1
|
Sun L, Wu Y, Sun T, Li P, Liang J, Yu X, Yang J, Meng N, Wang M, Chen C. Influence of diabetes mellitus on metabolic networks in lung cancer patients: an analysis using dynamic total-body PET/CT imaging. Eur J Nucl Med Mol Imaging 2025; 52:2145-2156. [PMID: 39831968 DOI: 10.1007/s00259-025-07081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION The intricate interplay between organs can give rise to a multitude of physiological conditions. Disruptions such as inflammation or tissue damage can precipitate the development of chronic diseases such as tumors or diabetes mellitus (DM). While both lung cancer and DM are the consequences of disruptions in homeostasis, the relationship between them is intricate. This study sought to investigate the potential influence of DM on lung cancer by employing total-body dynamic PET imaging. METHODS The present study proposes a framework for metabolic network analysis using total-body dynamic PET imaging of 20 lung cancer patients with DM (DM group) and 20 lung cancer patients without DM (Non-DM group), with the residuals of a third-order polynomial fit serving as an indicator of Pearson correlation. RESULTS The framework successfully captured the deviation of the DM group from the Non-DM group at both the edge and organ levels. At the edge level, there was a significant difference in the lesion- left ventricle (LV) between the DM and Non-DM groups (P < 0.05). Furthermore, we discovered a positive correlation between the absolute value of Z-score (ZCC) of lesion - LV and the duration of DM (R = 0.680, P < 0.001). At the organ level, there was a significant difference in the kidney, brain, and abdominal fat between the DM and Non-DM groups (P < 0.05). CONCLUSION This study demonstrated the feasibility of constructing metabolic networks to uncover complex alterations in lung cancer patients with DM. The findings contribute to understanding the systemic effects of DM on lung cancer metabolism and highlight the importance of personalized metabolic network analysis to comprehend the implications of concurrent diseases.
Collapse
Affiliation(s)
- Lubing Sun
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
- Clinical Bioinformatics Experimental Center, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Wu
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Panlong Li
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Junting Liang
- Clinical Bioinformatics Experimental Center, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuan Yu
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Meng
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Chuanliang Chen
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.
- Clinical Bioinformatics Experimental Center, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
2
|
Sallam NA, Laher I. Regional heterogeneity in vascular contractile dysfunction in diabetic mice. Mol Cell Biochem 2025:10.1007/s11010-025-05257-4. [PMID: 40208461 DOI: 10.1007/s11010-025-05257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/16/2025] [Indexed: 04/11/2025]
Abstract
Oxidative stress underlies many diabetic complications, including diabetic vasculopathy. It is unclear if oxidative stress has different effects in regionally distant arteries. We compared the contractile function of three arteries from diabetic mice and elucidated the mechanisms underlying their differential adaptation. We examined responses of the aorta, carotid and femoral arteries, isolated from the same diabetic (db/db) or normoglycemic control mice, to different vasoconstrictors in the presence and absence of indomethacin, apocynin, sulfaphenazole, L-NAME or a reactive oxygen species generating system to identify the enzyme(s) contributing to vascular dysfunction. Expression of superoxide dismutase (SOD) isoforms was measured. db/db aortae showed augmented contractile responses to KCl, phenylephrine, A23197 and U-46619 likely due to activated cyclooxygenases and hypersensitivity to thromboxane A2. Contractile responses of db/db carotid arteries were unaltered, likely due to higher SOD3 and SOD1 levels compared to the aortae. Femoral arteries were more vulnerable to oxidative stress, lacked SOD3 expression, and showed higher basal potassium channels activity. Phenylephrine contractions in femoral arteries were dependent on extracellular calcium entry; while contractions in aortae were dependent on extracellular calcium entry and intracellular calcium release. Femoral arteries from db/db mice exhibited higher basal potassium channels activity and attenuated contractility compared to control mice likely due to lower SOD levels. Heterogeneity exists between the three arteries at functional and molecular levels due to different signalling pathways and antioxidant defense mechanisms. Understanding regional differences in vasomotor control coupled with advanced delivery systems can help in developing therapies targeting specific vascular beds.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-aini Street, Cairo, 11562, Egypt.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Guo X, Xia B, Liu S, Dong Y, Qian Y, Qiu J. Apigenin Ameliorates Insulin Resistance in 3T3-L1 Adipocytes: Establishment of a New Insulin Resistance Model Induced by Combined Treatments. Mol Nutr Food Res 2025; 69:e202400545. [PMID: 39945085 DOI: 10.1002/mnfr.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 03/04/2025]
Abstract
Adipose tissue dysfunction due to insulin resistance (IR) plays a central role in the development of metabolic diseases. Obesity-associated IR greatly attributes to low-grade inflammation and high circulating levels of FFAs and sugar. 3T3-L1 adipocytes exposed to a mixture of TNF-α, fructose, and palmitate acid for 24 h were validated as a model to simulate the pathogenesis of IR in obese people under a high-fat-fructose diet. Results show that the combined induction medium (CIM) successfully induced IR in 3T3-L1 adipocytes by impairing insulin signaling pathway. In the meantime, MAPK (JNK, ERK) pathway and NFκB p65 were activated, which are signs of inflammation response. Moreover, CIM caused mitochondrial dysfunction and oxidative stress. In addition, endoplasmic reticulum stress (ER stress) was evoked by CIM through activating IRE1α/XBP1s, eIF2α, and ATF6. Apigenin could efficiently relieve IR in adipocytes through sensitizing insulin signaling pathway, exerting antioxidant activity, blocking the NFκB pathway, and suppressing ER stress. The present study may provide new tools in discovering preventive and intervention strategies for IR caused by low-grade inflammation and high-fat-fructose diets and provide a basis for the application of apigenin in IR and other IR-related diseases.
Collapse
Affiliation(s)
- Xiaoxuan Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Xia
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ying Dong
- Department of Engineering, Huanghe University of Science and Technology, Zhengzhou, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zwingelberg SB, Karabiyik G, Gehle P, von Brandenstein M, Eibichova S, Lotz C, Groeber-Becker F, Kampik D, Jurkunas U, Geerling G, Lang G. Advancements in bioengineering for descemet membrane endothelial keratoplasty (DMEK). NPJ Regen Med 2025; 10:10. [PMID: 39952985 PMCID: PMC11828897 DOI: 10.1038/s41536-025-00396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
Corneal diseases are the third leading cause of blindness worldwide. Descemet's Membrane Endothelial Keratoplasty (DMEK) is the preferred surgical technique for treating corneal endothelial disorders, relying heavily on high-quality donor tissue. However, the scarcity of suitable donor tissue and the sensitivity of endothelial cells remain significant challenges. This review explores the current state of DMEK, focusing on advancements in tissue engineering as a promising solution to improve outcomes and address donor limitations.
Collapse
Affiliation(s)
| | - Gizem Karabiyik
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Paul Gehle
- Department of Urology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Melanie von Brandenstein
- Department of Urology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sabina Eibichova
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine, Würzburg, Germany
| | - Christian Lotz
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC Translational Center Regenerative Therapies, Würzburg, Germany
| | - Florian Groeber-Becker
- Department of Ophthalmology, University Hospital of Duesseldorf, Duesseldorf, Germany
- Fraunhofer Institute for Silicate Research ISC Translational Center Regenerative Therapies, Würzburg, Germany
| | - Daniel Kampik
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Ula Jurkunas
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Institute, Boston, MA, USA
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital of Duesseldorf, Duesseldorf, Germany
| | - Gregor Lang
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2025; 227:52-63. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
6
|
Gul P, Khan J, Li Q, Liu K. Moringa oleifera in a modern time: A comprehensive review of its nutritional and bioactive composition as a natural solution for managing diabetes mellitus by reducing oxidative stress and inflammation. Food Res Int 2025; 201:115671. [PMID: 39849793 DOI: 10.1016/j.foodres.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications. MO is a multi-purpose plant that has an impressive range of nutritional components including proteins, amino acids (Essential and non-essential amino acids), carbs, fats, fiber, vitamins, and phenolic compounds. In the modern era, scientists have paid close attention to the anti-diabetic, anti-oxidative and anti-inflammatory attributes and other medicinal properties, of MO leaves and seeds. MO leaves and seeds have modulatory effects on DM that are likely influenced by multiple mechanisms. Some of these mechanisms include direct effects, but other mechanisms involve inhibition the production of inflammatory markers, modulation of the gut microbiome, reduction of OS, enhancement of glucose metabolism through hexokinase and glucose 6-phosphate dehydrogenase, improve insulin sensitivity and glucose uptake in the liver and muscles. Overall, these findings suggest that MO may play a role in lowering the risk of DM and its related outcomes. The purpose of this review is to provide a comprehensive overview of the nutritional and bioactive profiles of MO leaves and seeds, as well as to investigate their possible anti-diabetic effects by modulating oxidative stress and inflammation. Our results indicate that MO may be a beneficial natural resource for management of DM and related issues by lowering oxidative stress and inflammation. Furthermore, studies on MO has yielded promising findings in diabetic animal models, indicating antioxidant and anti-inflammatory properties. However, human trials have shown less solid results, most likely due to a lack of studies, different techniques, and dosages. More clinical research is needed to fully understand MO's anti-diabetic potential, notably in lowering oxidative stress and inflammation, both of which are critical in controlling diabetes complications.
Collapse
Affiliation(s)
- Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001 China.
| |
Collapse
|
7
|
Li M, Zhao Z, Yi J. Biomaterials Designed to Modulate Reactive Oxygen Species for Enhanced Bone Regeneration in Diabetic Conditions. J Funct Biomater 2024; 15:220. [PMID: 39194658 DOI: 10.3390/jfb15080220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus, characterized by enduring hyperglycemia, precipitates oxidative stress, engendering a spectrum of complications, notably increased bone vulnerability. The genesis of reactive oxygen species (ROS), a byproduct of oxygen metabolism, instigates oxidative detriment and impairs bone metabolism in diabetic conditions. This review delves into the mechanisms of ROS generation and its impact on bone homeostasis within the context of diabetes. Furthermore, the review summarizes the cutting-edge progress in the development of ROS-neutralizing biomaterials tailored for the amelioration of diabetic osteopathy. These biomaterials are engineered to modulate ROS dynamics, thereby mitigating inflammatory responses and facilitating bone repair. Additionally, the challenges and therapeutic prospects of ROS-targeted biomaterials in clinical application of diabetic bone disease treatment is addressed.
Collapse
Affiliation(s)
- Mingshan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
S S, Hegde SV, Agarwal SV, Ns D, Pillai A, Shah SN, S R. Biomarkers of Oxidative Stress and Their Clinical Relevance in Type 2 Diabetes Mellitus Patients: A Systematic Review. Cureus 2024; 16:e66570. [PMID: 39252730 PMCID: PMC11382618 DOI: 10.7759/cureus.66570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Assessing oxidative stress is vital in managing type 2 diabetes mellitus (T2DM) and its complications. This systematic review aims to identify the most important oxidative stress markers in T2DM patients and predict associated complications. A literature search was conducted from 2013 to 2023, focusing on case-control, cohort, cross-sectional, and randomized control trials. The included studies had open access and scientific methodologies for assessing oxidative stress markers, while the excluded studies were not published in English or lacked primary objectives related to oxidative stress markers and T2DM or its complications. The quality of eligible studies was evaluated using the Newcastle-Ottawa Scale (NOS) for case-control, cohort, and cross-sectional studies and the Jadad Scale for RCTs. Eighteen studies were selected for the review and 25 potential markers like malondialdehyde (MDA), 11 thiobarbituric acid reactive substances (TBARS), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH), superoxide dismutase (SOD), and isoprostanes were found to be the most commonly used markers to assess oxidative stress in T2DM. These markers help to assess oxidative stress levels in T2DM individuals as well as correlate with diabetic complications. Therefore, assessment and understanding of the role of oxidative stress in T2DM pathophysiology are crucial for improving patient care and mitigating complications.
