1
|
Mianesaz H, Ghalamkari S, Abbasi F, Razzaghy-Azar M, Sayarifard F, Vakili R, Sedghi M, Noroozi Asl S, Hosseini S, Amoli MM, Yaghootkar H. Genetic variant profiling of neonatal diabetes mellitus in Iranian patients: Unveiling 58 distinct variants in 14 genes. J Diabetes Investig 2024; 15:1390-1402. [PMID: 38970407 PMCID: PMC11442839 DOI: 10.1111/jdi.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Neonatal diabetes mellitus (NDM) is a rare non-immunological monogenic disorder characterized by hyperglycemic conditions primarily occurring within the first 6 months of life. The majority of cases are attributed to pathogenic variants in genes affecting beta-cell survival, insulin regulation, and secretion. This study aims to investigate the genetic landscape of NDM in Iran. METHODS We recruited a total of 135 patients who were initially diagnosed with diabetes at <12 months of age in Iran and referred to pediatric endocrinology clinics across the country. These patients underwent genetic diagnostic tests conducted by the Exeter Molecular Genetics Laboratory in the UK. The pathogenic variants identified were sorted and described based on type, pathogenicity (according to ACMG/AMP criteria), novelty, and the affected protein domain. RESULTS Genetic defects were identified in 93 probands, presenting various pathogenic abnormalities associated with NDM and its associated syndromes. 76% of the patients were born as a result of consanguineous marriage, and a familial history of diabetes was found in 43% of the cases. A total of 58 distinct variants in 14 different genes were discovered, including 20 variants reported for the first time. Causative variants were most frequently identified in EIF2AK3, KCNJ11, and ABCC8, respectively. Notably, EIF2AK3 and ABCC8 exhibited the highest number of novel variants. DISCUSSION These findings provide valuable insights into the genetic landscape of NDM in the Iranian population and contribute to the knowledge of novel pathogenic variants within known causative genes.
Collapse
Affiliation(s)
- Hamidreza Mianesaz
- Department of Human Genetics, Medical School, University of Debrecen, Debrecen, Hungary
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Ghalamkari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Farzaneh Abbasi
- Growth and Development Research Center, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular - Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayarifard
- Growth and Development Research Center, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Vakili
- Department of Pediatric Endocrinology and Metabolism, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sedghi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Noroozi Asl
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Hosseini
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular - Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Shen LH, Cui Y, Fu DX, Yang W, Wu SN, Wang HZ, Yang HH, Chen YX, Wei HY. Transient diabetes mellitus with ABCC8 variant successfully treated with sulfonylurea: Two case reports and review of literature. World J Diabetes 2024; 15:1811-1819. [PMID: 39192869 PMCID: PMC11346097 DOI: 10.4239/wjd.v15.i8.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Transient neonatal diabetes mellitus (TNDM) is a rare form of diabetes mellitus that usually presents within the first 6 mo of life. Patients often enter remission within several months, although relapse can occur later in life. Mutations in the ABCC8 gene, which encodes the sulfonylurea receptor 1 of the ATP-sensitive potassium channel in pancreatic beta cells, are associated with TNDM and permanent neonatal diabetes. This study describes a novel de novo c.3880C>T heterozygous ABCC8 variant that causes TNDM and can be treated with sulf-onylurea therapy. CASE SUMMARY We retrospectively analyzed 2 Chinese patients with TNDM who were diagnosed, treated, or referred for follow-up between September 2017 and September 2023. The patients were tested for mutations using targeted next-generation sequencing. Patients with neonatal diabetes mellitus caused by a c.3880C>T heterozygous missense variant in the ABCC8 gene have not been reported before. Both children had an onset of post-infectious diabetic ketoacidosis, which is worth noting. At a follow-up visit after discontinuing insulin injection, oral glyburide was found to be effective with no adverse reactions. CONCLUSION Early genetic testing of neonatal diabetes mellitus aids in accurate diagnosis and treatment and helps avoid daily insulin injections that may cause pain.
