine methyltransferase Wilms tumor 1-associated protein impedes diabetic wound healing through epigenetically activating DNA methyltransferase 1. World J Diabetes 2025; 16:102126. [PMID: 40093271 PMCID: PMC11885966 DOI: 10.4239/wjd.v16.i3.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 01/08/2025] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes. N6-methyladenosine (m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complications. However, the function of m6A methyltransferase Wilms tumor 1-associated protein (WTAP) in diabetic wound healing remains elusive. AIM To investigate the potential epigenetic regulatory mechanism of WTAP during diabetic wound healing. METHODS Human umbilical vein endothelial cells (HUVECs) were induced with high glucose (HG) to establish in vitro cell model. Male BALB/c mice were intraperitoneally injected with streptozotocin to mimic diabetes, and full-thickness excision was made to mimic diabetic wound healing. HG-induced HUVECs and mouse models were treated with WTAP siRNAs and DNA methyltransferase 1 (DNMT1) overexpression vectors. Cell viability and migration ability were detected by cell counting kit-8 and Transwell assays. In vitro angiogenesis was measured using a tube formation experiment. The images of wounds were captured, and re-epithelialization and collagen deposition of skin tissues were analyzed using hematoxylin and eosin staining and Masson's trichrome staining. RESULTS The expression of several m6A methyltransferases, including METTL3, METTL14, METTL16, KIAA1429, WTAP, and RBM15, were measured. WTAP exhibited the most significant elevation in HG-induced HUVECs compared with the normal control. WTAP depletion notably restored cell viability and enhanced tube formation ability and migration of HUVECs suppressed by HG. The unclosed wound area of mice was smaller in WTAP knockdown-treated mice than in control mice at nine days post-wounding, along with enhanced re-epithelialization rate and collagen deposition. The m6A levels on DNMT1 mRNA in HUVECs were repressed by WTAP knockdown in HUVECs. The mRNA levels and expression of DNMT1 were inhibited by WTAP depletion in HUVECs. Overexpression of DNMT1 in HUVECs notably reversed the effects of WTAP depletion on HG-induced HUVECs. CONCLUSION WTAP expression is elevated in HG-induced HUVECs and epigenetically regulates the m6A modification of DNMT1 to impair diabetic wound healing.
Collapse
Affiliation(s)
- Ren-Jie Xiao
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Tian-Jiao Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan-Yin Wu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital, Jiangxi Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Shui-Fa Yang
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital, Jiangxi Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hai Gao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital, Jiangxi Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Pei-Dong Gan
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital, Jiangxi Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yang-Yan Yi
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital, Jiangxi Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - You-Lai Zhang
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital, Jiangxi Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
11
|
Cao XC, Peng J, Qiu YB, Zhu W, Cao JG, Zou H, Yu ZZ, Wu D, Lu SS, Huang W, Yi H, Xiao ZQ. FVTF inhibits hepatocellular carcinoma stem properties via targeting DNMT1/miR-34a-5p/FoxM1 axis. Chin Med 2025; 20:32. [PMID: 40050970 PMCID: PMC11884036 DOI: 10.1186/s13020-025-01084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Fructus Viticis Total Flavonoids (FVTF) is a novel candidate preparation that possesses anticancer activity. However, the role and mechanism of FVTF-inhibiting human hepatocellular carcinoma (HCC) cell stem properties is unclear. METHODS Liquid chromatography (LC) in conjugation with mass spectrometer (MS) was used to identify the compounds of FVTF. Tumorsphere and soft agar colony formation ability, cancer stem marker expression levels, CD133+ cell percentage, and a xenograft model were utilized to investigate the impact of FVTF on HCC cells stemness. PCR array and qRT-PCR were conducted to identify differentially expressed cancer stem-related genes and miRNAs between FVTF-treated and untreated HCC cells, respectively. Pyrosequencing was conducted to assess the DNA methylation level of the miR-34a-5p promoter. A luciferase reporter assay was performed to verify whether FoxM1 serves as a direct target of miR-34a-5p. Additionally, immunohistochemistry of an HCC tissue microarray was carried out to assess the expression levels of DNMT1, FoxM1, and miR-34a-5p. RESULTS A total of 26 compounds, including 10 flavones, in FVTF were identified. FVTF significantly reduced the ability of tumorsphere and soft agar colony formation, the levels of CD44 protein and BMI1, OCT4 and SOX2 mRNAs in HCC cells, and in vivo tumor initiation ability of HCC cells. Mechanistically, FVTF inhibited HCC cell stem properties via targeting DNMT1/miR-34a-5p/FoxM1 axis. Clinically, DNMT1 expression was inversely correlated with miR-34a-5p expression, whereas a positive correlation was noted between DNMT1 and FoxM1 expression levels, and high DNMT1 levels, low miR-34a-5p levels, and high FoxM1 levels were associated with cancer recurrence. Furthermore, a combination of DNMT1, miR-34a-5p and FoxM1 served as an independent prognostic indicator influencing both DFS and OS in patients with HCC. CONCLUSIONS FVTF inhibits HCC cell stem properties by targeting DNMT1/miR-34a-5p/FoxM1 axis, which is associated with HCC recurrence and prognosis, and FVTF is a prospective treatment drug for human HCC.