Collapse
Affiliation(s)
- Sabitha S
- Department of Biochemistry, Srinivas Institute of Allied Health Sciences, Mangalore, IND
| | - Shreelaxmi V Hegde
- Department of Biochemistry, Srinivas Institute of Medical Sciences and Research Center, Srinivas University, Mangalore, IND
- Department of Biochemistry, Rajiv Gandhi University of Health Science, Bengaluru, IND
| | | | - Delna Ns
- Department of Paramedical Sciences, EMS Memorial Cooperative Hospital and Research Centre - College of Paramedical Sciences, Malappuram, IND
| | - Ajita Pillai
- Biological Sciences, DELBIODESK - Research and Innovations, Bhopal, IND
| | | | - Ramjeela S
- Department of Pathology, Srinivas Institute of Medical Science and Research Center, Mangalore, IND
| |
Collapse
|
9
|
Dos Anjos Cordeiro JM, Santos LC, Santos BR, de Jesus Nascimento AE, Santos EO, Barbosa EM, de Macêdo IO, Mendonça LD, Sarmento-Neto JF, Pinho CS, Coura ETDS, Santos ADS, Rodrigues ME, Rebouças JS, De-Freitas-Silva G, Munhoz AD, de Lavor MSL, Silva JF. Manganese porphyrin-based treatment improves fetal-placental development and protects against oxidative damage and NLRP3 inflammasome activation in a rat maternal hypothyroidism model. Redox Biol 2024; 74:103238. [PMID: 38870780 PMCID: PMC11225907 DOI: 10.1016/j.redox.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Oxidative stress (OS) and endoplasmic reticulum stress (ERS) are at the genesis of placental disorders observed in preeclampsia, intrauterine growth restriction, and maternal hypothyroidism. In this regard, cationic manganese porphyrins (MnPs) comprise potent redox-active therapeutics of high antioxidant and anti-inflammatory potential, which have not been evaluated in metabolic gestational diseases yet. This study evaluated the therapeutic potential of two MnPs, [MnTE-2-PyP]5+ (MnP I) and [MnT(5-Br-3-E-Py)P]5+ (MnP II), in the fetal-placental dysfunction of hypothyroid rats. Hypothyroidism was induced by administration of 6-Propyl-2-thiouracil (PTU) and treatment with MnPs I and II 0.1 mg/kg/day started on the 8th day of gestation (DG). The fetal and placental development, and protein and/or mRNA expression of antioxidant mediators (SOD1, CAT, GPx1), hypoxia (HIF1α), oxidative damage (8-OHdG, MDA), ERS (GRP78 and CHOP), immunological (TNFα, IL-6, IL-10, IL-1β, IL-18, NLRP3, Caspase1, Gasdermin D) and angiogenic (VEGF) were evaluated in the placenta and decidua on the 18th DG using immunohistochemistry and qPCR. ROS and peroxynitrite (PRX) were quantified by fluorometric assay, while enzyme activities of SOD, GST, and catalase were evaluated by colorimetric assay. MnPs I and II increased fetal body mass in hypothyroid rats, and MnP I increased fetal organ mass. MnPs restored the junctional zone morphology in hypothyroid rats and increased placental vascularization. MnPs blocked the increase of OS and ERS mediators caused by hypothyroidism, showing similar levels of expression of HIFα, 8-OHdG, MDA, Gpx1, GRP78, and Chop to the control. Moreover, MnPs I and/or II increased the protein expression of SOD1, Cat, and GPx1 and restored the expression of IL10, Nlrp3, and Caspase1 in the decidua and/or placenta. However, MnPs did not restore the low placental enzyme activity of SOD, CAT, and GST caused by hypothyroidism, while increased the decidual and placental protein expression of TNFα. The results show that treatment with MnPs improves the fetal-placental development and the placental inflammatory state of hypothyroid rats and protects against oxidative stress and reticular stress caused by hypothyroidism at the maternal-fetal interface.
Collapse
Affiliation(s)
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Emilly Oliveira Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Isabela Oliveira de Macêdo
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - José Ferreira Sarmento-Neto
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Brazil
| | - Clarice Santos Pinho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Acácio de Sá Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Marciel Elio Rodrigues
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual Do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | - Júlio Santos Rebouças
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Brazil
| | - Gilson De-Freitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Dias Munhoz
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Mário Sérgio Lima de Lavor
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil.
| |
Collapse
|
10
|
Zwingelberg SB, Lautwein B, Baar T, Heinzel-Gutenbrunner M, von Brandenstein M, Nobacht S, Matthaei M, Bachmann BO. The influence of obesity, diabetes mellitus and smoking on fuchs endothelial corneal dystrophy (FECD). Sci Rep 2024; 14:11596. [PMID: 38773227 PMCID: PMC11109267 DOI: 10.1038/s41598-024-61948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024] Open
Abstract
To detect environmental factors, which may be possible risk factors in the disease course of Fuchs' endothelial corneal dystrophy (FECD). Evaluation of patients with FECD registered in the FECD genetics database of the Center for Ophthalmology, University Hospital Cologne. For the evaluation, disease onset, central corneal thickness, best spectacle corrected visual acuity (BSCVA, logMAR), and modified Krachmer grading (grades 1-6) were correlated with the presence of diabetes mellitus (DM), body mass index (BMI), and smoking behavior. To put the age-related increase in Krachmer grading into perspective, a correction of grading were formed. Depending on the variables studied, differences between groups were examined by Mann-Whitney U test and chi-square test. The significance level was 5%. 403 patients with FECD were included in the analysis. The mean age of the patients was 70.0 ± 10.32 (range 28-96) years. The mean age at diagnosis of those patients was 63.1 ± 13.2 years. The female-to-male ratio was 1.46:1. Patients with a BMI > 30.0 kg/m2 developed FECD significantly earlier than patients with a BMI < 30 kg/m2, p = 0.001. Patients with DM showed significantly more often an Krachmer grade of 5, p = 0.015. Smoking had a negative effect on Krachmer grading (p = 0.024). Using the mediation analysis, the presence of DM correlated Krachmer Grade 5 (p = 0.015), and the presence of DM correlated with BMI > 30.0 kg/m2 (p = 0.012). In addition to smoking and DM our study shows for the first time that obesity may have a negative impact on the development of FECD. Whether dietary interventions and hormones can influence the development or progression of the disease needs to be investigated in future studies.
Collapse
Affiliation(s)
- S B Zwingelberg
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Street 62, 50937, Cologne, Germany.
| | - B Lautwein
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - T Baar
- Institute for Medical Statistics and Bioinformatics of the University of Cologne, Bachemer Straße 86, 50931, Cologne, Germany
| | | | - M von Brandenstein
- Department of Urology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - S Nobacht
- Department of Ophthalmology, Radboud-Universität Nijmegen, Nijmegen, The Netherlands
| | - M Matthaei
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Street 62, 50937, Cologne, Germany
| | - B O Bachmann
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Street 62, 50937, Cologne, Germany
| |
Collapse
|
11
|
Nouri M, Gargari BP, Ghasempour Z, Sadra V, Jafarabadi MA, Babaei A, Tajfar P, Tarighat-Esfanjani A. The effects of whey protein on anthropometric parameters, resting energy expenditure, oxidative stress, and appetite in overweight/obese women with type 2 diabetes mellitus: A randomized placebo controlled clinical trial. Int J Diabetes Dev Ctries 2024; 44:155-166. [DOI: 10.1007/s13410-023-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/24/2023] [Indexed: 01/04/2025] Open
|
12
|
Anwar A, Faisal F, Elahi W, Illahi A, Alam SM, Adnan STA, Batool SA, Bhagwandas S, Hashmi AA. Correlation of Blood Urea and Creatinine Levels With Thiamin Levels in Type 1 and Type 2 Diabetic Patients. Cureus 2024; 16:e57022. [PMID: 38681462 PMCID: PMC11046357 DOI: 10.7759/cureus.57022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Serum urea and creatinine levels are the most commonly recognized parameters for evaluating renal impairment in patients with diabetes mellitus (DM). Therefore, this study evaluated the correlation between urea and creatinine levels and thiamin levels in patients with type 1 DM (T1DM) and type 2 DM (T2DM). Methods This multi-center, cross-sectional study was conducted at diabetic outpatient clinics in Karachi. The duration of the study was six months, from 1st January 2023 to 30th June 2023. A total of 60 patients were enrolled and divided into two groups, i.e., T1DM and T2DM, each containing 30 patients of both genders between the ages of 24 and 42 years. Demographic data and biochemical variables, such as urea, creatinine, random blood sugar, fasting blood sugar, hemoglobin A1c, and serum thiamin levels, were assessed. The Mann-Whitney U test and independent t-test were used to associate the means between the two study groups. The chi-square test and Spearman's correlation coefficient were used to determine the associations between the variables and T1DM and T2DM. Results The study results revealed that patients with T2DM had a significantly higher frequency of hypertension (p = 0.039), neuropathy (p = 0.038), and coronary artery disease (p = 0.010) than those with T1DM, in both genders. The level of serum thiamin was found to be significantly higher (p < 0.001) in T2DM (14.8 ± 4.82) than in T1DM patients (7.34 ± 1.90). Similarly, serum creatinine was higher in T2DM than in T1DM patients (0.83 ± 0.12 vs. 0.76 ± 0.17, p = 0.025). Moreover, the correlation of urea and creatinine with thiamin levels in T1DM and T2DM patients revealed that in T1DM and T2DM patients, urea and creatinine showed an insignificant positive correlation with thiamin levels. Conclusion We found a significantly higher level of serum creatinine and thiamin levels in T2DM patients than in T1DM; however, there was no significant correlation between urea and creatinine levels and thiamin status in T1DM and T2DM patients. Therefore, we conclude that although serum urea, creatinine, and serum thiamin are important disease biomarkers in diabetic patients, there is no correlation between them.
Collapse
Affiliation(s)
- Adnan Anwar
- Physiology, Hamdard College of Medicine and Dentistry, Karachi, PAK
- Internal Medicine, Essa General Hospital, Karachi, PAK
| | | | - Wajeeha Elahi
- Nephrology, Hamdard University Hospital, Karachi, PAK
| | - Ahsan Illahi
- Community Medicine, Field Epidemiology Training Program, Sindh Government Hospital, Karachi, PAK
| | | | | | - Syed Asra Batool
- Medicine, Hamdard College of Medicine and Dentistry, Karachi, PAK
| | | | - Atif A Hashmi
- Pathology, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
13
|
Khanam A, Alouffi S, Alyahyawi AR, Husain A, Khan S, Alharazi T, Akasha R, Khan H, Shahab U, Ahmad S. Generation of autoantibodies against glycated fibrinogen: Role in diabetic nephropathy and retinopathy. Anal Biochem 2024; 685:115393. [PMID: 37977213 DOI: 10.1016/j.ab.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The process of glycation, characterized by the non-enzymatic reaction between sugars and free amino groups on biomolecules, is a key contributor to the development and progression of both microvascular and macrovascular complications associated with diabetes, particularly due to persistent hyperglycemia. This glycation process gives rise to advanced glycation end products (AGEs), which play a central role in the pathophysiology of diabetes complications, including nephropathy. The d-ribose-mediated glycation of fibrinogen plays a central role in the pathogenesis of diabetes nephropathy (DN) and retinopathy (DR) by the generation and accumulation of advanced glycation end products (AGEs). Glycated fibrinogen with d-ribose (Rb-gly-Fb) induces structural changes that trigger an autoimmune response by generating and exposing neoepitopes on fibrinogen molecules. The present research is designed to investigate the prevalence of autoantibodies against Rb-gly-Fb in individuals with type 2 diabetes mellitus (T2DM), DN & DR. Direct binding ELISA was used to test the binding affinity of autoantibodies from patients' sera against Rb-gly-Fb and competitive ELISA was used to confirm the direct binding findings by checking the bindings of isolated IgG against Rb-gly-Fb and its native conformer. In comparison to healthy subjects, 32% of T2DM, 67% of DN and 57.85% of DR patients' samples demonstrated a strong binding affinity towards Rb-gly-Fb. Both native and Rb-gly-Fb binding by healthy subjects (HS) sera were non-significant (p > 0.05). Furthermore, the early, intermediate, and end products of glycation have been assessed through biochemical and physicochemical analysis. The biochemical markers in the patient groups were also significant (p < 0.05) in comparison to the HS group. This study not only establishes the prevalence of autoantibodies against d-ribose glycated fibrinogen in DN but also highlights the potential of glycated fibrinogen as a biomarker for the detection of DN and/or DR. These insights may open new avenues for research into novel therapeutic strategies and the prevention of diabetes-related nephropathy and retinopathy.