Collapse
Affiliation(s)
- Ling-Hua Shen
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Yan Cui
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Dong-Xia Fu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Wei Yang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Sheng-Nan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hui-Zhen Wang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hai-Hua Yang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Yong-Xing Chen
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hai-Yan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| |
Collapse
|
3
|
Naylor RN, Patel KA, Kettunen JLT, Männistö JME, Støy J, Beltrand J, Polak M, Vilsbøll T, Greeley SAW, Hattersley AT, Tuomi T. Precision treatment of beta-cell monogenic diabetes: a systematic review. COMMUNICATIONS MEDICINE 2024; 4:145. [PMID: 39025920 PMCID: PMC11258280 DOI: 10.1038/s43856-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Beta-cell monogenic forms of diabetes have strong support for precision medicine. We systematically analyzed evidence for precision treatments for GCK-related hyperglycemia, HNF1A-, HNF4A- and HNF1B-diabetes, and mitochondrial diabetes (MD) due to m.3243 A > G variant, 6q24-transient neonatal diabetes mellitus (TND) and SLC19A2-diabetes. METHODS The search of PubMed, MEDLINE, and Embase for individual and group level data for glycemic outcomes using inclusion (English, original articles written after 1992) and exclusion (VUS, multiple diabetes types, absent/aggregated treatment effect measures) criteria. The risk of bias was assessed using NHLBI study-quality assessment tools. Data extracted from Covidence were summarized and presented as descriptive statistics in tables and text. RESULTS There are 146 studies included, with only six being experimental studies. For GCK-related hyperglycemia, the six studies (35 individuals) assessing therapy discontinuation show no HbA1c deterioration. A randomized trial (18 individuals per group) shows that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes. Cohort and case studies support SU's effectiveness in lowering HbA1c. Two cross-over trials (each with 15-16 individuals) suggest glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes is limited. Most reported patients with HNF1B-diabetes (N = 293) and MD (N = 233) are on insulin without treatment studies. Limited data support oral agents after relapse in 6q24-TND and for thiamine improving glycemic control and reducing/eliminating insulin requirement in SLC19A2-diabetes. CONCLUSION There is limited evidence, and with moderate or serious risk of bias, to guide monogenic diabetes treatment. Further evidence is needed to examine the optimum treatment in monogenic subtypes.
Collapse
Affiliation(s)
- Rochelle N Naylor
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, USA
| | - Kashyap A Patel
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Jarno L T Kettunen
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Jonna M E Männistö
- Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio, Finland
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Julie Støy
- Steno diabetes center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jacques Beltrand
- APHP Centre Hôpital Necker Enfants Malades Université Paris Cité, Paris, France
| | - Michel Polak
- Inserm U1016 Institut Cochin, Paris, France
- Department of Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, Paris, France
- Université Paris Cité, Paris, France
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen, København, Denmark
| | - Siri A W Greeley
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, USA
| | - Andrew T Hattersley
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Tiinamaija Tuomi
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland.
- Folkhalsan Research Center, Helsinki, Finland.
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland.
- Lund University Diabetes Center, Malmo, Sweden.
| |
Collapse
|
4
|
Naylor RN, Patel KA, Kettunen JL, Männistö JM, Støy J, Beltrand J, Polak M, Vilsbøll T, Greeley SA, Hattersley AT, Tuomi T. Systematic Review of Treatment of Beta-Cell Monogenic Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.12.23289807. [PMID: 37214872 PMCID: PMC10197799 DOI: 10.1101/2023.05.12.23289807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Beta-cell monogenic forms of diabetes are the area of diabetes care with the strongest support for precision medicine. We reviewed treatment of hyperglycemia in GCK-related hyperglycemia, HNF1A-HNF4A- and HNF1B-diabetes, Mitochondrial diabetes (MD) due to m.3243A>G variant, 6q24-transient neonatal diabetes (TND) and SLC19A2-diabetes. Methods Systematic reviews with data from PubMed, MEDLINE and Embase were performed for the different subtypes. Individual and group level data was extracted for glycemic outcomes in individuals with genetically confirmed monogenic diabetes. Results 147 studies met inclusion criteria with only six experimental studies and the rest being single case reports or cohort studies. Most studies had moderate or serious risk of bias.For GCK-related hyperglycemia, six studies (N=35) showed no deterioration in HbA1c on discontinuing glucose lowering therapy. A randomized trial (n=18 per group) showed that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes, and cohort and case studies supported SU effectiveness in lowering HbA1c. Two crossover trials (n=15 and n=16) suggested glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes was limited. While some patients with HNF1B-diabetes (n=301) and MD (n=250) were treated with oral agents, most were on insulin. There was some support for the use of oral agents after relapse in 6q24-TND, and for thiamine improving glycemic control and reducing insulin requirement in SLC19A2-diabetes (less than half achieved insulin-independency). Conclusion There is limited evidence to guide the treatment in monogenic diabetes with most studies being non-randomized and small. The data supports: no treatment in GCK-related hyperglycemia; SU for HNF1A-diabetes. Further evidence is needed to examine the optimum treatment in monogenic subtypes.
