1
|
Fang S, Qiu J, Zhang Y, Zhu B. Association between the aggregate index of systemic inflammation and chronic kidney disease in adults: A cross-sectional study of NHANES 2007-2018. Medicine (Baltimore) 2025; 104:e42480. [PMID: 40419905 DOI: 10.1097/md.0000000000042480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Chronic kidney disease (CKD) is closely linked to chronic inflammation, which plays a key role in its progression. The study aimed to investigate the association between the aggregate index of systemic inflammation (AISI) and CKD prevalence. We analyzed data from the National Health and Nutrition Examination Survey, which was conducted between 2007 and 2018. Multivariate logistic regression analyses were used to assess the independent relationship between AISI and CKD. Nonlinear relationships between AISI and CKD were examined through smooth curve fitting and threshold effect analyses. A total of 24,386 adult participants were included. After controlling for possible confounding variables, a significant positive association between AISI and CKD was identified (OR = 1.05, [95% CI: 1.03-1.07], P < .001). Subgroup analyses and interaction tests revealed significant differences in this association across diabetes strata (P < .05). Smoothing curve analysis demonstrated a nonlinear positive correlation between AISI and CKD. Moreover, threshold analysis revealed a saturation effect with an inflection point at 720 (1000 cells/μL). Below this threshold (AISI < 720, 1000 cells/μL), AISI was significantly positively associated with CKD, while no significant association was observed above the threshold (AISI > 720, 1000 cells/μL). These findings reveal a notable positive correlation between AISI and CKD among adults in the United States, with an inflection point at 720 (1000 cells/μL). The AISI shows potential as an indicator associated with CKD, but further comprehensive prospective studies are needed to confirm its role in CKD development and its utility in clinical practice.
Collapse
Affiliation(s)
- Shenshen Fang
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Nephrology, XianJu People's Hospital, Zhejiang Southeast Campus of Zhejiang Provincial People's Hospital, Affiliated Xianju's Hospital, Hangzhou Medical College, Xianju, Zhejiang, China
| | - Jieshan Qiu
- Department of Nephrology, XianJu People's Hospital, Zhejiang Southeast Campus of Zhejiang Provincial People's Hospital, Affiliated Xianju's Hospital, Hangzhou Medical College, Xianju, Zhejiang, China
| | - Yuezhen Zhang
- Department of Nephrology, XianJu People's Hospital, Zhejiang Southeast Campus of Zhejiang Provincial People's Hospital, Affiliated Xianju's Hospital, Hangzhou Medical College, Xianju, Zhejiang, China
| | - Bin Zhu
- Urology and Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ullah H, Alioui Y, Liu X, Ali S, Tang B, Lu H, Ruan Y, Hu X. Deglet Noor date derived polysaccharides lower blood glucose levels and modulate the gut microbiota in a streptozotocin-induced type-1 diabetic mouse model. Food Funct 2025. [PMID: 40366062 DOI: 10.1039/d5fo00128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Diabetes mellitus is a chronic metabolic disorder marked by insulin deficiency and hyperglycemia. At present, pharmacotherapy involving synthetic diabetic agents is widely used, but it comes with side effects. In contrast, natural compounds like polysaccharides show promising anti-diabetic activity and are increasingly used alongside conventional therapies, especially in developing countries. This study investigated the effects of crude polysaccharides from Deglet Noor dates (DNP) on type 1 diabetes induced by streptozotocin (STZ) in male BALB/c mice. DNP was extracted using water, deproteinized, and precipitated with ethanol. Monosaccharide composition was analyzed using high-performance liquid chromatography (HPLC), and diabetic mice received oral DNP supplementation for five weeks. Body weight, blood glucose, food and water intake, cytokine expression, histology, and gut microbiota composition were assessed. HPLC analysis identified mannose, rhamnose, glucose, and galactose as key monosaccharides in DNP. Treatment with DNP significantly reduced blood glucose levels, improved body weight, and normalized food and water intake. It enhances glucose tolerance, insulin sensitivity, and insulin levels while reducing serum lipids, triglycerides, and free fatty acids. DNP also improved pancreatic morphology, restoring the islet structure and increasing cellular density. Pro-inflammatory cytokines (TNF-α, IL-1β, and IL-17) were reduced, while IL-10 levels increased. In the liver, DNP reduced necrosis, inflammation, and oxidative stress, as indicated by lower SOD and MDA levels. Colon tissue showed restored goblet cells, reduced inflammation, improved crypt structure, and increased mucin-2 expression. Furthermore, DNP reversed STZ-induced gut microbiota dysbiosis, increasing microbial diversity and beneficial bacteria while reducing pathogenic bacteria. In conclusion, DNP alleviates diabetes by improving glucose metabolism, insulin sensitivity, and inflammation while restoring pancreatic, liver, and gut health, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Hidayat Ullah
- Dongguan Key Laboratory of Fundamental Research and Clinical Application of Toxic Chinese Medicine, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523121, China.
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, Guangdong Medical University, Dongguan 523808, PR China
- Dongguan Key Laboratory of TCM for Prevention and Treatment of Digestive Diseases, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Xiaoye Liu
- Dongguan Key Laboratory of Fundamental Research and Clinical Application of Toxic Chinese Medicine, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523121, China.
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, Guangdong Medical University, Dongguan 523808, PR China
- Dongguan Key Laboratory of TCM for Prevention and Treatment of Digestive Diseases, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Sharafat Ali
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Bing Tang
- Dongguan Key Laboratory of Fundamental Research and Clinical Application of Toxic Chinese Medicine, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523121, China.
- Dongguan Key Laboratory of TCM for Prevention and Treatment of Digestive Diseases, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523121, PR China
| | - Hongmei Lu
- Dongguan Key Laboratory of Fundamental Research and Clinical Application of Toxic Chinese Medicine, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523121, China.
- Dongguan Key Laboratory of TCM for Prevention and Treatment of Digestive Diseases, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523121, PR China
| | - Yongdui Ruan
- Dongguan Key Laboratory of Fundamental Research and Clinical Application of Toxic Chinese Medicine, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523121, China.
- Dongguan Key Laboratory of TCM for Prevention and Treatment of Digestive Diseases, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523121, PR China
| | - Xianjing Hu
- Dongguan Key Laboratory of Fundamental Research and Clinical Application of Toxic Chinese Medicine, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523121, China.
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
3
|
Liang Q, Liu X, Xu X, Chen Z, Luo T, Su Y, Xie C. Molecular mechanisms and therapeutic perspectives of luteolin on diabetes and its complications. Eur J Pharmacol 2025; 1000:177691. [PMID: 40311831 DOI: 10.1016/j.ejphar.2025.177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Extensive preclinical studies have established luteolin, a flavonoid with potent antidiabetic activity, as a therapeutic candidate for preventing and managing various diabetic complications including cardiomyopathy, nephropathy, and osteopathy. This systematic review evaluates current evidence regarding luteolin's antidiabetic potential. AIM OF THE STUDY This study evaluates luteolin's efficacy in diabetes management through evidence synthesis, while critically assessing current research challenges and translational opportunities. METHODS A comprehensive literature search was conducted across Pubmed, Embase, Web of Science, and Google Scholar databases, encompassing articles published between 2000 and 2024. RESULTS Luteolin is a naturally occurring flavonoid that has strong antidiabetic properties. It regulates intestinal microenvironmental homeostasis, lipogenesis and catabolism, and the absorption of carbohydrates. It also modulates nine diabetic complications by reducing inflammation, oxidative stress, apoptosis, and autophagy. Luteolin's potential nutritional and physiological benefits notwithstanding, attention must be directed immediately to its bioavailability, innovative formulations, safety assessment, synergistic effects, and optimal dosage and time for supplementation. In particular, clinical studies are needed to validate efficacy and safety and provide a reliable scientific basis. CONCLUSION Luteolin may act as a pleiotropic molecule targeting multiple signaling cascades to exert antidiabetic bioactivity.
Collapse
Affiliation(s)
- Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xin Xu
- Department of Emergency, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Ting Luo
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yi Su
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072, China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
4
|
Lu Y, Yoshida Y. Trends and Risk Factors of Oral Health and Preventive Dental Care in Adults With Diabetes and Prediabetes: National Health and Nutrition Examination Survey 1999-2000 to 2017-2020. Endocr Pract 2025:S1530-891X(25)00128-4. [PMID: 40288607 DOI: 10.1016/j.eprac.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVE To evaluate the prevalence, trends, and risk factors of major oral health indicators across diabetes mellitus (DM) subgroups. METHODS A total of 22 082 adults of diagnosed DM, undiagnosed DM (UnDxDM), prediabetes mellitus (PreDM), and normal glucose groups were selected from the National Health and Nutrition Examination Survey (1999 to March 2020). We examined age, sex, and race-adjusted prevalence of preventive dental service (preventive dental service and self-dental cleaning) and oral health outcomes (≥10 missing teeth, self-rated oral health, and periodontitis). We used logistic regression to identify risk factors associated with each outcome DM population. RESULTS The prevalence of lacking preventive dental service (DM, 52%; UnDxDM, 48%; PreDM, 44%; and normal, 42%, respectively), self-dental cleaning (38%, 37%, 30%, and 25%, respectively), missing teeth (39%, 31%, 19%, and 10%, respectively), poorly self-rated oral health (38%, 26%, 31%, and 27%, respectively), and periodontitis (50%, 51%, 42%, and 29%, respectively) remained consistently higher in those with DM than in normal glucose group. We observed a decline in the prevalence of lacking self-dental cleaning in the PreDM population and a decline in poorly self-rated oral health in all except the UnDxDM group. In the DM population, education, income, smoking, insurance, and glycemic control are risk factors for all outcomes. CONCLUSION The trends of lacking preventive dental care and suboptimal oral health outcomes were consistently higher in people with DM or PreDM than in those people without diabetes.
Collapse
Affiliation(s)
- You Lu
- Section of Endocrinology and Metabolism, Deming Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Yilin Yoshida
- Section of Endocrinology and Metabolism, Deming Department of Medicine, Tulane University, New Orleans, Louisiana.
| |
Collapse
|
5
|
Santos MP, Bazzano L, Carmichael O, O’Bryant S, Hsia DS, He J, Ley SH. Association of Age at Menarche With Inflammation and Glucose Metabolism Biomarkers in US Adult Women: NHANES 1999-2018. J Clin Endocrinol Metab 2025; 110:1365-1374. [PMID: 38912813 PMCID: PMC12012779 DOI: 10.1210/clinem/dgae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
CONTEXT Early age at menarche (AAM) is a risk factor for type 2 diabetes later in life, but the pathogenic pathways that confer increased risk remain unknown. OBJECTIVE We examined the associations between AAM and inflammatory and glucose metabolism biomarkers among US adult women who were free of diabetes. METHODS Using the National Health and Nutrition Examination Survey (NHANES) 1999-2018, 19 228 women over 20 years old who were free of self-reported cancer and diabetes were included in this cross-sectional analysis. AAM was the self-reported age at first menstruation. C-reactive protein (CRP), fasting glucose, fasting insulin, and ferritin levels were measured as biomarkers of inflammation and glucose metabolism in adult blood samples using latex-enhanced nephelometry, enzymatic, and immunoassay methods. Multiple linear regression was used to relate AAM to the biomarkers. RESULTS The median age at the time of blood sample collection was 44 years (interquartile range, 33-62). After age adjustment, there was an association between a lower AAM and higher CRP (P-trend = .006), fasting glucose (P-trend < .0001), fasting insulin (P-trend < .0001), and ferritin (P-trend < .0001). These remained significant after additional adjustment for demographic, reproductive, lifestyle, and adiposity variables, except for ferritin. Smoking modified the effect of AAM on CRP (P-interaction = .014), fasting insulin (P-interaction < .001), and fasting glucose (P-interaction < .001). In stratified analysis, the observed associations became more pronounced in nonsmokers, while they were attenuated to nonsignificance in active smokers. CONCLUSION Earlier age at menarche is associated with an unfavorable inflammatory and glucose metabolic biomarker profile in a nationally representative sample of adult women free of diabetes, especially among nonsmokers.
