1
|
Kobayashi S, Sata F, Ikeda-Araki A, Miyashita C, Goudarzi H, Iwasaki Y, Nakajima T, Kishi R. Relationships between maternal perfluoroalkyl substance levels, polymorphisms of receptor genes, and adverse birth outcomes in the Hokkaido birth cohort study, Japan. Reprod Toxicol 2021; 107:112-122. [PMID: 34896592 DOI: 10.1016/j.reprotox.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
We assessed the associations between perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) levels in third trimester maternal serum, the maternal genotypes of genes encoding nuclear receptors, and birth outcomes. We studied a prospective birth cohort of healthy pregnant Japanese women (n = 372) recruited in Sapporo between July 2002 and October 2005. We analyzed PFOS and PFOA levels using liquid chromatography-tandem mass spectrometry and analyzed 13 single nucleotide polymorphisms (SNPs) of proliferator-activated receptor alpha, gamma, gamma coactivator 1A, delta, constitutive androstane receptor, liver X receptor alpha, and beta (LXRB) using real-time polymerase reaction (PCR). We employed multiple linear regression models to establish the influences of log10-transformed PFOS and PFOA levels and maternal genotypes on birth size. In female infants, we identified interactions between PFOS levels, the maternal genotype of LXRB (rs1405655), and birth weight. The estimated mean changes in birth weight in response to PFOS levels, the maternal genotype LXRB (rs1405655)-TC/CC (compared to TT), and their interactions were -502.9 g (95 % confidence interval [CI] = -247.3, -758.5 g), -526.3 g (95 % CI = -200.7, -852.0 g), and 662.1 g (95 % CI = 221.0, 1,103.2 g; pint = 0.003), respectively. Interactions between PFOS levels and the maternal genotype of LXRB (rs1405655) also significantly affected birth chest circumference and the Ponderal index (pint = 0.037 and 0.005, respectively). Thus, interactions between PFOS levels and the maternal genotype of LXRB (rs1405655) affects birth sizes in female infants. We found that certain SNPs modify the effects of PFOS levels on birth size.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo, 162-8473, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yusuke Iwasaki
- Department of Biopharmaceutics and Analytical Science, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, 1200, Matsumoto-cho, Kasugai, 487-8501, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
2
|
Associations between maternal mono-(2-ethylhexyl) phthalate levels, nuclear receptor gene polymorphisms, and fatty acid levels in pregnant Japanese women in the Hokkaido study. Reprod Toxicol 2021; 107:22-32. [PMID: 34801790 DOI: 10.1016/j.reprotox.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022]
Abstract
We assessed how the interaction between mono-(2-ethylhexyl) phthalate (MEHP) in maternal sera and the maternal genotypes associated with nuclear receptors affect fatty acid levels in a prospective birth cohort study of pregnant Japanese individuals (n = 437) recruited in Sapporo between 2002 and 2005. We analyzed MEHP and fatty acids using gas chromatography-mass spectrometry. Thirteen single nucleotide polymorphisms of peroxisome proliferator-activated receptor (PPAR) alpha, PPAR gamma (PPARG), PPARG coactivator 1A (PPARGC1A), PPAR delta, constitutive androstane receptor, liver X receptor (LXR) alpha, and LXR beta (LXRB) were analyzed using real-time PCR. Multiple linear regression models were used to confirm the influence of log10-transformed MEHP levels and maternal genotypes on log10-transformed fatty acid levels. When the effects of the interaction between MEHP levels and the maternal PPARGC1A (rs8192678) genotype on oleic acid levels were evaluated, the estimated changes (95 % confidence intervals) in oleic acid levels against MEHP levels, maternal PPARGC1A (rs8192678)-GA/AA genotype, and the interaction between them showed a mean reduction of 0.200 (0.079, 0.322), mean reduction of 0.141 (0.000, 0.283), and mean increase of 0.145 (0.010, 0.281), respectively, after adjusting for the perfluorooctanesulfonate level. The effects of the interaction between MEHP levels and maternal LXRB (rs2303044) genotype on linoleic acid levels was also significant (pint = 0.010). In conclusion, the interaction between MEHP and the maternal genotypes PPARGC1A (rs8192678) and LXRB (rs2303044) decreased fatty acid levels. Further, the interaction between MEHP and PPARGC1A (rs8192678) may have a greater effect on fatty acid levels than the interaction between PFOS and PPARGC1A.