Collapse
Affiliation(s)
- Rochelle N. Naylor
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kashyap A. Patel
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Jarno L.T. Kettunen
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland; Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Jonna M.E. Männistö
- Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio, Finland; Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Julie Støy
- Steno diabetes center Aarhus, Aarhus university hospital, Aarhus, Denmark
| | - Jacques Beltrand
- APHP Centre Hôpital Necker Enfants Malades Université Paris Cité, Paris France; Inserm U1016 Institut Cochin Paris France
| | - Michel Polak
- Department of pediatric endocrinology gynecology and diabetology, Hôpital Universitaire Necker Enfants Malades, IMAGINE institute, INSERM U1016, Paris, France; Université Paris Cité, Paris, France
| | - ADA/EASD PMDI
- American Diabetes Association/European Association for the Study of Diabetes Precision Medicine Initiative
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen
| | - Siri A.W. Greeley
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA
| | - Andrew T. Hattersley
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | | |
Collapse
|
5
|
Sung MW, Driggers CM, Mostofian B, Russo JD, Patton BL, Zuckerman DM, Shyng SL. Ligand-mediated Structural Dynamics of a Mammalian Pancreatic K ATP Channel. J Mol Biol 2022; 434:167789. [PMID: 35964676 PMCID: PMC9618280 DOI: 10.1016/j.jmb.2022.167789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Regulation of pancreatic KATP channels involves orchestrated interactions of their subunits, Kir6.2 and SUR1, and ligands. Previously we reported KATP channel cryo-EM structures in the presence and absence of pharmacological inhibitors and ATP, focusing on the mechanisms by which inhibitors act as pharmacological chaperones of KATP channels (Martin et al., 2019). Here we analyzed the same cryo-EM datasets with a focus on channel conformational dynamics to elucidate structural correlates pertinent to ligand interactions and channel gating. We found pharmacological inhibitors and ATP enrich a channel conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane domain, while depleting one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm. This conformational change remodels a network of intra- and inter-subunit interactions as well as the ATP and PIP2 binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2 and SUR1's ABC module involving residues implicated in channel function and showed a SUR1 residue, K134, participates in PIP2 binding. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and R54, that mediate both ATP and PIP2 binding, suggesting a mechanism for competitive gating by ATP and PIP2.
Collapse
Affiliation(s)
- Min Woo Sung
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA. https://twitter.com/MinWooSung5
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Barmak Mostofian
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - John D Russo
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Mouler M, Lebenthal Y, de Vries L, Yackobovitch-Gavan M, Averbuch NS, Fauret-Amsellem AL, Cavé H, Beltrand J, Polak M, Phillip M, Nimri R. Clinical characteristics, growth patterns, and long-term diabetes complications of 24 patients with neonatal diabetes mellitus: A single center experience. Pediatr Diabetes 2022; 23:45-54. [PMID: 34837310 DOI: 10.1111/pedi.13295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes, diagnosed before age 6 months. We aimed to describe the clinical characteristics, molecular genetics, and long-term follow-up of NDM patients from a single pediatric endocrine center in Israel. METHODS Retrospective study (1975-2020) of all patients diagnosed with diabetes before 6 months of age, who tested negative for pancreatic autoantibodies. Medical records were reviewed for demographic, familial and medical history, and clinical and biochemical features; a genetic analysis was performed. RESULTS Of 24 patients, nine had transient neonatal diabetes (TNDM) and 15 permanent neonatal diabetes (PNDM), of whom five had rare syndromic causes. Genetic etiology was revealed in 87.5% of the NDM cohort, and the most common causes were ABCC8 mutations in TNDM and KCNJ11 and insulin gene mutations in PNDM. The switch from insulin to off-label sulfonylurea therapy was successful for 5/9 (56%) of the qualifying candidates. Severe hypoglycemia and diabetic ketoacidosis developed in 2 (8%) patients, and chronic diabetes complications in 5 (21%) patients with more than 10 years NDM. At last follow-up, weight and height of all but two syndromic PNDM patients were normal. The median height-SDS of the TNDM subgroup was significantly taller and the mean weight-SDS significantly heavier than those of the PNDM subgroup (-0.52 (-0.67, -0.09) vs. -0.9 (-1.42, -0.3) (p = 0.035) and 0.22 ± 0.69 vs. -0.89 ± 1.21 (p = 0.02), respectively). PNDM patients showed no incremental change in mean weight SDS over the time. CONCLUSION The Israeli NDM cohort has clinical and genetic characteristics comparable with other populations. Patients with TNDM were taller and heavier than those diagnosed with PNDM, although both show rapid catch-up growth and reached normal growth parameters. Chronic diabetes complications developed in patients with long-standing NDM.