Collapse
Affiliation(s)
- Maria P Santos
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Owen Carmichael
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Sid O’Bryant
- Institute for Translational Research, University of North Texas, Fort Worth, TX, 76107, USA
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Sylvia H Ley
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
6
|
Sakaniwa E, Mikami R, Mizutani K, Mima A, Kido D, Kominato H, Saito N, Hakariya M, Takemura S, Nakagawa K, Sugimoto M, Sugiyama A, Iwata T. Porphyromonas gingivalis-derived lipopolysaccharide promotes mesangial cell fibrosis via transforming growth factor-beta1/Smad signaling pathway in high glucose. J Dent Sci 2025; 20:989-994. [PMID: 40224103 PMCID: PMC11993064 DOI: 10.1016/j.jds.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Indexed: 04/15/2025] Open
Abstract
Background/purpose Periodontitis has been documented to increase the risk of diabetic nephropathy. However, the specific mechanisms through which periodontitis affects renal function remain unclear. This study aimed to investigate the mechanism by which an inflammatory reaction stimulated by periodontal pathogens affects mesangial cell fibrosis under hyperglycemic conditions in vitro. Materials and methods Murine mesangial cells were stimulated with 1,000 ng/mL of Porphyromonas gingivalis-derived lipopolysaccharide (PgLPS) in a control or high glucose (HG) medium. Activation of the extracellular signal-regulated kinase (ERK1/2) and expression of alpha-smooth muscle actin (α-SMA) and collagen type 1a2 (Col1a2) were analyzed for fibrosis and transformation via the transforming growth factor (TGF)-β1/Smad signaling pathway. Results PgLPS stimulation significantly upregulated TGF-β1 expression and Smad3 phosphorylation in the HG group compared to the control group. Additionally, activation of ERK1/2 and expression of Col1a2 and α-SMA were significantly elevated in the HG group compared to the control following PgLPS stimulation. The TGF-β1 inhibitor significantly suppressed Smad3 phosphorylation and mRNA expression of Col1a2 in the HG group. Conclusion Under HG conditions, PgLPS may aggravate fibrosis in mesangial cells via the TGF-β1/Smad signaling pathway, leading to nephrosclerotic modifications. The presented study may support the association between periodontitis and chronic kidney disease, mediated by hyperglycemia.
Collapse
Affiliation(s)
- Eri Sakaniwa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Daisuke Kido
- Oral Diagnosis and General Dentistry, Dental Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mari Sugimoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayu Sugiyama
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Luo S, Wu X, Wang H, Zhang Y, Xie L. Nitrate induced hepatic fibrosis in tadpoles of Bufo gargarizans by mediating alterations in toll-like receptor signaling pathways. ENVIRONMENTAL RESEARCH 2025; 270:120961. [PMID: 39875068 DOI: 10.1016/j.envres.2025.120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/30/2025]
Abstract
The nitrate pollution has become an increasingly serious environmental problem worldwide, and the toxic effects of elevated nitrate levels in the environment on aquatic animals remain to be elucidated. The purpose of the present study was to investigate the mechanisms of liver injury to tadpoles after exposure to nitrate from embryonic to metamorphic climax and to assess the recovery process of liver function after cessation of exposure. In the group with continuous nitrate exposure, the livers and thyroid of tadpoles showed remarkably histological lesions, of this with structural disorganization of the hepatocytes, cellular atrophy, and fibrosis, as well as significant reduction in the follicular and colloidal area of the thyroid. Meanwhile, the expression levels of genes related to inflammatory signaling pathways, such as TLR2, TLR6 and NF-κB, were significant elevated. After termination of exposure at Gs23, liver damage (histologic, ultrastructural, and molecular levels) was almost completely recovered, whereas thyroid gland damage was irreversible. Overall, this study shed light on the harmful effects of nitrate pollution on amphibian health and emphasizes the importance of controlling nitrate emissions in the environment.
Collapse
Affiliation(s)
- Shuangyan Luo
- College of Life and Environmental Science, Wenzhou University, 325003, Wenzhou, China; College of Life Science, Shaanxi Normal University, 710119, Xi'an, China
| | - Xueyi Wu
- College of Life and Environmental Science, Wenzhou University, 325003, Wenzhou, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, 710119, Xi'an, China
| | - Yongpu Zhang
- College of Life and Environmental Science, Wenzhou University, 325003, Wenzhou, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325003, Wenzhou, China.
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, 325003, Wenzhou, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325003, Wenzhou, China.
| |
Collapse
|
8
|
Lei AA, Phang VWX, Lee YZ, Kow ASF, Tham CL, Ho YC, Lee MT. Chronic Stress-Associated Depressive Disorders: The Impact of HPA Axis Dysregulation and Neuroinflammation on the Hippocampus-A Mini Review. Int J Mol Sci 2025; 26:2940. [PMID: 40243556 PMCID: PMC11988747 DOI: 10.3390/ijms26072940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic stress significantly contributes to the development of depressive disorders, with the hypothalamic-pituitary-adrenal (HPA) axis playing a central role in mediating stress responses. This review examines the neurobiological alterations in the hippocampus linked to HPA axis dysregulation in chronic stress-associated depressive disorders. The prolonged activation of the HPA axis disrupts cortisol regulation, leading to the decline of both physical and mental health. The chronic stress-induced HPA axis dysfunction interacts with inflammatory pathways and generates oxidative stress, contributing to cellular damage and neuroinflammation that further aggravates depressive symptoms. These processes result in structural and functional alterations in the hippocampus, which is essential for emotional regulation and cognitive function. Comprehending the impact of chronic stress on the HPA axis and associated neurobiological pathways is essential for formulating effective interventions for depressive disorders. This review summarises the existing findings and underscores the necessity for future investigations into intervention strategies to improve physical and psychological wellbeing targeting at HPA axis dysregulation for the betterment of psychological wellbeing and human health.
Collapse
Affiliation(s)
- Ai Ai Lei
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Elbadr MM, Galal HA, Hetta HF, Elfadil H, Alanazi FE, Fawzy S, Aljohani HM, Abd Ellah NH, Ali MF, Dyab AK, Ahmed EA. Immunomodulatory Effect of Rivaroxaban Nanoparticles Alone and in Combination with Sitagliptin on Diabetic Rat Model. Diseases 2025; 13:87. [PMID: 40136627 PMCID: PMC11941519 DOI: 10.3390/diseases13030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Chronic inflammation and immune dysregulation are key drivers of diabetes complications. Rivaroxaban (RX) and sitagliptin (SITA) are established therapies for thromboembolism and glycemic control, respectively. This study evaluated the novel therapeutic potential of nano-rivaroxaban (NRX) alone and in combination with sitagliptin (SITA) in mitigating inflammation and restoring immune balance in streptozotocin (STZ)-induced diabetic rats. METHODS Type 2 diabetes was induced in rats using a single injection of STZ (60 mg/kg). Animals were divided into five groups: control, STZ-diabetic, RX-treated (5 mg/kg), NRX-treated (5 mg/kg), and NRX+SITA-treated (5 mg/kg + 10 mg/kg). After 4 weeks of treatment, blood glucose, coagulation markers, pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), and anti-inflammatory cytokines (IL-35, TGF-β1, IL-10) were analyzed. Histopathological examination of the liver, kidney, pancreas, and spleen was conducted. Immunohistochemistry was used to assess hepatic NF-κB expression. RESULTS STZ significantly elevated pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) and anti-inflammatory cytokines (IL-35, TGF-β1, IL-10), along with increased hepatic NF-κB expression and histopathological abnormalities in immune organs. NRX significantly reduced inflammatory cytokines, improved histopathological changes in organs, and decreased hepatic NF-κB expression. The combination therapy (NRX + SITA) achieved superior immune modulation, with enhanced cytokine profile restoration, reduced hepatic NF-κB expression, and near-complete histopathological normalization. CONCLUSIONS This study underscores the promise of combining nanoparticle-based drug delivery with established therapies like sitagliptin to achieve superior immune modulation and inflammation control, presenting a potential therapeutic strategy for managing diabetes complications.
Collapse
Affiliation(s)
- Mohamed M. Elbadr
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (M.M.E.)
| | - Heba A. Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Shereen Fawzy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hashim M. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Noura H. Abd Ellah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Assiut, Naser City 2014101, Assiut, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Marwa F. Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ahmed K. Dyab
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Esraa A. Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (M.M.E.)
| |
Collapse
|
10
|
Hanna C, Etry HE, Ibrahim M, Khalife L, Bahous SA, Faour WH. Podocyturia an emerging biomarker for kidney injury. BMC Nephrol 2025; 26:118. [PMID: 40045253 PMCID: PMC11884025 DOI: 10.1186/s12882-025-04039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Podocyte injury is an established hallmark of kidney disease progression. Podocyte loss is a widely proven hypothesis to explain, in part, glomerular damage. Regardless of the underlying kidney disease, the pathophysiologic processes frequently involve the glomerulus. A growing body of evidence considered that podocytes detachment (podocytopathy) and their presence in the urine (podocyturia) are the hallmark of glomerular disease progression. As such, developing new tools to monitor disease progression non-invasively is of major clinical importance. Detection of podocytes in the urine as a biomarker of disease progression would be a major achievement toward the development of such tools. This review summarizes current knowledge about podocyturia.
Collapse
Affiliation(s)
- Charbel Hanna
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Hady El Etry
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Maroun Ibrahim
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Lynn Khalife
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Sola Aoun Bahous
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon.
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
11
|
Deng J, Gan W, Hu C, Liu Z, Chen N, Jia C, Ding M, Zou J, Cai T, Li J, Xu Y, Chen J, Ma C, Yin H, Zhang Z, Wang H, Cao Y. San Huang Xiao Yan recipe promoted wound healing in diabetic ulcer mice by inhibiting Th17 cell differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119243. [PMID: 39722327 DOI: 10.1016/j.jep.2024.119243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic ulcer is a serious diabetes complication and a primary reason for amputations. For many years, the San Huang Xiao Yan (SHXY) recipe has served as a conventional remedy for these ulcers, effectively reducing inflammatory factors and exhibiting considerable therapeutic efficacy. However, the precise mechanism remains incompletely understood. AIM OF THE STUDY To explore the efficacy and mechanisms of SHXY and its active ingredients in treating diabetic ulcer. MATERIALS AND METHODS A diabetic ulcer mouse model was established using C57BL/6J mice on a high-fat diet, followed by streptozotocin injection and skin damage. We investigated the bioactive compounds, key targets, and pharmacological mechanisms of SHXY in addressing diabetic ulcers through network pharmacology, molecular docking, both in vitro and in vivo validation experiments. RESULTS One week after intragastric administration, SHXY can reduce inflammation and edema, increase collagen synthesis, and reduce the expression of RORγT and IL-17A without affecting Treg cells. In vitro, SHXY-containing serum inhibited the differentiation of Th17 cells but did not affect Treg and Th1 cells. Network pharmacology found that SHXY acts through inflammatory pathways, including TNF, IL-17, Th17 cell differentiation, HIF-1, and PI3K-Akt. CONCLUSIONS SHXY and its candidate enhance healing in diabetic ulcers by modulating CD4+ T cells, particularly by inhibiting Th17 cell differentiation.
Collapse
Affiliation(s)
- Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Wanwan Gan
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Hu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhe Liu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Nan Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, 310006, China
| | - Chenglin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Minlu Ding
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jiaqi Zou
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tongkai Cai
- Shanghai Diacart Biomedical Science and Technology Limited Company, Shanghai, 201203, China
| | - Jiacheng Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yicheng Xu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jian Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Chao Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Hao Yin
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhihui Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| | - Haikun Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| |
Collapse
|
12
|
You Y, Zhou Y, Chen H, Kancheva AK, Carrillo-Larco RM, Yuan C, Xu X. Association of chronic pain with incidence and progression of cardiometabolic multimorbidity in middle-aged and older populations: a multicohort study. Pain Rep 2025; 10:e1211. [PMID: 39664712 PMCID: PMC11630955 DOI: 10.1097/pr9.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Chronic pain is associated with single cardiometabolic diseases (CMDs). Less is known about the association of chronic pain with the co-occurrence of multiple CMDs, known as cardiometabolic multimorbidity (CMM). Objectives This study aims to examine the association between chronic pain and incidence of CMM and if it existed, to what extent chronic pain relates to the progression of specific CMD-related multimorbidity (MM). Methods We pooled individual-level data of 59,134 participants from 4 cohort studies across 18 countries between 2010 and 2020. Participants aged 45 years or older, free of CMDs (diabetes, heart diseases, and stroke), and with self-reported chronic pain status at baseline were included. Multinomial logistic regression was performed on the association of chronic pain with incident CMM and the progression of specific CMD-related MM. Results One-third (21,204) of participants reported chronic pain at baseline. After 8 to 9 years, 1344 (2.3%) developed CMM. Chronic pain was associated with the onset of each CMD (odds ratio [OR] range 1.12-1.37) and CMM combinations (OR range 1.57-2.09). It is also linked with the increased odds of more CMDs (1, 2, and 3) during the follow-up. For example, OR increased from 1.31 for individuals with one CMD, to 1.57 for those with 2 CMDs, to 2.09 for those with 3 CMDs. Chronic pain was also associated with developing all CMD-related MM (OR range 1.26-1.88). Compared with those with diabetes only, participants with chronic pain were more likely to progress to diabetes and heart diseases, as well as diabetes, heart diseases, and stroke. Conclusion Chronic pain is associated with incidence and progression of CMM, whose management should be considered in primary and secondary prevention of CMM among middle-aged and older populations.
