1
|
Mavaddatiyan L, Naeini S, Khodabandeh S, Hosseini F, Skelton RP, Azizi V, Talkhabi M. Exploring the association between aging, ferroptosis, and common age-related diseases. Arch Gerontol Geriatr 2025; 135:105877. [PMID: 40339241 DOI: 10.1016/j.archger.2025.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
Aging is a natural biological process that is characterized by the progressive decline in physiological functions and an increased vulnerability to age-related diseases. The aging process is driven by different cell and molecular mechanisms. It has recently been shown that aging is associated with heightened vulnerability to ferroptosis (an intracellular iron-dependent form of programmed cell death). This susceptibility arises from various factors including oxidative stress, impaired antioxidant defences, and dysregulated iron homeostasis. The progressive decline in cellular antioxidant capacity and the accumulation of damaged components contribute to the increased susceptibility of aging cells to ferroptosis. Dysregulation of key regulators involved in ferroptosis, such as glutathione peroxidase 4 (GPX4), iron regulatory proteins, and lipid metabolism enzymes, further exacerbates this vulnerability. The decline in cellular defence mechanisms against ferroptosis during aging contributes to the accumulation of damaged cells and tissues, ultimately resulting in the manifestation of age-related diseases. Understanding the intricate relevance between aging and ferroptosis holds significant potential for developing strategies to counteract the detrimental effects of aging and age-related diseases. This will subsequently act to mitigate the negative consequences of aging and improving overall health in the elderly population. This review aims to clarify the relationship between aging and ferroptosis, and explores the underlying mechanisms and implications for age-related disorders, including neurodegenerative, cardiovascular, and neoplastic diseases. We also discuss the accumulating evidence suggesting that the imbalance of redox homeostasis and perturbations in iron metabolism contribute to the age-associated vulnerability to ferroptosis.
Collapse
Affiliation(s)
- Laleh Mavaddatiyan
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - SaghiHakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Khodabandeh
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - RhysJ P Skelton
- Flinders Medical Centre, Department of Ophthalmology, Bedford Park, Australia
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Wang S, Du R, Liu J, Zhong W, Zhang C, Jiang X, Wang X, Wu Q, Tong G, Luo L. Multi-approach analysis reveals the mechanism by which Shugan Xiaozhi decoction protects against metabolic dysfunction-associated steatohepatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156712. [PMID: 40220418 DOI: 10.1016/j.phymed.2025.156712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/08/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a human health-threatening hepatic disease with limited treatment strategies. As a clinical Traditional Chinese Medicine compound for MASH, Shugan Xiaozhi (SGXZ) decoction has a definite effect, but its mechanism in treating MASH is still not very clear. PURPOSE Exploring the potential mechanism of SGXZ decoction in treating MASH through multiomics and animal experimental validation. METHODS UPLC-ESI-MS method was used to identify the main components of SGXZ decoction. Periodic acid-schiff (PAS), picrosirius red (PSR), and oil red o staining were used to assess the effect of SGXZ decoction on MCD-induced MASH mouse model. The mechanism of SGXZ decoction on MASH was analyzed using multiomics techniques. TUNEL staining, western blot (WB), immunohistochemistry (IHC), kits, transmission electron microscopy (TEM), and immunofluorescence (IF) were used to validate the mechanism of SGXZ decoction on MASH. Finally, molecular docking and molecular dynamics simulation were used to verify the targeting between key components of SGXZ decoction and important targets for intervention. RESULTS Through UPLC-ESI-MS analysis, 30 main active ingredients were obtained from SGXZ decoction. SGXZ decoction improved MASH, as evidenced by the improvement in histopathology, hepatic function indexes, lipid and fibrosis indicators. Both proteomic and transcriptomic results suggested an important role for ferroptosis in SGXZ decoction intervention in MASH, ferroptosis-related pathways were the main significant pathways obtained from these analyses. In addition, SGXZ decoction treatment reduced cell death, inflammation, and oxidative stress levels and restored impaired mitochondrial morphology in MCD-induced MASH mice. Furthermore, Mechanism experiments proved that SGXZ decoction treatment improved iron metabolism and lipid peroxidation imbalance and activated the Xc- system in MASH mice. CONCLUSION SGXZ decoction does have a therapeutic effect on MASH, and its mechanism may be related to its regulation of p53/ SLC7A11/GPX4 pathway to reduce ferroptosis.
Collapse
Affiliation(s)
- Shuai Wang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, PR China; Department of Hepatology, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong 518033, PR China; Shenzhen Key Laboratory of Liver Diseases of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong, 518033, PR China
| | - Ruili Du
- The First Clinical Medical College of Henan University of Chinese Medicine, No. 19, Renmin Road, Jinshui District, Henan, 450003, PR China
| | - Jiahui Liu
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong 518033, PR China
| | - Weichao Zhong
- Department of Hepatology, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong 518033, PR China; Shenzhen Key Laboratory of Liver Diseases of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong, 518033, PR China
| | - Chunmei Zhang
- School of Basic Medical Science of Luoyang Polytechnic, No. 6 Keji Avenue, Yibin District, Henan, 471099, PR China
| | - Xia Jiang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR China
| | - Xiaohui Wang
- Department of Hepatology, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong 518033, PR China; Shenzhen Key Laboratory of Liver Diseases of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong, 518033, PR China
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, PR China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao ln-Depth Cooperation Zone in Hengqin, 519000, PR China.
| | - Guangdong Tong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, PR China; Department of Hepatology, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong 518033, PR China; Shenzhen Key Laboratory of Liver Diseases of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong, 518033, PR China.
| | - Lidan Luo
- Department of Hepatology, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong 518033, PR China; Shenzhen Key Laboratory of Liver Diseases of Chinese Medicine, No. 15, Yingchun Road, Luohu District, Guangdong, 518033, PR China.
| |
Collapse
|
3
|
Alarcón-Veleiro C, López-Calvo I, Berjawi L, Lucio-Gallego S, Mato-Basalo R, Quindos-Varela M, Lesta-Mellid R, Santamarina-Caínzos I, Varela-Rodríguez S, Fraga M, Quintela M, Vizoso-Vázquez A, Arufe MC, Fafián-Labora J. Ferroptosis: An emerging strategy for managing epithelial ovarian cancer. Biomed Pharmacother 2025; 187:118065. [PMID: 40306179 DOI: 10.1016/j.biopha.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Ferroptosis is a regulated form of cell death characterised by iron-dependent lipid peroxidation, a process intricately linked to cellular redox homeostasis. This form of cell death is induced by the accumulation of intracellular iron and the subsequent generation of reactive oxygen species (ROS), which leads to lipid peroxidation and ultimately cell death. Ferroptosis is distinct from traditional forms of cell death, such as apoptosis, and holds significant therapeutic potential, particularly in cancers harboring rat sarcoma virus (RAS) mutations, such as epithelial ovarian cancer (EOC). EOC is notoriously resistant to conventional therapies and is associated with a poor prognosis. In this review, we examine recent progress in the understanding of ferroptosis, with a particular focus on its redox biology and the complex regulatory networks involved. We also propose a novel classification system for ferroptosis modulators, grouping them into six categories (I, II, III, IV, V and VI) based on their mechanisms of action and their roles in modulating cellular redox status. By refining these categories, we aim to provide deeper insights into the role of ferroptosis in cancer biology, especially in EOC, and to identify potential therapeutic avenues. We propose that further investigation of ferroptosis in the context of redox biology could reveal novel biomarkers and therapeutic targets, offering promising strategies to overcome resistance mechanisms and improve clinical outcomes for patients with EOC and other treatment-resistant cancers.
Collapse
Affiliation(s)
- C Alarcón-Veleiro
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - I López-Calvo
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain; Grupo EXPRELA, Departamento de Bioloxía, Facultade de Ciencias, Rúa da Fraga, A Coruña 15071, Spain; Centro Interdisciplinar de Química de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Rúa as Xubias 84, A Coruña 15006, Spain
| | - L Berjawi
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - S Lucio-Gallego
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - R Mato-Basalo
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - M Quindos-Varela
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - R Lesta-Mellid
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - I Santamarina-Caínzos
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - S Varela-Rodríguez
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - M Fraga
- Department of Anatomical Pathology, University Hospital Complex A Coruña, As Xubias 84, A Coruña 15006, Spain
| | - M Quintela
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - A Vizoso-Vázquez
- Grupo EXPRELA, Departamento de Bioloxía, Facultade de Ciencias, Rúa da Fraga, A Coruña 15071, Spain
| | - M C Arufe
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain.
| | - J Fafián-Labora
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain.
| |
Collapse
|
4
|
Xu M, Yu X, Jia L, Ye M, Zhao Y, Wang R, Tang Q, Zhu G, Chen J, Zhou Q, Deng S, Wang S. Polyphyllin I induces ferritinophagy dependent ferroptosis through EZH2 and promotes anti-tumor immunity. Biomed Pharmacother 2025; 187:118165. [PMID: 40359690 DOI: 10.1016/j.biopha.2025.118165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Polyphyllin I (PPI), the primary active component extracted from the commonly utilized drug Paris polyphylla, in clinical applications, exhibits exceptional anti-tumor activity. Therefore, the objective of this study is to delve into its antitumor properties by promoting ferroptosis and enhancing anti-tumor immunity. RESULTS Our result demonstrate that PPI effectively suppresses the proliferation of NSCLC cells and triggers their demise through the induction of ferroptosis. Furthermore, the degradation of iron via autophagy is pivotal in mediating PPI-induced ferroptosis in NSCLC. Notably, EZH2 emerges as a potential key target of PPI, and its overexpression can significantly attenuate the therapeutic efficacy of PPI. Lastly, these mechanistic insights and pathways were corroborated in animal model, and we preliminarily revealing a stimulatory role of PPI in bolstering anti-tumor immunity. CONCLUSION PPI triggers ferroptosis in NSCLC by downregulating EZH2, promoting NCOA4/Ferritin mediated ferritinophagy, and enhances anti-tumor immunity by promoting CD8 +T infiltration into tumor tissue.