Collapse
Affiliation(s)
- Xiao-Cheng Cao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ye-Bei Qiu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian-Guo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hui Zou
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
12
|
Elder E, Lemieux A, Legault LM, Caron M, Bertrand-Lehouillier V, Dupas T, Raynal NM, Bourque G, Sinnett D, Gévry N, McGraw S. Rescuing DNMT1 fails to fully reverse the molecular and functional repercussions of its loss in mouse embryonic stem cells. Nucleic Acids Res 2025; 53:gkaf130. [PMID: 39997223 PMCID: PMC11851107 DOI: 10.1093/nar/gkaf130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetic mechanisms are crucial for developmental programming and can be disrupted by environmental stressors, increasing susceptibility to disease. This has sparked interest in therapies for restoring epigenetic balance, but it remains uncertain whether disordered epigenetic mechanisms can be fully corrected. Disruption of DNA methyltransferase 1 (DNMT1), responsible for DNA methylation maintenance, has particularly devastating biological consequences. Therefore, here we explored if rescuing DNMT1 activity is sufficient to reverse the effects of its loss utilizing mouse embryonic stem cells. However, only partial reversal could be achieved. Extensive changes in DNA methylation, histone modifications, and gene expression were detected, along with transposable element derepression and genomic instability. Reduction of cellular size, complexity, and proliferation rate were observed, as well as lasting effects in germ layer lineages and embryoid bodies. Interestingly, by analyzing the impact on imprinted regions, we uncovered 20 regions exhibiting imprinted-like signatures. Notably, while many permanent effects persisted throughout Dnmt1 inactivation and rescue, others arose from the rescue intervention. Lastly, rescuing DNMT1 after differentiation initiation worsened outcomes, reinforcing the need for early intervention. Our findings highlight the far-reaching functions of DNMT1 and provide valuable perspectives on the repercussions of epigenetic perturbations during early development and the challenges of rescue interventions.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Anthony Lemieux
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Maxime Caron
- University of Montreal Hospital Research Centre, Montreal, Quebec, H2X 0A9, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Thomas Dupas
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Noël J-M Raynal
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1Y2, Canada
- McGill Genome Centre, Montreal, Quebec, H3A 0G1, Canada
| | - Daniel Sinnett
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Nicolas Gévry
- Department of Biology, University of Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
13
|
Wang H, Wang Z, Hu L, Yang B, Zong L, Xu D, Yu B, Kong X, Wang M. Discovery of KW0113 as a First and Effective PROTAC Degrader of DNMT1 Protein. ChemMedChem 2024; 19:e202400467. [PMID: 39302251 DOI: 10.1002/cmdc.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
DNA methyltransferase 1 (DNMT1) is an attractive therapeutic target for acute myelocytic leukemia (AML) and other malignancies. It has been reported that the genetic depletion of DNMT1 inhibited AML cell proliferation through reversing DNA methylation abnormalities. However, no DNMT1-targeted PROTAC degraders have been reported yet. Herein, a series of proteolysis-targeting chimera (PROTAC) degrader of DNMT1 based on dicyanopyridine scaffold and VHL E3 ubiquitin ligase ligand was developed. Among them, KW0113 (DC50=643/899 nM in MV4-11/MOLM-13 cells) exhibited optimal DNMT1 degradation. KW0113 induced DNMT1-selective degradation in a dose- and time-dependent manner through VHL engagement. Moreover, KW0113 inhibited AML cell growth by reversing promoter DNA hypermethylation and tumor-suppressor genes silencing. In conclusion, these findings proved the capability of PROTAC strategy for inducing DNMT1 degradation, demonstrated the therapeutic potential of DNMT1-targeted PROTACs. This work also provided a convenient chemical knockdown tool for DNMT1-related studies.
Collapse
Affiliation(s)
- Huihui Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Zhaoliang Wang
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bingjie Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liangyi Zong
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dounan Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Bo Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
14
|
Zhao S, Cui H, Fang X, Xia W, Tao C, Li J. Increased DNMT1 acetylation leads to global DNA methylation suppression in follicular granulosa cells during reproductive aging in mammals. BMC Genomics 2024; 25:1030. [PMID: 39497025 PMCID: PMC11536882 DOI: 10.1186/s12864-024-10957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
With increasing age, the reproductive performance of women and female animals declines. However, the molecular mechanisms underlying ovarian aging and age-related fertility decline remain unclear. Granulosa cells (GCs) are suspected to play an important role in reproductive aging, and their proliferation, apoptosis, and steroid hormone secretion are used to determine the fate of follicles and ovarian function. First, we found that the proliferative ability of GCs from the old mouse group (10-month-old) decreased compared with that from the young mouse group (6-week-old), and cell cycle arrest occurred in old mice. To investigate changes in protein modification, we compared the levels of protein acetylation in GCs from young and old mice. We found that the K1118, K1120, K1122, and K1124 sites of DNA methyltransferase 1 (DNMT1) were increasingly acetylated with age, resulting in a decrease in DNMT1 protein expression. Therefore, we performed whole-genome methylation sequencing of GCs in the two groups and found that the CG methylation levels in the old group were lower than those in the young group. Furthermore, the inhibition of DNMT1 expression in GCs resulted in cell cycle arrest. This study revealed the dynamics and importance of protein acetylation and DNA methylation in GCs during reproductive aging. The findings provide a theoretical basis for studying the mechanism of reproductive aging in mammals.