Collapse
Affiliation(s)
- Yating You
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
- School of Health & Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Yaguan Zhou
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Chen
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | | | - Rodrigo Martin Carrillo-Larco
- Emory Global Diabetes Research Centre, Emory University, Atlanta, GA, USA
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Changzheng Yuan
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaolin Xu
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Binwal M, Sen S, Vishwakarma S, Sarfraz A, Bhukya B, Khan F, Negi AS, Srivastava SK, Bawankule DU. In-Vitro and In-Silico Studies of Brevifoliol Ester Analogues against Insulin Resistance Condition. Curr Diabetes Rev 2025; 21:1-9. [PMID: 39257150 DOI: 10.2174/0115733998275238240116083227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 09/12/2024]
Abstract
BACKGROUND Brevifoliol is a diterpenoid that occurs naturally in the plants of Taxus genus and is widely used as chemotherapy agent for the management of cancer. A series of semisynthetic esters analogues of brevifoliol were prepared by Steglich esterification and attempted for their pharmacological potential against insulin resistance conditions using in-vitro and in-silico assays. OBJECTIVE The aim of this study is to understand the pharmacological potential of eighteen semisynthetic analogs through Steglich esterification of Brevifoliol against insulin resistance condition. METHODS In the in-vitro study, insulin resistance condition was induced in skeletal muscle cells using TNF-α, pro-inflammatory cytokine and these cells were treated with brevifoliol analogues. The most potent analouge was further validated using in-silico docking study against the tumor necrosis factor (TNF-α) (PDB ID: 2AZ5) and Human Insulin Receptor (PDB ID: 1IR3), using the Auto dock Vina v0.8 program. RESULTS Although, all the analogues of Brevifoliol significantly exhibited the pharmacological potential. Among all, analogue 17 was most potent in reversing the TNF-α induced insulin resistance condition in skeletal muscle cells and also to inhibit the production of TNF-α in LPSinduced inflammation in macrophage cells in a dose-dependent manner. Similarly, in-silico molecular docking studies revealed that analogue 17 possesses a more promising binding affinity than the selected control drug metformin toward the TNF-α and insulin receptor. CONCLUSION These findings suggested the suitability of analogue 17 as a drug-like candidate for further investigation toward the management of insulin resistance conditions.
Collapse
Affiliation(s)
- Monika Binwal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Sumati Sen
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Sadhna Vishwakarma
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Aqib Sarfraz
- Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Balakishan Bhukya
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Feroz Khan
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Arvind Singh Negi
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Santosh Kumar Srivastava
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Dnyaneshwar U Bawankule
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| |
Collapse
|
14
|
Tariq M, Sjögren M, Salehi A. Sulindac prevents increased mitochondrial VDAC1 expression and cell surface mistargeting induced by pathological conditions in retinal cells. Biochem Biophys Res Commun 2024; 739:150558. [PMID: 39181068 DOI: 10.1016/j.bbrc.2024.150558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Diabetic retinopathy (DR) continues to be the primary cause of vision loss in poorly controlled diabetic subjects. The molecular mechanisms underlying retinal pigment epithelium (RPE) cell dysfunction in DR still remain elusive. We investigated the role of mitochondrial volt-age-dependent anion channel 1 (VDAC1) in RPE dysfunction under glucotoxic and inflammatory conditions. Our results demonstrate that both glucotoxicity and cytokine treatment reduces cellular viability accompanied by increased VDAC1 and inducible nitric oxide synthase (iNOS) expression, concomitant with decreased expression of mitochondrial VDAC2 and constitutively ex-pressed endothelial NOS (eNOS). Increased VDAC1 expression during these conditions leads to its mistargeting to the cell surface, leading to ATP loss. Additionally, VDAC1 upregulation by glucotoxicity and inflammatory cytokines induces leakage of mitochondrial DNA (mtDNA) into the cytosol. Sulindac, a nonsteroidal anti-inflammatory agent, mitigates the adverse effects associated with increased VDAC1 level under pathophysiological conditions, by suppressing VDAC1 expression. The effect of sulindac on restoring cell viability could be comparably achieved only with VDAC1 inhibitor (VBIT-4) or VDAC1-specific antibody and not with the iNOS inhibitor aminoguanidine. Our findings suggest that sulindac's beneficial effects on ARPE-19 cell function are mediated by prevention of increased VDAC1 expression under pathological conditions, thus preventing mtDNA leakage and ATP loss, which are the key steps in induction of cellular inflammatory responses involved in the development of DR.
Collapse
Affiliation(s)
- Mohammad Tariq
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| | - Marie Sjögren
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, Lund University, Malmö, Sweden.
| |
Collapse
|
15
|
Walczak K, Grzybowska-Adamowicz J, Stawski R, Brzezińska O, Zmysłowska A, Nowak D. Response of Circulating Free Cellular DNA to Repeated Exercise in Men with Type 1 Diabetes Mellitus. J Clin Med 2024; 13:5859. [PMID: 39407919 PMCID: PMC11477321 DOI: 10.3390/jcm13195859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Intense exercise leads to neutrophil extracellular traps (NETs) formation, which triggers cell disintegration. NET, as well as other processes of apoptosis, necrosis, and spontaneous secretion, result in increased levels of cell-free DNA (cf-DNA) in the circulation. An increment of cf-DNA is also observed in autoimmune diseases, such as type 1 diabetes mellitus (T1DM). Repeated exhaustive exercises are an impulse for physiological adaptation; therefore, in this case-control study, we compared the exercise-induced increase in cf-DNA in men with T1DM and healthy controls to determine the development of the tolerance to exercise. Methods: Volunteers performed a treadmill run to exhaustion at a speed matching 70% of their personal VO2 max at three consecutive visits, separated by a 72 h resting period. Blood was collected before and after exercise for the determination of plasma cell-free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, blood cell count and metabolic markers. Results: Each bout of exhaustive exercise induced a great elevation of cf n-DNA levels. An increase in cf mt-DNA was observed after each run. However, the significance of the increase was noted only after the second bout in T1DM participants (p < 0.02). Changes in cf-DNA concentration were transient and returned to baseline values during 72 h of resting. The exercise-induced increment in circulating cf n-DNA and cf mt-DNA was not significantly different between the studied groups (p > 0.05). Conclusions: Cf-DNA appears to be a sensitive marker of inflammation, with a lower post-exercise increase in individuals with T1DM than in healthy men.
Collapse
Affiliation(s)
- Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | | | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland
| | - Olga Brzezińska
- Department of Rheumatology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Agnieszka Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
16
|
Chen S, Guan S, Yan Z, Ouyang F, Li S, Liu L, Zuo L, Huang Y, Zhong J. Prognostic value of red blood cell distribution width-to-albumin ratio in ICU patients with coronary heart disease and diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1359345. [PMID: 39387054 PMCID: PMC11461254 DOI: 10.3389/fendo.2024.1359345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The red blood cell distribution width (RDW)-to-albumin ratio (RAR) has emerged as a potentially valuable prognostic indicator in diverse medical conditions. However, the prognostic significance of RAR in intensive care unit (ICU) patients with coronary heart disease (CHD) and diabetes mellitus (DM) remains uncertain and requires further investigation. METHODS This study aims to investigate the prognostic significance of RAR in ICU patients with coexisting CHD and DM through a retrospective cohort analysis using data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database (version 2.2). The study population included patients aged 18 years or older who were diagnosed with both CHD and DM. The primary endpoint was 1-year mortality, and the secondary endpoints included 30-day mortality, 90-day mortality, hospital length of stay (LOS), and ICU LOS. RESULTS A total of 3416 patients, of whom 64.64% were male, were included in the study. The 30-day mortality, 90-day mortality, and 1-year mortality were 7.08%, 7.44%, and 7.49%, respectively. After adjusting for confounding factors, multivariate Cox proportional risk analysis demonstrated that high RAR levels were associated with an increased risk of 30-day mortality (HR, 1.53 [95% CI 1.17-2.07], P = 0.006), 90-day mortality (HR, 1.58 [95% CI 1.17-2.13], P = 0.003), and 1-year mortality (HR, 1.58 [95% CI 1.17-2.13], P = 0.003). Furthermore, the restricted cubic spline (RCS) model indicated a linear relationship between RAR and 1-year mortality. CONCLUSION The results suggest that RAR holds potential as a valuable prognostic biomarker in ICU patients with both CHD and DM. Elevated RAR levels were found to be significantly associated with increased mortality during hospitalization, facilitating the identification of individuals at higher risk of adverse outcomes. These findings underscore the importance of incorporating RAR into risk stratification and overall management strategies for ICU patients with coexisting CHD and DM.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Senhong Guan
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Zhaohan Yan
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Fengshan Ouyang
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Shuhuan Li
- Department of Pediatrics, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Lanyuan Liu
- Department of Ultrasound Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Liuer Zuo
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong, China
| |
Collapse
|
17
|
Chen Z, Malek V, Natarajan R. Update: the role of epigenetics in the metabolic memory of diabetic complications. Am J Physiol Renal Physiol 2024; 327:F327-F339. [PMID: 38961840 PMCID: PMC11460341 DOI: 10.1152/ajprenal.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
18
|
Cassiano BA, Silveira ALPA, Kim YJ, do Amaral JB, da Silva Nali LH, Bachi ALL, Resende LD, Fonseca FAH, de Oliveira Izar MC, Tuleta ID, Victor JR, Pallos D, França CN. Role of circulating microparticles and cytokines in periodontitis associated with diabetes. Front Med (Lausanne) 2024; 11:1394300. [PMID: 39253540 PMCID: PMC11381390 DOI: 10.3389/fmed.2024.1394300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Background Periodontitis is a chronic inflammatory condition that affects the supporting tissues of the teeth, and can lead to serious complications such as tooth loss and systemic health problems, including diabetes, which have a bidirectional relationship with periodontitis. Circulating microparticles originate from different cell types after stimuli such as activation or apoptosis. Interleukins are related to processes in the regulation of the immune response, inflammation, and cell growth. This study aimed to evaluate circulating microparticles as well as interleukins in the plasma, at baseline and 1 month after the end of the non-surgical periodontal treatment. Methods Samples were collected from 45 patients, with moderate to severe periodontitis with diabetes (N = 25) and without diabetes (N = 20). Microparticles were evaluated in the platelet-poor plasma by flow cytometer. Cytokine levels were evaluated by the enzyme immunoabsorption assay (ELISA). Results Higher levels of the pro-inflammatory cytokines were found in the group with diabetes compared to the non-diabetic group both at baseline and 1 month after the end of the treatment. A higher IL-6/IL-10 ratio was found in patients with diabetes compared to the group without diabetes at T0 and T1, whereas an increased IFN-γ/IL-10 ratio was only found at T1 in patients with diabetes in comparison to the group without diabetes. In the group with diabetes, it was verified positive correlations between IL-10 and IL-6 or IFN-γ and a negative correlation between IL-6 and PMP, at T0; in contrast, in the T1, negative correlations were found between TNF-α and IL-10 or PMP. Besides, at T0, it was evidenced positive correlations both between circulating TNF-α and IL-6, and IL-10 and EMP, as well as a negative correlation between IL-10 and PMP in the group with diabetes. In addition, it was observed in T1 positive correlations between levels of TNF-α and IL-6, IFN-γ, or IL-10, and between PMP and IFN-γ, and between EMP and IL-6, TNF-α and IFN-γ in this group. Conclusion The results suggest a modulatory effect of the periodontitis associated with diabetes, as well as the periodontal treatment, in the systemic inflammatory status of the participants of the study.
