1
|
Pandey P, Ramniwas S, Pandey S, Verma M, Kumar R, Lakhanpal S, Khan F, Shah MA. An Updated Review Summarizing the Pharmaceutical Efficacy of Genistein and its Nanoformulations in Ovarian Carcinoma. Curr Pharm Des 2025; 31:107-115. [PMID: 39354775 DOI: 10.2174/0113816128332618240823044548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 10/03/2024]
Abstract
Implementing lifestyle interventions as a primary prevention strategy is a cost-effective approach to reducing the occurrence of cancer, which is a significant contributor to illness and death globally. Recent advanced studies have uncovered the crucial role of nutrients in safeguarding women's health and preventing disorders. Genistein is an abundant isoflavonoid found in soybeans. Genistein functions as a chemotherapeutic drug against various forms of cancer, primarily by modifying apoptosis, the cell cycle, and angiogenesis and suppressing metastasis. Furthermore, Genistein has demonstrated diverse outcomes in women, contingent upon their physiological characteristics, such as being in the early or postmenopausal stages. The primary categories of gynecologic cancers are cervical, ovarian, uterine, vaginal, and vulvar cancers. Understanding the precise mechanism by which Genistein acts on ovarian cancer could contribute to the advancement of anti-breast cancer treatments, particularly in situations where no specific targeted therapies are currently known or accessible. Additional investigation into the molecular action of Genistein has the potential to facilitate the development of a plant-derived cancer medication that has fewer harmful effects. This research could also help overcome drug resistance and prevent the occurrence of ovarian cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Meenakshi Verma
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Kalu Jhanda, Himachal Pradesh 174103, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du 1001, Kabul, Afghanistan
| |
Collapse
|
2
|
Wang T, Wang YY, Shi MY, Liu L. Mechanisms of action of natural products on type 2 diabetes. World J Diabetes 2023; 14:1603-1620. [DOI: 10.4239/wjd.v14.i11.1603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past several decades, type 2 diabetes mellitus (T2DM) has been considered a global public health concern. Currently, various therapeutic modalities are available for T2DM management, including dietary modifications, moderate exercise, and use of hypoglycemic agents and lipid-lowering medications. Although the curative effect of most drugs on T2DM is significant, they also exert some adverse side effects. Biologically active substances found in natural medicines are important for T2DM treatment. Several recent studies have reported that active ingredients derived from traditional medicines or foods exert a therapeutic effect on T2DM. This review compiled important articles regarding the therapeutic effects of natural products and their active ingredients on islet β cell function, adipose tissue inflammation, and insulin resistance. Additionally, this review provided an in-depth understanding of the multiple regulatory effects on different targets and signaling pathways of natural medicines in the treatment of T2DM as well as a theoretical basis for clinical effective application.
Collapse
Affiliation(s)
- Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yang-Yang Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Meng-Yue Shi
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
3
|
Jain R, Bolch C, Al-Nakkash L, Sweazea KL. Systematic Review of the Impact of Genistein on Diabetes Related Outcomes. Am J Physiol Regul Integr Comp Physiol 2022; 323:R279-R288. [PMID: 35816719 DOI: 10.1152/ajpregu.00236.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is the 8th leading cause of death in the world and the prevalence is rising in low-income countries. Cardiovascular diseases are the leading cause of death worldwide, especially for individuals with diabetes. While medications exist to treat symptoms of diabetes, lack of availability and high costs may deter their use by individuals with low incomes as well as those in low-income nations. Therefore, this systematic review was performed to determine whether genistein, a phytoestrogen found in soy products, could provide therapeutic benefits for individuals with diabetes. We searched PubMed and SCOPUS using the terms 'genistein', 'diabetes', and 'glucose' and identified 33 peer-reviewed articles that met our inclusion criteria. In general, preclinical studies demonstrated that genistein decreases body weight and circulating glucose and triglycerides concentrations while increasing insulin levels and insulin sensitivity. Genistein also delayed the onset of type 1 and type 2 diabetes. In contrast, clinical studies utilizing genistein generally reported no significant relationship between genistein and body mass, circulating glucose, A1C concentrations, or onset of type 1 diabetes. However, genistein was found to improve insulin sensitivity and serum triglyceride concentrations and delayed the onset of type 2 diabetes. In summary, preclinical and clinical studies suggest that genistein may help delay the onset of type 2 diabetes and improve several symptoms associated with the disease. Although additional research is required to confirm these findings, the results highlighted in this review provide some evidence that genistein may offer a natural approach to mitigating some of the complications associated with diabetes.