Collapse
Affiliation(s)
- Shunran Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Haoliang Cui
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, 071000, China.
| |
Collapse
|
15
|
Wang Y, Guo Y, Ren J, Liu Q, Wang C. Prenatal exposure to low-dose bisphenol A disrupts hippocampal DNA methylation and demethylation in male rat offspring. Toxicol Ind Health 2024; 40:376-386. [PMID: 38717040 DOI: 10.1177/07482337241253877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Earlier research has demonstrated that developmental exposure to bisphenol A (BPA) has persistent impacts on both adult brain growth and actions. It has been suggested that BPA might obstruct the methylation coding of the genes in the brain. In this study, the methylation changes in the hippocampus tissue of male rat pups were examined following prenatal BPA exposure. Pregnant Sprague-Dawley rats were treated with either vehicle (tocopherol-stripped corn oil) or BPA (4, 40, or 400 μg/kg·body weight/day) throughout the entire duration of gestation and lactation. At 3 weeks of age, the male rat offspring were euthanized, and the hippocampus were dissected out for analysis. The expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and DNA demethylases (TET1, Gadd45a, Gadd45b, and Apobec1) were analyzed in the hippocampus by means of quantitative real-time polymerase chain reaction and Western blotting, respectively. The results showed that prenatal exposure to BPA upregulated the expression of enzymes associated with DNA methylation and demethylation processes in the hippocampus of male rat offspring. These findings suggest that prenatal exposure to a low dose of BPA could potentially disrupt the balance of methylation and demethylation in the hippocampus, thereby perturbing epigenetic modifications. This may represent a neurotoxicity mechanism of BPA.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiajia Ren
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
16
|
Zhao C, Wang Y, Wang H, Sharma A, Wu Y, Schmidt-Wolf IGH, Wang Z. CSRP1 gene: a potential novel prognostic marker in acute myeloid leukemia with implications for immune response. Discov Oncol 2024; 15:248. [PMID: 38937285 PMCID: PMC11211298 DOI: 10.1007/s12672-024-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia, constituting a majority of leukemias, grapples with a 24% 5-year survival rate. Recent strides in research have unveiled fresh targets for drug therapies. LIM-only, a pivotal transcription factor within LIM proteins, oversees cell development and is implicated in tumor formation. Among these critical LIM proteins, CSRP1, a Cysteine-rich protein, emerges as a significant player in various diseases. Despite its recognition as a potential prognostic factor and therapeutic target in various cancers, the specific link between CSRP1 and acute myeloid leukemia remains unexplored. Our previous work, identifying CSRP1 in a prognostic model for AML patients, instigates a dedicated exploration into the nuanced role of CSRP1 in acute myeloid leukemia. METHODS R tool was conducted to analyze the public data. qPCR was applied to evaluate the expression of CSRP1 mRNA for clinical samples and cell line. Unpaired t test, Wilcoxon Rank Sum test, KM curves, spearman correlation test and Pearson correlation test were included in this study. RESULTS CSRP1 displays notable expression variations between normal and tumor samples in acute myeloid leukemia (AML). It stands out as an independent prognostic factor for AML patients, showing correlations with clinical factors like age and cytogenetics risk. Additionally, CSRP1 correlates with immune-related pathways, immune cells, and immune checkpoints in AML. Furthermore, the alteration of CSRP1 mRNA levels is observed upon treatment with a DNMT1 inhibitor for THP1 cells. CONCLUSION The CSRP1 has potential as a novel prognostic factor and appears to influence the immune response in acute myeloid leukemia. Additionally, there is an observed association between CSRP1 and DNA methylation in acute myeloid leukemia.
Collapse
Affiliation(s)
- Chunxia Zhao
- Department of Nursing, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Huan Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Yun Wu
- Department of Hematology, Shangrao People's Hospital, The Affiliated Shangrao Hospital of Nanchang University, Shangrao, China
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Zifeng Wang
- Department of Hematology, Shangrao People's Hospital, The Affiliated Shangrao Hospital of Nanchang University, Shangrao, China.
| |
Collapse
|
17
|
Huang X, Balmer S, Lyu C, Xiang Y, Malik V, Wang H, Zhang Y, Cai B, Xie W, Hadjantonakis AK, Zhou H, Wang J. ZFP281 controls transcriptional and epigenetic changes promoting mouse pluripotent state transitions via DNMT3 and TET1. Dev Cell 2024; 59:465-481.e6. [PMID: 38237590 PMCID: PMC10923053 DOI: 10.1016/j.devcel.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/04/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunlong Xiang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200082, China
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Xie
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Tao S, Wang J, Li F, Shi B, Ren Q, Zhuang Y, Qian X. Extracellular vesicles released by hypoxia-induced tumor-associated fibroblasts impart chemoresistance to breast cancer cells via long noncoding RNA H19 delivery. FASEB J 2024; 38:e23165. [PMID: 38197195 DOI: 10.1096/fj.202300203r] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 01/11/2024]
Abstract
Recently, extracellular vesicles (EVs) have been emphasized in regulating the hypoxic tumor microenvironment of breast cancer (BC), where tumor-associated fibroblasts (TAFs) play a significant role. In this study, we describe possible molecular mechanisms behind the pro-tumoral effects of EVs, secreted by hypoxia (HP)-induced TAFs, on BC cell growth, metastasis, and chemoresistance. These mechanisms are based on long noncoding RNA H19 (H19) identified by microarray analysis. We employed an in silico approach to identify differentially expressed lncRNAs that were associated with BC. Subsequently, we explored possible downstream regulatory mechanisms. We isolated EVs from TAFs that were exposed to HP, and these EVs were denoted as HP-TAF-EVs henceforth. MTT, transwell, flow cytometry, and TUNEL assays were performed to assess the malignant phenotypes of BC cells. A paclitaxel (TAX)-resistant BC cell line was constructed, and xenograft tumor and lung metastasis models were established in nude mice for in vivo verification. Our observation revealed that lncRNA H19 was significantly overexpressed, whereas miR-497 was notably downregulated in BC. HP induced activation of TAFs and stimulated the secretion of EVs. Coculture of HP-TAF-EVs and BC cells led to an increase in TAX resistance of the latter. HP-TAF-EVs upregulated methylation of miR-497 by delivering lncRNA H19, which recruited DNMT1, thus lowering the expression of miR-497. In addition, lncRNA H19-containing HP-TAF-EVs hindered miR-497 expression, enhancing tumorigenesis and TAX resistance of BC cells in vivo. Our study presents evidence for the contribution of lncRNA H19-containing HP-TAF-EVs in the reduction of miR-497 expression through the recruitment of DNMT1, which in turn promotes the growth, metastasis, and chemoresistance of BC cells.