Collapse
Affiliation(s)
- Afreen Khanam
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, 226026, India; Department of Biotechnology & Life Sciences, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, 202146, India
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Amjad R Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha'il, 2440, Saudi Arabia; Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Arbab Husain
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, 226026, India; Department of Biotechnology & Life Sciences, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, 202146, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, 226003, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia.
| |
Collapse
|
14
|
Naidoo K, Khathi A. The Potential Role of Gossypetin in the Treatment of Diabetes Mellitus and Its Associated Complications: A Review. Int J Mol Sci 2023; 24:17609. [PMID: 38139436 PMCID: PMC10743819 DOI: 10.3390/ijms242417609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused by insulin resistance and dysfunctional beta (β)-cells in the pancreas. Hyperglycaemia is a characteristic of uncontrolled diabetes which eventually leads to fatal organ system damage. In T2DM, free radicals are continuously produced, causing extensive tissue damage and subsequent macro-and microvascular complications. The standard approach to managing T2DM is pharmacological treatment with anti-diabetic medications. However, patients' adherence to treatment is frequently decreased by the side effects and expense of medications, which has a detrimental impact on their health outcomes. Quercetin, a flavonoid, is a one of the most potent anti-oxidants which ameliorates T2DM. Thus, there is an increased demand to investigate quercetin and its derivatives, as it is hypothesised that similar structured compounds may exhibit similar biological activity. Gossypetin is a hexahydroxylated flavonoid found in the calyx of Hibiscus sabdariffa. Gossypetin has a similar chemical structure to quercetin with an extra hydroxyl group. Furthermore, previous literature has elucidated that gossypetin exhibits neuroprotective, hepatoprotective, reproprotective and nephroprotective properties. The mechanisms underlying gossypetin's therapeutic potential have been linked to its anti-oxidant, anti-inflammatory and immunomodulatory properties. Hence, this review highlights the potential role of gossypetin in the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
15
|
Bendotti G, Montefusco L, Pastore I, Lazzaroni E, Lunati ME, Fiorina P. The anti-inflammatory and immunological properties of SGLT-2 inhibitors. J Endocrinol Invest 2023; 46:2445-2452. [PMID: 37535237 DOI: 10.1007/s40618-023-02162-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic oral drugs that act on proximal renal tubules promoting renal glucose excretion. Although SGLT-2i belong to the class of hypoglycemic agents, in the last years great interest has emerged in studying their pleiotropic effects, beyond their ability to lower glucose levels. PURPOSE In this review we are describing the anti-inflammatory and immunological properties of SGLT-2i; furthermore, we are addressing how the mechanisms associated with the aforementioned anti-inflammatory properties may contribute to the beneficial effects of SGLT-2i in diabetes. METHODS A systematic search was undertaken for studies related the properties of SGLT-2i in reducing the inflammatory milieu of acute and chronic disease by acting on the immune system, independently by glycemia. RESULTS Recently, some data described the anti-inflammatory and immunological properties of SGLT-2 in both pre-clinical and clinical studies. Numerous data confirmed the cardio- and -renal protective effects of SGLT-2i in patients with heart failure and kidney diseases, with or without diabetes. CONCLUSIONS SGLT-2i are promising drugs with anti-inflammatory and immunological properties. Despite the mechanism of action of SGLT-2i is not fully understood, these drugs demonstrated anti-inflammatory effects, which may help in keeping under control the variety of complications associated with diabetes.
Collapse
Affiliation(s)
- G Bendotti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Endocrinology and Metabolic Diseases Unit, AO S.S. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - L Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - I Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - E Lazzaroni
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - M E Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - P Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave. Enders Building 5th floor En511, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Makki BE, Rahman S. Alzheimer's Disease in Diabetic Patients: A Lipidomic Prospect. Neuroscience 2023; 530:79-94. [PMID: 37652288 DOI: 10.1016/j.neuroscience.2023.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Diabetes Mellitus (DM) and Alzheimer's disease (AD) have been two of the most common chronic diseases affecting people worldwide. Type 2 DM (T2DM) is a metabolic disease depicted by insulin resistance, dyslipidemia, and chronic hyperglycemia while AD is a neurodegenerative disease marked by Amyloid β (Aβ) accumulation, neurofibrillary tangles aggregation, and tau phosphorylation. Various clinical, epidemiological, and lipidomics studies have linked those diseases claiming shared pathological pathways raising the assumption that diabetic patients are at an increased risk of developing AD later in their lives. Insulin resistance is the tipping point beyond where advanced glycation end (AGE) products and free radicals are produced leading to oxidative stress and lipid peroxidation. Additionally, different types of lipids are playing a crucial role in the development and the relationship between those diseases. Lipidomics, an analysis of lipid structure, formation, and interactions, evidently exhibits these lipid changes and their direct and indirect effect on Aβ synthesis, insulin resistance, oxidative stress, and neuroinflammation. In this review, we have discussed the pathophysiology of T2DM and AD, the interconnecting pathological pathways they share, and the lipidomics where different lipids such as cholesterol, phospholipids, sphingolipids, and sulfolipids contribute to the underlying features of both diseases. Understanding their role can be beneficial for diagnostic purposes or introducing new drugs to counter AD.
Collapse
Affiliation(s)
| | - Sarah Rahman
- School of Medicine, Tehran University of Medical Sciences, Iran
| |
Collapse
|
17
|
Phoswa WN, Mokgalaboni K. Comprehensive Overview of the Effects of Amaranthus and Abelmoschus esculentus on Markers of Oxidative Stress in Diabetes Mellitus. Life (Basel) 2023; 13:1830. [PMID: 37763234 PMCID: PMC10532493 DOI: 10.3390/life13091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The use of medicinal plants in the management of diabetes mellitus (DM) is extensively reported. However, there is still very limited information on the role of these plants as markers of oxidative stress in DM. This current review evaluated the effect of Amaranthus spinosus, Amaranthus hybridus, and Abelmoschus esculentus on markers of oxidative stress in rodent models of DM. Current findings indicate that these plants have the potential to reduce prominent markers of oxidative stress, such as serum malondialdehyde and thiobarbituric acid-reactive substances, while increasing enzymes that act as antioxidants, such as superoxide dismutase, catalase, glutathione, and glutathione peroxidase. This may reduce reactive oxygen species and further ameliorate oxidative stress in DM. Although the potential benefits of these plants are acknowledged in rodent models, there is still a lack of evidence showing their efficacy against oxidative stress in diabetic patients. Therefore, we recommend future clinical studies in DM populations, particularly in Africa, to evaluate the potential effects of these plants. Such studies would contribute to enhancing our understanding of the significance of incorporating these plants into dietary practices for the prevention and management of DM.
Collapse
Affiliation(s)
- Wendy N. Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa;
| | | |
Collapse
|
18
|
Yefet E, Bejerano A, Iskander R, Zilberman Kimhi T, Nachum Z. The Association between Gestational Diabetes Mellitus and Infections in Pregnancy-Systematic Review and Meta-Analysis. Microorganisms 2023; 11:1956. [PMID: 37630515 PMCID: PMC10458027 DOI: 10.3390/microorganisms11081956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
We conducted a systematic review and meta-analysis to evaluate the association between gestational diabetes mellitus and infections during pregnancy. We included cross-sectional, case-control, cohort studies and clinical trials, evaluating the frequency of infections in women with and without gestational diabetes mellitus. A search was conducted in Embase, PubMed, and Web of Science electronic databases and by manually searching references, until 23 March 2022, resulting in 16 studies being selected for review, with 111,649 women in the gestational diabetes mellitus group, and 1,429,659 in the controls. Cochrane's Q test of heterogeneity and I² were used to assess heterogeneity. Pooled odds ratio (OR) was calculated. Funnel plots and Egger test were used for assessment of publication bias. The results showed a significant association between gestational diabetes mellitus and infections (pooled-OR 1.3 95% CI [1.2-1.5]). Sub-analyses showed a significant association for urinary tract infections (pooled-OR of 1.2 95% CI [1.1-1.3]), bacterial infections (pooled-OR were 1.2 95% CI [1.1-1.4]), and SARS-CoV-2 (pooled-OR 1.5 95% CI [1.2-2.0]) but not to gingivitis or vaginal candidiasis. The results underscore the significance of acknowledging gestational diabetes mellitus as a risk factor for infections.
Collapse
Affiliation(s)
- Enav Yefet
- Department of Obstetrics and Gynecology, Tzafon Medical Center, Poriya 1528001, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Aviv Bejerano
- Department of Obstetrics and Gynecology, Tzafon Medical Center, Poriya 1528001, Israel
| | - Rula Iskander
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula 1834111, Israel (Z.N.)
| | - Tal Zilberman Kimhi
- Department of Obstetrics and Gynecology, Tzafon Medical Center, Poriya 1528001, Israel
| | - Zohar Nachum
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula 1834111, Israel (Z.N.)
- Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
| |
Collapse
|
19
|
Thinggaard BS, Stokholm L, Davidsen JR, Larsen MC, Möller S, Thykjær AS, Andresen JL, Andersen N, Heegaard S, Højlund K, Kawasaki R, Laugesen C, Bek T, Grauslund J. Diabetic retinopathy is a predictor of chronic respiratory failure: A nationwide register-based cohort study. Heliyon 2023; 9:e17342. [PMID: 37426795 PMCID: PMC10329134 DOI: 10.1016/j.heliyon.2023.e17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a hypoxic retinal disease, but so far, the association with systemic hypoxia is poorly understood. Hence, the aim of this study was to evaluate cross-sectional and longitudinal associations between DR and chronic respiratory failure (CRF) in a national cohort. Design Cross-sectional and 5-year longitudinal register-based cohort study. Methods Between 2013 and 2018, we included patients with diabetes from the Danish Registry of Diabetic Retinopathy, who were each age and sex matched with five controls without diabetes. At index date, the prevalence of CRF was compared between cases and controls, and the longitudinal relationship between DR and CRF was assessed in a five-year follow-up. Results At baseline, we identified 1,980 and 9,990 patients with CRF among 205,970 cases and 1,003,170 controls. The prevalence of CRF was higher among cases than controls (OR 1.75, 95% CI 1.65-1.86), but no difference between cases with and without DR was found.During follow-up, we identified 1,726 and 5,177 events of CRF among cases and controls, respectively. The incidence of CRF was higher among both cases with and without DR compared to controls (DR level 0: HR 1.24, 95% CI 1.16-1.33, DR level 1-4: HR 1.86, 95% CI 1.63-2.12), and higher among cases with DR compared to cases without DR (HR 1.54, 95% CI 1.38-1.72). Conclusion In this study based on nationwide data, we found an increased risk of present and incident CRF in patients with diabetes with or without DR, and we identified DR as a predictor of future CRF.