Collapse
|
3
|
Associations among perfluorooctanesulfonic/perfluorooctanoic acid levels, nuclear receptor gene polymorphisms, and lipid levels in pregnant women in the Hokkaido study. Sci Rep 2021; 11:9994. [PMID: 33976266 PMCID: PMC8113244 DOI: 10.1038/s41598-021-89285-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The effect of interactions between perfluorooctanesulfonic (PFOS)/perfluorooctanoic acid (PFOA) levels and nuclear receptor genotypes on fatty acid (FA) levels, including those of triglycerides, is not clear understood. Therefore, in the present study, we aimed to analyse the association of PFOS/PFOA levels and single-nucleotide polymorphisms (SNPs) in nuclear receptors with FA levels in pregnant women. We analysed 504 mothers in a birth cohort between 2002 and 2005 in Japan. Serum PFOS/PFOA and FA levels were measured using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Maternal genotypes in PPARA (rs1800234; rs135561), PPARG (rs3856806), PPARGC1A (rs2970847; rs8192678), PPARD (rs1053049; rs2267668), CAR (rs2307424; rs2501873), LXRA (rs2279238) and LXRB (rs1405655; rs2303044; rs4802703) were analysed. When gene-environment interaction was considered, PFOS exposure (log10 scale) decreased palmitic, palmitoleic, and oleic acid levels (log10 scale), with the observed β in the range of - 0.452 to - 0.244; PPARGC1A (rs8192678) and PPARD (rs1053049; rs2267668) genotypes decreased triglyceride, palmitic, palmitoleic, and oleic acid levels, with the observed β in the range of - 0.266 to - 0.176. Interactions between PFOS exposure and SNPs were significant for palmitic acid (Pint = 0.004 to 0.017). In conclusion, the interactions between maternal PFOS levels and PPARGC1A or PPARD may modify maternal FA levels.
Collapse
|
4
|
Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 2016; 51:655-76. [PMID: 27117865 PMCID: PMC5408584 DOI: 10.1007/s11745-016-4155-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA.
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Dr., Alabaster, AL, 35007-9105, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Chemistry, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| |
Collapse
|
5
|
Dong C, Zhou H, Shen C, Yu LG, Ding Y, Zhang YH, Guo ZR. Role of peroxisome proliferator-activated receptors gene polymorphisms in type 2 diabetes and metabolic syndrome. World J Diabetes 2015; 6:654-661. [PMID: 25987964 PMCID: PMC4434087 DOI: 10.4239/wjd.v6.i4.654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/27/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are the serious public health problems worldwide. Moreover, it is estimated that MetS patients have about five-fold greater risk of the T2DM development compared with people without the syndrome. Peroxisome proliferator-activated receptors are a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors which play an important role in the pathogenesis of MetS and T2DM. All three members of the peroxisome proliferator-activated receptor (PPAR) nuclear receptor subfamily, PPARα, PPARβ/δ and PPARγ are critical in regulating insulin sensitivity, adipogenesis, lipid metabolism, and blood pressure. Recently, more and more studies indicated that the gene polymorphism of PPARs, such as Leu162Val and Val227Ala of PPARα, +294T > C of PPARβ/δ, Pro12Ala and C1431T of PPARγ, are significantly associated with the onset and progressing of MetS and T2DM in different population worldwide. Furthermore, a large body of evidence demonstrated that the glucose metabolism and lipid metabolism were influenced by gene-gene interaction among PPARs genes. However, given the complexity pathogenesis of metabolic disease, it is unlikely that genetic variation of a single locus would provide an adequate explanation of inter-individual differences which results in diverse clinical syndromes. Thus, gene-gene interactions and gene-environment interactions associated with T2DM and MetS need future comprehensive studies.