Collapse
Affiliation(s)
- Shuang Tao
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Jian Wang
- Department of Oncological Surgery, Cancer Hospital of Yixing City, Yixing, P.R. China
| | - Fang Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bixia Shi
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Quanhai Ren
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Yuhong Zhuang
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Xiaoping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Mohan KN. Editorial: New insights into investigating schizophrenia as a disorder of molecular pathways. Front Mol Neurosci 2024; 17:1360616. [PMID: 38274843 PMCID: PMC10805877 DOI: 10.3389/fnmol.2024.1360616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Affiliation(s)
- Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, BITS Pilani Hyderabad Campus, Hyderabad, India
- Centre for Human Disease Research, BITS Pilani Hyderabad Campus, Hyderabad, India
| |
Collapse
|
20
|
Xie J, Wang Y, Ye C, Li XJ, Lin L. Distinctive Patterns of 5-Methylcytosine and 5-Hydroxymethylcytosine in Schizophrenia. Int J Mol Sci 2024; 25:636. [PMID: 38203806 PMCID: PMC10779130 DOI: 10.3390/ijms25010636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a highly heritable neuropsychiatric disorder characterized by cognitive and social dysfunction. Genetic, epigenetic, and environmental factors are together implicated in the pathogenesis and development of schizophrenia. DNA methylation, 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) have been recognized as key epigenetic elements in neurodevelopment, ageing, and neurodegenerative diseases. Recently, distinctive 5mC and 5hmC pattern and expression changes of related genes have been discovered in schizophrenia. Antipsychotic drugs that affect 5mC status can alleviate symptoms in patients with schizophrenia, suggesting a critical role for DNA methylation in the pathogenesis of schizophrenia. Further exploring the signatures of 5mC and 5hmC in schizophrenia and developing precision-targeted epigenetic drugs based on this will provide new insights into the diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (J.X.); (Y.W.); (C.Y.); (X.-J.L.)
| |
Collapse
|
21
|
Zou P, Chen Z, He Q, Zhuo Y. Polyphyllin I induces ferroptosis in castration-resistant prostate cancer cells through the ERK/DNMT1/ACSL4 axis. Prostate 2024; 84:64-73. [PMID: 37750290 DOI: 10.1002/pros.24626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) inevitably arises after androgen deprivation therapy (ADT). Therefore, there is an urgent need to search for novel treatment strategies for CRPC. Polyphyllin I (PPI), one of the steroidal saponins in paris polyphylla, has been shown to have an anticancer effect. This study investigated the role and mechanism of PPI in CRPC cell ferroptosis. METHODS Protein levels of GPX4, p-extracellular regulated protein kinases (ERK), ERK, DNMT1, and ACSL4 were measured by Western blot. DNMT1 and ACSL4 mRNA expression was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Prostate cancer cells (DU145, PC3) were treated with PPI. Cell viability was assessed utilizing Cell Counting Kit-8 (CCK-8) assay. The role of PPI in regulating ferroptosis was determined by analyzing lipid reactive oxygen species (ROS), malonyl dialdehyde (MDA), iron (Fe2+ ), and glutathione (GSH) content. Chromatin immunoprecipitation (ChIP) assay verified the effect of DNMT1 on the ACSL4 promoter. The methylation level of ACSL4 promoter was assessed utilizing MSP. A nude mice xenograft was adopted to detect the effect of PPI in vivo. RESULTS PPI inhibited CRPC cell proliferation, reduced levels of GSH and GPX4, and increased levels of MDA, Fe2+ , and ROS, while ERK inhibitor reversed the effect of PPI on ferroptosis. PPI repressed the methylation level of ACSL4 promoter by inhibiting DNMT1. DNMT1 knockdown promoted CRPC cell ferroptosis by regulating ACSL4. PPI induced ferroptosis and suppressed CRPC growth in nude mice. CONCLUSION PPI can be used as a ferroptosis inducer to induce ferroptosis in CRPC cells via the ERK/DNMT1/ACSL4 axis, suggesting that PPI may be a new strategy for CRPC treatment.