Collapse
Affiliation(s)
- Benjamin Sommer Thinggaard
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Lonny Stokholm
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Rømhild Davidsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- South Danish Center for Interstitial Lung Diseases (SCILS), Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Sören Möller
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Anne Suhr Thykjær
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | | | - Nis Andersen
- Organization of Danish Practicing Ophthalmologists, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Ryo Kawasaki
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Vision Informatics, University of Osaka, Osaka, Japan
| | - Caroline Laugesen
- Department of Ophthalmology, Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| |
Collapse
|
20
|
Azarova I, Klyosova E, Polonikov A. Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes. Biomedicines 2023; 11:981. [PMID: 36979960 PMCID: PMC10046239 DOI: 10.3390/biomedicines11030981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Single nucleotide polymorphisms (SNP) in the RAC1 (Rac family small GTPase 1) gene have recently been linked to type 2 diabetes (T2D) and hyperglycemia due to their contribution to impaired redox homeostasis. The present study was designed to determine whether the common SNPs of the RAC1 gene are associated with diabetic complications such as neuropathy (DN), retinopathy (DR), nephropathy, angiopathy of the lower extremities (DA), and diabetic foot syndrome. A total of 1470 DNA samples from T2D patients were genotyped for six common SNPs by the MassArray Analyzer-4 system. The genotype rs7784465-T/C of RAC1 was associated with an increased risk of DR (p = 0.016) and DA (p = 0.03) in males, as well as with DR in females (p = 0.01). Furthermore, the SNP rs836478 showed an association with DR (p = 0.005) and DN (p = 0.025) in males, whereas the SNP rs10238136 was associated with DA in females (p = 0.002). In total, three RAC1 haplotypes showed significant associations (FDR < 0.05) with T2D complications in a sex-specific manner. The study's findings demonstrate, for the first time, that the RAC1 gene's polymorphisms represent novel and sex-specific markers of neuropathy and microvascular complications in type 2 diabetes, and that the gene could be a new target for the pharmacological inhibition of oxidative stress as a means of preventing diabetic complications.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia;
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia or
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia or
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
| |
Collapse
|
21
|
Olofinsan KA, Salau VF, Erukainure OL, Islam MS. Senna petersiana (Bolle) leaf extract modulates glycemic homeostasis and improves dysregulated enzyme activities in fructose-fed streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115998. [PMID: 36471537 DOI: 10.1016/j.jep.2022.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Senna petersiana (Bolle) is a native South African medicinal shrub combined locally with other plant products to manage diabetes or used as a single therapy for several other ailing conditions. AIM OF THE STUDY This study evaluated the antidiabetic and antilipidemic effects of S. petersiana leaf ethanol extract and its modulatory effects on dysregulated enzyme activities in fructose-fed streptozotocin-induced diabetic rats. MATERIALS AND METHODS Six groups of 6-weeks old male Sprague Dawley rats were used in this study. Diabetes was induced in four of the groups by injecting (i.p.) 40 mg/kg of streptozotocin after a two-weeks feeding of 10% fructose via drinking water, while animals in the two normal groups were given similar volume of vehicle buffer and normal drinking water, respectively. After the confirmation of diabetes, treatment with 150 and 300 mg/kg body weight of the ethanolic leaf extract of S. petersiana proceeded for a period of 6 weeks. RESULTS Oral administration of S. petersiana leaf extract significantly lowered blood glucose, food and liquid intake, glycosylhaemoglobin in blood, liver and cardiac biomarkers, and lipid profile in serum and atherogenic index (AIP) in both the low and high-dose treated animal groups. This was accompanied by a simultaneous increase in Homeostatic Model Assessment-beta (HOMA-β) score, serum high-density lipoproteins cholesterol (HDL-c), and insulin levels. It also improved pancreatic and serum-reduced glutathione (GSH) levels, catalase, and superoxide dismutase (SOD) enzymes activities with a simultaneous reduction in malondialdehyde (MDA) and nitric oxide (NO) concentrations. Moreover, the extract modulated dysregulated α-amylase, lipase, cholinesterase, and 5' nucleotidase enzyme activities in pancreatic tissue as well as glycogen metabolism in the liver. Analysis of the phytochemicals in the S. petersiana extract showed the presence of phytol, 4a,7,7,10a-tetramethyldodecahydrobenzo[f]-chromen-3-ol, phytol acetate, solasodine glucoside, cassine, veratramine and solasodine acetate. Amongst these compounds, solasodine glucoside had the best binding energy (ΔG) with the selected diabetes-linked enzymes via molecular docking simulation. CONCLUSION Data from this study demonstrate the antidiabetic effects of S. petersiana leaf extract via the modulation of the dysregulated indices involved in type 2 diabetes and its associated complications. Although it has been shown safe in animals, further toxicological studies are required to ensure its safety for diabetes management in humans.
Collapse
Affiliation(s)
- Kolawole A Olofinsan
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
22
|
Poblete Jara C, Nogueira G, Morari J, do Prado TP, de Medeiros Bezerra R, Velloso LA, Velander W, de Araújo EP. An older diabetes-induced mice model for studying skin wound healing. PLoS One 2023; 18:e0281373. [PMID: 36800369 PMCID: PMC9937492 DOI: 10.1371/journal.pone.0281373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Advances in wound treatment depend on the availability of animal models that reflect key aspects of human wound healing physiology. To this date, the accepted mouse models do not reflect defects in the healing process for chronic wounds that are associated with type two diabetic skin ulcers. The long term, systemic physiologic stress that occurs in middle aged or older Type 2 diabetes patients is difficult to simulate in preclinical animal model. We have strived to incorporate the essential elements of this stress in a manageable mouse model: long term metabolic stress from obesity to include the effects of middle age and thereafter onset of diabetes. At six-weeks age, male C57BL/6 mice were separated into groups fed a chow and High-Fat Diet for 0.5, 3, and 6 months. Treatment groups included long term, obesity stressed mice with induction of diabetes by streptozotocin at 5 months, and further physiologic evaluation at 8 months old. We show that this model results in a severe metabolic phenotype with insulin resistance and glucose intolerance associated with obesity and, more importantly, skin changes. The phenotype of this older age mouse model included a transcriptional signature of gene expression in skin that overlapped that observed with elderly patients who develop diabetic foot ulcers. We believe this unique old age phenotype contrasts with current mice models with induced diabetes.
Collapse
Affiliation(s)
- Carlos Poblete Jara
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Guilherme Nogueira
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Joseane Morari
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Thaís Paulino do Prado
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
- Faculty of Nursing, University of Campinas, Campinas, Brazil
| | - Renan de Medeiros Bezerra
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
- Faculty of Nursing, University of Campinas, Campinas, Brazil
| | - Lício A. Velloso
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - William Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Eliana Pereira de Araújo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- * E-mail:
| |
Collapse
|
23
|
Al-Kafaween MA, Alwahsh M, Mohd Hilmi AB, Abulebdah DH. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12020337. [PMID: 36830249 PMCID: PMC9952753 DOI: 10.3390/antibiotics12020337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Honey is considered to be a functional food with health-promoting properties. However, its potential health benefits can be affected by individual composition that varies between honey types. Although studies describing the health benefits of Tualang honey (TH), Kelulut honey (KH), and Sidr honey (SH) are scarce, these honey types showed a comparable therapeutic efficacy to Manuka honey (MH). The purpose of this review is to characterise the physicochemical, biological, and therapeutic properties of TH, KH, and SH. Findings showed that these honeys have antibacterial, antifungal, antiviral, antioxidant, antidiabetic, antiobesity, anticancer, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system, and respiratory system. The physicochemical characteristics of TH, KH, and SH were compared with MH and discussed, and results showed that they have high-quality contents and excellent biological activity sources. Flavonoids and polyphenols, which act as antioxidants, are two main bioactive molecules present in honey. The activity of honey depends on the type of bee, sources of nectar, and the geographic region where the bees are established. In conclusion, TH, KH, and SH could be considered as natural therapeutic agents for various medicinal purposes compared with MH. Therefore, TH, KH, and SH have a great potential to be developed for modern medicinal use.
Collapse
Affiliation(s)
- Mohammad A. Al-Kafaween
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abu Bakar Mohd Hilmi
- Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Dina H. Abulebdah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
24
|
Gandhi GR, Hillary VE, Antony PJ, Zhong LLD, Yogesh D, Krishnakumar NM, Ceasar SA, Gan RY. A systematic review on anti-diabetic plant essential oil compounds: Dietary sources, effects, molecular mechanisms, and safety. Crit Rev Food Sci Nutr 2023; 64:6526-6545. [PMID: 36708221 DOI: 10.1080/10408398.2023.2170320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifaceted metabolic syndrome defined through the dysfunction of pancreatic β-cells driven by a confluence of genetic and environmental elements. Insulin resistance, mediated by interleukins and other inflammatory elements, is one of the key factors contributing to the progression of T2DM. Many essential oils derived from dietary plants are beneficial against various chronic diseases. We reviewed the anti-diabetic properties of dietary plant-derived essential oil compounds, with a focus on their molecular mechanisms by modulating specific signaling pathways and other critical inflammatory mediators involved in insulin resistance. High-quality literature published in the last 12 years, from 2010 to 2022, was collected from the Scopus, Web of Science, PubMed, and Embase databases using the search terms "dietary plants," "essential oils," "anti-diabetic," "insulin resistance," "antihyperglycemic," "T2DM," "anti-diabetic essential oils," and anti-diabetic mechanism." According to the results, the essential oil compounds, including cinnamaldehyde, carvacrol, zingerone, sclareol, zerumbone, myrtenol, thujone, geraniol, citral, eugenol, thymoquinone, thymol, citronellol, α-terpineol, and linalool have been demonstrated to contain strong anti-diabetic effects via modulating various signal transduction pathways linked to glucose metabolism. Additionally, in diabetes-related animal models, they can also considerably reduce the expression of TNF-α, IL-1β, IL-4, IL-6, iNOS, and COX-2. The main signaling molecules regulated by these compounds include AMPK, GLUT4, Caspase-3, PPARγ, PPARα, NF-κB, p-IκBα, MyD88, MCP-1, SREBP-1c, AGEs, RAGE, VEGF, Nrf2/HO-1, and SIRT-1. They can also significantly inhibit the generation of TBARS and MDA, reduce oxidative stress, increase insulin levels, adiponectin, and glycoprotein enzymes, boost antioxidant enzymes like SOD, CAT, and GPx, as well as reduce glutathione and vital glycolytic enzymes. Besides, they can significantly lower the levels of liver enzymes and lipid profile markers. Moreover, most essential oil compounds are generally safe based on animal studies. In conclusion, dietary plant-derived essential oil compounds have potential anti-diabetic effects by influencing different signaling pathways and molecular targets linked to glucose metabolism, and should be safe and beneficial against diabetes and related complications.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, India
| | | | - Linda L D Zhong
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Devarajan Yogesh
- Department of Biochemistry, University of Madras, Chennai, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, India
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
25
|
Prado T, Morari J, Araújo E. Molecular and morphological alterations in uninjured skin of streptozotocin-induced diabetic mice. Braz J Med Biol Res 2023; 56:e12212. [PMID: 36722656 PMCID: PMC9883009 DOI: 10.1590/1414-431x2023e12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 01/31/2023] Open
Abstract
Diabetes affects every tissue in the body, including the skin. The main skin problem is the increased risk of infections, which can lead to foot ulcers. Most studies evaluating the effects of diabetes on the skin are carried out in wound healing areas. There are fewer studies on uninjured skin, and some particularities of this tissue are yet to be elucidated. In general, cellular and molecular outcomes of diabetes are increased oxidative stress and lipid peroxidation. For our study, we used C57BL/6 mice that were divided into diabetic and non-diabetic groups. The diabetic group received low doses of streptozotocin on 5 consecutive days. To evaluate the effects of hyperglycemia on uninjured skin, we performed morphological analysis using hematoxylin/eosin staining, cellular analysis using Picrosirius red and Nissl staining, and immunostaining, and evaluated protein expression by polymerase chain reaction. We confirmed that mice were hyperglycemic, presenting all features related to this metabolic condition. Hyperglycemia caused a decrease in interleukin 6 (Il-6) and an increase in tumor necrosis factor alpha (Tnf-α), Il-10, F4/80, tumor growth factor beta (Tgf-β), and insulin-like growth factor 1 (Igf-1). In addition, hyperglycemia led to a lower cellular density in the epidermis and dermis, a delay in the maturation of collagen fibers, and a decrease in the number of neurons. Furthermore, we showed a decrease in Bdnf expression and no changes in Ntrk2 expression in the skin of diabetic animals. In conclusion, chronic hyperglycemia in mice induced by streptozotocin caused disruption of homeostasis even before loss of skin continuity.