Collapse
Affiliation(s)
- Marie Mouler
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Yael Lebenthal
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat de Vries
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Yackobovitch-Gavan
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Noa Shefer Averbuch
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Anne Laure Fauret-Amsellem
- Department of Genetics, Hôpital Universitaire Robert Debré, Assistance Publique-Hôpitaux de Paris, Université Paris-Diderot, Paris, France
| | - Helene Cavé
- Department of Genetics, Hôpital Universitaire Robert Debré, Assistance Publique-Hôpitaux de Paris, Université Paris-Diderot, Paris, France
| | - Jacques Beltrand
- Department of Paediatric Endocrinology, Gynaecology, and Diabetology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, IMAGINE Institute, INSERM U1016, Paris, France
| | - Michel Polak
- Department of Paediatric Endocrinology, Gynaecology, and Diabetology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, IMAGINE Institute, INSERM U1016, Paris, France
| | - Moshe Phillip
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Revital Nimri
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| |
Collapse
|
7
|
Timmers M, Dirinck E, Lauwers P, Wuyts W, De Block C. ABCC8 variants in MODY12: Review of the literature and report of a case with severe complications. Diabetes Metab Res Rev 2021; 37:e3459. [PMID: 34014594 DOI: 10.1002/dmrr.3459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 11/10/2022]
Abstract
More than 1000 variants of the ATP-binding cassette transporter subfamily C member 8 (ABCC8) gene have been reported in neonatal diabetes mellitus. Up to now only 55 ABCC8 variants were associated with Maturity-Onset Diabetes of the Young 12 (MODY12). We present a c.3544C>T p.(Arg1182Trp) ABCC8 variant in a 35-year-old women who had pronounced microvascular diabetic complications and a charcot arthropathy necessitating a lower limb amputation. The unusual severity of the disease course prompted us to perform a systematic review of all genetic variants in MODY12. The present mutation has mostly been associated with neonatal diabetes and in only three papers reporting a MODY12. The 55 MODY12 variants show a large clinical heterogeneity, even in relatives with the same mutation, ranging from mild impaired glucose tolerance to severe insulin-dependent diabetes mellitus. HbA1c at diagnosis ranged from 5% to 14% and age at diagnosis ranged from 2 to 53 years. However, several case reports lack documentation of diabetic complications. Hence, more detailed reports remain necessary to improve insight in MODY12 pathophysiology and outcome. In this article current data regarding therapeutic management are provided, and key points to consider for the individual patient affected by MODY12 are presented.
Collapse
Affiliation(s)
- Marijke Timmers
- Department of Endocrinology, Diabetology, and Metabolism, Antwerp University Hospital, Edegem, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology, and Metabolism, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Patrick Lauwers
- Department of Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Wim Wuyts
- Department of Medical Genetics, Antwerp University Hospital, Edegem, Belgium
| | - Christophe De Block
- Department of Endocrinology, Diabetology, and Metabolism, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Giannopoulou EZ, Ovcarov O, De Franco E, Kassberger F, Nusser S, Otto MC, Denzer C, Wabitsch M. Transient neonatal diabetes due to a disease causing novel variant in the ATP-binding cassette subfamily C member 8 ( ABCC8) gene unmasks maturity-onset diabetes of the young (MODY) diabetes cases within a family. J Pediatr Endocrinol Metab 2021; 34:273-276. [PMID: 33185579 DOI: 10.1515/jpem-2020-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/26/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Neonatal diabetes mellitus (NDM) is a rare monogenic diabetes form, occurring mainly from ATP-binding cassette subfamily C member 8 (ABCC8) and KCNJ11 mutations. ABCC8 mutations have also been found to cause adult-onset diabetes. What is new?: •Novel ABCC8 mutation in an NDM case •Heterogeneous clinical presentation of diabetes and response to sulfonylurea therapy among family members with the same ABCC8 mutation. CASE PRESENTATION We report the case of a newborn with NDM and a heterozygous ABCC8 novel variant (c.3835G>A), successfully treated with sulfonylurea. The same ABCC8 variant was found in two other family members, already treated for type 2 diabetes. CONCLUSIONS This case demonstrates the variable phenotypic presentation of diabetes due to a novel ABCC8 mutation (c.3835G>A), ranging from transient NDM to adult-onset, insulin-demanding diabetes, among family members. Genetic testing in young individuals with a strong family history of diabetes, presenting with non-autoimmune diabetes is recommended as it can determine prognosis and treatment of affected family members.