Collapse
Affiliation(s)
- Peiliang Zou
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Clinical Medicine, Zhaoqing Medical College, Zhaoqing, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qixiong He
- School of Clinical Medicine, Zhaoqing Medical College, Zhaoqing, China
| | - Yumin Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Zhong WJ, Zhang LZ, Yue F, Yuan L, Zhang Q, Li X, Lin L. Identification of DNA methylation-regulated WEE1 with potential implications in prognosis and immunotherapy for low-grade glioma. Cancer Biomark 2024; 40:297-317. [PMID: 39213054 PMCID: PMC11380252 DOI: 10.3233/cbm-230517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND WEE1 is a critical kinase in the DNA damage response pathway and has been shown to be effective in treating serous uterine cancer. However, its role in gliomas, specifically low-grade glioma (LGG), remains unclear. The impact of DNA methylation on WEE1 expression and its correlation with the immune landscape in gliomas also need further investigation. METHODS This study used data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) and utilized various bioinformatics tools to analyze gene expression, survival, gene correlation, immune score, immune infiltration, genomic alterations, tumor mutation burden, microsatellite instability, clinical characteristics of glioma patients, WEE1 DNA methylation, prognostic analysis, single-cell gene expression distribution in glioma tissue samples, and immunotherapy response prediction based on WEE1 expression. RESULTS WEE1 was upregulated in LGG and glioblastoma (GBM), but it had a more significant prognostic impact in LGG compared to other cancers. High WEE1 expression was associated with poorer prognosis in LGG, particularly when combined with wild-type IDH. The WEE1 inhibitor MK-1775 effectively inhibited the proliferation and migration of LGG cell lines, which were more sensitive to WEE1 inhibition. DNA methylation negatively regulated WEE1, and high DNA hypermethylation of WEE1 was associated with better prognosis in LGG than in GBM. Combining WEE1 inhibition and DNA methyltransferase inhibition showed a synergistic effect. Additionally, downregulation of WEE1 had favorable predictive value in immunotherapy response. Co-expression network analysis identified key genes involved in WEE1-mediated regulation of immune landscape, differentiation, and metastasis in LGG. CONCLUSION Our study shows that WEE1 is a promising indicator for targeted therapy and prognosis evaluation. Notably, significant differences were observed in the role of WEE1 between LGG and GBM. Further investigation into WEE1 inhibition, either in combination with DNA methyltransferase inhibition or immunotherapy, is warranted in the context of LGG.
Collapse
Affiliation(s)
- Wang-Jing Zhong
- Laboratory Center, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
- Laboratory Center, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Li-Zhen Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Laboratory Center, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Feng Yue
- Department of Urology, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Lezhong Yuan
- Department of Oncology, Huizhou Central People's Hospital, Huizhou, China
| | - Qikeng Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Xuesong Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| | - Li Lin
- Laboratory Center, Huizhou Third People's Hospital, Affiliated Hospital of Guangzhou Medical University, Huizhou, China
| |
Collapse
|
23
|
Tigu AB, Bancos A. The Role of Epigenetic Modifier Mutations in Peripheral T-Cell Lymphomas. Curr Issues Mol Biol 2023; 45:8974-8988. [PMID: 37998740 PMCID: PMC10670124 DOI: 10.3390/cimb45110563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of diseases with a low incidence, high degree of heterogeneity, and a dismal prognosis in most cases. Because of the low incidence of these diseases, there have been few therapeutic novelties developed over time. Nevertheless, this fact is changing presently as epigenetic modifiers have been shown to be recurrently mutated in some types of PTCLs, especially in the cases of PTCLs not otherwise specified (PTCL-NOS), T follicular helper (TFH), and angioimmunoblastic T-cell lymphoma (AITL). These have brought about more insight into PTCL biology, especially in the case of PTCLs arising from TFH lymphocytes. From a biological perspective, it has been observed that ten-eleven translocators (TET2) mutated T lymphocytes tend to polarize to TFH, while Tregs lose their inhibitory properties. IDH2 R172 was shown to have inhibitory effects on TET2, mimicking the effects of TET2 mutations, as well as having effects on histone methylation. DNA methyltransferase 3A (DNMT3A) loss-of-function, although it was shown to have opposite effects to TET2 from an inflammatory perspective, was also shown to increase the number of T lymphocyte progenitors. Aside from bringing about more knowledge of PTCL biology, these mutations were shown to increase the sensitivity of PTCLs to certain epigenetic therapies, like hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDACis). Thus, to answer the question from the title of this review: We found the Achilles heel, but only for one of the Achilles.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Anamaria Bancos
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
24
|
Wang M, Cui K, Guo J, Mu W. Curculigoside attenuates osteoporosis through regulating DNMT1 mediated osteoblast activity. In Vitro Cell Dev Biol Anim 2023; 59:649-657. [PMID: 37880555 DOI: 10.1007/s11626-023-00813-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
This work aims to study the function of curculigoside in osteoporosis and explore whether DNMT1 is closely involved in osteoblast activity. After OB-6 osteoblasts were treated with hydrogen peroxide (H2O2), a curculigoside treatment group was set up and a series of biological tests including MTT, flow cytometry, western blotting, ROS fluorescence intensity, mitochondrial membrane potential, and ELISA experiments were performed to verify the effect of curculigoside on the activity of osteoblasts. Then, alkaline phosphatase (ALP) activity, alizarin red staining, PCR, and western blotting assays were performed to detect the effects of curculigoside on osteoblast function. By constructing DNMT1 knockdown and overexpression OB-6 cell lines, the effect of DNMT1 on osteoblast function was verified. In addition, the expression level of Nrf2 in each group was detected to speculate the mechanism of DNMT1 in osteoporosis. The cell activity and level of bcl-2 and SOD were significantly increased; the cell apoptosis, ROS fluorescence intensity, mitochondrial membrane potential, MDA and level of caspase-3, Bax, and CAT was reduced in curculigoside treatment group compared with H2O2-induced OB-6 osteoblasts. Meanwhile, the ALP activity, number and area of bone mineralized nodules, and gene and protein expression of OSX and OPG were significantly elevated in curculigoside group. Moreover, DNMT1 knockdown had a similar promotion effect on osteoblast function as curculigoside, and DNMT1 overexpression could reverse the promotion effect of curculigoside on osteoblast function. Further mechanistic studies speculated that DNMT1 might play a role in osteoporosis by affecting Nrf2 methylation. Curculigoside enhances osteoblast activity through DNMT1 controls of Nrf2 methylation.