Collapse
Affiliation(s)
| | | | - Yeon Jung Kim
- Odontology Post Graduation, Santo Amaro University, São Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology-Head and Neck Surgery Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, New York, NY, United States
| | | | - Débora Pallos
- Odontology Post Graduation, Santo Amaro University, São Paulo, Brazil
| | | |
Collapse
|
19
|
Li Z, Zhang J, Jiang Y, Ma K, Cui C, Wang X. Association of Helicobacter pylori infection with complications of diabetes: a single-center retrospective study. BMC Endocr Disord 2024; 24:152. [PMID: 39138447 PMCID: PMC11323642 DOI: 10.1186/s12902-024-01678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Previous studies examined the association of Helicobacter pylori infection (H. pylori) with complications of diabetes, but the results have been inconsistent. The aim of this study of patients with type-2 diabetes (T2D) was to determine the association of H. pylori infection with the major complications of diabetes. METHODS This single-center retrospective study examined patients with T2D who received H. pylori testing between January 2016 and December 2021. Logistic regression analyses were used to evaluate the association of H. pylori infection with four major complications of diabetes. RESULTS We examined 960 patients with T2D, and 481 of them (50.1%) were positive for H. pylori. H. pylori infection was significantly associated with diabetic nephropathy (odds ratio [OR] = 1.462; 95% confidence interval [CI]: 1.006,2.126; P = 0.046). In addition, the co-occurrence of H. pylori positivity with hypertension (OR = 4.451; 95% CI: 2.351,8.427; P < 0.001), with glycated hemoglobin A1c (HbA1c) of at least 8% (OR = 2.925; 95% CI: 1.544,5.541; P = 0.001), and with diabetes duration of at least 9 years (OR = 3.305; 95% CI:1.823,5.993; P < 0.001) further increased the risk of diabetic nephropathy. There was no evidence of an association of H. pylori infection with retinopathy, neuropathy, or peripheral vascular disease. CONCLUSIONS Our study of T2D patients indicated that those with H. pylori infections had an increased risk of nephropathy, and this risk was greater in patients who also had hypertension, an HbA1c level of 8% or more, and diabetes duration of 9 years or more.
Collapse
Affiliation(s)
- Zhuoya Li
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, China
| | - Jie Zhang
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu Province, 213000, China
| | - Yizhou Jiang
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, China
| | - Kai Ma
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, China
| | - Cheng Cui
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, China
| | - Xiaoyong Wang
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, China.
| |
Collapse
|
20
|
Gholami M, Coleman-Fuller N, Salehirad M, Darbeheshti S, Motaghinejad M. Neuroprotective Effects of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors (Gliflozins) on Diabetes-Induced Neurodegeneration and Neurotoxicity: A Graphical Review. Int J Prev Med 2024; 15:28. [PMID: 39239308 PMCID: PMC11376549 DOI: 10.4103/ijpvm.ijpvm_5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetes is a chronic endocrine disorder that negatively affects various body systems, including the nervous system. Diabetes can cause or exacerbate various neurological disorders, and diabetes-induced neurodegeneration can involve several mechanisms such as mitochondrial dysfunction, activation of oxidative stress, neuronal inflammation, and cell death. In recent years, the management of diabetes-induced neurodegeneration has relied on several types of drugs, including sodium-glucose cotransporter-2 (SGLT2) inhibitors, also called gliflozins. In addition to exerting powerful effects in reducing blood glucose, gliflozins have strong anti-neuro-inflammatory characteristics that function by inhibiting oxidative stress and cell death in the nervous system in diabetic subjects. This review presents the molecular pathways involved in diabetes-induced neurodegeneration and evaluates the clinical and laboratory studies investigating the neuroprotective effects of gliflozins against diabetes-induced neurodegeneration, with discussion about the contributing roles of diverse molecular pathways, such as mitochondrial dysfunction, oxidative stress, neuro-inflammation, and cell death. Several databases-including Web of Science, Scopus, PubMed, Google Scholar, and various publishers, such as Springer, Wiley, and Elsevier-were searched for keywords regarding the neuroprotective effects of gliflozins against diabetes-triggered neurodegenerative events. Additionally, anti-neuro-inflammatory, anti-oxidative stress, and anti-cell death keywords were applied to evaluate potential neuronal protection mechanisms of gliflozins in diabetes subjects. The search period considered valid peer-reviewed studies published from January 2000 to July 2023. The current body of literature suggests that gliflozins can exert neuroprotective effects against diabetes-induced neurodegenerative events and neuronal dysfunction, and these effects are mediated via activation of mitochondrial function and prevention of cell death processes, oxidative stress, and inflammation in neurons affected by diabetes. Gliflozins can confer neuroprotective properties in diabetes-triggered neurodegeneration, and these effects are mediated by inhibiting oxidative stress, inflammation, and cell death.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Mahsa Salehirad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Darbeheshti
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Soliman TN, Karam-Allah AA, Abo-Zaid EM, Mohammed DM. Efficacy of nanoencapsulated Moringa oleifera L. seeds and Ocimum tenuiflorum L. leaves extracts incorporated in functional soft cheese on streptozotocin-induced diabetic rats. PHYTOMEDICINE PLUS 2024; 4:100598. [DOI: 10.1016/j.phyplu.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
|
22
|
Nam MH, Dhillon A, Nahomi RB, Carrillo NL, Hougen CS, Nagaraj RH. Peptain-1 blocks ischemia/reperfusion-induced retinal capillary degeneration in mice. Front Cell Neurosci 2024; 18:1441924. [PMID: 39149168 PMCID: PMC11324586 DOI: 10.3389/fncel.2024.1441924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Neurovascular degeneration results in vascular dysfunction, leakage, ischemia, and structural changes that can lead to significant visual impairment. We previously showed the protective effects of peptain-1, a 20 amino acid peptide derived from the αB-crystallin core domain, on retinal ganglion cells in two animal models of glaucoma. Here, we evaluated the ability of peptain-1 to block apoptosis of human retinal endothelial cells (HRECs) in vitro and retinal capillary degeneration in mice subjected to retinal ischemia/reperfusion (I/R) injury. Methods HRECs were treated with either peptain-1 or scrambled peptides (200 μg/mL) for 3 h and a combination of proinflammatory cytokines (IFN-γ 20 ng/mL + TNF-α 20 ng/mL+ IL-1β 20 ng/mL) for additional 48 h. Apoptosis was measured with cleaved caspase-3 formation via western blot, and by TUNEL assay. C57BL/6J mice (12 weeks old) were subjected to I/R injury by elevating the intraocular pressure to 120 mmHg for 60 min, followed by reperfusion. Peptain-1 or scrambled peptide (0.5 μg) was intravitreally injected immediately after I/R injury and 7 days later. One microliter of PBS was injected as vehicle control, and animals were euthanized on day 14 post-I/R injury. Retinal capillary degeneration was assessed after enzyme digestion followed by periodic acid-Schiff staining. Results Our data showed that peptain-1 entered HRECs and blocked proinflammatory cytokine-mediated apoptosis. Intravitreally administered peptain-1 was distributed throughout the retinal vessels after 4 h. I/R injury caused retinal capillary degeneration. Unlike scrambled peptide, peptain-1 protected capillaries against I/R injury. Additionally, peptain-1 inhibited microglial activation and reduced proinflammatory cytokine levels in the retina following I/R injury. Discussion Our study suggests that peptain-1 could be used as a therapeutic agent to prevent capillary degeneration and neuroinflammation in retinal ischemia.
Collapse
Affiliation(s)
- Mi-Hyun Nam
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Armaan Dhillon
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Rooban B Nahomi
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Noelle L Carrillo
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Radiology, UCHealth University of Colorado Hospital, Aurora, CO, United States
| | - Clarinda S Hougen
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Ram H Nagaraj
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| |
Collapse
|
23
|
Chen P, Ding N, Pan D, Chen X, Li S, Luo Y, Chen Z, Xu Y, Zhu X, Wang K, Zou W. PET imaging for the early evaluation of ocular inflammation in diabetic rats by using [ 18F]-DPA-714. Exp Eye Res 2024; 245:109986. [PMID: 38945519 DOI: 10.1016/j.exer.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ocular complications of diabetes mellitus (DM) are the leading cause of vision loss. Ocular inflammation often occurs in the early stage of DM; however, there are no proven quantitative methods to evaluate the inflammatory status of eyes in DM. The 18 kDa translocator protein (TSPO) is an evolutionarily conserved cholesterol binding protein localized in the outer mitochondrial membrane. It is a biomarker of activated microglia/macrophages; however, its role in ocular inflammation is unclear. In this study, fluorine-18-DPA-714 ([18F]-DPA-714) was evaluated as a specific TSPO probe by cell uptake, cell binding assays and micro positron emission tomography (microPET) imaging in both in vitro and in vivo models. Primary microglia/macrophages (PMs) extracted from the cornea, retina, choroid or sclera of neonatal rats with or without high glucose (50 mM) treatment were used as the in vitro model. Sprague-Dawley (SD) rats that received an intraperitoneal administration of streptozotocin (STZ, 60 mg/kg once) were used as the in vivo model. Increased cell uptake and high binding affinity of [18F]-DPA-714 were observed in primary PMs under hyperglycemic stress. These findings were consistent with cellular morphological changes, cell activation, and TSPO up-regulation. [18F]-DPA-714 PET imaging and biodistribution in the eyes of DM rats revealed that inflammation initiates in microglia/macrophages in the early stages (3 weeks and 6 weeks), corresponding with up-regulated TSPO levels. Thus, [18F]-DPA-714 microPET imaging may be an effective approach for the early evaluation of ocular inflammation in DM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jintan Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Nannan Ding
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Donghui Pan
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuelian Chen
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, PuNan Branch of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ShiYi Li
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Yidan Luo
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Ziqing Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuping Xu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Zhu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenjun Zou
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
24
|
Nakagawa K, Watanabe K, Mizutani K, Takeda K, Takemura S, Sakaniwa E, Mikami R, Kido D, Saito N, Kominato H, Hattori A, Iwata T. Genetic analysis of impaired healing responses after periodontal therapy in type 2 diabetes: Clinical and in vivo studies. J Periodontal Res 2024; 59:712-727. [PMID: 38501307 DOI: 10.1111/jre.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.
Collapse
Affiliation(s)
- Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Sakaniwa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kido
- Department of General Dentistry, Tokyo Medical and Dental University Dental Hospital, Tokyo, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
25
|
Zhang L, Li Y, Wang H, Guo Y, Wang X, Wu H, Zhang Q, Liu L, Meng G, Zhang S, Sun S, Zhou M, Jia Q, Song K, Stubbendorff A, Gu Y, Niu K. Serum immunoglobulin concentrations and risk of type 2 diabetes mellitus in adults: a prospective cohort study from the TCLSIH study. BMC Immunol 2024; 25:52. [PMID: 39075358 PMCID: PMC11285130 DOI: 10.1186/s12865-024-00637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia resulting from defects in insulin secretion and/or insulin action. Increasing evidence suggests that inflammation played an important role in the pathogenesis of T2DM. Prospective studies on the link between immunoglobulins concentrations and the risk of T2DM in adults are limited. We developed a cohort study including 7,093 adults without T2DM history. The incidence of T2DM was 16.45 per 1,000 person-years. Compared with the lowest quartiles, the hazard ratios (95% confidence intervals) of T2DM for the highest quartiles of IgG, IgE, IgM and IgA were 0.64 (0.48-0.85), 0.94 (0.72-1.23), 0.68 (0.50-0.92) and 1.62 (1.24-2.11) (P for trend was < 0.01, 0.84, 0.02 and < 0.0001), respectively, suggesting that serum IgG and IgM concentrations were inversely associated with the incidence of T2DM, and IgA levels were positively associated with the risk of T2DM in a general adult population.
Collapse
Affiliation(s)
- Li Zhang
- Tianjin First Center Hospital Health Department, Tianjin, China
| | - Yuanbin Li
- School of Public Health of Tianjin, University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Nutritional Epidemiology Institute, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Honglei Wang
- Wuqing District Centers for Disease Control and Prevention, Tianjin, China
| | - Yirui Guo
- Tianjin First Center Hospital Health Department, Tianjin, China
| | - Xiaotong Wang
- Nutritional Epidemiology Institute, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shunming Zhang
- Nutritional Epidemiology Institute, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Anna Stubbendorff
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Kaijun Niu
- School of Public Health of Tianjin, University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Nutritional Epidemiology Institute, School of Public Health, Tianjin Medical University, Tianjin, China.