Collapse
Affiliation(s)
- Mengfei Xu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China; Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing 100029, China.
| | - Xiaoyan Yu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Luyu Jia
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Mingnan Ye
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Yueyang Zhao
- Department of Hematology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Rui Wang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Qing Tang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Gangxing Zhu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Jicai Chen
- Department of Thoracic Surgery, Guangdong Province Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Qichun Zhou
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Shigui Deng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510006, China.
| | - Sumei Wang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Chinese Medicine Guangdong Laboratory, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
5
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025; 145:1323-1344. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
6
|
Ruan Y, Zhang L, Zhang L, Zhu K. Therapeutic Approaches Targeting Ferroptosis in Cardiomyopathy. Cardiovasc Drugs Ther 2025; 39:595-613. [PMID: 37930587 DOI: 10.1007/s10557-023-07514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The term cardiomyopathy refers to a group of heart diseases that cause severe heart failure over time. Cardiomyopathies have been proven to be associated with ferroptosis, a non-apoptotic form of cell death. It has been shown that some small molecule drugs and active ingredients of herbal medicine can regulate ferroptosis, thereby alleviating the development of cardiomyopathy. This article reviews recent discoveries about ferroptosis, its role in the pathogenesis of cardiomyopathy, and the therapeutic options for treating ferroptosis-associated cardiomyopathy. The article aims to provide insights into the basic mechanisms of ferroptosis and its treatment to prevent cardiomyopathy and related diseases.
Collapse
Affiliation(s)
- Yanqian Ruan
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lina Zhang
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Keyang Zhu
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Gu Y, Niu Z, Lu HH, Li SA, Zhou DH. Inhibition of GPX4 by Toxoplasma gondii Promotes Ferroptosis and Enhances Its Proliferation in Acute and Chronic Infection. Cells 2025; 14:756. [PMID: 40422259 DOI: 10.3390/cells14100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/30/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025] Open
Abstract
Toxoplasma gondii (T. gondii) is an intracellular parasite that extensively infects warm-blooded animals, causing toxoplasmosis and posing a significant threat to global public health. In this study, we investigated the association between T. gondii infection and ferroptosis in host cells, as well as the regulatory role of glutathione peroxidase 4 (GPX4). Our findings revealed that mice infected with RH and PRU strains of T. gondii exhibited significantly elevated levels of reactive oxygen species and malondialdehyde in brain and liver tissues. Concurrently, the expression of GPX4, a critical negative regulator of ferroptosis, was downregulated, which correlated with the elevated parasite burden. In Vero cells, T. gondii infection similarly inhibited GPX4 expression, whereas GPX4 overexpression suppressed T. gondii proliferation. These results indicate that T. gondii infection can promote ferroptosis in host cells and that GPX4 plays a pivotal role in regulating infection and proliferation. This study provides novel insights into the pathogenic mechanisms of T. gondii and identifies GPX4 as a regulatory factor that constrains parasite proliferation, offering new approaches for toxoplasmosis prevention and control.
Collapse
Affiliation(s)
- Yanlong Gu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhipeng Niu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui-Hong Lu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Ang Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Ye QH, Zhang P, Zhao YH, Zhu WX, Zhu HX, Wei BF. Decreased serum and local GPX4 and SLC7A11 expression correlates with disease severity in non-traumatic osteonecrosis of the femoral head. J Orthop Surg Res 2025; 20:477. [PMID: 40380264 PMCID: PMC12084951 DOI: 10.1186/s13018-025-05912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Ferroptosis is implicated in various musculoskeletal conditions, including non-traumatic osteonecrosis of the femoral head (NT-ONFH). OBJECTIVE The objective of this study was to explore the levels of two crucial proteins associated with ferroptosis, namely Glutathione peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11), in both serum and femoral head samples, and to correlate their expression levels with the clinical severity of NT-ONFH. METHODS The study included 136 NT-ONFH patients and an equal number of healthy controls. In addition, 68 subjects suffering from femoral neck fractures (FNF) were included in the study. The serum concentrations of GPX4 and SLC7A11 were quantified using the enzyme-linked immunosorbent assay. The GPX4 and SLC7A11 levels among tissue samples were identified through immunohistochemical staining, western blot analysis, and quantitative real-time polymerase chain reaction (qRT-PCR). The radiographic severity of the condition was evaluated utilizing the Association Research Circulation Osseous (ARCO) classification system, while the symptomatic severity was assessed utilizing the Visual Analogue Scale (VAS) alongside the Harris Hip Score (HHS). RESULTS Patients diagnosed with NT-ONFH had considerably reduced serum concentrations of GPX4 and SLC7A11 in comparison to individuals in the healthy control group. Negative correlations of serum GPX4 and SLC7A11 levels with the ARCO stages were observed. A total of 73 ONFH and 68 FNF patients underwent total hip replacement. The mRNA and protein levels of GPX4 and SLC7A11 were lower in the necrotic areas compared to the non-necrotic areas and FNF femoral head tissues. Subsequent Receiver operating characteristic (ROC) curve analysis suggested that the decreased levels of both serum and local GPX4 and SLC7A11 could serve as potential biomarkers for the progression of ONFH. Furthermore, serum and local GPX4 and SLC7A11 levels were found to be negatively linked to the VAS score but positively related to the HHS score. CONCLUSION The levels of GPX4 and SLC7A11, both in serum and at the local site, were inversely correlated with the progression of NT-ONFH. Targeting ferroptosis and its associated proteins through potential therapeutic interventions could be a viable strategy to mitigate the severity of NT-ONFH.
Collapse
Affiliation(s)
- Qing-He Ye
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Peng Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Yong-Heng Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Wen-Xiu Zhu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Hong-Xun Zhu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Biao-Fang Wei
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China.
| |
Collapse
|
9
|
Deng C, Ye Z, Zheng CJ, Cheng H, Ge J. Iron-based nanozymes induced ferroptosis for tumor therapy. NANOSCALE 2025. [PMID: 40370315 DOI: 10.1039/d5nr00880h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Iron-based nanozymes are an emerging class of nanomaterials demonstrating significant potential in tumor therapy by inducing ferroptosis-a regulated form of cell death marked by iron-mediated lipid peroxidation (LPO). These nanozymes exhibit unique enzymatic activities, including peroxidase, oxidase, and glutathione oxidase-like functions, enabling them to generate reactive oxygen species (ROS) and disrupt tumor microenvironment homeostasis. Leveraging Fenton chemistry, iron-based nanozymes amplify oxidative stress within tumor cells, thereby overcoming therapeutic challenges such as drug resistance and nonspecific toxicity. Despite significant advancements, the precise mechanisms by which iron-based nanozymes influence ferroptosis and their therapeutic efficacy remain underexplored. This review systematically categorizes these iron-based nanozymes, including iron oxides, single-atom enzymes, and metal-organic frameworks. We further elucidate their mechanisms in enhancing ferroptosis, focusing on their structural attributes, ROS generation pathways, and their enzymatic activities. Additionally, we summarized their biochemical applications alongside challenges in biosafety, nanozyme specificity, and advanced design and analysis approaches essential for maximizing their therapeutic efficacy.
Collapse
Affiliation(s)
- Chi Deng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| | - Zichen Ye
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| | | | - Hongfei Cheng
- Institute of New Energy for Vehicles, School of Material Science and Engineering, Tongji University, Shanghai 201804, P.R. China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
10
|
Noguchi N, Saito Y, Niki E. Lipid Peroxidation, Ferroptosis and Antioxidants. Free Radic Biol Med 2025:S0891-5849(25)00676-8. [PMID: 40374017 DOI: 10.1016/j.freeradbiomed.2025.05.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/27/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
The discovery and conceptualization of ferroptosis as regulated, iron-catalyzed cell death driven by excessive lipid peroxidation triggered re-evaluation of lipid hydroperoxides in connection with health and disease. Free and ester forms of polyunsaturated fatty acids (PUFAs) are oxidized in vivo by multiple oxidizing species to produce lipid hydroperoxides as primary products, some purposely while others unintentionally. The detailed analysis of isomer distribution of lipid hydroperoxides enables us to identify the responsible oxidants. Linoleates, the most abundant PUFA in humans, are oxidized to give multiple isomers of hydroperoxyoctadecadienoates (H(p)ODEs) as primary major products, racemic trans, trans-9- and 13-H(p)ODEs, 13(S)-cis, trans-H(p)ODE, and 10- and 12-H(p)ODEs being specific biomarker for the oxidation by free radicals, lipoxygenase (LOX), and singlet oxygen, respectively. Cholesterol is another important lipid and its hydroperoxides are produced solely by non-enzymatic oxidation, the major products being cholesterol 7-hydroperoxide and 5-hydroperoxide by free radicals and singlet oxygen, respectively. The available data obtained from human samples show that lipid hydroperoxides are produced in vivo primarily by free radical mediated lipid peroxidation and that the contribution of LOXs s and singlet oxygen is small. Multiple antioxidants having different functions play their respective roles in the physiological defense network against detrimental lipid peroxidation and ferroptosis. The fact that lipid hydroperoxides are produced in vivo mainly by free radical mediated lipid peroxidation suggests that radical scavenging antioxidants act as essential ferroptosis inhibitors, which was substantiated by many studies. Considering the reactivity and physiological concentrations, it may be said that vitamins E and C play the primary roles as biological radical scavenging antioxidants against ferroptosis by synergistic interactions. Novel synthetic antioxidants with higher reactivity than natural antioxidants have been reported and their biological effects should be assessed. The factors that determine antioxidant effects in vivo are critically reviewed.