Collapse
Affiliation(s)
- T.P. Prado
- Faculdade de Enfermagem, Universidade de Campinas, Campinas, SP, Brasil,Laboratório de Sinalização Celular, Universidade de Campinas, Campinas, SP, Brasil,Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil
| | - J. Morari
- Laboratório de Sinalização Celular, Universidade de Campinas, Campinas, SP, Brasil,Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil
| | - E.P. Araújo
- Laboratório de Sinalização Celular, Universidade de Campinas, Campinas, SP, Brasil,Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil
| |
Collapse
|
26
|
Tyagi S, Thakur AK. Neuropharmacological Study on Capsaicin in Scopolamine-injected Mice. Curr Alzheimer Res 2023; 20:660-676. [PMID: 38213170 DOI: 10.2174/0115672050286225231230130613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
AIM To evaluate the potential beneficial role of Capsaicin in cognitive dysfunction, mitochondrial impairment, and oxidative damage induced by scopolamine in mice. BACKGROUND Capsaicin is the chief phenolic component present in red chili and is responsible for its pungent and spicy flavor. It affects TRPV1 channels in nociceptive sensory neurons and is present in the hippocampus, and hypothalamus of the brains of rodents and humans. OBJECTIVE The main objective is to investigate the effective role of capsaicin in attenuating cognitive dysfunction, mitochondrial impairment, and oxidative damage induced by scopolamine in mice and examine the feasible mechanisms. METHODS Various doses of capsaicin (5, 10, and 20 mg/kg) were given orally to mice daily for 7 consecutive days after the administration of scopolamine. Various behavioral tests (motor coordination, locomotor counts, hole board test) and biochemical assay (Pro-inflammatory cytokines, catalase, lipid peroxidation, nitrite, reduced glutathione, and superoxide dismutase), mitochondrial complex (I, II, III, and IV) enzyme activities, and mitochondrial permeability transition were evaluated in the distinct regions of the brain. RESULTS Scopolamine-treated mice showed a considerable reduction in the entries and duration in the light zone as well as in open arms of the elevated plus maze. Interestingly, capsaicin at different doses reversed the anxiety, depressive-like behaviors, and learning and memory impairment effects of scopolamine. Scopolamine-administered mice demonstrated substantially increased pro-inflammatory cytokines levels, impaired mitochondrial enzyme complex activities, and increased oxidative damage compared to the normal control group. Capsaicin treatment reinstated the reduced lipid peroxidation, nitric oxide, catalase, superoxide dismutase, reduced glutathione activity, decreasing pro-inflammatory cytokines and restoring mitochondrial complex enzyme activities (I, II, III, and IV) as well as mitochondrial permeability. Moreover, the IL-1β level was restored at a dose of capsaicin (10 and 20 mg/kg) only. Capsaicin reduced the scopolamine-induced acetylcholinesterase activity, thereby raising the acetylcholine concentration in the hippocampal tissues of mice. Preservation of neuronal cell morphology was also confirmed by capsaicin in histological studies. From the above experimental results, capsaicin at a dose of 10 mg/kg, p.o. for seven consecutive days was found to be the most effective dose. CONCLUSION The experiential neuroprotective effect of capsaicin through the restoration of mitochondrial functions, antioxidant effects, and modulation of pro-inflammatory cytokines makes it a promising candidate for further drug development through clinical setup.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Department of Pharmacology, Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017, India
| | - Ajit Kumar Thakur
- Department of Pharmacology, Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017, India
| |
Collapse
|
27
|
Mohamed AI, Salau VF, Erukainure OL, Islam MS. Hibiscus sabdariffa L. polyphenolic-rich extract promotes muscle glucose uptake and inhibits intestinal glucose absorption with concomitant amelioration of Fe 2+ -induced hepatic oxidative injury. J Food Biochem 2022; 46:e14399. [PMID: 36259155 DOI: 10.1111/jfbc.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023]
Abstract
In this current study, the antidiabetic effectiveness of Hibiscus sabdariffa and its protective function against Fe2+ -induced oxidative hepatic injury were elucidated using in vitro, in silico, and ex vivo studies. The oxidative damage was induced in hepatic tissue by incubation with 0.1 mMolar ferrous sulfate (FeSO4) and then treated with different concentrations of crude extracts (ethyl acetate, ethanol, and aqueous) of H. sabdariffa flowers for 30 min at 37°C. When compared to ethyl acetate and aqueous extracts, the ethanolic extract displayed the most potent scavenging activity in ferric-reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide (NO) assays, with IC50 values of 2.8 μl/ml, 3.3 μl/ml, and 9.2 μl/ml, respectively. The extracts significantly suppressed α-glucosidase and α-amylase activities (p < .05), with the ethanolic extract demonstrating the highest activity. H. sabdariffa significantly (p < .05) raised reduced glutathione (GSH) levels while simultaneously decreasing malondihaldehyde (MDA) and NO levels and increasing superoxide dismutase (SOD) and catalase activity in Fe2+ induced oxidative hepatic injury. The extract of the plant inhibited intestinal glucose absorption and increased muscular glucose uptake. The extract revealed the presence of several phenolic compounds when submitted to gas chromatography-mass Spectroscopy (GC-MS) screening, which was docked with α-glucosidase and α- amylase. The molecular docking displayed the compound 4-(3,5-Di-tert-butyl-4-hydroxyphenyl)butyl acrylate strongly interacted with α-glucosidase and α-amylase and had the lowest free binding energy compared to other compounds and acarbose. These results suggest that H. sabdariffa has promising antioxidant and antidiabetic activity. PRACTICAL APPLICATIONS: In recent years, there has been increased concern about the side effects of synthetic anti-diabetic drugs, as well as their expensive cost, especially in impoverished nations. This has instigated a radical shift towards the use of traditional plants, which are rich in phytochemicals many years ago. Among these plants, H. sabdariffa has been used to treat diabetes in traditional medicine. In this present study, H. sabdariffa extracts demonstrated the ability to inhibit carbohydrate digesting enzymes, facilitate muscle glucose uptake and attenuate oxidative stress in oxidative hepatic injury. Hence, demonstrating H. sabdariffa's potential to protect against oxidative damage and the complications associated with diabetes. Consumption of Hibiscus tea or juice may be a potential source for developing an anti-diabetic drug.
Collapse
Affiliation(s)
- Almahi I Mohamed
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
28
|
Association between visit-to-visit fasting glycemic variability and depression: a retrospective cohort study in a representative Korean population without diabetes. Sci Rep 2022; 12:18692. [PMID: 36333430 PMCID: PMC9636237 DOI: 10.1038/s41598-022-22302-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Glycemic variability (GV) is a risk factor for depression in patients with diabetes. However, whether it is also a predictor of incident depression in people without diabetes remains unclear. We aimed to investigate the association between visit-to-visit variability in fasting serum glucose (FSG) levels and the incidence of depression among Koreans without diabetes. This retrospective cohort study included data of people without diabetes who did not have depression at baseline and had at least three FSG measurements (n = 264,480) extracted from the 2002-2007 Korean National Health Insurance Service-National Health Screening Cohort. GV was calculated as the average successive variability of FSG. Among 264,480 participants, 198,267 were observed during 2008-2013 and their hazard ratios (HR) of incident depression were calculated. Participants with the highest GV showed a higher risk of depression in fully adjusted models than those with the lowest GV (HR, 1.09; 95% CI, 1.02-1.16). The risk of incident depression heightened with increasing GV (p for trend < 0.001). Greater visit-to-visit GV may be associated with the risk of developing depression in people without diabetes. Conversely, maintaining steady FSG levels may reduce the risk of incident depression in people without diabetes.
Collapse
|
29
|
Production and Characterization of Durvillaea antarctica Enzyme Extract for Antioxidant and Anti-Metabolic Syndrome Effects. Catalysts 2022. [DOI: 10.3390/catal12101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, three enzyme hydrolysate termed Dur-A, Dur-B, and Dur-C, were produced from Durvillaea antarctica biomass using viscozyme, cellulase, and α-amylase, respectively. Dur-A, Dur-B, and Dur-C, exhibited fucose-containing sulfated polysaccharide from chemical composition determination and characterization by FTIR analyses. In addition, Dur-A, Dur-B, and Dur-C, had high extraction yields and low molecular weights. All extracts determined to have antioxidant activities by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), and ferrous ion-chelating methods. All extracts were also able to positively suppress the activities of key enzymes involved in metabolic syndrome: angiotensin I-converting enzyme (ACE), α-amylase, α-glucosidase, and pancreatic lipase. In general, Dur-B exhibited higher antioxidant and higher anti-metabolic syndrome effects as compared to the other two extracts. Based on the above health promoting properties, these extracts (especially Dur-B) can be used as potential natural antioxidants and natural anti-metabolic syndrome agents in a variety of food, cosmetic, and nutraceutical products for health applications.
Collapse
|
30
|
Katsiadas N, Xanthopoulos A, Giamouzis G, Skoularigkis S, Skopeliti N, Moustaferi E, Ioannidis I, Patsilinakos S, Triposkiadis F, Skoularigis J. The effect of SGLT-2i administration on red blood cell distribution width in patients with heart failure and type 2 diabetes mellitus: A randomized study. Front Cardiovasc Med 2022; 9:984092. [PMID: 36247420 PMCID: PMC9557218 DOI: 10.3389/fcvm.2022.984092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Recent studies suggest that the pivotal mechanism of sodium glucose co-transporter-2 inhibitors (SGLT-2i) favorable action in patients with heart failure (HF) and type 2 diabetes mellitus (DM) is the stimulation of erythropoiesis via an early increase in erythropoietin (EPO) production which leads to hematocrit rise. Red blood cell distribution width (RDW) is a simple hematological parameter which reflects the heterogeneity of the red blood cell size (anisocytosis). Since, EPO has been also implicated in the pathophysiology of RDW increase, the current mechanistic study examined the effect of SGLT-2i administration on red blood cells size (RDW) in patients with HF and DM. METHODS The present was a prospective single-center study. Patients (N=110) were randomly assigned to dapagliflozin (10 mg a day on top of antidiabetic treatment) or the control group. Inclusion criteria were: (a) age > 18 years, (b) history of type 2 DM and hospitalization for HF exacerbation within 6 months. The evaluation of patients (at baseline, 6 and 12 months) included clinical assessment, laboratory blood tests, and echocardiography. Data were modeled using mixed linear models with dependent variable the RDW index. In order to find factors independently associated with prognosis (1-year death or HF rehospitalization), multiple logistic regression was conducted with death or HF rehospitalization as dependent variable. RESULTS An RDW increase both after 6 and after 12 months was observed in the SGLT-2i (dapagliflozin) group (p < 0.001 for all time comparisons), whereas RDW didn't change significantly in the control group. The increase in RDW was positively correlated with EPO, while negatively correlated with ferritin and folic acid (p < 0.005 for all). Baseline RDW was significantly associated with 1-year death or rehospitalization, after adjusting for group (SGLT-2i vs. control), age, gender, smoking and BMI at baseline. CONCLUSION RDW increased with time in patients with HF and DM who received SGLT-2i (dapagliflozin). The increased RDW rates in these patients may stem from the induction of hemopoiesis from dapagliflozin. Baseline RDW was found to be independently associated with outcome in patients with HF and DM.