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
26
|
Vlachou S, Loumé A, Giannopoulou C, Papathanasiou E, Zekeridou A. Investigating the Interplay: Periodontal Disease and Type 1 Diabetes Mellitus-A Comprehensive Review of Clinical Studies. Int J Mol Sci 2024; 25:7299. [PMID: 39000406 PMCID: PMC11242877 DOI: 10.3390/ijms25137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Diabetes mellitus (DM) poses a significant challenge to global health, with its prevalence projected to rise dramatically by 2045. This narrative review explores the bidirectional relationship between periodontitis (PD) and type 1 diabetes mellitus (T1DM), focusing on cellular and molecular mechanisms derived from the interplay between oral microbiota and the host immune response. A comprehensive search of studies published between 2008 and 2023 was conducted to elucidate the association between these two diseases. Preclinical and clinical evidence suggests a bidirectional relationship, with individuals with T1DM exhibiting heightened susceptibility to periodontitis, and vice versa. The review includes recent findings from human clinical studies, revealing variations in oral microbiota composition in T1DM patients, including increases in certain pathogenic species such as Porphyromonas gingivalis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans, along with shifts in microbial diversity and abundance. Molecular mechanisms underlying this association involve oxidative stress and dysregulated host immune responses, mediated by inflammatory cytokines such as IL-6, IL-8, and MMPs. Furthermore, disruptions in bone turnover markers, such as RANKL and OPG, contribute to periodontal complications in T1DM patients. While preventive measures to manage periodontal complications in T1DM patients may improve overall health outcomes, further research is needed to understand the intricate interactions between oral microbiota, host response, periodontal disease, and systemic health in this population.
Collapse
Affiliation(s)
- Stefania Vlachou
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.V.); (A.L.); (C.G.)
| | - Alexandre Loumé
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.V.); (A.L.); (C.G.)
| | - Catherine Giannopoulou
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.V.); (A.L.); (C.G.)
| | - Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA;
| | - Alkisti Zekeridou
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.V.); (A.L.); (C.G.)
| |
Collapse
|
27
|
Yaribeygi H, Maleki M, Jamialahmadi T, Sahebkar A. Anti-inflammatory benefits of semaglutide: State of the art. J Clin Transl Endocrinol 2024; 36:100340. [PMID: 38576822 PMCID: PMC10992717 DOI: 10.1016/j.jcte.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Individuals with diabetes often have chronic inflammation and high levels of inflammatory cytokines, leading to insulin resistance and complications. Anti-inflammatory agents are proposed to prevent these issues, including using antidiabetic medications with anti-inflammatory properties like semaglutide, a GLP-1 analogue. Semaglutide not only lowers glucose but also shows potential anti-inflammatory effects. Studies suggest it can modulate inflammatory responses and benefit those with diabetes. However, the exact mechanisms of its anti-inflammatory effects are not fully understood. This review aims to discuss the latest findings on semaglutide's anti-inflammatory effects and the potential pathways involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Mizutani K, Minami I, Mikami R, Kido D, Takeda K, Nakagawa K, Takemura S, Saito N, Kominato H, Sakaniwa E, Konuma K, Izumi Y, Ogawa Y, Iwata T. Improvement of periodontal parameters following intensive diabetes care and supragingival dental prophylaxis in patients with type 2 diabetes: A prospective cohort study. J Clin Periodontol 2024; 51:733-741. [PMID: 38449337 DOI: 10.1111/jcpe.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
AIM This study aimed to investigate the effects of diabetes care on periodontal inflammation. MATERIALS AND METHODS This prospective cohort study included 51 Japanese patients with type 2 diabetes who underwent intensive diabetes care including educational hospitalization and regular outpatient treatment for 6 months. Dental prophylaxis without subgingival scaling was provided three times during the observational period. Associations between changes in periodontal parameters and glycaemic control levels were evaluated using multiple regression analysis. RESULTS Overall, 33 participants (mean age: 58.7 ± 12.9) were followed up for 6 months. At baseline examination, 82% were diagnosed with Stage III or IV periodontitis. Haemoglobin A1c (HbA1c) level changed from 9.6 ± 1.8% at baseline to 7.4 ± 1.3% at 6 months. The ratio of probing pocket depth (PPD) ≥4 mm, bleeding on probing (BOP), full-mouth plaque control record (PCR), periodontal epithelial surface area (PESA) and periodontal inflamed surface area (PISA) also significantly improved. The reduction in PPD and PESA was significantly associated with changes in both HbA1c and fasting plasma glucose (FPG) levels, and the reduction in PISA was significantly associated with an improvement in FPG after adjusting for smoking, change in body mass index and full-mouth PCR. CONCLUSIONS This is the first study to report a significant improvement in PPD and BOP after intensive diabetes care and dental prophylaxis without subgingival scaling. CLINICAL TRIAL REGISTRATION NUMBER UMIN000040218.
Collapse
Affiliation(s)
- Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Isao Minami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Endocrinology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daisuke Kido
- Department of General Dentistry, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Eri Sakaniwa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kuniha Konuma
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Oral Care Periodontics Center, Southern Tohoku General Hospital, Fukushima, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
29
|
Feng J, Wang Y, Xiang S, Luo Y, Xu Y, Wang Y, Cao Y, Zhou M, Zhao C. Applying GC-MS based serum metabolomic profiling to characterize two traditional Chinese medicine subtypes of diabetic foot gangrene. Front Mol Biosci 2024; 11:1384307. [PMID: 38725871 PMCID: PMC11079259 DOI: 10.3389/fmolb.2024.1384307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Traditional Chinese medicine (TCM) has a long history and particular advantages in the diagnosis and treatment of diabetic foot gangrene (DFG). Patients with DFG are mainly divided into two subtypes, tendon lesion with edema (GT) and ischemic lesion without edema (GI), which are suitable for different medical strategies. Metabolomics has special significance in unravelling the complexities of multifactorial and multisystemic disorders. This study acquired the serum metabolomic profiles of two traditional Chinese medicine subtypes of DFG to explore potential molecular evidence for subtype characterization, which may contribute to the personalized treatment of DFG. A total of 70 participants were recruited, including 20 with DM and 50 with DFG (20 with GI and 30 with GT). Conventional gas chromatography-mass spectrometry (GC-MS) followed by orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as untargeted metabolomics approaches to explore the serum metabolomic profiles. Kyoto encyclopedia of genes and genomes (KEGG) and MetaboAnalyst were used to identify the related metabolic pathways. Compared with DM patients, the levels of 14 metabolites were altered in the DFG group, which were also belonged to the differential metabolites of GI (13) and GT (7) subtypes, respectively. Among these, urea, α-D-mannose, cadaverine, glutamine, L-asparagine, D-gluconic acid, and indole could be regarded as specific potential metabolic markers for GI, as well as L-leucine for GT. In the GI subtype, D-gluconic acid and L-asparagine are positively correlated with activated partial thromboplastin time (APTT) and fibrinogen (FIB). In the GT subtype, L-leucine is positively correlated with the inflammatory marker C-reactive protein (CRP). Arginine and proline metabolism, glycine, serine and threonine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis are the most important metabolic pathways associated with GI. The main metabolic pathways related to GT include pyrimidine metabolism, glutathione metabolism, biosynthesis of valine, leucine, and isoleucine, as well as valine, serine, and isoleucine with metabolites. The results of this study indicate that patients with different DFG subtypes have distinct metabolic profiles, which reflect the pathological characteristics of each subtype respectively. These findings will help us explore therapeutic targets for DFG and develop precise treatment strategies.
Collapse
Affiliation(s)
- Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengmin Xiang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Luo
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongcheng Xu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuzhen Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Taneera J, Khalique A, Mohammed AK, Mussa BM, Sulaiman N, Abu-Gharbieh E, El-Huneidi W, Saber-Ayad MM. Investigating the Impact of IL6 on Insulin Secretion: Evidence from INS-1 Cells, Human Pancreatic Islets, and Serum Analysis. Cells 2024; 13:685. [PMID: 38667300 PMCID: PMC11049194 DOI: 10.3390/cells13080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-6 (IL6) is a pleiotropic cytokine implicated in metabolic disorders and inflammation, yet its precise influence on insulin secretion and glucose metabolism remains uncertain. This study examined IL6 expression in pancreatic islets from individuals with/without diabetes, alongside a series of functional experiments, including siRNA silencing; IL6 treatment; and assessments of glucose uptake, cell viability, apoptosis, and expression of key β-cell genes, which were conducted in both INS-1 cells and human islets to elucidate the effect of IL6 on insulin secretion. Serum levels of IL6 from Emirati patients with type 2 diabetes (T2D) were measured, and the effect of antidiabetic drugs on IL6 levels was studied. The results revealed that IL6 mRNA expression was higher in islets from diabetic and older donors compared to healthy or young donors. IL6 expression correlated negatively with PDX1, MAFB, and NEUROD1 and positively with SOX4, HES1, and FOXA1. Silencing IL6 in INS-1 cells reduced insulin secretion and glucose uptake independently of apoptosis or oxidative stress. Reduced expression of IL6 was associated with the downregulation of Ins, Pdx1, Neurod1, and Glut2 in INS-1 cells. In contrast, IL6 treatment enhanced insulin secretion in INS-1 cells and human islets and upregulated insulin expression. Serum IL6 levels were elevated in patients with T2D and associated with higher glucose, HbA1c, and triglycerides, regardless of glucose-lowering medications. This study provides a new understanding of the role of IL6 in β-cell function and the pathophysiology of T2D. Our data highlight differences in the response to IL6 between INS-1 cells and human islets, suggesting the presence of species-specific variations across different experimental models. Further research is warranted to unravel the precise mechanisms underlying the observed effects of IL-6 on insulin secretion.
Collapse
Affiliation(s)
- Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.M.M.); (N.S.); (E.A.-G.); (W.E.-H.); (M.M.S.-A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| | - Anila Khalique
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| | - Abdul Khader Mohammed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| | - Bashair M. Mussa
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.M.M.); (N.S.); (E.A.-G.); (W.E.-H.); (M.M.S.-A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| | - Nabil Sulaiman
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.M.M.); (N.S.); (E.A.-G.); (W.E.-H.); (M.M.S.-A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| | - Eman Abu-Gharbieh
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.M.M.); (N.S.); (E.A.-G.); (W.E.-H.); (M.M.S.-A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.M.M.); (N.S.); (E.A.-G.); (W.E.-H.); (M.M.S.-A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| | - Maha M. Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.M.M.); (N.S.); (E.A.-G.); (W.E.-H.); (M.M.S.-A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.K.); (A.K.M.)
| |
Collapse
|
31
|
Cheng Y, Chen Y, Li K, Liu S, Pang C, Gao L, Xie J, Wenjing LV, Yu H, Deng B. How inflammation dictates diabetic peripheral neuropathy: An enlightening review. CNS Neurosci Ther 2024; 30:e14477. [PMID: 37795833 PMCID: PMC11017439 DOI: 10.1111/cns.14477] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) constitutes a debilitating complication associated with diabetes. Although, the past decade has seen rapid developments in understanding the complex etiology of DPN, there are no approved therapies that can halt the development of DPN, or target the damaged nerve. Therefore, clarifying the pathogenesis of DPN and finding effective treatment are the crucial issues for the clinical management of DPN. AIMS This review is aiming to summary the current knowledge on the pathogenesis of DPN, especially the mechanism and application of inflammatory response. METHODS We systematically summarized the latest studies on the pathogenesis and therapeutic strategies of diabetic neuropathy in PubMed. RESULTS In this seminal review, the underappreciated role of immune activation in the progression of DPN is scrutinized. Novel insights into the inflammatory regulatory mechanisms of DPN have been unearthed, illuminating potential therapeutic strategies of notable clinical significance. Additionally, a nuanced examination of DPN's complex etiology, including aberrations in glycemic control and insulin signaling pathways, is presented. Crucially, an emphasis has been placed on translating these novel understandings into tangible clinical interventions to ameliorate patient outcomes. CONCLUSIONS This review is distinguished by synthesizing cutting-edge mechanisms linking inflammation to DPN and identifying innovative, inflammation-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yifan Cheng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yinuo Chen
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Kezheng Li
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shuwei Liu
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Chunyang Pang
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Lingfei Gao
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiali Xie
- Department of Neurology, Shanghai East HospitalTongji UniversityShanghaiP.R. China
| | - L. V. Wenjing
- Department of GeriatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandong ProvinceChina
| | - Huan Yu
- Department of PediatricsSecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Binbin Deng
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
32
|
Rochowski MT, Jayathilake K, Balcerak JM, Selvan MT, Gunasekara S, Miller C, Rudd JM, Lacombe VA. Impact of Delta SARS-CoV-2 Infection on Glucose Metabolism: Insights on Host Metabolism and Virus Crosstalk in a Feline Model. Viruses 2024; 16:295. [PMID: 38400070 PMCID: PMC10893195 DOI: 10.3390/v16020295] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes enhanced mortality in people with metabolic and cardiovascular diseases. Other highly infectious RNA viruses have demonstrated dependence on glucose transport and utilization, so we hypothesized that SARS-CoV-2 infection could lead to alterations in cellular and whole-body glucose metabolism. Twenty-four healthy domestic cats were intratracheally inoculated with B.1.617.2 (delta) SARS-CoV-2 and samples were collected at 4- and 12-days post-inoculation (dpi). Blood glucose and circulating cortisol concentrations were elevated at 4 and 12 dpi. Serum insulin concentration was statistically significantly decreased, while angiotensin 2 concentration was elevated at 12 dpi. SARS-CoV-2 RNA was detected in the pancreas and skeletal muscle at low levels; however, no change in the number of insulin-producing cells or proinflammatory cytokines was observed in the pancreas of infected cats through 12 dpi. SARS-CoV-2 infection statistically significantly increased GLUT protein expression in both the heart and lungs, correlating with increased AMPK expression. In brief, SARS-CoV-2 increased blood glucose concentration and cardio-pulmonary GLUT expression through an AMPK-dependent mechanism, without affecting the pancreas, suggesting that SARS-CoV-2 induces the reprogramming of host glucose metabolism. A better understanding of host cell metabolism and virus crosstalk could lead to the discovery of novel metabolic therapeutic targets for patients affected by COVID-19.