Collapse
Affiliation(s)
- Rijul Jain
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Charlotte Bolch
- Office of Research and Sponsored Programs and College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Kalhotra P, Chittepu VC, Osorio-Revilla G, Gallardo-Velazquez T. Phytochemicals in Garlic Extract Inhibit Therapeutic Enzyme DPP-4 and Induce Skeletal Muscle Cell Proliferation: A Possible Mechanism of Action to Benefit the Treatment of Diabetes Mellitus. Biomolecules 2020; 10:biom10020305. [PMID: 32075130 PMCID: PMC7072494 DOI: 10.3390/biom10020305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus is a severe health problem in Mexico, and its prevalence is increasing exponentially every year. Recently, DPP-4 (dipeptidyl peptidase-4) inhibitors have become attractive oral anti-hyperglycemic agents to reduce the pathology of diabetes. Gliptin’s family, such as sitagliptin, vildagliptin, and alogliptin, are in clinical use to treat diabetes mellitus but possess side effects. Therefore, there is a specific need to look for new therapeutic scaffolds (biomolecules). Garlic bulb is widely used as a traditional remedy for the treatment of diabetes. The garlic extracts are scientifically proven to control glucose levels in patients with diabetes, despite the unknown mechanism of action. The aim of the study is to investigate the antidiabetic effects of ultrasonication assisted garlic bulb extract. To achieve this, in-vitro assays such as DPP-4 inhibitory and antioxidant activities were investigated. Further, functional group analysis using FTIR and identification of phytochemicals using mass spectrometry analysis was performed. The results showed that 70.9 µg/mL of garlic bulb extract inhibited 50% DPP-4 activity. On top of that, the garlic extract exhibited a 20% scavenging activity, equivalent to 10 µg/mL of ascorbic acid. Molecular docking simulations on identified phytochemicals using mass spectrometry revealed their potential binding at the DPP-4 druggable region, and therefore the possible DPP-4 inhibition mechanism. These results suggest that prepared garlic extract contains phytochemicals that inhibit DPP-4 and have antioxidant activity. Also, the prepared extract induces skeletal muscle cell proliferation that demonstrates the antidiabetic effect and its possible mechanism of action.
Collapse
Affiliation(s)
- Poonam Kalhotra
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, CP. Ciudad de Mexico 11340, Mexico;
| | - Veera C.S.R. Chittepu
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, CP. Ciudad de Mexico 07738, Mexico (G.O.-R.)
| | - Guillermo Osorio-Revilla
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, CP. Ciudad de Mexico 07738, Mexico (G.O.-R.)
| | - Tzayhri Gallardo-Velazquez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, CP. Ciudad de Mexico 11340, Mexico;
- Correspondence: ; Tel.: +(55)-572-960-00
| |
Collapse
|
5
|
The Effects of Genistein on Renal Oxidative Stress and Inflammation of Ovariectomized Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.57149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Ding P, Chen Y, Cao G, Shen H, Ju J, Li W. Solutol ®HS15+pluronicF127 and Solutol ®HS15+pluronicL61 mixed micelle systems for oral delivery of genistein. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1947-1956. [PMID: 31239645 PMCID: PMC6559771 DOI: 10.2147/dddt.s201453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
Purpose: We aimed to prepare two oral drug delivery systems consisting of polyoxyl 15 hydroxystearate (HS15) with pluronicF127 (F127) and HS15 with pluronicL61 (L61) to overcome the challenges of genistein’s poor oral bioavailability. This provides a good strategy for enhancing the potential value of genistein. Methods: We designed two binary mixed micelle systems employing the organic solvent evaporation method using surfactants (HS15, L61, and F127). Formulations (GEN-F and GEN-L) were characterized by transmission electron microscopy. Drug content analysis, including entrapment efficiency (EE%), drug loading (DL%), and the cumulative amount of genistein released from the micelles, was performed using HPLC. The permeability of optimum formulation was measured in Caco-2 cell monolayers, and the oral bioavailability was evaluated in SD rats. Results: The solutions of GEN-F and GEN-L were observed to be transparent and colorless. GEN-F had a lower EE% of 80.79±0.55% and a DL% of 1.69±0.24% compared to GEN-L, which had an EE% 83.40±1.36% and a DL% 2.26±0.18%. TEM results showed that the morphology of GEN-F and GEN-L was homogeneous and resembled a spherical shape. The dilution and storage conditions had no significant effect on particle size and EE%. Genistein demonstrated a sustained release behavior when encapsulated in micelles. Pharmacokinetics study showed that the relative oral bioavailability of GEN-F and GEN-L increased by 2.23 and 3.46 fold while also enhancing the permeability of genistein across a Caco-2 cell monolayer compared to that of raw genistein. Conclusion: GEN-F and GEN-L as a drug delivery system provide an effective strategy for enhancing and further realizing the potential value of GEN.
