1
|
Adamska O, Wnuk A, Kamińska A, Poniatowska M, Maciąg B, Kamiński M, Stolarczyk A, Matin M, Atanasov AG, Łapiński M, Jóźwik A. Melatonin supplementation counteracts fiber loss in knee ligaments of diabetes-induced rats. Front Pharmacol 2024; 15:1399719. [PMID: 39135805 PMCID: PMC11317382 DOI: 10.3389/fphar.2024.1399719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent metabolic disease. The clinical impact of sustained hyperglycemia on ligament healing has not been well characterized. Diabetes is a known cause of macro-, microvascular, and diabetic ulcer healing difficulties among tissues. Therefore, we aimed to investigate the healing potential occurring in injured and healthy ligaments among diabetic and healthy individuals using a rat model. We hypothesize that DM may contribute to altering the knee medial collateral ligament (MCL), thus its morphology, biochemical fitness, and functionality. The study cohort consisted of 40 rats. The animals were randomized into four equal groups. Groups I and II (20 rats) received saline subcutaneously and served as controls. Groups III and IV (20 rats) were injected with a single dose of streptozotocin (STZ). All animals underwent surgery to cut the left tibial collateral ligament in the hind limb and suture it. The access site was sutured to create inflammation and study the regenerative capacities of animals with normal carbohydrate metabolism and pharmacologically induced diabetes. Each animal then underwent sham surgery to access and suture the right tibial collateral ligament in the hind limb without ligament intervention. After the animals had undergone surgeries, groups II and IV were given melatonin supplementation for 4 weeks. Rats with DM presented with more fibrosis and calcification of the MCL and decreased healing potential. Treatment with melatonin in diabetic rats mitigated alterations and improved the antioxidant status of ligaments from the diabetic group.
Collapse
Affiliation(s)
- Olga Adamska
- Department of Ophthalmology, Collegium Medicum, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | - Artur Wnuk
- Hospital in Ostrow Mazowiecka, Ostrów Mazowiecka, Poland
| | - Agnieszka Kamińska
- Department of Ophthalmology, Collegium Medicum, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | - Małgorzata Poniatowska
- Department of Nuclear Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bartosz Maciąg
- Orthopedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Artur Stolarczyk
- Orthopedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| | - Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Marcin Łapiński
- Orthopedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| |
Collapse
|
2
|
The antioxidant effects of melatonin in blood platelets during exposure to electromagnetic radiation – an in vitro study. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Objectives
The article presents the results of an in vitro study aimed at identifying changes in parameters of oxidative stress – concentration of malondialdehyde (MDA), enzymatic activity of superoxide dismutase (SOD-1) and protective antioxidant role of melatonin (MLT) during the exposure of blood platelets to electromagnetic radiation (EMR) emitted by monitors.
Methods
Platelets were exposed to an EMR for 30- and 60 min. generated by monitors (1 kHz frequency, 220 V/m intensity). In each sample the level of SOD-1 activity and concentration of MDA were determined.
Results
The MDA concentration increased significantly after 30-and 60-min. irradiation, as compared to control values (2.53 vs 1.36; 3.64 vs 1.36 nmol/109 blood platelets) and after the addition of MLT it decreased (2.53 vs 1.55; 3.64 vs 1.12 nmol/109 blood platelets). The activity of SOD-1 increased significantly compared to control values after 30 min. and 60 min. of exposure to EMR (1.97vs 0.75; 2.08 vs 0.75 U/g of protein), and significantly decreased after the addition of MLT only in samples exposed for 60 min. (2.08 vs 0.95 U/g of protein).
Discussion
The results demonstrated the possibly negative effect of EMR on oxygen metabolism of blood platelets and indicated a possible protective role of melatonin in this process.
Collapse
|
3
|
Onaolapo AY, Onaolapo OJ. Circadian dysrhythmia-linked diabetes mellitus: Examining melatonin’s roles in prophylaxis and management. World J Diabetes 2018; 9:99-114. [PMID: 30079146 PMCID: PMC6068738 DOI: 10.4239/wjd.v9.i7.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic, life-threatening metabolic disorder that occurs worldwide. Despite an increase in the knowledge of the risk factors that are associated with diabetes mellitus, its worldwide prevalence has continued to rise; thus, necessitating more research into its aetiology. Recent researches are beginning to link a dysregulation of the circadian rhythm to impairment of intermediary metabolism; with evidences that circadian rhythm dysfunction might play an important role in the aetiology, course or prognosis of some cases of diabetes mellitus. These evidences thereby suggest possible relationships between the circadian rhythm regulator melatonin, and diabetes mellitus. In this review, we discuss the roles of the circadian rhythm in the regulation of the metabolism of carbohydrates and other macronutrients; with emphasis on the importance of melatonin and the impacts of its deficiency on carbohydrate homeostasis. Also, the possibility of using melatonin and its analogs for the “prophylaxis” or management of diabetes mellitus is also considered.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho 210211, Oyo State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo 230263, Osun State, Nigeria
| |
Collapse
|