Collapse
Affiliation(s)
- Mingliang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
- Department of Orthopedic Trauma, Rizhao Hospital of Traditional Chinese Medicine, No. 35 Wanghai Road, Donggang District, Rizhao, 276800, China.
| | - Kaiying Cui
- Department of Orthopedic Spine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Jie Guo
- Maternity and Child Health Care of Rizhao, Rizhao, 276800, China
| | - Weidong Mu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Huaiyin District, Jinan, 250000, China.
| |
Collapse
|
25
|
Maimaiti A, Turhon M, Abulaiti A, Dilixiati Y, Zhang F, Axieer A, Kadeer K, Zhang Y, Maimaitili A, Yang X. DNA methylation regulator-mediated modification patterns and risk of intracranial aneurysm: a multi-omics and epigenome-wide association study integrating machine learning, Mendelian randomization, eQTL and mQTL data. J Transl Med 2023; 21:660. [PMID: 37742034 PMCID: PMC10518114 DOI: 10.1186/s12967-023-04512-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Intracranial aneurysms (IAs) pose a significant and intricate challenge. Elucidating the interplay between DNA methylation and IA pathogenesis is paramount to identify potential biomarkers and therapeutic interventions. METHODS We employed a comprehensive bioinformatics investigation of DNA methylation in IA, utilizing a transcriptomics-based methodology that encompassed 100 machine learning algorithms, genome-wide association studies (GWAS), Mendelian randomization (MR), and summary-data-based Mendelian randomization (SMR). Our sophisticated analytical strategy allowed for a systematic assessment of differentially methylated genes and their implications on the onset, progression, and rupture of IA. RESULTS We identified DNA methylation-related genes (MRGs) and associated molecular pathways, and the MR and SMR analyses provided evidence for potential causal links between the observed DNA methylation events and IA predisposition. CONCLUSION These insights not only augment our understanding of the molecular underpinnings of IA but also underscore potential novel biomarkers and therapeutic avenues. Although our study faces inherent limitations and hurdles, it represents a groundbreaking initiative in deciphering the intricate relationship between genetic, epigenetic, and environmental factors implicated in IA pathogenesis.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Mirzat Turhon
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, People's Republic of China
- Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Aimitaji Abulaiti
- Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | | | - Fujunhui Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, People's Republic of China
- Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Aximujiang Axieer
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Kaheerman Kadeer
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, People's Republic of China.
- Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Aisha Maimaitili
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, 830017, People's Republic of China.
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, People's Republic of China.
- Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
26
|
Nigam N, Bernard B, Sevilla S, Kim S, Dar MS, Tsai D, Robbins Y, Burkitt K, Sievers C, Allen CT, Bennett RL, Tettey TT, Carter B, Rinaldi L, Lingen MW, Sater H, Edmondson EF, Moshiri A, Saeed A, Cheng H, Luo X, Brennan K, Koparde V, Chen C, Das S, Andresson T, Abdelmaksoud A, Murali M, Sakata S, Takeuchi K, Chari R, Nakamura Y, Uppaluri R, Sunwoo JB, Van Waes C, Licht JD, Hager GL, Saloura V. SMYD3 represses tumor-intrinsic interferon response in HPV-negative squamous cell carcinoma of the head and neck. Cell Rep 2023; 42:112823. [PMID: 37463106 PMCID: PMC10407766 DOI: 10.1016/j.celrep.2023.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Cancers often display immune escape, but the mechanisms are incompletely understood. Herein, we identify SMYD3 as a mediator of immune escape in human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC), an aggressive disease with poor response to immunotherapy with pembrolizumab. SMYD3 depletion induces upregulation of multiple type I interferon (IFN) response and antigen presentation machinery genes in HNSCC cells. Mechanistically, SMYD3 binds to and regulates the transcription of UHRF1, encoding for a reader of H3K9me3, which binds to H3K9me3-enriched promoters of key immune-related genes, recruits DNMT1, and silences their expression. SMYD3 further maintains the repression of immune-related genes through intragenic deposition of H4K20me3. In vivo, Smyd3 depletion induces influx of CD8+ T cells and increases sensitivity to anti-programmed death 1 (PD-1) therapy. SMYD3 overexpression is associated with decreased CD8 T cell infiltration and poor response to neoadjuvant pembrolizumab. These data support combining SMYD3 depletion strategies with checkpoint blockade to overcome anti-PD-1 resistance in HPV-negative HNSCC.