Collapse
Affiliation(s)
- Nikolaos Katsiadas
- Department of Cardiology, Konstantopoulio General Hospital, Nea Ionia, Greece
| | | | | | | | - Niki Skopeliti
- Department of Cardiology, University Hospital of Larissa, Larissa, Greece
| | - Evgenia Moustaferi
- Hematology Laboratory, Konstantopoulio General Hospital, Nea Ionia, Greece
| | - Ioannis Ioannidis
- 1st Department of Internal Medicine, Diabetes Center, Konstantopoulio General Hospital, Nea Ionia, Greece
| | | | | | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
31
|
Wu X, Xiao X, Chen X, Yang M, Hu Z, Shuai S, Fu Q, Yang H, Du Q. Effectiveness and mechanism of metformin in animal models of pulmonary fibrosis: A preclinical systematic review and meta-analysis. Front Pharmacol 2022; 13:948101. [PMID: 36147352 PMCID: PMC9485720 DOI: 10.3389/fphar.2022.948101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Pulmonary fibrosis (PF) is a lung disease with no curative drug, characterized by a progressive decrease in lung function. Metformin (MET) is a hypoglycemic agent with the advantages of high safety and low cost and has been used in several in vivo trials to treat fibrotic diseases. Objective: This study aimed to explore the efficacy and safety of MET in treating PF and elaborate on its mechanism. Methods: Eight databases were searched for in vivo animal trials of MET for PF from the time of database creation until 1 March 2022. The risk of bias quality assessment of the included studies was conducted using SYRCLE’s risk of bias assessment. Pulmonary inflammation and fibrosis scores were the primary outcomes of this study. Hydroxyproline (HYP), type I collagen (collagen I), α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), Smad, AMP-activated protein kinase (AMPK), and extracellular signal–regulated kinase (ERK) protein expression in lung tissues and animal mortality were secondary outcomes. Effect magnitudes were combined and calculated using Revman 5.3 and Stata 16.0 to assess the efficacy and safety of MET in animal models of PF. Inter-study heterogeneity was examined using the I2 or Q test, and publication bias was assessed using funnel plots and Egger’s test. Results: A total of 19 studies involving 368 animals were included, with a mean risk of bias of 5.9. The meta-analysis showed that MET significantly suppressed the level of inflammation and degree of PF in the lung tissue of the PF animal model. MET also reduced the content of HYP, collagen I, α-SMA, and TGF-β and phosphorylation levels of Smad2, Smad3, p-smad2/3/smad2/3, ERK1/2, and p-ERK1/2/ERK1/2 in lung tissues. MET also elevated AMPK/p-AMPK levels in lung tissues and significantly reduced animal mortality. Conclusion: The results of this study suggest that MET has a protective effect on lung tissues in PF animal models and may be a potential therapeutic candidate for PF treatment. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=327285, identifier CRD42022327285.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijia Shuai
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwei Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Han Yang, ; Quanyu Du,
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Han Yang, ; Quanyu Du,
| |
Collapse
|
32
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
33
|
Garg SS, Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol Res 2022; 182:106326. [PMID: 35752357 DOI: 10.1016/j.phrs.2022.106326] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Diabetes is a major public health disease that is globally approaching epidemic proportions. One of the major causes of type 2 diabetes is either a defect in insulin secretion or insulin action which is usually caused by a combination of genetic and environmental factors. Not only these factors but others such as deregulation of various pathways, and oxidative stress are also known to trigger the redox imbalance in diabetics. Increasing evidences suggest that there are tight interactions between the development of diabetes and redox imbalance. An alternate pathway of glucose metabolism, the polyol pathway, becomes active in patients with diabetes that disturbs the balance between NADH and NAD+ . The occurrence of such redox imbalance supports other pathways that lead to oxidative damage to DNA, lipids, and proteins and consequently to oxidative stress which further ascend diabetes and its complications. However, the precise mechanism through which oxidative stress regulates diabetes progression remains to be elucidated. The understanding of how antioxidants and oxidants are controlled and impact the generation of oxidative stress and progression of diabetes is essential. The main focus of this review is to provide an overview of redox imbalance caused by oxidative stress through the polyol pathway. Understanding the pathological role of oxidative stress in diabetes will help to design potential therapeutic strategies against diabetes.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
34
|
Kaur J, Gulati M, Zacconi F, Dureja H, Loebenberg R, Ansari MS, AlOmeir O, Alam A, Chellappan DK, Gupta G, Jha NK, Pinto TDJA, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opin Drug Deliv 2022; 19:771-793. [PMID: 35695697 DOI: 10.1080/17425247.2022.2087629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetes mellitus (DM) is the most common metabolic disease and multifactorial, harming patients worldwide. Extensive research has been carried out in the search for novel drug delivery systems offering reliable control of glucose levels for diabetics, aiming at efficient management of DM. AREAS COVERED Polymeric micelles (PMs) as smart drug delivery nanocarriers are discussed, focusing on oral drug delivery applications for the management of hyperglycemia. The most recent approaches used for the preparation of smart PMs employ molecular features of amphiphilic block copolymers (ABCs), such as stimulus sensitivity, ligand conjugation, and as a more specific example the ability to inhibit islet amyloidosis. EXPERT OPINION PMs provide a unique platform for self-regulated or spatiotemporal drug delivery, mimicking the working mode of pancreatic islets to maintain glucose homeostasis for prolonged periods. This unique characteristic is achieved by tailoring the functional chemistry of ABCs considering the physicochemical traits of PMs, including sensing capabilities, hydrophobicity, etc. In addition, the application of ABCs for the inhibition of conformational changes in islet amyloid polypeptide garnered attention as one of the root causes of DM. However, research in this field is limited and further studies at the clinical level are required.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Flavia Zacconi
- de Farmacia, Pontificia Universidad Cat´olica de ChileDepartamento de Química Org´anica, Facultad de Química y , Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Macul, Chile
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Raimar Loebenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta AB, Canada
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy Aldawadmi, Shaqra University Shaqra, Saudi Arabia
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy Aldawadmi, Shaqra University Shaqra, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Kharj, KSA
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia
| | - Gaurav Gupta
- Department of pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Andrew Morris
- Swansea University Medical School, Swansea University, Singleton Park, Swansea
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
35
|
Early Prediction for Prediabetes and Type 2 Diabetes Using the Genetic Risk Score and Oxidative Stress Score. Antioxidants (Basel) 2022; 11:antiox11061196. [PMID: 35740093 PMCID: PMC9231325 DOI: 10.3390/antiox11061196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
We aimed to use a genetic risk score (GRS) constructed with prediabetes and type 2 diabetes-related single nucleotide polymorphisms (SNPs) and an oxidative stress score (OSS) to construct an early-prediction model for prediabetes and type 2 diabetes (T2DM) incidence in a Korean population. The study population included 549 prediabetes and T2DM patients and 1036 normal subjects. The GRS was constructed using six prediabetes and T2DM-related SNPs, and the OSS was composed of three recognized oxidative stress biomarkers. Among the nine SNPs, six showed significant associations with the incidence of prediabetes and T2DM. The GRS was profoundly associated with increased prediabetes and T2DM (OR = 1.946) compared with individual SNPs after adjusting for age, sex, and BMI. Each of the three oxidative stress biomarkers was markedly higher in the prediabetes and T2DM group than in the normal group, and the OSS was significantly associated with increased prediabetes and T2DM (OR = 2.270). When BMI was introduced to the model with the OSS and GRS, the area under the ROC curve improved (from 69.3% to 70.5%). We found that the prediction model composed of the OSS, GRS, and BMI showed a significant prediction ability for the incidence of prediabetes and T2DM.
Collapse
|
36
|
Cheng Z, Qiao D, Zhao S, Zhang B, Lin Q, Xie F. Whole grain rice: Updated understanding of starch digestibility and the regulation of glucose and lipid metabolism. Compr Rev Food Sci Food Saf 2022; 21:3244-3273. [PMID: 35686475 DOI: 10.1111/1541-4337.12985] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Nowadays, resulting from disordered glucose and lipid metabolism, metabolic diseases (e.g., hyperglycemia, type 2 diabetes, and obesity) are among the most serious health issues facing humans worldwide. Increasing evidence has confirmed that dietary intervention (with healthy foods) is effective at regulating the metabolic syndrome. Whole grain rice (WGR) rich in dietary fiber and many bioactive compounds (e.g., γ-amino butyric acid, γ-oryzanol, and polyphenols) can not only inhibit starch digestion and prevent rapid increase in the blood glucose level, but also reduce oxidative stress and damage to the liver, thereby regulating glucose and lipid metabolism. The rate of starch digestion is directly related to the blood glucose level in the organism after WGR intake. Therefore, the effects of different factors (e.g., additives, cooking, germination, and physical treatments) on WGR starch digestibility are examined in this review. In addition, the mechanisms from human and animal experiments regarding the correlation between the intake of WGR or its products and the lowered blood glucose and lipid levels and the reduced incidence of diabetes and obesity are discussed. Moreover, information on developing WGR products with the health benefits is provided.
Collapse
Affiliation(s)
- Zihang Cheng
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
The Impact of COPD on Hospitalized Patients with Diabetes: A Propensity Score Matched Analysis on Discharge Records. Healthcare (Basel) 2022; 10:healthcare10050885. [PMID: 35628022 PMCID: PMC9140845 DOI: 10.3390/healthcare10050885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Type 2 diabetes is a common comorbidity of chronic obstructive pulmonary disease. Despite the lack of knowledge of the pathophysiological link between diabetes and chronic obstructive pulmonary disease, the presence of diabetes among those with chronic obstructive pulmonary disease is associated with worse outcomes, such as mortality and hospitalization. The aim of this study was to evaluate the impact of chronic obstructive pulmonary disease on in-hospital mortality and prolonged length of stay (PLOS) among patients with diabetes. (2) Methods: The study considered all hospital admissions of patients with diabetes aged over 65 years performed from 2006 to 2015 in Abruzzo, Italy. To compare outcomes between patients with and without chronic obstructive pulmonary disease, a propensity score matching procedure was performed. (3) Results: During the study period, 140,556 admissions of patients with diabetes were performed. After matching, 18,379 patients with chronic obstructive pulmonary disease and 18,379 controls were included in the analyses. Logistic regression analyses showed as chronic obstructive pulmonary disease was associated with in-hospital mortality (OR: 1.10; p = 0.036) and PLOS (OR: 1.18; p = 0.002). (4) Conclusions: In a cohort of Italian patients, diabetic patients with chronic obstructive pulmonary disease were associated with in-hospital mortality and PLOS. The definition of the causes of these differences aims to implement public health surveillance and policies.