Collapse
Affiliation(s)
- Matthew T. Rochowski
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.R.)
- Harold Hamm Diabetes Center, Oklahoma City, OK 73104, USA
| | - Kaushalya Jayathilake
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.R.)
| | - John-Michael Balcerak
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.R.)
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.S.); (S.G.); (C.M.); (J.M.R.)
| | - Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.S.); (S.G.); (C.M.); (J.M.R.)
| | - Craig Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.S.); (S.G.); (C.M.); (J.M.R.)
| | - Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.S.); (S.G.); (C.M.); (J.M.R.)
| | - Véronique A. Lacombe
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.R.)
- Harold Hamm Diabetes Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
33
|
Yan P, Ke B, Fang X. Bioinformatics reveals the pathophysiological relationship between diabetic nephropathy and periodontitis in the context of aging. Heliyon 2024; 10:e24872. [PMID: 38304805 PMCID: PMC10830875 DOI: 10.1016/j.heliyon.2024.e24872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Periodontitis (PD) is a microbially-induced chronic inflammatory disease that is thought to have a bidirectional relationship with diabetes mellitus. DN and PD are recognized as models associated with accelerated aging. This study is divided into two parts, the first of which explores the bidirectional causal relationship through Mendelian randomization (MR). The second part aims to investigate the relationship between PD and DN in terms of potential crosstalk genes, aging-related genes, biological pathways, and processes using bioinformatic methods. MR analysis showed no evidence to support a causal relationship between DN and PD (P = 0.34) or PD and DN (P = 0.77). Using the GEO database, we screened 83 crosstalk genes overlapping in two diseases. Twelve paired genes identified by Pearson correlation and the four hub genes in the key cluster were jointly evaluated as key crosstalk-aging genes. Using support vector machine recursive feature elimination (SVM-RFE) and maximal clique centrality (MCC) algorithms, feature selection established five genes as the key crosstalk-aging genes. Based on five key genes, an ANN diagnostic model with reliable diagnosis of two diseases was developed. Gene enrichment analysis indicates that AGE-RAGE pathway signaling, the complement system, and multiple immune inflammatory pathways may be involved in common features of both diseases. Immune infiltration analysis reveals that most immune cells are differentially expressed in PD and DN, with dendritic cells and T cells assuming vital roles in both diseases. Overall, although there is no causal link, CSF1R, CXCL6, VCAM1, JUN and IL1B may be potential crosstalk-aging genes linking PD and DN. The common pathways and markers explored in this study could contribute to a deeper understanding of the common pathogenesis of both diseases in the context of aging and provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Peng Yan
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Liu Z, Annarapu G, Yazdani HO, Wang Q, Liu S, Luo JH, Yu YP, Ren B, Neal MD, Monga SP, Mota Alvidrez RI. Restoring glucose balance: Conditional HMGB1 knockdown mitigates hyperglycemia in a Streptozotocin induced mouse model. Heliyon 2024; 10:e23561. [PMID: 38187339 PMCID: PMC10770459 DOI: 10.1016/j.heliyon.2023.e23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.
Collapse
Affiliation(s)
- Zeyu Liu
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gowtham Annarapu
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Qinge Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Baoguo Ren
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberto Ivan Mota Alvidrez
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
35
|
Chawla I, Dhanawat M, Sharma M, Gupta S. Exploring the Potential Benefits of Bovine Colostrum Supplementation in the Management of Diabetes and its Complications: A Comprehensive Review. Curr Diabetes Rev 2024; 21:e200224227161. [PMID: 38415443 DOI: 10.2174/0115733998275676240202065952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 02/29/2024]
Abstract
Diabetes is a metabolic illness marked by elevated levels of glucose in the bloodstream due to the inadequate production or use of insulin in the body. Diabetes can result in a range of consequences, with the most prevalent being cardiovascular disease, renal failure, vision loss, and limb removal. Natural compounds isolated from different sources, like colostrum, are the most important compounds for the treatment of diabetes. Colostrum is a form of lactation produced by mammals in the first days after giving birth to their offspring, having a rich source of constituents and showing multipharmacological properties. This review was prepared on the basis of a variety of authoritative search databases, including Google Scholar, Scopus, and PubMed. In addition, the publications and other online sources were also included. In the literature search, the terms "colostrum," "diabetes," "uses," "management," "constituent," "composition," "alternative sources," "mechanism of action," "preclinical," "clinical," "marketed formulations," and "patents" were utilized as keywords and collected from last two decades. Colostrum has been utilized as a treatment for a wide variety of illnesses due to its active constituents. A variety of colostrums are available in the market, like goat colostrum, porcine colostrum, sheep colostrum, human colostrum and many more. They have the full potential of nutrients like minerals, vitamins, lactose, essential enzymes, proteins and high concentrations of immunoproteins. Mostly, the colostrums are used for treating diabetes and its complications. Preclinical and clinical studies of metabolic syndrome, especially on diabetes and its complications, were also reported at the National and International levels, which evidently prove that the use of colostrums in the long term can be beneficial for various ailments associated with diabetes. In general, the findings of this review indicate that supplementation with colostrum may hold promise as a novel therapeutic intervention for people who have diabetes and its complications; however, additional research is required to fully understand its mechanisms of action and determine the best possible dosage as well as the time period of supplementation.
Collapse
Affiliation(s)
- Isha Chawla
- Department of Pharmacology, M. M. College of Pharmacy, M. M. Deemed to be University, Mullana, Ambala, 133207, India
| | - Meenakshi Dhanawat
- Department of Pharmaceutical Chemistry, Amity University, Gurugram, Haryana, India
| | - Manu Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, National Forensic Science University, New Delhi, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, M. M. Deemed to be University, Mullana, Ambala, 133207, India
| |
Collapse
|
36
|
Tang Y, Feng X, Liu N, Zhou Y, Wang Y, Chen Z, Liu Y. Relationship between systemic immune inflammation index and mortality among US adults with different diabetic status: Evidence from NHANES 1999-2018. Exp Gerontol 2024; 185:112350. [PMID: 38128848 DOI: 10.1016/j.exger.2023.112350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To investigate the association between systemic immune inflammation index (SII) and all-cause or cardiovascular diseases (CVDs) mortality in US adults with different diabetic status based on the National Health and Nutrition Examination Survey (NHANES) database. STUDY DESIGN AND SETTING Adults with follow-up data in the NHANES 1999-2018 cycles were included in this study. The SII was calculated based on blood cells counts (including neutrophils, lymphocytes, and platelets) measured in the laboratory data. According to the quartiles of SII, population were divided into four groups (Q1-Q4). Mortality data was determined by linking NHANES survey participants to the National Death Index records, which collect mortality data and determine their vital status. Cox regression models were also performed to explore the hazard ratio (HR) and the corresponding 95 % confidence interval (95 % CI) of SII related with all-cause and CVDs mortality. In addition, restricted cubic spline was used to explore the nonlinear relationship between SII and mortality. Subgroup analysis and sensitivity analysis were performed to confirm the robustness of our results. RESULTS In this study, there were 45,454 participants were enrolled (50.43 % females), with a mean age of 47.35 ± 0.19 years. Among of which, 7971 were diabetes patients and 3281 were pre-diabetes. With the mean 9.89 ± 0.08 follow-up years, there were 6935 (15.26 %) deaths occurred. Of which, 1795 deaths were caused by CVDs. The age-adjusted death rates were higher in participants with high SII levels compared to those with low SII levels. Cox regression analysis, after adjusting for covariates, revealed that SII levels were associated with an increased risk of all-cause mortality (HR, 1.02; 95 % CI, 1.02-1.03, P < 0.0001) and CVDs mortality (HR, 1.05; 95 % CI, 1.02-1.08, P = 0.002) in the fully adjusted Model. Moreover, there was a slight increase in HR values with the progression of diabetes status. Restricted cubic spline analysis demonstrated a "U-shaped" relationship between SII and all-cause mortality in diabetic, pre-diabetic and non-diabetic populations (all the P for nonlinear < 0.001). In addition, the relationship between SII and CVDs mortality was also nonlinear in both the pre-diabetic and non-diabetic populations (both P < 0.001). However, there was a linear relationship between SII and cardiovascular mortality in individuals with diabetes (P = 0.528). CONCLUSION The SII is closely associated with the risk of all-cause and cardiovascular mortality. These associations vary among individuals with different diabetic states. Therefore, monitoring systemic inflammation and SII values is crucial in mitigating the risk of mortality.
Collapse
Affiliation(s)
- Yujie Tang
- Affiliated Hospital of Weifang Medical University, Weifang, China; School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xiaojin Feng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuan Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yadi Wang
- Affiliated Hospital of Weifang Medical University, Weifang, China; School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhenna Chen
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
37
|
Ibrahim M, Khalife L, Abdel-Latif R, Faour WH. Ghrelin hormone a new molecular modulator between obesity and glomerular damage. Mol Biol Rep 2023; 50:10525-10533. [PMID: 37924451 DOI: 10.1007/s11033-023-08866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 11/06/2023]
Abstract
The incidence of glomerular diseases is increasing worldwide due to increased prevalence of obesity which is a major risk factor for type-2 diabetes mellitus and cardiovascular disorders.Ghrelin, an orexigenic peptide hormone, has been implicated in obesity, and its impact on the pathology and function of the kidneys was found to be significant. Ghrelin known to regulate energy homeostasis and growth hormone release, has been shown to modulate critical signaling pathways involved in the health and survival of podocytes. These derangements directly affect glomerular function and manifest as impaired glomerular filtration barrier and leakage of albumin into urine. Although the pathological features of the above-mentioned disorders are different, they interestingly lead to similar clinical features of glomerular damage. The pathological events are majorly initiated by endocrine imbalance leading to abnormal activation of downstream signaling pathways involved in the development of glomerulosclerosis. In fact, obesity increases the risk of developing chronic kidney disease by altering the secretion of pro-inflammatory cytokines and adipokines, activating the renin-angiotensin-aldosterone system (RAAS), promoting lipotoxicity, oxidative stress and fibrosis within the kidneys. Whilst these bioregulators are well described, their direct involvement in renal homeostasis is still mostly elusive. This review summarized previous and recent evidence on the endocrine properties of ghrelin and perivascular adipose tissue involved in modulating kidney physiology.
Collapse
Affiliation(s)
- Maroun Ibrahim
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Lynn Khalife
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Miniya, Egypt
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
38
|
Niknejad A, Hosseini Y, Shamsnia HS, Kashani AS, Rostamian F, Momtaz S, Abdolghaffari AH. Sodium Glucose Transporter-2 Inhibitors (SGLT2Is)-TLRs Axis Modulates Diabetes. Cell Biochem Biophys 2023; 81:599-613. [PMID: 37658280 DOI: 10.1007/s12013-023-01164-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 09/03/2023]
Abstract
Diabetes affects millions of people worldwide and is mainly associated with impaired insulin function. To date, various oral anti-diabetic drugs have been developed, of which, the sodium glucose transporter-2 inhibitors (SGLT2Is) are of the most recent classes that have been introduced. They differ from other classes in terms of their novel mechanism of actions and unique beneficial effects rather than just lowering glucose levels. SGLT2Is can protect body against cardiovascular events and kidney diseases even in non-diabetic individuals. SGLT2Is participate in immune cell activation, oxidative stress reduction, and inflammation mediation, thereby, moderating diabetic complications. In addition, toll like receptors (TLRs) are the intermediators of the immune system and inflammatory process, thus it's believed to play crucial roles in diabetic complications, particularly the ones that are related to inflammatory reactions. SGLT2Is are also effective against diabetic complications via their anti-inflammatory and oxidative properties. Given the anti-inflammatory properties of TLRs and SGLT2Is, this review investigates how SGLT2Is can affect the TLR pathway, and whether this could be favorable toward diabetes.