Collapse
|
6
|
Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr 2013; 4:439-52. [PMID: 23858092 PMCID: PMC3941823 DOI: 10.3945/an.113.003798] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors that belong to the superfamily of nuclear hormone receptors and regulate the expression of several genes involved in metabolic processes that are potentially linked to the development of some diseases such as hyperlipidemia, diabetes, and obesity. One type of PPAR, PPAR-α, is a transcription factor that regulates the metabolism of lipids, carbohydrates, and amino acids and is activated by ligands such as polyunsaturated fatty acids and drugs used to treat dyslipidemias. There is evidence that genetic variants within the PPARα gene have been associated with a risk of the development of dyslipidemia and cardiovascular disease by influencing fasting and postprandial lipid concentrations; the gene variants have also been associated with an acceleration of the progression of type 2 diabetes. The interactions between genetic PPARα variants and the response to dietary factors will help to identify individuals or populations who can benefit from specific dietary recommendations. Interestingly, certain nutritional conditions, such as the prolonged consumption of a protein-restricted diet, can produce long-lasting effects on PPARα gene expression through modifications in the methylation of a specific locus surrounding the PPARα gene. Thus, this review underlines our current knowledge about the important role of PPAR-α as a mediator of the metabolic response to nutritional and environmental factors.
Collapse
Affiliation(s)
- Alejandra V. Contreras
- Faculty of Medicine, National University Autonomous of Mexico, PhD Program in Biomedical Sciences,National Institute of Genomic Medicine
| | - Nimbe Torres
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico D.F. Mexico
| | - Armando R. Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico D.F. Mexico,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Kang SH, Lee JI, Chang AK, Joo YH, Kim CY, Kim SY. Genetic Polymorphisms in the HTR2C and Peroxisome Proliferator-Activated Receptors Are Not Associated with Metabolic Syndrome in Patients with Schizophrenia Taking Clozapine. Psychiatry Investig 2011; 8:262-8. [PMID: 21994515 PMCID: PMC3182393 DOI: 10.4306/pi.2011.8.3.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/28/2010] [Accepted: 01/12/2011] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Genetic variation in the serotonin-2C receptor encoded by the HTR2C gene is one of the genetic determinants of antipsychotic-induced weight gain. Peroxisome proliferator-activated receptors are nuclear receptors regulating the expression of genes involved in lipid and glucose metabolism. In this cross-sectional study, we investigated whether HTR2C-759C/T, HTR2C-697G/C, PPARα V227A, and PPARγ 161C/T genotypes were associated with metabolic syndrome (MetS) in patients with schizophrenia taking clozapine. METHODS One hundred forty-six Korean patients using clozapine for more than one year were genotyped for the HTR2C-759C/T, HTR2C-697G/C, PPARα V227A, and PPARγ 161C/T polymorphisms, and their weight, waist circumference, blood pressure, triglycerides, high-density lipoprotein-cholesterol, total cholesterol, and glucose were measured. We used the criteria for MetS proposed by the National Cholesterol Education Program-adapted Adult Treatment Panel III. RESULTS The prevalence of MetS was 47.3% and was similar among men (49%) and women (42.9%). We found no significant differences between patients with and without MetS in terms of genotypes or allele frequencies. Logistic regression analyses also revealed no association between MetS and each genotype. CONCLUSION We did not find significant associations between four polymorphisms (HTR2C-759C/T, HTR2C-697G/C, PPARα V227A, and PPARγ 161C/T) and MetS in patients with schizophrenia taking clozapine.