Collapse
Affiliation(s)
- Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Samantha Sevilla
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mohd Saleem Dar
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Daniel Tsai
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Cem Sievers
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | | | - Theophilus T Tettey
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Carter
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mark W Lingen
- University of Chicago, Department of Pathology, Chicago, IL 60637, USA
| | - Houssein Sater
- GU Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Arfa Moshiri
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Abbas Saeed
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Kevin Brennan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Chen Chen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | | | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carter Van Waes
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
He E, Jiang Y, Wei D, Wang Y, Sun W, Jia M, Shi B, Cui H. The potential effects and mechanism of echinacoside powder in the treatment of Hirschsprung's Disease. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14222-14240. [PMID: 37679133 DOI: 10.3934/mbe.2023636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Possible complications, such as intestinal obstruction and inflammation of the intestinal tract, can have a detrimental effect on the prognosis after surgery for Hirschsprung disease. The aim of this study was to investigate the potential targets and mechanisms of action of echinacoside to improve the prognosis of Hirschsprung disease. Genes related to the disease were obtained through analysis of the GSE96854 dataset and four databases: OMIM, DisGeNET, Genecard and NCBI. The targets of echinacoside were obtained from three databases: PharmMapper, Drugbank and TargetNet. The intersection of disease genes and drug targets was validated by molecular docking. The valid docked targets were further explored for their expression by using immunohistochemistry. In this study, enrichment analysis was used to explore the mechanistic pathways involved in the genes. Finally, we identified CA1, CA2, CA9, CA12, DNMT1, RIMS2, RPGRIP1L and ZEB2 as the core targets. Except for ZEB2, which is predominantly expressed in brain tissue, the remaining seven genes show tissue specificity and high expression in the gastrointestinal tract. RIMS2 possesses a high mutation phenomenon in pan-cancer, while a validated ceRNA network of eight genes was constructed. The core genes are involved in several signaling pathways, including the one-carbon metabolic process, carbonate dehydratase activity and others. This study may help us to further understand the pharmacological mechanisms of echinacoside and provide new guidance and ideas to guide the treatment of Hirschsprung disease.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Yuhang Jiang
- Tianjin Medical University of Clinical Medicine, Tianjin, China
| | - Diwei Wei
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Yifan Wang
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Wenjing Sun
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Miao Jia
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Hualei Cui
- Tianjin Children's Hospital of Minimally Invasive Surgery, Tianjin, China
| |
Collapse
|
28
|
Chen Q, Liu B, Zeng Y, Hwang JW, Dai N, Corrêa I, Estecio M, Zhang X, Santos MA, Chen T, Cheng X. GSK-3484862 targets DNMT1 for degradation in cells. NAR Cancer 2023; 5:zcad022. [PMID: 37206360 PMCID: PMC10189803 DOI: 10.1093/narcan/zcad022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Maintenance of genomic methylation patterns at DNA replication forks by DNMT1 is the key to faithful mitotic inheritance. DNMT1 is often overexpressed in cancer cells and the DNA hypomethylating agents azacytidine and decitabine are currently used in the treatment of hematologic malignancies. However, the toxicity of these cytidine analogs and their ineffectiveness in treating solid tumors have limited wider clinical use. GSK-3484862 is a newly-developed, dicyanopyridine containing, non-nucleoside DNMT1-selective inhibitor with low cellular toxicity. Here, we show that GSK-3484862 targets DNMT1 for protein degradation in both cancer cell lines and murine embryonic stem cells (mESCs). DNMT1 depletion was rapid, taking effect within hours following GSK-3484862 treatment, leading to global hypomethylation. Inhibitor-induced DNMT1 degradation was proteasome-dependent, with no discernible loss of DNMT1 mRNA. In mESCs, GSK-3484862-induced Dnmt1 degradation requires the Dnmt1 accessory factor Uhrf1 and its E3 ubiquitin ligase activity. We also show that Dnmt1 depletion and DNA hypomethylation induced by the compound are reversible after its removal. Together, these results indicate that this DNMT1-selective degrader/inhibitor will be a valuable tool for dissecting coordinated events linking DNA methylation to gene expression and identifying downstream effectors that ultimately regulate cellular response to altered DNA methylation patterns in a tissue/cell-specific manner.