Collapse
Affiliation(s)
- Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ayeh Sabbagh Kashani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
39
|
Rojas-Espinosa O, Arce-Mendoza AY, Islas-Trujillo S, Muñiz-Buenrostro A, Arce-Paredes P, Popoca-Galván O, Moreno-Altamirano B, Rivero Silva M. Necrosis, netosis, and apoptosis in pulmonary tuberculosis and type-2 diabetes mellitus. Clues from the patient's serum. Tuberculosis (Edinb) 2023; 143:102426. [PMID: 38180029 DOI: 10.1016/j.tube.2023.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary tuberculosis (PTB) and type 2 diabetes mellitus (T2DM) are two inflammatory diseases whose pathology involves neutrophils (NEU) as key participants. Countless inflammatory elements produced at the lesion sites leak into the blood and are distributed systemically. The study aimed to investigate the effect of the serum of patients with PTB, T2DM, and PTB + T2DM on the cellular and nuclear morphology of healthy NEU. Monolayers of NEU were prepared and incubated with sera from PTB (n꓿ 10), T2DM (n꓿10), PTB + T2DM (n꓿ 10) patients, or sera from healthy people (n = 10). Monolayers were stained for histones, elastase, and myeloperoxidase for NETosis, annexin V for apoptosis, and Iris fuchsia for necrosis. Hoechst stain (DNA) was used to identify the nuclear alterations. Necrosis was the predominant alteration. Sera from PTB + T2DM were the most potent change inducers. Normal sera did not induce cell alterations. The blood of TBP and T2DM patients carries a myriad of abnormal elements that induce necrosis of NEU in normal people, thus reflecting what might occur in the neutrophils of the patients themselves. These findings reinforce the participation of NEU in the pathology of these diseases. Necrosis is expected to be the most frequent neutrophil-induced alteration in tuberculosis and diabetes mellitus.
Collapse
Affiliation(s)
- Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Alma Yolanda Arce-Mendoza
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Sergio Islas-Trujillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Antonio Muñiz-Buenrostro
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Patricia Arce-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Omar Popoca-Galván
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Bertha Moreno-Altamirano
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Miguel Rivero Silva
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| |
Collapse
|
40
|
Zheng H, Hu Y, Shao M, Chen S, Qi S. Chromium Picolinate Protects against Testicular Damage in STZ-Induced Diabetic Rats via Anti-Inflammation, Anti-Oxidation, Inhibiting Apoptosis, and Regulating the TGF-β1/Smad Pathway. Molecules 2023; 28:7669. [PMID: 38005391 PMCID: PMC10674689 DOI: 10.3390/molecules28227669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Chromium picolinate (CP) is an organic compound that has long been used to treat diabetes. Our previous studies found CP could relieve diabetic nephropathy. Thus, we speculate that it might have a positive effect on diabetic testicular injury. In this study, a diabetic rat model was established, and then the rats were treated with CP for 8 weeks. We found that the levels of blood glucose, food, and water intake were reduced, and body weight was enhanced in diabetic rats after CP supplementation. Meanwhile, in CP treatment groups, the levels of male hormone and sperm parameters were improved, the pathological structure of the testicular tissue was repaired, and testicular fibrosis was inhibited. In addition, CP reduced the levels of serum inflammatory cytokines, and decreased oxidative stress and apoptosis in the testicular tissue. In conclusion, CP could ameliorate testicular damage in diabetic rats, as well as being a potential testicle-protective nutrient in the future to prevent the testicular damage caused by diabetes.
Collapse
Affiliation(s)
- Hongxing Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- State Key Laboratory of Qinba Biological Resources and Ecological Environment, Hanzhong 723000, China
- Shaanxi Black Organic Food Engineering Technology Research Center, Hanzhong 723000, China
| | - Yingjun Hu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723000, China
| | - Mengli Shao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
| | - Simin Chen
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Shaanxi Province Key Laboratory of Bioresources, Hanzhong 723000, China
| | - Shanshan Qi
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Shaanxi Daoerfeng Biotechnology Company, Hanzhong 723000, China
| |
Collapse
|
41
|
Schiffmann N, Liang Y, Nemcovsky CE, Almogy M, Halperin-Sternfeld M, Gianneschi NC, Adler-Abramovich L, Rosen E. Enzyme-Responsive Nanoparticles for Dexamethasone Targeted Delivery to Treat Inflammation in Diabetes. Adv Healthc Mater 2023; 12:e2301053. [PMID: 37498238 DOI: 10.1002/adhm.202301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Diabetes is a global epidemic accompanied by impaired wound healing and increased risk of persistent infections and resistance to standard treatments. Therefore, there is an immense need to develop novel methods to specifically target therapeutics to affected tissues and improve treatment efficacy. This study aims to use enzyme-responsive nanoparticles for the targeted delivery of an anti-inflammatory drug, dexamethasone, to treat inflammation in diabetes. These nanoparticles are assembled from fluorescently-labeled, dexamethasone-loaded peptide-polymer amphiphiles. The nanoparticles are injected in vivo, adjacent to labeled collagen membranes sub-periosteally implanted on the calvaria of diabetic rats. Following their implantation, collagen membrane resorption is linked to inflammation, especially in hyperglycemic individuals. The nanoparticles show strong and prolonged accumulation in inflamed tissue after undergoing a morphological switch into microscale aggregates. Significantly higher remaining collagen membrane area and less inflammatory cell infiltration are observed in responsive nanoparticles-treated rats, compared to control groups injected with free dexamethasone and non-responsive nanoparticles. These factors indicate improved therapeutic efficacy in inflammation reduction. These results demonstrate the potential use of enzyme-responsive nanoparticles as targeted delivery vehicles for the treatment of diabetic and other inflammatory wounds.
Collapse
Affiliation(s)
- Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Carlos E Nemcovsky
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Almogy
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eyal Rosen
- Department of Endodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
42
|
Yu L, Zhao Y, Zhao Y. Advances in the pharmacological effects and molecular mechanisms of emodin in the treatment of metabolic diseases. Front Pharmacol 2023; 14:1240820. [PMID: 38027005 PMCID: PMC10644045 DOI: 10.3389/fphar.2023.1240820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. are traditional Chinese medicines that have been used for thousands of years. They are formulated into various preparations and are widely used. Emodin is a traditional Chinese medicine monomer and the main active ingredient in Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. Modern research shows that it has a variety of pharmacological effects, including promoting lipid and glucose metabolism, osteogenesis, and anti-inflammatory and anti-autophagy effects. Research on the toxicity and pharmacokinetics of emodin can promote its clinical application. This review aims to provide a basis for further development and clinical research of emodin in the treatment of metabolic diseases. We performed a comprehensive summary of the pharmacology and molecular mechanisms of emodin in treating metabolic diseases by searching databases such as Web of Science, PubMed, ScienceDirect, and CNKI up to 2023. In addition, this review also analyzes the toxicity and pharmacokinetics of emodin. The results show that emodin mainly regulates AMPK, PPAR, and inflammation-related signaling pathways, and has a good therapeutic effect on obesity, hyperlipidemia, non-alcoholic fatty liver disease, diabetes and its complications, and osteoporosis. In addition, controlling toxic factors and improving bioavailability are of great significance for its clinical application.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Traditional Chinese Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
- Department of Pharmacy, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yongliang Zhao
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongli Zhao
- Department of Traditional Chinese Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| |
Collapse
|
43
|
Zhang L, Mu J, Meng J, Su W, Li J. Dietary Phospholipids Alleviate Diet-Induced Obesity in Mice: Which Fatty Acids and Which Polar Head. Mar Drugs 2023; 21:555. [PMID: 37999379 PMCID: PMC10672366 DOI: 10.3390/md21110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The weight loss effects of dietary phospholipids have been extensively studied. However, little attention has been paid to the influence of phospholipids (PLs) with different fatty acids and polar headgroups on the development of obesity. High-fat-diet-fed mice were administrated with different kinds of PLs (2%, w/w) with specific fatty acids and headgroups, including EPA-enriched phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine (EPA-PC/PE/PS), DHA-PC/PE/PS, Egg-PC/PE/PS, and Soy-PC/PE/PS for eight weeks. Body weight, white adipose tissue weight, and the levels of serum lipid and inflammatory markers were measured. The expression of genes related to lipid metabolism in the liver were determined. The results showed that PLs decreased body weight, fat storage, and circulating lipid levels, and EPA-PLs had the best efficiency. Serum TNF-α, MCP-1 levels were significantly reduced via treatment with DHA-PLs and PS groups. Mechanistic investigation revealed that PLs, especially EPA-PLs and PSs, reduced fat accumulation through enhancing the expression of genes involved in fatty acid β-oxidation (Cpt1a, Cpt2, Cd36, and Acaa1a) and downregulating lipogenesis gene (Srebp1c, Scd1, Fas, and Acc) expression. These data suggest that EPA-PS exhibits the best effects among other PLs in terms of ameliorating obesity, which might be attributed to the fatty acid composition of phospholipids, as well as their headgroup.
Collapse
Affiliation(s)
- Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (J.M.)
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen 361021, China
| | - Jiaqin Mu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (J.M.)
| | - Jing Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Jining Institute for Food and Drug Control, Jining 272113, China
| | - Wenjin Su
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (J.M.)
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (J.M.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen 361021, China
| |
Collapse
|
44
|
Mohammed DM, Abdelgawad MA, Ghoneim MM, El-Sherbiny M, Mahdi WA, Alshehri S, Ebrahim HA, Farouk A. Effect of nano-encapsulated food flavorings on streptozotocin-induced diabetic rats. Food Funct 2023; 14:8814-8828. [PMID: 37681580 DOI: 10.1039/d3fo01299a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Flavors and aromas are widely used in food and pharmaceutical industries to enhance food palatability. However, it is worth noting that they may also have bioactivity. This study aims to examine the potential impact of key flavors and their nanocapsules on health and diseases, such as type 2 diabetes mellitus (T2DM). The 36 nanocapsules of key flavorings were prepared by high shear homogenization (HSH). Seventy-two male Sprague-Dawley rats received a single dosage of streptozotocin (35 mg kg-1 body weight) intraperitoneally. All of the nutritional and biochemical parameters were statistically analyzed. A virtual docking study was conducted. Linalool nanoemulsion results showed the highest encapsulation efficiency (86.76%), while isoamyl acetate nanoparticles showed the lowest (69.99%). According to GC-MS analysis, encapsulation did not affect the flavoring structure with particle size distributions ranging from 277.3 to 628.8 nm. Using TEM, nanoemulsion particles appeared spherical with a desired nanometric diameter size. In the oral glucose tolerance test, flavorings in oil and nanoforms had no discernible hypoglycemia effects in normal rats. The nutritional and biochemical parameters confirmed that both normal and nanoencapsulation forms demonstrated a potential anti-hyperglycemic effect, and enhanced the rat health compared to the raw flavorings. The studied flavorings and their nanocapsules seem to have the potential double effect of a flavor compound as a food palatability enhancer with a potential beneficial effect on type 2 diabetes mellitus without any health drawbacks.