Collapse
|
38
|
Arunachalam K, Sreeja PS, Yang X. The Antioxidant Properties of Mushroom Polysaccharides can Potentially Mitigate Oxidative Stress, Beta-Cell Dysfunction and Insulin Resistance. Front Pharmacol 2022; 13:874474. [PMID: 35600869 PMCID: PMC9117613 DOI: 10.3389/fphar.2022.874474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetes mellitus is a prevalent metabolic and endocrine illness affecting people all over the world and is of serious health and financial concern. Antidiabetic medicine delivered through pharmacotherapy, including synthetic antidiabetic drugs, are known to have several negative effects. Fortunately, several natural polysaccharides have antidiabetic properties, and the use of these polysaccharides as adjuncts to conventional therapy is becoming more common, particularly in underdeveloped nations. Oxidative stress has a critical role in the development of diabetes mellitus (DM). The review of current literature presented here focusses, therefore, on the antioxidant properties of mushroom polysaccharides used in the management of diabetic complications, and discusses whether these antioxidant properties contribute to the deactivation of the oxidative stress-related signalling pathways, and to the amelioration of β-cell dysfunction and insulin resistance. In this study, we conducted a systematic review of the relevant information concerning the antioxidant and antidiabetic effects of mushrooms from electronic databases, such as PubMed, Scopus or Google Scholar, for the period 1994 to 2021. In total, 104 different polysaccharides from mushrooms have been found to have antidiabetic effects. Most of the literature on mushroom polysaccharides has demonstrated the beneficial effects of these polysaccharides on reactive oxygen and nitrogen species (RONS) levels. This review discuss the effects of these polysaccharides on hyperglycemia and other alternative antioxidant therapies for diabetic complications through their applications and limits, in order to gain a better understanding of how they can be used to treat DM. Preclinical and phytochemical investigations have found that most of the active polysaccharides extracted from mushrooms have antioxidant activity, reducing oxidative stress and preventing the development of DM. Further research is necessary to confirm whether mushroom polysaccharides can effectively alleviate hyperglycemia, and the mechanisms by which they do this, and to investigate whether these polysaccharides might be utilized as a complementary therapy for the prevention and management of DM in the future.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Oh S, Purja S, Shin H, Kim M, Kim E. Hypoglycemic agents and glycemic variability in individuals with type 2 diabetes: A systematic review and network meta-analysis. Diab Vasc Dis Res 2022; 19:14791641221106866. [PMID: 35686694 PMCID: PMC9189550 DOI: 10.1177/14791641221106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While hemoglobin A1c (HbA1c) is commonly used to monitor therapy response in type 2 diabetes (T2D), GV is emerging as an essential additional metric for optimizing glycemic control. Our goal was to learn more about the impact of hypoglycemic agents on HbA1c levels and GV in patients with T2D. A systematic review and network meta-analysis (NMA) of randomized controlled trials were performed to assess the effects of glucagon-like peptide 1 receptor agonists (GLP-1 RAs), sodium-glucose cotransporter (SGLT)-2 inhibitors, dipeptidyl peptidase (DPP)-4 inhibitors, sulfonylurea and thiazolidinediones on Mean Amplitude of Glycemic Excursions (MAGE) and HbA1c. Searches were performed using PubMed and EMBASE. A random-effect model was used in the NMA, and the surface under the cumulative ranking was used to rank comparisons. All studies were checked for quality according to their design and also for heterogeneity before inclusion in this NMA. The highest reduction in MAGE was achieved by GLP-1 RAs (SUCRA 0.83), followed by DPP-4 inhibitors (SUCRA: 0.72), and thiazolidinediones (SUCRA: 0.69). In terms of HbA1c reduction, GLP-1 RAs were the most effective (SUCRA 0.81), followed by DPP-4 inhibitors (SUCRA 0.72) and sulfonylurea (SUCRA 0.65). Our findings indicated that GLP-1 RAs have relatively high efficacy in terms of HbA1c and MAGE reduction when compared with other hypoglycemic agents and can thus have clinical application. Future studies with a larger sample size and appropriate subgroup analyses are warranted to completely understand the glycemic effects of these agents in various patients with T2D. The protocol for this systematic review was registered with the International Prospective Register of Systematic Reviews (CRD42021256363).
Collapse
Affiliation(s)
- SuA Oh
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sujata Purja
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- EunYoung Kim, Data science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Hocheol Shin
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Minji Kim
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Eunyoung Kim
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- EunYoung Kim, Data science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
40
|
Chopra A, Jayasinghe TN, Eberhard J. Are Inflamed Periodontal Tissues Endogenous Source of Advanced Glycation End-Products (AGEs) in Individuals with and without Diabetes Mellitus? A Systematic Review. Biomolecules 2022; 12:biom12050642. [PMID: 35625570 PMCID: PMC9138899 DOI: 10.3390/biom12050642] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Advanced glycation end-products (AGEs) are heterogeneous compounds formed when excess sugars condense with the amino groups of nucleic acids and proteins. Increased AGEs are associated with insulin resistance and poor glycemic control. Recently, inflamed periodontal tissues and certain oral bacteria were observed to increase the local and systemic AGE levels in both normoglycemic and hyperglycemic individuals. Although hyperglycemia induced AGE and its effect on the periodontal tissues is known, periodontitis as an endogenous source of AGE formation is not well explored. Hence, this systematic review is aimed to explore, for the first time, whether inflamed periodontal tissues and periodontal pathogens have the capacity to modulate AGE levels in individuals with or without T2DM and how this affects the glycemic load. Six electronic databases were searched using the following keywords: (Periodontitis OR Periodontal disease OR Periodontal Inflammation) AND (Diabetes mellitus OR Hyperglycemia OR Insulin resistance) AND Advanced glycation end products. The results yielded 1140 articles, of which 13 articles were included for the review. The results showed that the mean AGE levels in gingival crevicular fluid was higher in individuals with diabetes mellitus and periodontitis (521.9 pg/mL) compared to healthy individuals with periodontitis (234.84 pg/mL). The serum AGE levels in normoglycemic subjects having periodontitis was higher compared to those without periodontitis (15.91 ng/mL vs. 6.60 ng/mL). Tannerella forsythia, a common gram-negative anaerobe periodontal pathogen in the oral biofilm, was observed to produce methylglyoxal (precursor of AGE) in the gingival tissues. Increased AGE deposition and activate of AGE receptors was noted in the presence of periodontitis in both normoglycemic and hyperglycemic individuals. Hence, it can be concluded that periodontitis can modulate the local and systemic levels of AGE levels even in absence of hyperglycemia. This explains the bidirectional relationship between periodontitis and development of prediabetes, incident diabetes, poor glycemic control, and insulin resistance.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India
- Correspondence:
| | - Thilini N. Jayasinghe
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (T.N.J.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joerg Eberhard
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (T.N.J.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
41
|
Qiu Y, Chao CY, Jiang L, Zhang J, Niu QQ, Guo YQ, Song YT, Li P, Zhu ML, Yin YL. Citronellal alleviate macro- and micro-vascular damage in high fat diet / streptozotocin - Induced diabetic rats via a S1P/S1P1 dependent signaling pathway. Eur J Pharmacol 2022; 920:174796. [PMID: 35151650 DOI: 10.1016/j.ejphar.2022.174796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
Citronellal (CT) is an acyclic monoterpene aldehyde isolated from lemon citronella, which could ameliorate vascular endothelial dysfunction in atherosclerosis in our previous study, however, whether CT can alleviate vascular endothelial dysfunction related with type 2 diabetes (T2DM) is still unknown. So, we investigated the role of CT in vascular dysfunction related to T2DM and the mechanism involved. T2DM rat model was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) (60 mg/kg) to rats fed with high-fat diet (HFD) (4 weeks). After treated with CT (150 mg/kg/d), both the thoracic aorta injury and micro-vascular pathological injury in T2DM rats ex vivo were alleviated, and the oxidative stress in T2DM rats treated with CT were attenuated, manifested as increased content of endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD), and decreased content of malondialdehyde (MDA). Furthermore, CT (15 μg/L) increased the migration capacity of human umbilical vein endothelial cells (HUVECs) under high glucose circumstance (30 mM), and increased the endothelial-dependent relaxation in thoracic aorta isolated from T2DM rats in vitro. Finally, all of these effects of CT were blocked by fingolimod (FTY720), a sphingosine-1-phosphate receptor agonist, and the expression of sphingosine-1-phosphate receptor 1 (S1P1) was increased by CT. In conclusion, CT improved vascular function through S1P/S1P1 signaling pathway.
Collapse
Affiliation(s)
- Yue Qiu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chun-Yan Chao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China; Huang Huai University, Zhumadian, 463000, China
| | - Li Jiang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China; School of Nursing, Xinxiang University, Xinxiang, 453003, China
| | - Jie Zhang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qian-Qian Niu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Qi Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yu-Ting Song
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Peng Li
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Mo-Li Zhu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
42
|
Association of Polymorphisms within HOX Transcript Antisense RNA (HOTAIR) with Type 2 Diabetes Mellitus and Laboratory Characteristics: A Preliminary Case-Control Study. DISEASE MARKERS 2022; 2022:4327342. [PMID: 35359879 PMCID: PMC8964191 DOI: 10.1155/2022/4327342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex heterogeneous disease resulting from the environment and genetic interactions. Lately, genetic association studies have shown that polymorphisms in long noncoding RNAs (lncRNAs) are associated with T2DM susceptibility. This preliminary study is aimed at investigating if HOX transcript antisense RNA (HOTAIR) polymorphisms contribute to T2DM development. Five hundred clinically diagnosed T2DM cases and 500 healthy controls were recruited from the southeast Iranian population. Genomic DNA was isolated from nucleated blood cells and genotyped for MspI (C/T) (rs920778) and AluI (A/G) (rs4759314) polymorphisms using the PCR-RFLP technique. For genotyping rs12826786 C/T and rs1899663 G/T variants, ARMS-PCR method was applied. Our findings indicated that HOTAIR rs920778 C/T, rs12826786 C/T, and rs4759314 A/G polymorphisms have a significant positive association with T2DM, while a negative association was observed between rs1899663 G/T T2DM susceptibility. Significant associations were also observed between rs920778 C/T and HDL-C as well as s4759314 A/G and both FBS and LDL-C in T2DM patients. Haplotype analysis indicated that the CGCG, CTTG, TGTA, and TTTG haplotypes of rs920778/rs1899663/rs12826786/rs4759314 significantly enhanced T2DM risk by 1.47, 1.96, 2.81, and 4.80 folds, respectively. No strong linkage disequilibrium was found between the four HOTAIR SNPs. We firstly reported that HOTAIR rs1899663 G/T, rs12826786 C/T, rs4759314 A/G, and rs920778 C/T polymorphisms might influence T2DM susceptibility by modulating different signaling pathways and could be regarded as potential prognostic markers in T2DM patients.
Collapse
|
43
|
Pan F, Cui W, Gao L, Shi X, Yang H, Hu Y, Li M. Serum lutein is a promising biomarker for type 2 diabetes mellitus and diabetic kidney disease in the elderly. J Clin Lab Anal 2022; 36:e24350. [PMID: 35293029 PMCID: PMC8993643 DOI: 10.1002/jcla.24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To investigate the relationship between serum lutein and type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD) in elderly individuals. Methods A total of 60 T2DM patients over 60 years were subgrouped into a DKD group and a non‐DKD group according to their urinary microalbumin‐to‐creatinine ratio (UACR), while 30 age‐matched non‐T2DM patients were recruited in the control group. Baseline characteristics, laboratory examination results, and serum lutein levels were compared, and their correlations were analyzed. Receiver operating characteristic (ROC) curves were plotted to identify the diagnostic potential of lutein in T2DM and DKD. Results The lutein level in the T2DM group was significantly lower than that in the control group and was also significantly lower in the DKD group than in the non‐DKD group (p < 0.001). Lutein levels were negatively correlated with body mass index, glycosylated hemoglobin, fasting blood glucose, triglyceride, and UACR and positively correlated with high‐density lipoprotein cholesterol (p < 0.05). T2DM patients were divided into four groups according to the quartile of their lutein level. The proportion of T2DM and DKD gradually decreased with increasing lutein levels (p < 0.001). The area under the ROC curve of serum lutein in diagnosing T2DM and DKD was 0.880 and 0.779, respectively, with corresponding cut‐off values of 0.433 μmol/L and 0.197 μmol/L (p < 0.001). Conclusion The serum level of lutein is negatively correlated with the incidence of T2DM and DKD in the elderly and can serve as a diagnostic marker for T2DM and DKD.