Collapse
Affiliation(s)
- Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Etsuo Niki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo, Japan.
| |
Collapse
|
11
|
Hao X, Wang Y, Hou MJ, Yang YX, Liao L, Chen T, Wang P, Chen X, Zhu BT. Strong protection by bazedoxifene against chemically-induced ferroptotic neuronal death in vitro and in vivo. Cell Commun Signal 2025; 23:218. [PMID: 40336106 PMCID: PMC12060420 DOI: 10.1186/s12964-025-02209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Ferroptosis, a form of regulated cell death associated with glutathione depletion and excess lipid peroxidation, can be induced in cultured cells by chemicals (e.g., erastin and RSL3). It has been shown that protein disulfide isomerase (PDI) is a mediator of chemically-induced ferroptosis and also a crucial target for ferroptosis protection. The present study reports that bazedoxifene (BAZ), a selective estrogen receptor modulator, is an inhibitor of PDI and can strongly rescue neuronal cells from chemically-induced oxidative ferroptosis. We find that BAZ can directly bind to PDI and inhibit its catalytic activity. Computational modeling analysis reveals that BAZ forms a hydrogen bond with PDI's His256 residue. Inhibition of PDI by BAZ markedly reduces iNOS and nNOS dimerization (i.e., catalytic activation) and NO accumulation, and these effects of BAZ are associated with reductions in cellular ROS and lipid-ROS and protection against chemically-induced ferroptosis. In addition, the direct antioxidant activity of BAZ may also partially contribute to its protection against chemically-induced ferroptosis. In vivo animal experiments show that mice treated with BAZ are strongly protected against kainic acid-induced oxidative hippocampal neuronal injury and memory deficits. Together, these results reveal that BAZ is a potent inhibitor of PDI and can strongly protect against chemically-induced ferroptosis in hippocampal neurons both in vitro and in vivo. This work provides evidence for an estrogen receptor-independent, PDI-mediated novel mechanism of neuroprotection by BAZ.
Collapse
Affiliation(s)
- Xiangyu Hao
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Yifan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Yong Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Lixi Liao
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Tongxiang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Jiang X, Zhang X, Deng H, Lin L, Wang Y, Wang Y, Huang J, Yang N, Xu S, Wang J, Shi K, Tao K, Chen Z, Cai F, Zhou K, Xiao J. Modulation of Macrophage ferroptosis under the guide of infrared thermography promotes the healing of pressure injuries. J Adv Res 2025:S2090-1232(25)00283-8. [PMID: 40294817 DOI: 10.1016/j.jare.2025.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Accurately recognizing and regulating the transition time of macrophages to a pro- (M1-like) or anti-inflammatory (M2-like) state is essential for improving chronic inflammation in pressure injuries (PIs). OBJECTIVE This study aimed to evaluate the effectiveness of infrared thermography (IRT) in measuring wound temperature of PIs for the purpose of guiding treatment in regulating chronic inflammation. METHODS The healing process of 21 patients with PIs was monitored using IRT prospectively followed for 30 days. The wound temperature changing pattern of different healing outcomes were analyzed and calculated the optimal wound temperature range to guide the treatment time of anti-inflammation for 100 patients with PIs accurately. Additionally, the molecular mechanisms underlying the observed temperature changes in a mouse model of PI were investigated, and the effect of IRT-guided chronic inflammation targeting ferroptosis modulation on PIs was validated. RESULTS The application of IRT to monitor PIs temperatures outside the 36.23 °C to 37.37 °C range is indicative of a potential risk indicator, which allows for the timely guidance of treatment to markedly enhance the efficacy of PIs healing outcomes. This wound temperature change was also observed during the process of PIs healing in mice, as a result of the imbalance of M1-like/M2-like macrophages and the subsequent chronic inflammation. Mechanically, evidence indicates that ferroptosis is hyperactivated in PIs, and the enrichment of M1-like macrophages with iNOS/NO• can enhance their resistance to ferroptosis compared with M2-like macrophages, resulting in the imbalance of M1-like/M2-like macrophages and subsequent alteration of wound temperature. CONCLUSIONS The modulation of M2-like macrophage resistance to ferroptosis in PIs by NO• donors, suggesting by IRT-monitored temperature changes, has been demonstrated to significantly improve chronic inflammation. This establishes a foundation for the application of IRT to direct a therapeutic strategy for the precise promotion of PIs healing.
Collapse
Affiliation(s)
- Xiaoqiong Jiang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Xuanlong Zhang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huiming Deng
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lulu Lin
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuqi Wang
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi Xu
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Tao
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zimiao Chen
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fuman Cai
- School of Nursing, Wenzhou Medical University, Wenzhou, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jian Xiao
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
13
|
Yang J, Shi X, Ma M, Li Z, Liu H, Cui Y, Xu Z, Wang J. PGC-1α role in rescuing ferroptosis in cerebral ischemia/reperfusion injury through promoting mitochondrial biogenesis and UCP2 expression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167874. [PMID: 40294850 DOI: 10.1016/j.bbadis.2025.167874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/02/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a critical factor leading to adverse outcomes in acute ischemic stroke with reperfusion therapy. The occurrence of CIRI involves several cell death pathways, such as ferroptosis. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) a vital role in mitochondrial biogenesis and induces several crucial reactive oxygen species (ROS) detoxifying enzymes. Nonetheless, the role of activated PGC-1α in CIRI is still unclear. In this research, we utilized a PGC-1α agonist (ZLN005) in both in vitro and in vivo models of CIRI and found that ZLN005 ameliorates neurologic deficits, reduces infarct volume, and inhibits neuronal ferroptosis in CIRI. Furthermore, CIRI led to a decrease in neuronal mitochondrial quantity and downregulation of uncoupling protein 2 (UCP2) expression. Treatment with ZLN005 activated PGC-1α, promoted neuronal mitochondrial biogenesis, and upregulated UCP2 expression, thereby reducing mitochondrial oxidative stress. The application of the mitochondria-targeted antioxidant Mito-TEMPO inhibited ferroptosis, while UCP2 silencing induced mitochondrial oxidative stress and weakened ZLN005 inhibitory effect of ferroptosis, confirming the dependency of ferroptosis on mitochondrial oxidative stress in CIRI. According to these findings, targeting PGC-1α may offer an effective therapeutic strategy for CIRI by regulating mitochondrial homeostasis and protecting neurons from ferroptotic damage.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Zheng Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Yang Cui
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
14
|
Sun H, Xu C, Xiong Z, Liu M, Ning X, Zhuang Y. Therapeutic prospects and potential mechanisms of Prdx6: as a novel target in musculoskeletal disorders. Front Physiol 2025; 16:1524100. [PMID: 40313876 PMCID: PMC12043587 DOI: 10.3389/fphys.2025.1524100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/27/2025] [Indexed: 05/03/2025] Open
Abstract
With the global population aging, musculoskeletal disorders (MSDs) have posed significant physical and psychological health challenges for patients as well as a substantial economic burden on society. The advancements in conservative and surgical interventions for MSDs have been remarkable in recent years; however, the current treatment modalities still fall short of meeting the optimal requirements of patients. Recently, peroxiredoxin 6 (Prdx6) has gained considerable attention from researchers due to its remarkable antioxidative, anti-inflammatory, and anti-apoptotic properties. It has been found that Prdx6 is involved in multiple system diseases, including MSDs; however, the exact role of Prdx6 in MSDs is still lacking. This study aimed to summarize the structure, regulatory mechanism, and potential function of Prdx6. These findings may demonstrate Prdx6 as a novel target for inhibiting the advancement of MSDs.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Xu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
Saimoto Y, Kusakabe D, Morimoto K, Matsuoka Y, Kozakura E, Kato N, Tsunematsu K, Umeno T, Kiyotani T, Matsumoto S, Tsuji M, Hirayama T, Nagasawa H, Uchida K, Karasawa S, Jutanom M, Yamada KI. Lysosomal lipid peroxidation contributes to ferroptosis induction via lysosomal membrane permeabilization. Nat Commun 2025; 16:3554. [PMID: 40229298 PMCID: PMC11997074 DOI: 10.1038/s41467-025-58909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Ferroptosis, a form of cell death instigated by iron-dependent lipid peroxidation reactions (LPO), is emerging as a promising therapeutic target for cancer. While the mechanisms governing LPO induction and suppression have gradually been unveiled, questions persist regarding the specific cellular location of LPO and the utilization of iron in driving cell death. A comprehensive understanding of these aspects holds significant potential for advancing therapeutic applications in disease management. Here, we show lysosomal LPO in the initiation of ferroptosis, leveraging the hidden abilities of fluorescent detection probes. Intra-lysosomal LPO triggers iron leakage, fostering cell-wide LPO by augmenting lysosomal membrane permeabilization (LMP). Conversely, cell lines with low susceptibility to ferroptosis do not exhibit LMP. This deficiency is rectified by the concurrent administration of chloroquine, leading to LMP induction and subsequent cell death. These findings underscore enhancing LMP induction efficacy as a strategic approach to surmount resistance to therapies in cancer.