Collapse
Affiliation(s)
- Eleni Z Giannopoulou
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Ulm University, Ulm, Germany
| | - Olga Ovcarov
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Ulm University, Ulm, Germany
| | - Elisa De Franco
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Fabian Kassberger
- Department of Pediatrics and Adolescent Medicine, Klinikum Göppingen, Göppingen, Germany
| | - Susanne Nusser
- Department of Pediatrics and Adolescent Medicine, Klinikum Göppingen, Göppingen, Germany
| | - Marie Celine Otto
- Department of Pediatrics and Adolescent Medicine, Klinikum Göppingen, Göppingen, Germany
| | - Christian Denzer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Ulm University, Ulm, Germany
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Li M, Han X, Ji L. Clinical and Genetic Characteristics of ABCC8 Nonneonatal Diabetes Mellitus: A Systematic Review. J Diabetes Res 2021; 2021:9479268. [PMID: 34631896 PMCID: PMC8497126 DOI: 10.1155/2021/9479268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Diabetes mellitus (DM) is a major chronic metabolic disease in the world, and the prevalence has been increasing rapidly in recent years. The channel of KATP plays an important role in the regulation of insulin secretion. The variants in ABCC8 gene encoding the SUR1 subunit of KATP could cause a variety of phenotypes, including neonatal diabetes mellitus (ABCC8-NDM) and ABCC8-induced nonneonatal diabetes mellitus (ABCC8-NNDM). Since the features of ABCC8-NNDM have not been elucidated, this study is aimed at concluding the genetic features and clinical characteristics. METHODS We comprehensively reviewed the literature associated with ABCC8-NNDM in the following databases: MEDLINE, PubMed, and Web of Science to investigate the features of ABCC8-NNDM. RESULTS Based on a comprehensive literature search, we found that 87 probands with ABCC8-NNDM carried 71 ABCC8 genetic variant alleles, 24% of whom carried inactivating variants, 24% carried activating variants, and the remaining 52% carried activating or inactivating variants. Nine of these variants were confirmed to be activating or inactivating through functional studies, while four variants (p.R370S, p.E1506K, p.R1418H, and p.R1420H) were confirmed to be inactivating. The phenotypes of ABCC8-NNDM were variable and could also present with early hyperinsulinemia followed by reduced insulin secretion, progressing to diabetes later. They had a relatively high risk of microvascular complications and low prevalence of nervous disease, which is different from ABCC8-NDM. CONCLUSIONS Genetic testing is essential for proper diagnosis and appropriate treatment for patients with ABCC8-NNDM. And further studies are required to determine the complex mechanism of the variants of ABCC8-NNDM.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| |
Collapse
|
10
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Syding LA, Nickl P, Kasparek P, Sedlacek R. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells 2020; 9:cells9040993. [PMID: 32316223 PMCID: PMC7226972 DOI: 10.3390/cells9040993] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Imprinting diseases (IDs) are rare congenital disorders caused by aberrant dosages of imprinted genes. Rare IDs are comprised by a group of several distinct disorders that share a great deal of homology in terms of genetic etiologies and symptoms. Disruption of genetic or epigenetic mechanisms can cause issues with regulating the expression of imprinted genes, thus leading to disease. Genetic mutations affect the imprinted genes, duplications, deletions, and uniparental disomy (UPD) are reoccurring phenomena causing imprinting diseases. Epigenetic alterations on methylation marks in imprinting control centers (ICRs) also alters the expression patterns and the majority of patients with rare IDs carries intact but either silenced or overexpressed imprinted genes. Canonical CRISPR/Cas9 editing relying on double-stranded DNA break repair has little to offer in terms of therapeutics for rare IDs. Instead CRISPR/Cas9 can be used in a more sophisticated way by targeting the epigenome. Catalytically dead Cas9 (dCas9) tethered with effector enzymes such as DNA de- and methyltransferases and histone code editors in addition to systems such as CRISPRa and CRISPRi have been shown to have high epigenome editing efficiency in eukaryotic cells. This new era of CRISPR epigenome editors could arguably be a game-changer for curing and treating rare IDs by refined activation and silencing of disturbed imprinted gene expression. This review describes major CRISPR-based epigenome editors and points out their potential use in research and therapy of rare imprinting diseases.