Collapse
Affiliation(s)
- Shi Hyun Kang
- Department of Psychiatry, Seoul National Hospital, Seoul, Korea
| | - Jong Il Lee
- Department of Psychiatry, Seoul National Hospital, Seoul, Korea
| | - An Kee Chang
- Department of Psychiatry, Seoul National Hospital, Seoul, Korea
| | - Yeon Ho Joo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Kawamoto T, Kokaze A, Ishikawa M, Matsunaga N, Karita K, Yoshida M, Shimada N, Ohtsu T, Shirasawa T, Ochiai H, Ito T, Hoshino H, Takashima Y. Joint effect of longevity-associated mitochondrial DNA 5178 C/A polymorphism and alcohol consumption on risk of hyper-LDL cholesterolemia in middle-aged Japanese men. Lipids Health Dis 2011; 10:105. [PMID: 21702983 PMCID: PMC3134423 DOI: 10.1186/1476-511x-10-105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Combined effects between mitochondrial DNA 5178 (Mt5178) C/A polymorphism and alcohol consumption on the risk of hypertension or hyperuricemia have been reported. The objective of this study was to investigate whether Mt5178 C/A polymorphism modulates the effects of alcohol consumption on the risk of dyslipidemia. METHODS A total of 394 male subjects were selected from among individuals visiting the hospital for regular medical check-ups. After Mt5178 C/A genotyping, a cross-sectional study assessing the combined effect of Mt5178 polymorphism and alcohol consumption on the risk of dyslipidemia was conducted. RESULTS For men with Mt5178C, alcohol consumption was significantly and negatively associated with the risk of hyper-low-density lipoprotein (LDL) cholesterolemia (serum LDL cholesterol ≥ 140 mg/dl) (P for trend = 0.015). After adjustment for age, body mass index (BMI), habitual smoking, coffee consumption and use of antihypertensive medicine, the odds ratio (OR) for hyper-LDL cholesterolemia was significantly lower in daily drinkers with Mt5178C than non-drinkers with Mt5178C (OR = 0.360, 95% confidence intervals: 0.153-0.847). A significant and negative association between alcohol consumption and serum LDL cholesterol levels was also observed in Mt5178C genotypic men (P for trend < 0.01). On the other hand, the association between Mt5178A genotype and risk of hyper-LDL cholesterolemia does not appear to depend on alcohol consumption. CONCLUSIONS For Mt5178C genotypic men, alcohol consumption may reduce the risk of hyper-LDL cholesterolemia.
Collapse
Affiliation(s)
- Teruyoshi Kawamoto
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akatsuki Kokaze
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Department of Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Mamoru Ishikawa
- Department of Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
- Mito Red Cross Hospital, 3-12-48 Sannomaru, Mito-shi, Ibaraki 310-0011, Japan
| | - Naomi Matsunaga
- Department of Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Kanae Karita
- Department of Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Masao Yoshida
- Department of Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Naoki Shimada
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Tadahiro Ohtsu
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takako Shirasawa
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hirotaka Ochiai
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Taku Ito
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiromi Hoshino
- Department of Public Health, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yutaka Takashima
- Department of Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
9
|
Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010; 2010:612089. [PMID: 20936127 PMCID: PMC2948931 DOI: 10.1155/2010/612089] [Citation(s) in RCA: 565] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022] Open
Abstract
The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.