Collapse
Affiliation(s)
- Yuma Saimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daiki Kusakabe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazushi Morimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuta Matsuoka
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eisho Kozakura
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nao Kato
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kayoko Tsunematsu
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, 194-8543, Japan
| | - Tamiko Kiyotani
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, 194-8543, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, 194-8543, Japan
| | - Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Koji Uchida
- Laboratory of Food Chemistry and Life Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, 194-8543, Japan
| | - Mirinthorn Jutanom
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
16
|
Wang M, An Q, Li Z, Huang Z, Huang K, Li G, Ma Q, Zhao L. The alkylglycerone phosphate synthase sustains the resistance of gastric cancer cells to ferroptosis induced by Apatinib. Gastric Cancer 2025:10.1007/s10120-025-01610-0. [PMID: 40186794 DOI: 10.1007/s10120-025-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Apatinib is a targeted therapy used in the treatment of advanced gastric cancer. However, many gastric cancer patients develop resistance to Apatinib, and the mechanisms underlying this resistance remain unclear. Previous studies have shown that Apatinib can induce ferroptosis in gastric cancer cells. More recent research suggests that polyunsaturated ether phospholipids are closely associated with tumor cell sensitivity to ferroptosis, and may represent key molecules involved in the resistance of tumor cells to ferroptosis. METHODS We established Apatinib-resistant gastric cancer cell lines and assessed their tolerance to ferroptosis. We identified key enzymes responsible for the ferroptosis tolerance observed in drug-resistant cells using lipidomics and transcriptomics analysis. Molecular and biological experiments were conducted to elucidate the molecular mechanisms underlying Apatinib resistance mediated by ferroptosis tolerance in gastric cancer cells. RESULTS Apatinib resistance is closely linked to ferroptosis resistance, which is driven by a reduction in the levels of polyunsaturated ether phospholipids-phospholipids that are particularly susceptible to oxidation and induce ferroptosis. The downregulation of key enzymes involved in polyunsaturated ether phospholipid synthesis, such as AGPS, mediates tolerance to both ferroptosis and Apatinib in gastric cancer cells, both in vitro and in vivo. Mechanistically, the expression of AGPS in tumor cells is regulated by the transcription factor ELK1. Drug-resistant cells acquire Apatinib tolerance by downregulating both ELK1 and AGPS expression. CONCLUSIONS Apatinib-resistant gastric cancer cells exhibit reduced expression of the transcription factor ELK1, which regulates the expression of AGPS. This reduction contributes to the resistance and malignancy of gastric cancer cells.
Collapse
Affiliation(s)
- Minghao Wang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiyuan An
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhicheng Huang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kaihua Huang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guoxin Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Liying Zhao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Jiang Y, Li J, Wang T, Gu X, Li X, Liu Z, Yue W, Li M. VIPAS39 confers ferroptosis resistance in epithelial ovarian cancer through exporting ACSL4. EBioMedicine 2025; 114:105646. [PMID: 40088627 PMCID: PMC11957506 DOI: 10.1016/j.ebiom.2025.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The high mortality rate associated with epithelial ovarian cancer (EOC) is primarily due to recurrence and chemoresistance, underscoring the urgent need for innovative therapeutic approaches that leverage newly identified vulnerabilities in cancer cells. While conventional chemotherapies induce apoptosis by targeting DNA or mitotic machinery, ferroptosis represents a new distinct form of programmed cell death characterised by the accumulation of lipid peroxides. METHODS The sensitivity of different EOC cell lines to ferroptosis inducers was evaluated using cell viability assays and lipid peroxidation measurements. Live-cell imaging with the pH-sensitive CD63-pHuji reporter was performed to track the extracellular export of acyl-CoA synthetase long-chain family member 4 (ACSL4) via exosomes. The upstream regulator of ACSL4 were identified through immunoprecipitation-mass spectrometry (IP-MS) and validated using protein binding assays. Finally, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models were utilised to evaluate the therapeutic potential overcoming ferroptosis resistance. FINDINGS In this study, we found that interferon (IFN)-γ combined with arachidonic acid (AA), which are endogenous ferroptosis inducers, could initiate ferroptosis in most EOC cells. However, some EOC cells displayed significant resistance. Contrary to the typical increase in ACSL4 protein observed in ferroptosis-sensitive cells, resistant EOC cells exhibited surprisingly low levels of this pro-ferroptotic lipid metabolic protein. Intriguingly, this reduction is attributed to the exosomal expulsion of ACSL4 protein, revealing a distinct cellular mechanism to evade ferroptosis. We further identified VIPAS39 as a pivotal regulator in sorting ACSL4 into late endosomes, thereby facilitating their subsequent release as exosomes. Notably, targeting VIPAS39 not only overcomes the resistance to ferroptotic cell death but also markedly suppresses tumour growth. INTERPRETATION Our findings uncover the crucial role of VIPAS39 in ferroptosis evasion by facilitating the exporting of ACSL4 protein via exosomes, highlighting VIPAS39 as a promising target for ferroptosis-based anti-cancer therapy. FUNDING Funded by Beijing Municipal Natural Science Foundation (Key program Z220011), National Natural Science Foundation of China (NSFC) (T2225006, T2488301, 82272948), Peking University Medicine Youth Science and Technology Innovation 'Sail Plan' Project Type B Medical Interdisciplinary Seed Fund (71006Y3171), GuangDong Basic and Applied Basic Research Foundation (2021A1515110820), and the special fund of the National Clinical Key Speciality Construction Program, P. R. China (2023).
Collapse
Affiliation(s)
- Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Jie Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Xiaoyang Gu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Xinyu Li
- Department of Animal Science, College of Animal Science, Hebei North University, Zhangjiakou, Hebei Province, China; Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Wei Yue
- Interdisciplinary Eye Research Institute (EYE-X Institute) Bengbu Medical University, Bengbu, Anhui, 233030, China.
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
18
|
Ye R, Mao YM, Fei YR, Shang Y, Zhang T, Zhang ZZ, Liu YL, Li JY, Chen SL, He YB. Targeting ferroptosis for the treatment of female reproductive system disorders. J Mol Med (Berl) 2025; 103:381-402. [PMID: 40100417 DOI: 10.1007/s00109-025-02528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Ferroptosis, a regulated form of cell death driven by iron-dependent lipid peroxidation, has emerged as a critical factor in female reproductive health and has been implicated in disorders such as polycystic ovary syndrome, premature ovarian insufficiency, endometriosis, and ovarian cancer. This review explores the intricate molecular mechanisms underlying ferroptosis, emphasizing its reliance on iron metabolism and oxidative stress, which disrupt key processes in reproductive tissues, including granulosa cell function, folliculogenesis, and embryo implantation. Increasing evidence linking ferroptosis to these conditions offers new therapeutic opportunities, with iron chelators, lipid peroxidation inhibitors, and antioxidants showing the potential to alleviate reproductive dysfunction by modulating ferroptotic pathways. In ovarian cancer, ferroptosis inducers combined with conventional cancer therapies, such as chemotherapy, provide promising strategies to overcome drug resistance. This review synthesizes current knowledge on ferroptosis and highlights its importance as a therapeutic target in reproductive health, emphasizing the need for further research to refine and expand treatment options, evaluate their applicability in clinical settings, and explore their role in fertility preservation. By advancing our understanding of ferroptosis regulation, these therapeutic approaches could lead to novel treatments for reproductive disorders and cancers, offering new hope for improving outcomes in women's health and cancer therapy.