Collapse
Affiliation(s)
- Linn Amanda Syding
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
| | - Petr Nickl
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
| | - Petr Kasparek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
- Correspondence: ; Tel.: +420-325-873-243
| |
Collapse
|
12
|
Fu JL, Wang T, Xiao XH. Relapsed 6q24-related transient neonatal diabetes mellitus successfully treated with sulfonylurea. Chin Med J (Engl) 2019; 132:846-848. [PMID: 30897598 PMCID: PMC6595857 DOI: 10.1097/cm9.0000000000000147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jun-Ling Fu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | |
Collapse
|
13
|
Garcin L, Kariyawasam D, Busiah K, Fauret-Amsellem AL, Le Bourgeois F, Vaivre-Douret L, Cavé H, Polak M, Beltrand J. Successful off-label sulfonylurea treatment of neonatal diabetes mellitus due to chromosome 6 abnormalities. Pediatr Diabetes 2018; 19:663-669. [PMID: 29504184 DOI: 10.1111/pedi.12635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022] Open
Abstract
Chromosome 6 abnormalities such as paternal uniparental isodisomy, paternal 6q24 duplication, and maternal DMR (differentially methylated region) hypomethylation are a common cause of transient neonatal diabetes mellitus (TNDM). Oral sulfonylurea (SU) is used off-label to treat permanent neonatal diabetes mellitus owing to potassium channel mutation but has not been evaluated in TNDM. Our objective was to evaluate the efficacy and safety of SU therapy in chromosome 6-related TNDM. Description of 3 case reports and literature review was the subject of the study. SU therapy was successful in 2 patients (initiated during neonatal life in 1 patient and during relapse in the other) but failed in the other despite the use of high dosage. The literature review identified 11 cases of patients with chromosome 6-related TNDM treated with SU, including 4 treated before remission and 7 after the relapse. SU therapy was consistently effective, although 4 patients treated after the relapse required multiple oral medications. None of the patients needed associated insulin therapy. No side effects of SU or complications of diabetes were reported. SU seems effective and safe in chromosome 6-related TNDM treatment when used to treat the initial episode of diabetes or the relapse. It improves patients' and families' quality of life. SU is available only as oral tablets. A pediatric dosage form would facilitate the treatment of neonates and infants.
Collapse
Affiliation(s)
- Laure Garcin
- Service Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Universitaire Necker Enfants Malades Paris, Assistance Publique-Hôpitaux de Paris, France
| | - Dulanjalee Kariyawasam
- Service Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Universitaire Necker Enfants Malades Paris, Assistance Publique-Hôpitaux de Paris, France.,Faculté de Médecine Paris Descartes, Université Sorbonne Paris Cité, Paris, France.,Inserm U1016, Institut Cochin, Paris, France
| | - Kanetee Busiah
- Service Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Universitaire Necker Enfants Malades Paris, Assistance Publique-Hôpitaux de Paris, France
| | - Anne-Laure Fauret-Amsellem
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Robert Debré, Paris, France
| | - Fleur Le Bourgeois
- Service de Réanimation et Surveillance Continues de Pédiatrie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Robert Debré, Paris, France
| | - Laurence Vaivre-Douret
- Faculté de Médecine Paris Descartes, Université Sorbonne Paris Cité, Paris, France.,UMR 1018 INSERM-CESP, Universités Paris Sud-Paris Saclay UVSQ et Paris Descartes SPC, Paris, France.,Service de Pédiatrie, Hôpitaux Universitaires Paris Centre Port-Royal Cochin, Assistance Publique-Hôpitaux de Paris, et Hôpital Universitaire Necker Enfants Malades, Paris, France.,Institut Universitaire de France, Paris, France
| | - Hélène Cavé
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Robert Debré, Paris, France.,Faculté de Médecine Paris-Diderot, Université Sorbonne-Paris-Cité, Paris, France
| | - Michel Polak
- Service Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Universitaire Necker Enfants Malades Paris, Assistance Publique-Hôpitaux de Paris, France.,Faculté de Médecine Paris Descartes, Université Sorbonne Paris Cité, Paris, France.,Inserm U1016, Institut Cochin, Paris, France.,Institut Imagine, Paris Descartes-Université Sorbonne Paris Cité, Paris, France
| | - Jacques Beltrand
- Service Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Universitaire Necker Enfants Malades Paris, Assistance Publique-Hôpitaux de Paris, France.,Faculté de Médecine Paris Descartes, Université Sorbonne Paris Cité, Paris, France.,Inserm U1016, Institut Cochin, Paris, France.,Institut Imagine, Paris Descartes-Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Yildiz M, Akcay T, Aydin B, Akgun A, Dogan BB, De Franco E, Ellard S, Onal H. Emergence of insulin resistance following empirical glibenclamide therapy: a case report of neonatal diabetes with a recessive INS gene mutation. J Pediatr Endocrinol Metab 2018; 31:345-348. [PMID: 29305569 DOI: 10.1515/jpem-2017-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/16/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND As KATP channel mutations are the most common cause of neonatal diabetes mellitus (NDM) and patients with these mutations can be treated with oral sulfonylureas, empiric therapy is a common practice for NDM patients. CASE PRESENTATION A non-syndromic, small for gestational age baby born to first-degree consanguineous parents was diagnosed with NDM. Because of hypo- and hyperglycemic episodes and variability in insulin requirement, we initiated a trial of glibenclamide, with a presumptive diagnosis of NDM caused by a KATP channel mutation. However, this empiric sulfonylurea trial did not improve the patient's glycemic control and resulted in resistance to exogenous insulin. Genetic testing identified a previously reported homozygous INS promoter mutation (c.-331C>G), which was not responsive to sulfonylurea therapy. CONCLUSIONS In light of our results, we recommend to confirm the genetic diagnosis as soon as possible and decide on sulfonylurea treatment after a genetic diagnosis is confirmed.