Collapse
Affiliation(s)
- Dina Mostafa Mohammed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hasnaa A Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
45
|
Sooriyaarachchi P, Jayawardena R, Pavey T, King NA. Shift Work is Associated with an Elevated White Blood Cell Count: A Systematic Review and Meta-Analysis. Indian J Occup Environ Med 2023; 27:278-285. [PMID: 38390477 PMCID: PMC10880826 DOI: 10.4103/ijoem.ijoem_326_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/16/2023] [Accepted: 05/14/2023] [Indexed: 02/24/2024] Open
Abstract
The white blood cell (WBC) count increases significantly in reaction to infections and certain chronic diseases. Shift employment increases the risk for chronic low-grade inflammation and the progression of several chronic diseases. The objective of this study was to systematically evaluate the evidence from studies on total and differential WBC counts in shift employees. A literature search was performed in PubMed®, Web of Science, and Scopus databases using keywords for research published before March 1, 2022. A meta-analysis was conducted for total and differential WBC counts using a random-effects approach. A total of 25 studies covering a sample of 37,708 day and shift employees were included in this review. The studies represented America, Europe, East Asia, and Middle East. A significant increase in the total counts (×109/L) of WBC [mean difference (MD) = 0.43; 95% confidence interval (CI): 0.34-0.52; P < 0.001], lymphocytes (MD = 0.16; 95% CI: 0.02-0.30; P = 0.02), monocytes (MD = 0.04; 95% CI: 0-0.07; P = 0.03), and eosinophils (MD = 0.01; 95% CI: 0-0.01; P = 0.03) was observed in shift workers compared to the day counterparts. However, neutrophils and basophils were not significantly different between the groups. Shift work significantly increases the total and differential blood counts in peripheral circulation. Therefore, total and differential WBC counts represent a relatively inexpensive biomarker for diagnostics and prognostics of diseases in shift workers.
Collapse
Affiliation(s)
- Piumika Sooriyaarachchi
- Queensland University of Technology (QUT), Faculty of Health, School of Exercise and Nutrition Sciences, Brisbane, Queensland, Australia
- Health and Wellness Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Ranil Jayawardena
- Queensland University of Technology (QUT), Faculty of Health, School of Exercise and Nutrition Sciences, Brisbane, Queensland, Australia
- Department of Physiology, Faculty of Medicine, Colombo, Sri Lanka
| | - Toby Pavey
- Queensland University of Technology (QUT), Faculty of Health, School of Exercise and Nutrition Sciences, Brisbane, Queensland, Australia
| | - Neil A. King
- Queensland University of Technology (QUT), Faculty of Health, School of Exercise and Nutrition Sciences, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Xu X, Xie Y, Gu X, Zhou Y, Kang Y, Liu J, Lai W, Lu H, Chen S, Xu JY, Lin F, Liu Y. Association Between Systemic Immune Inflammation Level and Poor Prognosis Across Different Glucose Metabolism Status in Coronary Artery Disease Patients. J Inflamm Res 2023; 16:4031-4042. [PMID: 37719940 PMCID: PMC10505030 DOI: 10.2147/jir.s425189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023] Open
Abstract
Background Blood glucose levels significantly affect the clinical prognosis of patients with coronary artery disease (CAD), and systemic immune inflammation is a common risk factor for both CAD and diabetes. However, the relationship between immune inflammation levels and poor prognosis in patients with CAD with different glucose metabolic statuses remains unclear. Methods Between January 2007 and December 2020, we recruited 84,645 patients with CAD. The systemic immune inflammation index (SII) was used to comprehensively reflect the immune and inflammatory levels of patients and was calculated using the following formula: neutrophils × platelets/lymphocytes. The patients were classified into nine groups according to their glucose metabolism status (diabetes mellitus [DM], pre-diabetes mellitus [pre-DM], and normal glucose regulation [NGR]). Cox regression models and competing risk Fine and Gray models were used to investigate the association between SII and clinical outcomes. Results During the follow-up period, 12,578 patients died, including 5857 cardiovascular-related and 1251 cancer-related deaths. The risk of all-cause and cause-specific mortality increased with increasing SII tertiles in CAD patients with NGR, pre-DM, and DM. When considering glucose metabolism status, the multivariate cox regression revealed that CAD patients with DM and SII-H levels had the highest risk of all-cause mortality (1.69 [1.56-1.83]), cardiovascular mortality (2.29 [2.02-2.59]), and cancer mortality (1.29 [1.01-1.66]). Moreover, incorporating the SII into traditional risk factor models significantly improved the C-index for predicting all-cause and cardiovascular mortality. Conclusion Systemic immune inflammation levels on admission were correlated with a higher risk of all-cause and cause-specific mortality in patients with CAD, particularly in those with DM.
Collapse
Affiliation(s)
- Xiayan Xu
- School of Medicine, South China University of Technology, Guangzhou, 510006, People’s Republic of China
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Yun Xie
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- School of Biology and Biological Engineering South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Xia Gu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150086, People’s Republic of China
- Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Yang Zhou
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Yu Kang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Jin Liu
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Wenguang Lai
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- School of Biology and Biological Engineering South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Hongyu Lu
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Shiqun Chen
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Jun-yan Xu
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Feng Lin
- Shenzhen People’s Hospital, Shenzhen, 518020, People’s Republic of China
| | - Yong Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, People’s Republic of China
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
47
|
Zeze T, Shinjo T, Sato K, Nishimura Y, Imagawa M, Chen S, Ahmed AK, Iwashita M, Yamashita A, Fukuda T, Sanui T, Park K, King GL, Nishimura F. Endothelial Insulin Resistance Exacerbates Experimental Periodontitis. J Dent Res 2023; 102:1152-1161. [PMID: 37448347 DOI: 10.1177/00220345231181539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Epidemiological studies suggest that the severity of periodontitis is higher in people with diabetes than in healthy individuals. Insulin resistance might play a crucial role in the pathogenesis of multiple diabetic complications and is reportedly induced in the gingiva of rodents with type 2 diabetes; however, the molecular mechanisms underlying the pathogenesis of diabetes-related periodontitis remain unclear. Therefore, we aimed to investigate whether endothelial insulin resistance in the gingiva may contribute to the pathogenesis of periodontitis as well as elucidate its underlying molecular mechanisms. We demonstrated that insulin treatment downregulated lipopolysaccharide (LPS)-induced or tumor necrosis factor α (TNFα)-induced VCAM1 expression in endothelial cells (ECs) via the PI3K/Akt activating pathway, resulting in reduced cellular adhesion between ECs and leukocytes. Hyperglycemia-induced selective insulin resistance in ECs diminished the effect of insulin on LPS- or TNFα-stimulated VCAM1 expression. Vascular endothelial cell-specific insulin receptor knockout (VEIRKO) mice exhibited selective inhibition of the PI3K/Akt pathway in the gingiva and advanced experimental periodontitis-induced alveolar bone loss via upregulation of Vcam1, Tnfα, Mcp-1, Rankl, and neutrophil migration into the gingiva compared with that in the wild-type (WT) mice despite being free from diabetes. We also observed that insulin-mediated activation of FoxO1, a downstream target of Akt, was suppressed in the gingiva of VEIRKO and high-fat diet (HFD)-fed mice, hyperglycemia-treated ECs, and primary ECs from VEIRKO. Further analysis using ECs transfected with intact and mutated FoxO1, with mutations at 3 insulin-mediated phosphorylation sites (T24A, S256D, S316A), suggested that insulin-mediated regulation of VCAM1 expression and cellular adhesion of ECs with leukocytes was attenuated by mutated FoxO1 overexpression. These results suggest that insulin resistance in ECs may contribute to the progression of periodontitis via dysregulated VCAM1 expression and cellular adhesion with leukocytes, resulting from reduced activation of the PI3K/Akt/FoxO1 axis.
Collapse
Affiliation(s)
- T Zeze
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - T Shinjo
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - K Sato
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Y Nishimura
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Imagawa
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - S Chen
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - A-K Ahmed
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Iwashita
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - A Yamashita
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - T Fukuda
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - T Sanui
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - K Park
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - G L King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - F Nishimura
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Guo C, Cao M, Diao N, Wang W, Geng H, Su Y, Sun T, Lu X, Kong M, Chen D. Novel pH-responsive E-selectin targeting natural polysaccharides hybrid micelles for diabetic nephropathy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102696. [PMID: 37394108 DOI: 10.1016/j.nano.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Diabetic nephropathy (DN) is an important complication of diabetes and is the main cause of end-stage renal disease. The pathogenesis of DN is complex, including glucose and lipid metabolism disorder, inflammation, and so on. Novel hybrid micelles loaded Puerarin (Pue) based on Angelica sinensis polysaccharides (ASP) and Astragalus polysaccharide (APS) were fabricated with pH-responsive ASP-hydrazone-ibuprofen (BF) materials (ASP-HZ-BF, SHB) and sialic acid (SA) modified APS-hydrazone-ibuprofen materials (SA/APS-HZ-BF, SPHB) by thin-film dispersion method. The SA in hybrid micelles can specifically bind to the E-selectin receptor which is highly expressed in inflammatory vascular endothelial cells. The loaded Pue could be accurately delivered to the inflammatory site of the kidney in response to the low pH microenvironment. Overall, this study provides a promising strategy for developing hybrid micelles based on natural polysaccharides for the treatment of diabetic nephropathy by inhibiting renal inflammatory reactions, and antioxidant stress.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China
| | - Min Cao
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Ningning Diao
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Wenxin Wang
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Yanguo Su
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Tianying Sun
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Xinyue Lu
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China.
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| |
Collapse
|
49
|
Sahoo OS, Mitra R, Bhattacharjee A, Kar S, Mukherjee O. Is Diabetes Mellitus a Predisposing Factor for Helicobacter pylori Infections? Curr Diab Rep 2023; 23:195-205. [PMID: 37213058 DOI: 10.1007/s11892-023-01511-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE OF REVIEW This review aims to analyse the consistency of reports suggesting the role of Diabetes Mellitus in the pathogenesis of Helicobacter pylori (H. pylori). RECENT FINDINGS There have been numerous controversies citing the prevalence of H. pylori infections in patients suffering from type 2 diabetes mellitus (T2DM). This review investigates the possible crosstalk between H. pylori infections and T2DM and also designs a meta-analysis to quantify the association. Subgroup analyses have also been conducted to deduce factors like geography and testing techniques, in playing a role in stratification analysis. Based on a scientific literature survey and meta-analysis of databases from 1996 to 2022, a trend towards more frequent H. pylori infections in patients with diabetes mellitus was observed. The highly diversified nature of H. pylori infections across age, gender, and geographical regions requires large interventional studies to evaluate its long-term association with diabetes mellitus. Further possible linkage of the prevalence of diabetes mellitus concomitant with that of H. pylori infected patients has also been delineated in the review.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209
| | - Rhiti Mitra
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209
| | - Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209
- Department of Microbiology, Kingston College of Science, Beruanpukuria, Barasat, West Bengal, India, 700129
| | - Samarjit Kar
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209.
| |
Collapse
|
50
|
Tan Q, Wang B, Ye Z, Mu G, Liu W, Nie X, Yu L, Zhou M, Chen W. Cross-sectional and longitudinal relationships between ozone exposure and glucose homeostasis: Exploring the role of systemic inflammation and oxidative stress in a general Chinese urban population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121711. [PMID: 37100372 DOI: 10.1016/j.envpol.2023.121711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/05/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
The adverse health effects of ozone pollution have been a globally concerned public health issue. Herein we aim to investigate the association between ozone exposure and glucose homeostasis, and to explore the potential role of systemic inflammation and oxidative stress in this association. A total of 6578 observations from the Wuhan-Zhuhai cohort (baseline and two follow-ups) were included in this study. Fasting plasma glucose (FPG) and insulin (FPI), plasma C-reactive protein (CRP, biomarker for systemic inflammation), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG, biomarker for oxidative DNA damage), and urinary 8-isoprostane (biomarker for lipid peroxidation) were repeatedly measured. After adjusting for potential confounders, ozone exposure was positively associated with FPG, FPI, and homeostasis model assessment of insulin resistance (HOMA-IR), and negatively associated with HOMA of beta cell function (HOMA-β) in cross-sectional analyses. Each 10 ppb increase in cumulative 7-days moving average ozone was associated with a 13.19%, 8.31%, and 12.77% increase in FPG, FPI, and HOMA-IR, respectively, whereas a 6.63% decrease in HOMA-β (all P < 0.05). BMI modified the associations of 7-days ozone exposure with FPI and HOMA-IR, and the effects were stronger in subgroup whose BMI ≥24 kg/m2. Consistently high exposure to annual average ozone was associated with increased FPG and FPI in longitudinal analyses. Furthermore, ozone exposure was positively related to CRP, 8-OHdG, and 8-isoprostane in dose-response manner. Increased CRP, 8-OHdG, and 8-isoprostane could dose-dependently aggravate glucose homeostasis indices elevations related to ozone exposure. Increased CRP and 8-isoprostane mediated 2.11-14.96% of ozone-associated glucose homeostasis indices increment. Our findings suggested that ozone exposure could cause glucose homeostasis damage and obese people were more susceptible. Systemic inflammation and oxidative stress might be potential pathways in glucose homeostasis damage induced by ozone exposure.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|