Collapse
Affiliation(s)
- Rui Ye
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi-Ming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Zhejiang Province, China
| | - Yi-Ran Fei
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yue Shang
- Reproductive Center, Hainan Branch, Shanghai Children'S Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Ting Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhe-Zhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yong-Lin Liu
- Reproductive Center, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jun-Yu Li
- Department of Pharmacy, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Shi-Liang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| | - Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Zhang Y, Su F, Zhu E, Sun Y, Kuang H, Wang Q. A systematical review on traditional Chinese medicine treating chronic diseases via regulating ferroptosis from the perspective of experimental evidence and clinical application. CHINESE HERBAL MEDICINES 2025; 17:246-260. [PMID: 40256717 PMCID: PMC12009076 DOI: 10.1016/j.chmed.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 01/20/2025] [Indexed: 04/22/2025] Open
Abstract
Ferroptosis is a unique regulated form of cell death that is distinct from apoptosis, necrosis, and other well-characterized regulated cell death types, and plays an important role in the occurrence and development of chronic metabolic diseases, including diabetes, hypertension, hyperlipidemia, and non-alcoholic steatohepatitis. Recently, increasing evidence has supported traditional Chinese medicine (TCM) as a new hot spot for the treatment of chronic metabolic diseases by mediating ferroptosis. Unfortunately, few systematic reviews have described the importance of TCM in treating chronic metabolic diseases through the ferroptosis pathway. In the current review, the mechanism of ferroptosis and the roles of ferroptosis in chronic metabolic diseases are summarized. Additionally, this review illustrates that the regulation of ferroptosis by TCM could be an effective approach for treating chronic metabolic diseases based on experimental evidence and clinical application. In summary, this work will improve the understanding of ferroptosis and the ability of TCM to regulate ferroptosis in chronic metabolic diseases, thereby promoting the development and application of natural TCM.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Enlin Zhu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qiuhong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 511400, China
| |
Collapse
|
20
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
21
|
Park S, Park MJ, Kwon EJ, Oh JY, Chu YJ, Kim HS, Park S, Kim TH, Kwon SW, Kim YS, Cha HJ. The protective role of GPX4 in naïve ESCs is highlighted by induced ferroptosis resistance through GPX4 expression. Redox Biol 2025; 81:103539. [PMID: 40010136 PMCID: PMC11908625 DOI: 10.1016/j.redox.2025.103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Ferroptosis, a form of oxidative cell death mediated by lipid peroxidation, is strictly regulated by glutathione peroxidase 4 (GPX4). Knockout of Gpx4 results in embryonic lethality, highlighting its essential role in development. In vitro, mouse embryonic stem cells (mESCs), which represent the naïve pluripotent state, require β-mercaptoethanol (bME) to prevent cell death, unlike human embryonic stem cells, which represent the primed state. We hypothesized that naïve pluripotency is linked to a heightened susceptibility to ferroptosis due to unique metabolic demands and redox imbalances. In this study, we found that bME deprivation induces ferroptosis in naïve ESCs, as evidenced by lipid peroxidation; ferroptosis, however, is less evident in primed ESCs. Mechanistic analyses revealed that active oxidative phosphorylation (OXPHOS) in naïve ESCs increased mitochondrial reactive oxygen species. Consistent with the upregulation of Gpx4 transcripts and OXPHOS-associated gene sets seen in the inner cell mass of blastocysts, stable GPX4 expression conferred resistance to ferroptosis induced by bME withdrawal. These results suggest that the unique redox and metabolic landscape of naïve ESCs highlits a potential requirement for GPX4 in maintaining naïve pluripotency, providing insights into early developmental processes and vulnerabilities.
Collapse
Affiliation(s)
- Seokwoo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Mihn Jeong Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeon-Joon Chu
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tae Ha Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Song Y, Luo X, Yao L, Chen Y, Mao X. Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage. Mol Biotechnol 2025; 67:1310-1320. [PMID: 38619799 DOI: 10.1007/s12033-024-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event associated with high mortality and significant morbidity. Recent studies have highlighted the emerging role of ferroptosis, a novel form of regulated cell death, in the pathogenesis of SAH. Circular RNAs (circRNAs), have been found to play essential roles in various cellular processes, including gene regulation and disease pathogenesis. The expression profile of circRNAs in neural tissues, particularly in the brain, suggests their critical role in synaptic function and neurogenesis. Moreover, the interplay between circRNAs and ferroptosis-related pathways, such as iron metabolism and lipid peroxidation, is explored in the context of SAH. Understanding the functional roles of specific circRNAs in the context of SAH may provide potential therapeutic targets to attenuate ferroptosis-associated brain injury. Furthermore, the potential of circRNAs as diagnostic biomarkers for SAH severity, prognosis, and treatment response is discussed. Overall, this review highlights the significance of studying the intricate interplay between circRNAs and ferroptosis in the context of SAH. Unraveling the mechanisms by which circRNAs modulate ferroptotic cell death may pave the way for the development of novel therapeutic strategies and diagnostic approaches for SAH management, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yanju Song
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xin Luo
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Liping Yao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Yinchao Chen
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China.
| |
Collapse
|
23
|
Zhang L, Li Y, Qian Y, Xie R, Peng W, Zhou W. Advances in the Development of Ferroptosis-Inducing Agents for Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202500010. [PMID: 40178208 DOI: 10.1002/ardp.202500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Cancer is the main leading cause of death worldwide and poses a great threat to human life and health. Although pharmacological treatment with chemotherapy and immunotherapy is the main therapeutic strategy for cancer patients, there are still many shortcomings during the treatment such as incomplete killing of cancer cells and development of drug resistance. Emerging evidence indicates the promise of inducing ferroptosis for cancer treatment, particularly for eliminating aggressive malignancies that are resistant to conventional therapies. This review covers recent advances in important regulatory targets in the ferroptosis metabolic pathway and ferroptosis inducers (focusing mainly on the last 3 years) to delineate their design, mechanisms of action, and anticancer applications. To date, many compounds, including inhibitors, degraders, and active molecules from traditional Chinese medicine, have been demonstrated to have ferroptosis-inducing activity by targeting the different biomolecules in the ferroptosis pathway. However, strictly defined ferroptosis inducers have not yet been approved for clinical use; therefore, the discovery of new highly active, less toxic, and selective compounds remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Li Zhang
- Maternal and Child Health Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang Province, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Qian
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Ruliang Xie
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, Jiangsu Province, China
| | - Wei Peng
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
24
|
Kunishige R, Noguchi Y, Okamoto N, Li L, Ono A, Murata M, Kano F. Protein covariation networks for elucidating ferroptosis inducer mechanisms and potential synergistic drug targets. Commun Biol 2025; 8:480. [PMID: 40164758 PMCID: PMC11958834 DOI: 10.1038/s42003-025-07886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
In drug development, systematically characterizing a compound's mechanism of action (MoA), including its direct targets and effector proteins, is crucial yet challenging. Network-based approaches, unlike those focused solely on direct targets, effectively detect a wide range of cellular responses elicited by compounds. This study applied protein covariation network analysis, leveraging quantitative, morphological, and localization features from immunostained microscopic images, to elucidate the MoA of AX-53802, a novel ferroptosis inducer. From the candidate targets extracted through network analysis, GPX4 was verified as the direct target by validation experiments. Additionally, aggregates involving GPX4, TfR1, and F-actin were observed alongside iron reduction, suggesting a ferroptosis defense mechanism. Furthermore, combination therapies targeting GPX4 and FAK/Src were found to enhance cancer cell death, and MDM2, ezrin, and cortactin were identified as potential ferroptosis inhibitor targets. These findings highlight the effectiveness of network-based approaches in uncovering a compound's MoA and developing combination therapies for cancer.
Collapse
Affiliation(s)
- Rina Kunishige
- Multimodal Cell Analysis Collaborative Research Cluster, Institute of Science Tokyo, Yokohama-shi, Kanagawa, Japan
- Cellshoot Therapeutics, Inc., Koto-ku, Tokyo, Japan
| | - Yoshiyuki Noguchi
- Cellshoot Therapeutics, Inc., Koto-ku, Tokyo, Japan
- International Research Center for Neurointelligence, Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | | | - Lei Li
- Cellshoot Therapeutics, Inc., Koto-ku, Tokyo, Japan
| | - Akito Ono
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Kanagawa, Japan
| | - Masayuki Murata
- Multimodal Cell Analysis Collaborative Research Cluster, Institute of Science Tokyo, Yokohama-shi, Kanagawa, Japan
- Cellshoot Therapeutics, Inc., Koto-ku, Tokyo, Japan
| | - Fumi Kano
- Multimodal Cell Analysis Collaborative Research Cluster, Institute of Science Tokyo, Yokohama-shi, Kanagawa, Japan.
- Cellshoot Therapeutics, Inc., Koto-ku, Tokyo, Japan.
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama-shi, Kanagawa, Japan.
| |
Collapse
|
25
|
Alves Fernandes TA, Tourville A, Ciss I, Ribeiro Silva R, Andretto de Mattos B, Dos Santos Pereira M, Oblaza M, Brunel JM, Ferrié L, Raisman-Vozari R, Figadère B, Del-Bel E, Michel PP. Oxytetracycline and its Non-Antibiotic Derivative DOT Protect Midbrain Dopamine Neurons from Iron-Driven Oxidative Damage. Neurotox Res 2025; 43:16. [PMID: 40119187 DOI: 10.1007/s12640-025-00742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025]
Abstract
This study aimed to investigate the neuroprotective potential of the tetracycline (TC) antibiotic oxytetracycline (OT) and its non-antibiotic derivative 4-dedimethylamino 12a-deoxy-oxytetracycline (DOT), in experimental conditions that mimic the gradual loss of dopamine (DA) neurons in Parkinson's disease (PD). Specifically, we established a model system of mouse midbrain cultures where DA neurons progressively die when exposed to an iron-containing medium. We found that OT (EC50 = 0.25µM) and DOT (EC50 = 0.34µM) efficiently protected DA neurons from degeneration, with these effects observable until advanced stages of neurodegeneration. The reference antibiotic TC doxycycline (DOX) also exhibited protective effects in this context. Importantly, DA neurons rescued by OT, DOT, and DOX retained their capacity to accumulate and release DA, indicating full functional integrity. Additionally, molecules with iron-chelating properties (apotransferrin, desferoxamine), as well as inhibitors of lipid peroxidation and ferroptosis (Trolox, Liproxstatin-1), could replicate the rescue of DA neurons provided by OT, DOT, and DOX. Live-cell imaging studies showed that test TCs and other neuroprotective molecules prevented the emission of intracellular reactive oxygen species and the associated disruption of the mitochondrial membrane potential. However, neither OT, DOT, nor DOX could protect DA neurons from selective mitochondrial poisoning by 1-methyl-4-phenylpyridinium. This suggests that test TCs may be protective against iron-mediated damage through a mechanism not directly involving mitochondria. Overall, we demonstrate that OT and DOT possess promising properties that could be useful for combating PD neurodegeneration. However, the absence of antimicrobial activity makes DOT a better candidate drug compared to its parent compound OT.