Collapse
Affiliation(s)
- Melek Yildiz
- Istanbul Saglık Bilimleri Universitesi Kanuni Sultan Suleyman Egitim ve Arastırma Hastanesi, Cocuk Endokrinoloji Bolumu, 34303, Küçükçekmece, Istanbul, Turkey
| | - Teoman Akcay
- Department of Pediatric Endocrinology and Metabolism, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Banu Aydin
- Department of Pediatric Endocrinology and Metabolism, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Abdurrahman Akgun
- Department of Pediatric Endocrinology and Metabolism, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Beyza Belde Dogan
- Department of Pediatric Endocrinology and Metabolism, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Elisa De Franco
- Molecular Genetics University of Exeter Medical School, Exeter, Devon, UK
| | - Sian Ellard
- Molecular Genetics University of Exeter Medical School, Exeter, Devon, UK
| | - Hasan Onal
- Department of Pediatric Endocrinology and Metabolism, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
15
|
Li X, Xu A, Sheng H, Ting TH, Mao X, Huang X, Jiang M, Cheng J, Liu L. Early transition from insulin to sulfonylureas in neonatal diabetes and follow-up: Experience from China. Pediatr Diabetes 2018; 19:251-258. [PMID: 28791793 DOI: 10.1111/pedi.12560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/22/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Sulfonylurea therapy can improve glycemic control and ameliorate neurodevelopmental outcomes in patients suffering from neonatal diabetes mellitus (NDM) with KCNJ11 or ABCC8 mutations. As genetic testing results are often delayed, it remains controversial whether sulfonylurea treatment should be attempted immediately at diagnosis or doctors should await genetic confirmation. OBJECTIVE This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available. METHODS The medical records of NDM patients with their follow-up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient. RESULTS There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14-120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3-0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2-0.4 mg/kg/d). No serious adverse events were reported. CONCLUSIONS Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM.
Collapse
Affiliation(s)
- Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Tzer Hwu Ting
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Univeristy Putra Malaysia, Serdang, Malaysia
| | - Xiaojian Mao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xinjiang Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Minyan Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jing Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
16
|
Hashimoto Y, Dateki S, Hirose M, Satomura K, Sawada H, Mizuno H, Sugihara S, Maruyama K, Urakami T, Sugawara H, Shirai K, Yorifuji T. Molecular and clinical features of K ATP -channel neonatal diabetes mellitus in Japan. Pediatr Diabetes 2017; 18:532-539. [PMID: 27681997 DOI: 10.1111/pedi.12447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND There are few reports pertaining to Asian patients with neonatal diabetes mellitus (NDM) caused by activating mutations in the ATP-sensitive potassium channel genes (KATP-NDM). OBJECTIVES To elucidate the characteristics of Japanese patients with KATP-NDM. METHODS By the amplification and direct sequencing of all exons and exon-intron boundaries of the KCNJ11 and ABCC8 genes, 25 patients with KATP-NDM were identified from a total of 70 patients with NDM. Clinical data were collected from the medical charts. RESULTS Sixteen patients had mutations in KCNJ11 and nine in ABCC8. Eight novel mutations were identified; two in KCNJ11 (V64M, R201G) and six in ABCC8 (R216C, G832C, F1176L, A1263V, I196N, T229N). Interestingly, V64M caused DEND (developmental delay, epilepsy, neonatal diabetes) syndrome in our patient, while mutation of the same residue (V64G) had been reported to cause congenital hyperinsulinism. Mutations in ABCC8 were associated with TNDM (4/9) or isolated PNDM (5/9), whereas those in KCNJ11 were associated with more severe phenotypes, including DEND (3/16), iDEND (intermediate DEND, 4/16), or isolated PNDM (6/16). Switching from insulin to glibenclamide monotherapy was successful in 87.5% of the patients. Neurological improvement was observed in two patients, one with DEND (T293N) and one with iDEND (R50P) syndrome. Three others with iDEND mutations (R201C, G53D, and V59M) remained neurologically normal at 5, 1, and 4 years of age, respectively, with early introduction of sulfonylurea. CONCLUSION Overall, clinical presentation of KATP-NDM in Japanese patients was similar to those of other populations. Early introduction of sulfonylurea appeared beneficial in ameliorating neurological symptoms.