Collapse
Affiliation(s)
- Pinggang Ding
- Department of Pharmaceutical Analysis and Metabolomics, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Yuxuan Chen
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Guangshang Cao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hongxue Shen
- Department of Pharmaceutical Analysis and Metabolomics, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Jianming Ju
- Department of Pharmaceutical Analysis and Metabolomics, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Weiguang Li
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Chen YN, Wu CG, Shi BM, Qian K, Ding Y. The protective effect of asiatic acid on podocytes in the kidney of diabetic rats. Am J Transl Res 2018; 10:3733-3741. [PMID: 30662623 PMCID: PMC6291729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
The essential ingredient of Centella asiatic is asiatic acid (AA). There are a lot of biological activities in AA, such as anti-oxidant, anti-diabetic. However, so far, there have been no reports on the underlying protective mechanism of AA on podocytes. In this research, we observed the morphological changes of podocytes in diabetic rats by optics microscope and transmission electron microscopy and the protective effect of AA. Additionally, we investigated the expressions of nephrin, desmin and p-JNK, JNK in podocytes of diabetic rats and the influence of AA on podocytes and JNK signaling pathway. The results showed that AA could reduce renal function and urinary albumin. It could attenuate abnormal pathological findings of podocytes in kidney tissue of diabetic rats. Besides, treatment with AA could significantly improve the expression of nephrin and decrease expression of desmin. The ratio of p-JNK protein to JNK protein in podocytes was reduced considerably by AA. With the treatment dose of AA increased, the renal protective effect of AA was gradually improved. These results indicate that asiatic acid has a significant protective effect on diabetic nephropathy. Potential mechanisms include inhibiting the production of oxidants effectively, protection of podocytes, and suppression of the JNK signaling pathway activation. Therefore, there is an excellent prospect of using AA to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Yu-Ning Chen
- Department of Geriatrics, The Third Affiliated Hospital of Soochow UniversityJiangsu, China
| | - Chen-Guang Wu
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu UniversityChina
| | - Bi-Min Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow UniversityJiangsu, China
| | - Ke Qian
- Department of Geriatrics, The Third Affiliated Hospital of Soochow UniversityJiangsu, China
| | - Yi Ding
- Department of Geriatrics, The Third Affiliated Hospital of Soochow UniversityJiangsu, China
| |
Collapse
|
8
|
Bai J, Luo X. 5-Hydroxy-4'-Nitro-7-Propionyloxy-Genistein Inhibited Invasion and Metastasis via Inactivating Wnt/b-Catenin Signal Pathway in Human Endometrial Carcinoma Ji Endometrial Cells. Med Sci Monit 2018; 24:3230-3243. [PMID: 29769480 PMCID: PMC5985707 DOI: 10.12659/msm.909472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chemotherapy has been assuring more important roles in the treatment of carcinoma. Developing new types of drugs with less adverse effects and low drug resistance has become an important researching focus. The present study aimed to investigate the anticancer effects of 5-hydroxy-4′-nitro-7-propionyloxy-genistein (HNPG) and to elucidate its underlying molecular mechanism. Material/Methods The inhibitory effects of cell viability of HNPG were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, flat plate clone formation method, and Transwell assay. The distribution of cell cycle was analyzed using flow cytometry (FCM) method. The morphological alteration, root-mean-squared roughness (Rq), average roughness (Ra), Young’s modulus, and adhesive force were measured by atomic force microscope (AFM) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were used to explore the possible molecular mechanism. Results We found that HNPG had dramatic activity against Ji Endometrial cells (JEC) in vitro, inhibited the proliferation and colony formation, attenuated invasion and migration ability, and arrested cell cycle in G1 phase, all in a dose-dependent manner. Simultaneously, cell bodies shrunk, pseudopod structures retracted, Rq and Ra were reduced, and Young’s modulus and adhesive force increased, accompanied by downregulation of β-catenin, C-Myc, Cyclin D1, matrix metalloprotease 2 (MMP-2), matrix metalloprotease 7 (MMP-7), and matrix metalloprotease 9 (MMP-9). Conclusions HNPG dramatically inhibited invasion and metastasis of JEC cells in vitro. Its molecular mechanism might be related to inactivation of the wnt/β-catenin signal pathway, accumulated cells in G1/S phase, inhibited cell proliferation, improved adhesive force between cells, and reduced cell plasticity and elasticity.
Collapse
Affiliation(s)
- Jun Bai
- Department of Obstetrics and Gynecology, The First Clinical School of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xin Luo
- Department of Obstetrics and Gynecology, The First Clinical School of Jinan University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|