Collapse
Affiliation(s)
- Thaís Antonia Alves Fernandes
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, 14049-904, Brazil
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Aurore Tourville
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Ismaila Ciss
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Université Paris-Saclay, BioCIS, CNRS, Orsay, 91190, France
| | - Rafaela Ribeiro Silva
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Bianca Andretto de Mattos
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, 14049-904, Brazil
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maurício Dos Santos Pereira
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Stanley Center, Broad Institute, Cambridge, MA, 02142, USA
| | - Maxime Oblaza
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
- Université Paris-Saclay, BioCIS, CNRS, Orsay, 91190, France
| | - Jean-Michel Brunel
- Aix Marseille Univ, Inserm, Membranes et Cibles Thérapeutiques, Service de Santé des Armées, Marseille, 13385, France
| | - Laurent Ferrié
- Université Paris-Saclay, BioCIS, CNRS, Orsay, 91190, France
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Bruno Figadère
- Université Paris-Saclay, BioCIS, CNRS, Orsay, 91190, France
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, 14049-904, Brazil.
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France.
| |
Collapse
|
26
|
Toczylowska B, Skowronska M, Kurkowska-Jastrzebska I, Ruszczynska A, Zieminska E. Serum metabolomics indicates ferroptosis in patients with pantothenate kinase associated neurodegeneration. Sci Rep 2025; 15:9592. [PMID: 40113937 PMCID: PMC11926261 DOI: 10.1038/s41598-025-94838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
The core syndrome among NBIA disorders is pantothenate kinase-associated neurodegeneration (PKAN), an autosomal recessive disorder caused by mutations in the PANK2 gene. There is no therapy for PKAN; only symptomatic treatment is available. Our work aimed to identify the mechanisms induced by biochemical disturbances in the cell cycle and identify potential pharmacological targets to improve patient quality of life. Mass spectrometry (MS) (metals) and NMR spectroscopy (hydrophilic and hydrophobic compounds) were used for profile analyses of the sera of 12 PKAN patients and 12 controls to study the compounds involved in PKAN pathomechanisms. We performed ANOVA and multivariate analysis using orthogonal partial least squares discriminant analysis. We have shown for the first time that patients have 100-500-fold greater serum citrate levels than controls do, which may contribute to Fe transport and ferroptosis. Ferroptosis may be indicated by disturbances in the levels of many metals, oxidative stress, disturbances in energy production and neurotransmission or dysfunction of biological membranes. Our findings suggest that ferroptosis could be a primary cause of cell death in PKAN patients. This could be indicated by serum metabolomics.
Collapse
Affiliation(s)
- Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, PAS, Ks. Trojdena 4 St., 02-109, Warsaw, Poland
| | - Marta Skowronska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 St., 02-957, Warsaw, Poland
| | - Iwona Kurkowska-Jastrzebska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 St., 02-957, Warsaw, Poland
| | - Anna Ruszczynska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki I Wigury 101 St., 02-089, Warsaw, Poland
| | - Elzbieta Zieminska
- Mossakowski Medical Research Institute, PAS, A. Pawinskiego 5 St., 02-106, Warsaw, Poland.
| |
Collapse
|
27
|
Cao Y, Li J, Chen Y, Wang Y, Liu Z, Huang L, Liu B, Feng Y, Yao S, Zhou L, Yin Y, Huang Z. Monounsaturated fatty acids promote cancer radioresistance by inhibiting ferroptosis through ACSL3. Cell Death Dis 2025; 16:184. [PMID: 40102409 PMCID: PMC11920413 DOI: 10.1038/s41419-025-07516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Radioresistance is a major challenge in tumor radiotherapy and involves in a mixture of cellular events, including ferroptosis, a new type of programmed cell death characterized by the excess accumulation of iron-dependent lipid peroxides. In the present study, we observed that surviving cancer tissues and cells after radiotherapy had significantly greater glutathione to oxidized glutathione (GSH/GSSG) ratios and lower lipid reactive oxygen species (ROS) and malondialdehyde (MDA) levels than nonirradiated tumors and cells. Untargeted lipidomic analyses revealed that oleic acid (OA) and palmitoleic acid (POA) were the most significantly upregulated unsaturated fatty acids in irradiated surviving cancer cells compared with those in control cancer cells irradiated with IR. Both OA and POA could protect cancer cells from the killing effects of the ferroptosis inducer erastin and RSL3, and OA had a stronger protective effect than POA, resulting in lower lipid ROS production than POA. Mechanistically, OA protected cells from ferroptosis caused by the accumulation of polyunsaturated fatty acid-containing phospholipids in an ACSL3-dependent manner. A mouse model demonstrated that ACSL3 knockdown combined with imidazole ketone erastin synergistically enhanced antitumor effects in radiation-resistant tumors in vivo. Our study reveals previously undiscovered associations between radiation and fatty acid metabolism and ferroptosis, providing a novel treatment strategy for overcoming cancer radioresistance.
Collapse
Affiliation(s)
- Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiuming Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanben Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiang Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuying Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuyang Feng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Leyuan Zhou
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
28
|
Wang L, He X, Shen Y, Chen J, Chen Y, Zhou Z, Xu X. A Novel Ferroptosis-Related Gene Prognosis Signature and Identifying Atorvastatin as a Potential Therapeutic Agent for Hepatocellular Carcinoma. Curr Issues Mol Biol 2025; 47:201. [PMID: 40136455 PMCID: PMC11940908 DOI: 10.3390/cimb47030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Among the most common malignant tumors, hepatocellular carcinoma (HCC) is a primary liver cancer type that has a high mortality rate. HCC often presents insidiously, is prone to recurrence, and has limited treatment efficacy. Ferroptosis regulates tumorigenesis, progression, and metastasis, which is a novel form of iron-dependent cell death. Numerous studies suggest that HCC is sensitive to ferroptosis, indicating that targeted therapies aimed at inducing ferroptosis may represent a promising new approach to cancer treatment. This study aims to find genes associated with HCC and ferroptosis, as well as to screen for potential agents that may cause ferroptosis in HCC. Transcriptome and clinical sample data were obtained from the TCGA database to identify differentially expressed genes related to ferroptosis. Using various regression and survival analysis techniques, we developed a prognostic model based on four core genes and evaluated its predictive potential. Subsequently, we screened for potential therapeutic agents in the Connective Map (CMap) database, designated as compound Atorvastatin, based on differential genes from two risk groups and related to ferroptosis. Through experiments conducted in vivo and in vitro, we demonstrated that Atorvastatin can induce ferroptosis in HCC cells while inhibiting their growth and migration. In conclusion, this research targets ferroptosis therapy and provides new insights for improving the prediction and prevention of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (L.W.); (X.H.); (Y.S.); (J.C.); (Y.C.); (Z.Z.)
| |
Collapse
|
29
|
Pei X, Cui F, Chen Y, Yang Z, Xie Z, Wen Y. miR-214-3p Promotes ox-LDL-Induced Macrophages Ferroptosis and Inflammation via GPX4. J Inflamm Res 2025; 18:3937-3950. [PMID: 40125091 PMCID: PMC11927573 DOI: 10.2147/jir.s507076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Atherosclerosis (AS) is a chronic inflammatory disease caused by the dysregulation of lipid metabolism. It has been established that oxidized low-density lipoprotein (ox-LDL)-induced macrophage inflammation and ferroptosis play important roles in AS. However, the mechanism by which ox-LDL induces inflammation in macrophages requires further investigation. Materials and Methods A foam cell model derived from ox-LDL-induced macrophages was constructed to study its mechanism of action. The levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were evaluated using an Enzyme-Linked Immunosorbent Assay (ELISA). Oil Red O staining was used to detect intracellular lipid accumulation levels. Lactate dehydrogenase (LDH), malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ levels were assessed. Dual-luciferase and RNA-binding protein immunoprecipitation (RIP) experiments validated the binding relationship between microRNA (miR)-214-3p and glutathione peroxidase 4 (GPX4). Results The levels of IL-6, IL-1β, and TNF-α were significantly increased in ox-LDL-induced macrophages, accompanied by increased lipid accumulation, indicating the promotion of foam cell formation. Additionally, ox-LDL increased LDH, MDA, ROS, and Fe2+. The expression of miR-214-3p positively correlated with ox-LDL concentration in macrophages. Treatment with an miR-214-3p inhibitor reduces lipid accumulation, inflammatory responses, and ferroptosis in macrophages. Dual-luciferase and RIP experiments confirmed that miR-214-3p regulates GPX4 transcription. Silenced GPX4 reversed the inflammatory effects of the miR-214-3p inhibitor on ox-LDL-induced macrophages. Low GPX4 expression also increased lipid accumulation and ferroptosis in macrophages. Conclusion miR-214-3p promotes macrophage ferroptosis and inflammation induced by ox-LDL. This mechanism may be associated with miR-214-3p-induced GPX4 expression, which underscores the therapeutic significance of targeting macrophage inflammation and ferroptosis in addressing AS.