Collapse
Affiliation(s)
- Yukiko Hashimoto
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.,Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masakazu Hirose
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenichi Satomura
- Department of Pediatric Nephrology and Metabolism, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - Hirotake Sawada
- Department of Reproductive and Developmental Medicine, University of Miyazaki, Miyazaki, Japan
| | - Haruo Mizuno
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shigetaka Sugihara
- Department of Pediatrics, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Koichi Maruyama
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Aichi, Japan
| | - Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Hidenori Sugawara
- Department of Pediatrics, Yokohama City University Medical Center, Kanagawa, Japan
| | - Kenji Shirai
- Department of Pediatrics, Seirei-Mikatahara General Hospital, Shizuoka, Japan
| | - Tohru Yorifuji
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.,Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
17
|
Varadarajan P. Infantile onset diabetes mellitus in developing countries - India. World J Diabetes 2016; 7:134-141. [PMID: 27022444 PMCID: PMC4807303 DOI: 10.4239/wjd.v7.i6.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/14/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Infantile onset diabetes mellitus (IODM) is an uncommon metabolic disorder in children. Infants with onset of diabetes mellitus (DM) at age less than one year are likely to have transient or permanent neonatal DM or rarely type 1 diabetes. Diabetes with onset below 6 mo is a heterogeneous disease caused by single gene mutations. Literature on IODM is scanty in India. Nearly 83% of IODM cases present with diabetic keto acidosis at the onset. Missed diagnosis was common in infants with diabetes (67%). Potassium channel mutation with sulphonylurea responsiveness is the common type in the non-syndromic IODM and Wolcott Rallison syndrome is the common type in syndromic diabetes. Developmental delay and seizures were the associated co-morbid states. Genetic diagnosis has made a phenomenal change in the management of IODM. Switching from subcutaneous insulin to oral hypoglycemic drugs is a major clinical breakthrough in the management of certain types of monogenic diabetes. Mortality in neonatal diabetes is 32.5% during follow-up from Indian studies. This article is a review of neonatal diabetes and available literature on IODM from India.
Collapse
|
18
|
Globa E, Zelinska N, Mackay DJ, Temple KI, Houghton JA, Hattersley AT, Flanagan SE, Ellard S. Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment. J Pediatr Endocrinol Metab 2015; 28:1279-86. [PMID: 26208381 PMCID: PMC4860009 DOI: 10.1515/jpem-2015-0170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/08/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neonatal diabetes has not been previously studied in Ukraine. We investigated the genetic etiology in patients with onset of diabetes during the first 9 months of life. METHODS We established a Pediatric Diabetes Register to identify patients diagnosed with diabetes before 9 months of age. Genetic testing was undertaken for 42 patients with permanent or transient diabetes diagnosed within the first 6 months of life (n=22) or permanent diabetes diagnosed between 6 and 9 months (n=20). RESULTS We determined the genetic etiology in 23 of 42 (55%) patients; 86% of the patients diagnosed before 6 months and 20% diagnosed between 6 and 9 months. The incidence of neonatal diabetes in Ukraine was calculated to be 1 in 126,397 live births. CONCLUSIONS Genetic testing for patients identified through the Ukrainian Pediatric Diabetes Register identified KCNJ11 and ABCC8 mutations as the most common cause (52%) of neonatal diabetes. Transfer to sulfonylureas improved glycemic control in all 11 patients.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/genetics
- Female
- Genetic Testing
- Humans
- Hypoglycemic Agents/therapeutic use
- Incidence
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/epidemiology
- Infant, Newborn, Diseases/genetics
- Male
- Mutation
- Phenotype
- Potassium Channels, Inwardly Rectifying/genetics
- Registries
- Sulfonylurea Compounds/therapeutic use
- Sulfonylurea Receptors/genetics
- Ukraine/epidemiology
Collapse
Affiliation(s)
- Evgenia Globa
- Ukrainian Center of Endocrine Surgery, Pediatric Endocrinology Department, Kyiv, Ukraine
| | - Nataliya Zelinska
- Ukrainian Center of Endocrine Surgery, Pediatric Endocrinology Department, Kyiv, Ukraine
| | - Deborah J.G. Mackay
- Academic Unit of Human Development and Health, Faculty of Medicine, Southampton University Hospitals NHS Trust, Southampton, Hampshire, UK
| | - Karen I. Temple
- Academic Unit of Human Development and Health, Faculty of Medicine, Southampton University Hospitals NHS Trust, Southampton, Hampshire, UK
| | - Jayne A.L. Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| |
Collapse
|