Collapse
Affiliation(s)
- Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Jee Won Hwang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, MA 01938, USA
| | | | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| |
Collapse
|
29
|
Huang X, Balmer S, Lyu C, Xiang Y, Malik V, Wang H, Zhang Y, Xie W, Hadjantonakis AK, Zhou H, Wang J. ZFP281 coordinates DNMT3 and TET1 for transcriptional and epigenetic control in pluripotent state transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534143. [PMID: 36993548 PMCID: PMC10055359 DOI: 10.1101/2023.03.24.534143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates the development of the epiblast in vivo during the peri-implantation period of mammalian development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events occurring during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knock-in cell models, we uncover the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, dependent on the formation of R loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naïive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunlong Xiang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200082, China
| | - Wei Xie
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Lead contact
| |
Collapse
|
30
|
Zhang B, Qin J. LINC00659 exacerbates endothelial progenitor cell dysfunction in deep vein thrombosis of the lower extremities by activating DNMT3A-mediated FGF1 promoter methylation. Thromb J 2023; 21:24. [PMID: 36890543 PMCID: PMC9996960 DOI: 10.1186/s12959-023-00462-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
It has been shown that long non-coding RNA (lncRNA) LINC00659 was markedly upregulated in the peripheral blood of patients with deep venous thrombosis (DVT). However, the function of LINC00659 in lower extremity DVT (LEDVT) remains to be largely unrevealed. A total of 30 inferior vena cava (IVC) tissue samples and peripheral blood (60 ml per subject) were obtained from LEDVT patients (n = 15) and healthy donors (n = 15), and then LINC00659 expression was detected by RT-qPCR. The results displayed that LINC00659 is upregulated in IVC tissues and isolated endothelial group cells (EPCs) of patients with LEDVT. LINC00659 knock-down promoted the proliferation, migration, and angiogenesis ability of EPCs, while an pcDNA-eukaryotic translation initiation factor 4A3 (EIF4A3), a EIF4A3 overexpression vector, or fibroblast growth factor 1 (FGF1) small interfering RNA (siRNA) combined with LINC00659 siRNA could not enhance this effect. Mechanistically, LINC00659 bound with EIF4A3 promoter to upregulated EIF4A3 expression. Besides, EIF4A3 could facilitate FGF1 methylation and its downregulated expression by recruiting DNA methyltransferases 3A (DNMT3A) to the FGF1 promoter region. Additionally, LINC00659 inhibition could alleviate LEDVT in mice. In summary, the data indicated the roles of LINC00659 in the pathogenesis of LEDVT, and the LINC00659/EIF4A3/FGF1 axis could be a novel therapeutic target for the treatment of LEDVT.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Peripheral Vessel, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| | - Jie Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710061, Shanxi, China
| |
Collapse
|
31
|
Conner MM, Schaner Tooley CE. Three's a crowd - why did three N-terminal methyltransferases evolve for one job? J Cell Sci 2023; 136:jcs260424. [PMID: 36647772 PMCID: PMC10022744 DOI: 10.1242/jcs.260424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-terminal methylation of the α-amine group (Nα-methylation) is a post-translational modification (PTM) that was discovered over 40 years ago. Although it is not the most abundant of the Nα-PTMs, there are more than 300 predicted substrates of the three known mammalian Nα-methyltransferases, METTL11A and METTL11B (also known as NTMT1 and NTMT2, respectively) and METTL13. Of these ∼300 targets, the bulk are acted upon by METTL11A. Only one substrate is known to be Nα-methylated by METTL13, and METTL11B has no proven in vivo targets or predicted targets that are not also methylated by METTL11A. Given that METTL11A could clearly handle the entire substrate burden of Nα-methylation, it is unclear why three distinct Nα-methyltransferases have evolved. However, recent evidence suggests that many methyltransferases perform important biological functions outside of their catalytic activity, and the Nα-methyltransferases might be part of this emerging group. Here, we describe the distinct expression, localization and physiological roles of each Nα-methyltransferase, and compare these characteristics to other methyltransferases with non-catalytic functions, as well as to methyltransferases with both catalytic and non-catalytic functions, to give a better understanding of the global roles of these proteins. Based on these comparisons, we hypothesize that these three enzymes do not just have one common function but are actually performing three unique jobs in the cell.
Collapse
Affiliation(s)
- Meghan M. Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
32
|
Mavioglu RN, Ramo-Fernandez L, Gumpp AM, Kolassa IT, Karabatsiakis A. A history of childhood maltreatment is associated with altered DNA methylation levels of DNA methyltransferase 1 in maternal but not neonatal mononuclear immune cells. Front Psychiatry 2022; 13:945343. [PMID: 36440389 PMCID: PMC9685310 DOI: 10.3389/fpsyt.2022.945343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Childhood maltreatment (CM) is associated with alterations in DNA methylation (DNAm) especially in stress response genes. Due to the higher risk of overall health complications of individuals with a parental history of CM, intergenerational transmission of CM-associated DNAm changes has been investigated but remains unclear. In this study, we investigated if different severities of CM have any influence on the DNAm of DNA methyltransferase 1 (DNMT1), an important enzyme of the DNAm machinery, in immune and buccal cells of mother-newborn dyads. DNAm was assessed by mass spectrometry using immune cell DNA from mothers (N = 117) and their newborns (N = 113), and buccal cell DNA of mother-newborn dyads (N = 68 each). Mothers with a history of CM had lower mean methylation of DNMT1 in immune cells compared to the mothers without a CM history. CM status only influenced maternal DNMT1 gene expression when at least moderate CM was reported. Buccal cell DNAm was not associated with CM status. Maternal history of CM was not linked to any alterations in DNMT1 mean DNAm in any of the cell types studied in newborns. We conclude that the CM-associated alterations in DNMT1 DNAm might point to allostatic load and can be physiologically relevant, especially in individuals with more severe CM experiences, resulting in an activated DNA methylation machinery that might influence stress response genes. Our lack of significant findings in buccal cells shows the tissue-specific effects of CM on DNAm. In our sample with low to moderate maternal CM history, there was no intergenerational transmission of DNMT1 DNAm in newborns.
Collapse
Affiliation(s)
- Rezan Nehir Mavioglu
- Department of Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Laura Ramo-Fernandez
- Department of Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Anja M Gumpp
- Department of Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Iris-Tatjana Kolassa
- Department of Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Karabatsiakis
- Department of Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|