Collapse
Affiliation(s)
- Xueliang Pei
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Facai Cui
- Clinical Laboratory, Henan Provincial People’s Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Yu Chen
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhiyuan Yang
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Zhouliang Xie
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, People’s Republic of China
| | - Yongjin Wen
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
30
|
He Y, Lin Y, Song J, Song M, Nie X, Sun H, Xu C, Han Z, Cai J. From mechanisms to medicine: Ferroptosis as a Therapeutic target in liver disorders. Cell Commun Signal 2025; 23:125. [PMID: 40055721 PMCID: PMC11889974 DOI: 10.1186/s12964-025-02121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
In recent 10 years, ferroptosis has become a hot research direction in the scientific research community as a new way of cell death. Iron toxicity accumulation and lipotoxicity are unique features. Several studies have found that ferroptosis is involved in the regulation of the hepatic microenvironment and various hepatic metabolisms, thereby mediating the progression of related liver diseases. For example, NRF2 and FSP1, as important regulatory proteins of ferroptosis, are involved in the development of liver tumors and liver failure. In this manuscript, we present the mechanisms involved in ferroptosis, the concern of ferroptosis with the liver microenvironment and the progression of ferroptosis in various liver diseases. In addition, we summarize recent clinical advances in targeted ferroptosis therapy for related diseases. We expect that this manuscript can provide a new perspective for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yuqi He
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinfeng Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Mingzhu Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Xiaoxia Nie
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Hong Sun
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Changyun Xu
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Zhongyu Han
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| | - Juan Cai
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| |
Collapse
|
31
|
Nghiem THT, Nguyen KA, Kusuma F, Park S, Park J, Joe Y, Han J, Chung HT. The PERK-eIF2α-ATF4 Axis Is Involved in Mediating ER-Stress-Induced Ferroptosis via DDIT4-mTORC1 Inhibition and Acetaminophen-Induced Hepatotoxicity. Antioxidants (Basel) 2025; 14:307. [PMID: 40227255 PMCID: PMC11939615 DOI: 10.3390/antiox14030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Ferroptosis, a regulated form of cell death characterized by lipid peroxidation and iron accumulation, is increasingly recognized for its role in disease pathogenesis. The unfolded protein response (UPR) has been implicated in both endoplasmic reticulum (ER) stress and ferroptosis-mediated cell fate decisions; yet, the specific mechanism remains poorly understood. In this study, we demonstrated that ER stress induced by tunicamycin and ferroptosis triggered by erastin both activate the UPR, leading to the induction of ferroptotic cell death. This cell death was mitigated by the application of chemical chaperones and a ferroptosis inhibitor. Among the three arms of the UPR, the PERK-eIF2α-ATF4 signaling axis was identified as a crucial mediator in this process. Mechanistically, the ATF4-driven induction of DDIT4 plays a pivotal role, facilitating ferroptosis via the inhibition of the mTORC1 pathway. Furthermore, acetaminophen (APAP)-induced hepatotoxicity was investigated as a model of eIF2α-ATF4-mediated ferroptosis. Our findings reveal that the inhibition of eIF2α-ATF4 or ferroptosis protects against APAP-induced liver damage, underscoring the therapeutic potential of targeting these pathways. Overall, this study not only clarifies the intricate role of the PERK-eIF2α-ATF4 axis in ER-stress-and erastin-induced ferroptosis but also extends these findings to a clinically relevant model, providing a foundation for potential therapeutic interventions in conditions characterized by dysregulated ferroptosis and ER stress.
Collapse
Affiliation(s)
- Thu-Hang Thi Nghiem
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea;
| | - Kim Anh Nguyen
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea; (K.A.N.); (F.K.); (S.P.)
| | - Fedho Kusuma
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea; (K.A.N.); (F.K.); (S.P.)
| | - Soyoung Park
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea; (K.A.N.); (F.K.); (S.P.)
| | - Jeongmin Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (J.P.); (Y.J.)
| | - Yeonsoo Joe
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (J.P.); (Y.J.)
| | - Jaeseok Han
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea; (K.A.N.); (F.K.); (S.P.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hun Taeg Chung
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (J.P.); (Y.J.)
| |
Collapse
|
32
|
Hao X, Wang Y, Hou MJ, Liao L, Yang YX, Wang YH, Zhu BT. Raloxifene Prevents Chemically-Induced Ferroptotic Neuronal Death In Vitro and In Vivo. Mol Neurobiol 2025; 62:3934-3955. [PMID: 39354232 PMCID: PMC11790820 DOI: 10.1007/s12035-024-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Ferroptosis, a regulated form of cell death characterized by excessive iron-dependent lipid peroxidation, can be readily induced in cultured cells by chemicals such as erastin and RSL3. Protein disulfide isomerase (PDI) has been identified as an upstream mediator of chemically induced ferroptosis and also a target for ferroptosis protection. In this study, we discovered that raloxifene (RAL), a selective estrogen receptor modulator known for its neuroprotective actions in humans, can effectively inhibit PDI function and provide robust protection against chemically induced ferroptosis in cultured HT22 neuronal cells. Specifically, RAL can bind directly to PDI both in vitro and in intact neuronal cells and inhibit its catalytic activity. Computational modeling analysis reveals that RAL can tightly bind to PDI through forming a hydrogen bond with its His256 residue, and biochemical analysis further shows that when PDI's His256 is mutated to Ala256, RAL loses its inhibition of PDI's catalytic activity. This inhibition of PDI by RAL significantly reduces the dimerization of both the inducible and neuronal nitric oxide synthases and the accumulation of nitric oxide, both of which have recently been shown to play a crucial role in mediating chemically induced ferroptosis through subsequent induction of ROS and lipid-ROS accumulation. In vivo behavioral analysis shows that mice treated with RAL are strongly protected against kainic acid-induced memory deficits and hippocampal neuronal damage. In conclusion, this study demonstrates that RAL is a potent inhibitor of PDI and can effectively prevent chemically induced ferroptosis in hippocampal neurons both in vitro and in vivo. These findings offer a novel estrogen receptor-independent mechanism for RAL's neuroprotective actions in animal models and humans.
Collapse
Affiliation(s)
- Xiangyu Hao
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Yifan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Lixi Liao
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Yong Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Ying-Hua Wang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China.
- Shenzhen Bay Laboratory, Shenzhen, 518,055, China.
| |
Collapse
|
33
|
Wang D, Shen J, Wang Y, Cui H, Li Y, Zhou L, Li G, Wang Q, Feng X, Qin M, Dong B, Yang P, Li Y, Ma X, Ma J. Mechanisms of Ferroptosis in bone disease: A new target for osteoporosis treatment. Cell Signal 2025; 127:111598. [PMID: 39788305 DOI: 10.1016/j.cellsig.2025.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Osteoporosis (OP) is a common disease in the elderly, characterized by decreased bone strength, reduced bone density, and increased fracture risk. There are two clinical types of osteoporosis: primary osteoporosis and secondary osteoporosis. The most common form is postmenopausal osteoporosis, which is caused by decreased estrogen production after menopause. Secondary osteoporosis, on the other hand, occurs when certain medications, diabetes, or nutritional deficiencies lead to a decrease in bone density. Ferroptosis, a new iron-dependent programmed cell death process, is critical in regulating the development of osteoporosis, but the underlying molecular mechanisms are complex. In the pathologic process of osteoporosis, several studies have found that ferroptosis may occur in osteocytes, osteoblasts, and osteoclasts, cell types closely related to bone metabolism. The imbalance of iron homeostasis in osteoblasts and excessive iron accumulation can promote lipid peroxidation through the Fenton reaction, which induces ferroptosis in osteoblasts and affects their role in regulating bone metabolism. Ferroptosis in osteoblasts inhibits bone formation and reduces the amount of new bone production. Osteoclast-associated ferroptosis abnormalities, on the other hand, may alter the homeostasis of bone resorption. In this paper, we start from the molecular mechanism of ferroptosis, and introduce the ways in which ferroptosis affects the physiological and pathological processes of the body. After that, the effects of ferroptosis on osteoblasts and osteoclasts will be discussed separately to elucidate the molecular mechanism between ferroptosis and osteoporosis, which will provide a new breakthrough for the prevention and treatment of osteoporosis and a more effective and better idea for the treatment strategy of osteoporosis.
Collapse
Affiliation(s)
- Dong Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Jiahui Shen
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Hongwei Cui
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yanxin Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Liyun Zhou
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Guang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Qiyu Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaotian Feng
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Mengran Qin
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Benchao Dong
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Peichuan Yang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China.
| |
Collapse
|
34
|
Awasthi A, Maparu K, Singh S. Ferroptosis role in complexity of cell death: unrevealing mechanisms in Parkinson's disease and therapeutic approaches. Inflammopharmacology 2025; 33:1271-1287. [PMID: 39998712 DOI: 10.1007/s10787-025-01672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder, is characterized by progressive loss of dopaminergic neurons, and accumulation of α-synuclein in the substantial nigra. Emerging evidence identifies ferroptosis as a regulated iron-dependent cell death mechanism marked by excessive lipid peroxidation (LPO) as a key contributor to PD pathogenesis. Ferroptosis is intertwined with critical disease processes such as aggregation of α-synuclein protein, oxidative stress generation, mitochondrial alteration, iron homeostasis dysregulation, and neuroinflammation. This mechanism disrupts cellular homeostasis by impairing iron metabolism and antioxidant pathways like the xc-/glutathione/GPX4 axis and the CoQ10 pathway. This review consolidates current advancements in understanding ferroptosis in these mechanisms, increasing interest in contribution to PD pathology. In addition, it explores the latest developments in ferroptosis-targeting pharmacological agents, including their application in the preclinical and clinical study, and highlights their potential to revolutionize PD management. Unraveling the interplay between ferroptosis and PD offers a transformative perspective, paving the way for innovative therapies to combat this debilitating disease condition.