Collapse
Affiliation(s)
- Maryam Rakhshandehroo
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Bianca Knoch
- Food, Metabolism & Microbiology, Food & Textiles Group, AgResearch, Palmerston North 4442, New Zealand
- Institute of Food, Nutrition & Human Health, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Michael Müller
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
10
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Chen S, Li Y, Li S, Yu C. A Val227Ala substitution in the peroxisome proliferator activated receptor alpha (PPAR alpha) gene associated with non-alcoholic fatty liver disease and decreased waist circumference and waist-to-hip ratio. J Gastroenterol Hepatol 2008; 23:1415-8. [PMID: 18853997 DOI: 10.1111/j.1440-1746.2008.05523.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM This study analyzes the effect of the val227ala variant of the peroxisome proliferators-activated receptor-alpha (PPAR-alpha) on non-alcoholic fatty liver disease. METHODS 79 patients with NAFLD and 63 healthy counterparts were included in the study. Body mass index (BMI), hip, waist, waist-to-hip ratio (WHR), blood pressure (BP), the percentage of body fat, total protein, albumin, ALT, triglyceride, cholesterol, HDL and fasting blood glucose were assessed. The genotypes were analyzed using oligonucleotide microarray. Logistic model was used to perform the multi-factors synthetical analysis on the data obtained to screen the risk factors closely associated with Val227Ala polymorphism of PPAR-alpha gene. RESULTS There were 6.33% (5/79) subjects with CC/CT genotype (ala227ala and val227ala) and 93.67% (74/79) subjects with TT genotype (val227val) in patients with NAFLD, and there were 20.63% (13/63) with CC/CT genotype and 79.37% (50/63) subjects with TT genotype. The distribution of PPAR-alpha val227ala polymorphism between NAFLD and healty subjects was significant (p = 0.011). The level of weight, body mass index, hip circumference, waist circumference, waist-hip ratio, percentage of body fat, abdominal wall fat thickness in subjects with Val227Ala variant were significantly lower than that in Val227wide type. The results showed that waist circumference and WHR were related with the PPAR-alpha val227ala polymorphism. CONCLUSION PPAR-alpha val227ala polymorphism may be involved in the pathogenesis of NAFLD and play a protective role in obesity.
Collapse
Affiliation(s)
- Shaohua Chen
- Zhejiang University, College of Medicine, The First Affiliated Hospital, Gastroenterology, Zhejiang, China
| | | | | | | |
Collapse
|
12
|
Francès F, Verdú F, Portolés O, Castelló A, Sorlí JV, Guillen M, Corella D. PPAR-alpha L162V and PGC-1 G482S gene polymorphisms, but not PPAR-gamma P12A, are associated with alcohol consumption in a Spanish Mediterranean population. Clin Chim Acta 2008; 398:70-4. [PMID: 18786524 DOI: 10.1016/j.cca.2008.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/14/2008] [Accepted: 08/14/2008] [Indexed: 01/02/2023]
Abstract
BACKGROUND Peroxisome Proliferator-Activated Receptors (PPARs) and its co-activators are regulatory elements of the cellular lipid homeostasis and have been associated with feeding behavior modulation. Animal models suggest that these genes may be involved in alcohol consumption regulation. However, no studies in humans exist. Our aim is to estimate the possible association between polymorphisms in the PPAR-alpha, PPAR-gamma and PPAR-gamma co-activator 1A (PGC-1A) genes and alcohol consumption in humans. METHODS We have conducted a cross-sectional study between the PPAR-alpha L162V, PPAR-gamma P12A and PGC-1A G482S polymorphisms, and alcohol consumption in a general Mediterranean Spanish population (303 men and 443 women). RESULTS We have found an association between the L162V polymorphism and alcohol consumption in which, carriers of the V allele were more prevalent among alcohol consumers (19.4% vs. 9.8%; OR 2.69; 95% CI: 1.31-5.54, p=0.007). The G482S polymorphism showed a significantly higher frequency in the group of high alcohol drinkers than in non-high alcohol drinkers (33.4% vs. 20.6%; OR 2.28; 95% CI: 1.07-4.88, p=0.034). Mean alcohol consumption was higher as the number of G alleles increased (GG 8.6+/-12.8 g/day, GS 6.6+/-9.2 g/day, SS 5.6+/-7.8 g/day, p=0.003). These results remained statistically significant after covariate adjustment. CONCLUSIONS PPAR-alpha L162V and PGC-1A G482S polymorphisms are associated with alcohol consumption in the Mediterranean population.
Collapse
Affiliation(s)
- F Francès
- Department of Preventive and Legal Medicine, School of Medicine, University of Valencia, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|