Collapse
Affiliation(s)
- Fenghui Pan
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenxia Cui
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei Gao
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoting Shi
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Haiyan Yang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Hu
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Man Li
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
44
|
Dexmedetomidine Alleviates Lung Oxidative Stress Injury Induced by Ischemia-Reperfusion in Diabetic Rats via the Nrf2-Sulfiredoxin1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5584733. [PMID: 35252452 PMCID: PMC8894003 DOI: 10.1155/2022/5584733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Oxidative stress injury (OSI) is an important pathological process in lung ischemia-reperfusion injury (LIRI), and diabetes mellitus (DM) can exacerbate this injury. Dexmedetomidine protects against LIRI by reducing OSI. However, the effect of dexmedetomidine on LIRI under diabetic conditions remains unclear. Therefore, this study is aimed at exploring the effects and mechanisms of dexmedetomidine on OSI induced by LIRI in diabetic rats. Rats were randomly divided into control+sham (CS), DM+sham (DS), control+ischemia-reperfusion (CIR), DM+ischemia-reperfusion (DIR), and DM+ischemia-reperfusion+dexmedetomidine (DIRD) groups (
). In the CS and DS groups, the nondiabetic and diabetic rats underwent thoracotomy only without LIRI. In the CIR, DIR, and DIRD groups, LIRI was induced through left hilum occlusion for 60 min, followed by reperfusion for 120 min in nondiabetic and diabetic rats, and rats in the DIRD group were administered dexmedetomidine (3, 5, and 10 μg/kg). Compared with those in the CS group, the OSI, lung compliance, apoptosis, and oxygenation indices deteriorated in the DS group (
), and these indices were further aggravated in the CIR and DIR groups (
), being the worst in the DIR group (
). Compared to those of the DIR group, the OSI, lung compliance (
vs.
), apoptosis (
vs.
), oxygenation (
vs.
), and caspase-3 and caspase-9 protein expression indices were attenuated, and Nrf2 and sulfiredoxin1 protein expression was increased in the DIRD group (
). And the lung injury, oxygenation, OSI, and Nrf2 and sulfiredoxin1 protein expression changed in a concentration-dependent manner. In conclusion, dexmedetomidine alleviated lung OSI and improved lung function in a diabetic rat LIRI model through the Nrf2-sulfiredoxin1 pathway.
Collapse
|
45
|
Chang YS, Ho CH, Wang JJ, Tseng SH, Jan RL. The Sociodemographic and Risk Factors for Fuchs’ Endothelial Dystrophy: A Nationwide, Matched Case–Control Study in Taiwan. J Pers Med 2022; 12:jpm12020305. [PMID: 35207793 PMCID: PMC8877330 DOI: 10.3390/jpm12020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
This nationwide, population-based, retrospective, matched case–control study included 4334 newly diagnosed Fuchs’ endothelial dystrophy (FED) patients who were identified by the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), code 371.57, and selected from the Taiwan National Health Insurance Research Database. The age-, sex-, and index-date-matched control group included 4334 non-FED controls selected from the Taiwan Longitudinal Health Insurance Database 2000. Ocular allergic conditions and sociodemographic conditions were examined using univariate logistic regression analyses and paired t-test was used for continuous variables. Adjusted logistic regression was used to compare the odds ratio (OR) of the FED development. Patients with ocular allergic conditions were more likely to have FED than the controls (OR = 25.50, 95% CI = 12.58–51.68, p < 0.0001) even after conditional logistic regression was conducted (adjusted OR = 25.26, 95% CI = 11.24–56.77, p < 0.0001). Regarding the sociodemographic factors, we found that more than half of the FED patients in Taiwan were aged ≥45 years old, there was an equal female-to-male ratio (1.06:1), and patients with a lower income and living in northern Taiwan had higher odds of developing FED. The results strongly support an association between ocular allergic conditions, geographic region, residential status, income, and FED.
Collapse
Affiliation(s)
- Yuh-Shin Chang
- Department of Ophthalmology, Chi Mei Medical Center, Tainan 710, Taiwan; (Y.-S.C.); (S.-H.T.)
- Graduate Institute of Medical Sciences, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan; (C.-H.H.); (J.-J.W.)
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan; (C.-H.H.); (J.-J.W.)
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Sung-Huei Tseng
- Department of Ophthalmology, Chi Mei Medical Center, Tainan 710, Taiwan; (Y.-S.C.); (S.-H.T.)
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ren-Long Jan
- Graduate Institute of Medical Sciences, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
- Department of Pediatrics, Chi Mei Medical Center, Liouying, Tainan 736, Taiwan
- Correspondence: ; Tel.: +886-6-622-6999 (ext. 77601)
| |
Collapse
|
46
|
Islam M, Olofinsan K, Erukainure O, Msomi N. Senna petersiana inhibits key digestive enzymes and modulates dysfunctional enzyme activities in oxidative pancreatic injury. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Venugopal V, Geethanjali S, Poonguzhali S, Padmavathi R, Mahadevan S, Silambanan S, Maheshkumar K. Effect of Yoga on Oxidative Stress in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Curr Diabetes Rev 2022; 18:e050421192663. [PMID: 33820522 DOI: 10.2174/1573399817666210405104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus has a significant impact on public health. Oxidative stress plays a major role in the pathophysiology of Type 2 Diabetes Mellitus (T2DM), leading to various complications of T2DM. Yoga is being widely used in the management of T2DM. The primary objective of this systematic review and meta-analysis is to understand the effects of yoga on oxidative stress parameters among adult patients diagnosed with T2DM. MATERIALS AND METHODS Electronic databases such as PubMed, Scopus, Cochrane Library and Science Direct from start of the study till March 2020 were searched to obtain eligible studies. Study designs of all nature were included (except case studies and reviews). The primary outcome was Malondialdehyde (MDA) and secondary outcomes included fasting plasma glucose, HbA1C and Superoxide Dismutase (SOD) levels. RESULTS A total of four trials with a total of 440 patients met the inclusion criteria. The results of meta-analysis indicated that yoga significantly reduced MDA (SMD: -1.4; 95% CI -2.66 to -0.13; P = 0.03; I2 = 97%), fasting plasma glucose levels (SMD: -1.87: 95% CI -3.83 to -0.09; P = 0.06; I2= 99%), and HbA1c (SMD: -1.92; 95% CI - 3.03 to -0.81; P = 0.0007; I2 = 92%) in patients with T2DM. No such effect was found for SOD (SMD: -1.01; 95% CI -4.41 to 2.38; P = 0.56; I2= 99%). CONCLUSION The available evidence suggests that yoga reduces MDA, fasting plasma glucose and HbA1C, and thus would be beneficial in the management of T2DM as a complementary therapy. However, considering the limited number of studies and its heterogeneity, further robust studies are necessary to strengthen our findings and investigate the long-term benefits of yoga.
Collapse
Affiliation(s)
- V Venugopal
- Department of Yoga, Government Yoga & Naturopathy Medical College & Hospital, Chennai-600106, India
| | - S Geethanjali
- Department of Nutrition & Psychology, Government Yoga & Naturopathy Medical College & Hospital, Chennai-600106, India
| | - S Poonguzhali
- Department of Community Medicine, Government Yoga & Naturopathy Medical College & Hospital, Chennai- 600106, India
| | - R Padmavathi
- Department of Physiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai, Tamil Nadu, India
| | - S Mahadevan
- Department of Endocrinology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai, Tamil Nadu, India
| | - S Silambanan
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research (SRIHER) Chennai, Tamil Nadu, India
| | - K Maheshkumar
- Department of Physiology & Biochemistry, Govt. Yoga & Naturopathy Medical College & Hospital, Chennai-600106, India
| |
Collapse
|
48
|
Jazani AM, Karimi A, Nasimi Doost Azgomi R. The Potential Role of Saffron (Crocus Sativus L.) and its components in Oxidative Stress in Diabetes Mellitus: A systematic review. Clin Nutr ESPEN 2022; 48:148-157. [DOI: 10.1016/j.clnesp.2022.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/09/2022]
|
49
|
Sekhar RV. GlyNAC Supplementation Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Aging Hallmarks, Metabolic Defects, Muscle Strength, Cognitive Decline, and Body Composition: Implications for Healthy Aging. J Nutr 2021; 151:3606-3616. [PMID: 34587244 DOI: 10.1093/jn/nxab309] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular increases in oxidative stress (OxS) and decline in mitochondrial function are identified as key defects in aging, but underlying mechanisms are poorly understood and interventions are lacking. Defects linked to OxS and impaired mitochondrial fuel oxidation, such as inflammation, insulin resistance, endothelial dysfunction, and aging hallmarks, are present in older humans and are associated with declining strength and cognition, as well as the development of sarcopenic obesity. Investigations on the origins of elevated OxS and mitochondrial dysfunction in older humans led to the discovery that deficiencies of the antioxidant tripeptide glutathione (GSH) and its precursor amino acids glycine and cysteine may be contributory. Supplementation with GlyNAC (combination of glycine and N-acetylcysteine as a cysteine precursor) was found to improve/correct cellular glycine, cysteine, and GSH deficiencies; lower OxS; and improve mitochondrial function, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, and multiple aging hallmarks; and improve muscle strength, exercise capacity, cognition, and body composition. This review discusses evidence from published rodent studies and human clinical trials to provide a detailed summary of available knowledge regarding the effects of GlyNAC supplementation on age-associated defects and aging hallmarks, as well as discussing why GlyNAC supplementation could be effective in promoting healthy aging. It is particularly exciting that GlyNAC supplementation appears to reverse multiple aging hallmarks, and if confirmed in a randomized clinical trial, it could introduce a transformative paradigm shift in aging and geriatrics. GlyNAC supplementation could be a novel nutritional approach to improve age-associated defects and promote healthy aging, and existing data strongly support the need for additional studies to explore the role and impact of GlyNAC supplementation in aging.
Collapse
Affiliation(s)
- Rajagopal V Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
50
|
Nasimi Doost Azgomi R, Karimi A, Tutunchi H, Moini Jazani A. A comprehensive mechanistic and therapeutic insight into the effect of chicory (Cichorium intybus) supplementation in diabetes mellitus: A systematic review of literature. Int J Clin Pract 2021; 75:e14945. [PMID: 34606165 DOI: 10.1111/ijcp.14945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cichorium intybus is a rich source of terpenoids and phenolic compounds, one of the effective methods in managing and reducing the complications of chronic diseases such as diabetes mellitus. The purpose of this systematic review was to evaluate the evidence obtained from animal and human studies on the effects of chicory on metabolic indicators (such as inflammation, oxidative stress, blood sugar and dyslipidaemia) of diabetes mellitus. MATERIALS AND METHODS This systematic search was performed in ProQuest, PubMed, Google Scholar, Scopus, Cochrane Central Register of Controlled Trials, Embase and Science Direct databases and on articles published until August 2021. All of the animal studies and clinical trials included in this systematic review that assessed the effect of chicory on metabolic risk markers in diabetes were published in English language journals. RESULTS Finally, amongst 686 articles, only 23 articles met the needed criteria for further analysis. Out of 23 articles, 3 studies on humans and 20 studies on animals have been carried out. Fifteen of the 19 studies that evaluated the effect of chicory on the glycaemic index showed that Cichorium intybus improved blood glucose index (it had no effect in two human studies and three animal studies). Ten of the 13 studies evaluating the effect of Cichorium intybus on lipid profiles showed that it improved dyslipidaemia. Also, all 12 studies showed that chicory significantly reduces oxidative stress and inflammation. CONCLUSION According to the available evidence, Cichorium intybus might improve the glycaemic status, dyslipidaemia, oxidative stress and inflammation. However, further studies are recommended for a comprehensive conclusion about the exact mechanism of chicory in diabetic patients.
Collapse
Affiliation(s)
- Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|