Collapse
Affiliation(s)
- Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
35
|
Park C, Alahari S, Ausman J, Liu R, Nguyen F, Sallais J, Post M, Caniggia I. Placental Hypoxia-Induced Ferroptosis Drives Vascular Damage in Preeclampsia. Circ Res 2025; 136:361-378. [PMID: 39846172 DOI: 10.1161/circresaha.124.325119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive. METHODS We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific Phd2-/- preeclamptic mice. Lipid peroxidation and iron cargo of placenta-derived small extracellular vesicles (sEVs) isolated from the maternal circulation of control and preeclampsia individuals were examined by mass spectrometry, flow cytometry, and colorimetry. Human microvascular endothelial cells' angiogenic capacity and function were examined after exposure to control and pathological sEVs. RESULTS Placentae from preeclampsia pregnancies contain increased ferrous iron and lipid peroxidation byproduct, malondialdehyde. Antioxidant capacity is significantly lower in preeclampsia placentae, with decreased glutathione content, and GPx4 (glutathione peroxidase 4) expression and activity. Hypoxia triggers the occurrence of ferroptosis in human trophoblast cells and mouse Phd2-/-placentae. Disrupted placental iron homeostasis in preeclampsia is accompanied by improper extrusion of iron through sEVs mediated by the pentaspan protein prominin-2. Heightened lipid peroxidation content was found in villous explants and maternal circulating sEVs of preeclampsia individuals. Exposure of human microvascular endothelial cells to preeclampsia-derived placental sEVs results in endothelial activation and impaired angiogenesis, which is rescued by treatment with hinokitiol, a compound known to restore tissue iron balance. CONCLUSIONS In pregnancy, iron and oxygen work synergistically to conserve an operative antioxidant system to maintain iron homeostasis and protect the placenta from ferroptotic death. Hindrance to this system due to hypoxia results in heightened ferroptosis rates and sEV-mediated extrusion of harmful lipid peroxides from trophoblast cells into the circulation thereby contributing to maternal endothelial dysfunction characterizing preeclampsia.
Collapse
Affiliation(s)
- Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., W.J.A., R.L., F.N., J.S., I.C.)
- Department of Physiology (C.P., S.A., R.L., M.P., I.C.), University of Toronto, Ontario, Canada
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., W.J.A., R.L., F.N., J.S., I.C.)
- Department of Physiology (C.P., S.A., R.L., M.P., I.C.), University of Toronto, Ontario, Canada
| | - Jonathan Ausman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., W.J.A., R.L., F.N., J.S., I.C.)
- Department of Obstetrics and Gynecology (WJ.A., I.C.), University of Toronto, Ontario, Canada
| | - Ruizhe Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., W.J.A., R.L., F.N., J.S., I.C.)
- Department of Physiology (C.P., S.A., R.L., M.P., I.C.), University of Toronto, Ontario, Canada
| | - Frederik Nguyen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., W.J.A., R.L., F.N., J.S., I.C.)
| | - Julien Sallais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., W.J.A., R.L., F.N., J.S., I.C.)
- Institute of Medical Science, Temerty Faculty of Medicine (J.S., M.P., I.C.), University of Toronto, Ontario, Canada
| | - Martin Post
- Department of Physiology (C.P., S.A., R.L., M.P., I.C.), University of Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine (J.S., M.P., I.C.), University of Toronto, Ontario, Canada
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada (M.P.)
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., W.J.A., R.L., F.N., J.S., I.C.)
- Department of Physiology (C.P., S.A., R.L., M.P., I.C.), University of Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine (J.S., M.P., I.C.), University of Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology (WJ.A., I.C.), University of Toronto, Ontario, Canada
| |
Collapse
|
36
|
Zheng Y, Gao X, Tang J, Gao L, Cui X, Liu K, Zhang X, Jin M. Exploring the Efficacy and Target Genes of Atractylodes Macrocephala Koidz Against Alzheimer's Disease Based on Multi-Omics, Computational Chemistry, and Experimental Verification. Curr Issues Mol Biol 2025; 47:118. [PMID: 39996839 PMCID: PMC11853862 DOI: 10.3390/cimb47020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE To unveil the efficacy and ferroptosis-related mechanisms of Atractylodes Macrocephala Koidz (AMK) against Alzheimer's disease (AD), which is the most widespread neurodegenerative disease. METHODS Gene set variation analysis (GSVA) scores were used to investigate the relationship between ferroptosis and AD. Logistic regression with seven feature selections and a deep learning model were utilized to identify potential targets of AMK based on transcriptomic data from multiple tissues. A transcriptome-wide association study (TWAS), summary-data-based mendelian randomization (SMR), and mendelian randomization (MR) were utilized to validate the causal relationship between target genes and AD risk. A single-gene gene set enrichment analysis (GSEA) was employed to investigate the biological pathways associated with the target genes. Three molecular docking strategies and a molecular dynamics simulation were employed to verify the binding domains interacting with AMK. Furthermore, the anti-AD effects of AMK were validated in a zebrafish AD model by testing behavior responses, apoptosis, and the deposition of beta-amyloid (Aβ) in the brain. Ultimately, real-time qPCR was used to verify the ferroptosis-related targets, which was identified via multi-omics. RESULTS Ferroptosis is an important pathogenic mechanism of AD, as suggested by the GSVA scores. AMK may exert its anti-AD activity through targets genes identified in the brain (ATP5MC3, GOT1, SAT1, EGFR, and MAPK9) and blood (G6PD, PGD, ALOX5, HMOX1, and ULK1). EGFR and HMOX1 were further confirmed as target genes mediating the anti-AD activity of AMK through TWAS, SMR, and MR analyses. The GSEA results indicated that EGFR may be involved in oxidative phosphorylation-related pathways, while HMOX1 may be associated with lysosome and phagosome pathways. The results of three molecular docking strategies and molecular dynamics simulations implied that the kinase domain of EGFR and the catalytic domain of HMOX1 played pivotal roles in the interaction between AMK and the targets. In a zebrafish model, AD-like symptoms including motor slowness and delayed responses, neuronal apoptosis, and plaque deposition in the brain, were significantly improved after AMK treatment. Accordingly, AMK reversed the abnormal expression of egfra and hmox1a, two core targets genes involved in ferroptosis. CONCLUSIONS AMK significantly alleviated AD-like symptoms through the modulation of EGFR and HMOX1, which might reduce lipid peroxidation, thereby suppressing ferroptosis. This study provided evidence supporting the efficacy and therapeutic targets associated with ferroptosis in AMK-treated AD, which aid in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yuanteng Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
| | - Xin Gao
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Jiyang Tang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Li Gao
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
| | - Xiaotong Cui
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Xiujun Zhang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
| |
Collapse
|
37
|
Louka A, Spacho N, Korovesis D, Adamis K, Papadopoulos C, Kalaitzaki E, Tavernarakis N, Neochoritis CG, Eleftheriadis N. Crafting Molecular Tools for 15-Lipoxygenase-1 in a Single Step. Angew Chem Int Ed Engl 2025; 64:e202418291. [PMID: 39523872 PMCID: PMC11795718 DOI: 10.1002/anie.202418291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Small molecule modulators are powerful tools for selectively probing and manipulating proteins in native biological systems. However, the development of versatile modulators that exhibit desired properties is hindered by the lack of a rapid and robust synthetic strategy. Here, we develop a facile and reliable one-step methodology for the generation of multifunctional toolboxes encompassing a wide variety of chemical modulators with different desired features. These modulators bind irreversibly to the protein target via a selective warhead. Key elements are introduced onto the warhead in a single step using multi-component reactions. To illustrate the power of this new technology, we synthesized a library of diverse modulators designed to explore a highly challenging and poorly understood protein, human 15-lipoxygenase-1. Modulators made include; activity-based/photoaffinity probes, chemosensors, photocrosslinkers, as well as light-controlled and high-affinity inhibitors. The efficacy of our compounds was successfully established through the provision of on demand inhibition and labeling of our target protein in vitro, in cellulo and in vivo; thus, proving that this technology has promising potential for applications in many complex biological systems.
Collapse
Affiliation(s)
- Anastasia Louka
- Department of ChemistryUniversity of CreteVoutes70013 HeraklionGreece
| | - Ntaniela Spacho
- Department of ChemistryUniversity of CreteVoutes70013 HeraklionGreece
| | - Dimitris Korovesis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology-HellasNikolaou Plastira 10070013HeraklionGreece
| | | | | | | | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology-HellasNikolaou Plastira 10070013HeraklionGreece
- Division of Basic SciencesSchool of MedicineUniversity of CreteVoutes70013 HeraklionGreece
| | | | | |
Collapse
|
38
|
Naderi S, Khodagholi F, Janahmadi M, Motamedi F, Torabi A, Batool Z, Heydarabadi MF, Pourbadie HG. Ferroptosis and cognitive impairment: Unraveling the link and potential therapeutic targets. Neuropharmacology 2025; 263:110210. [PMID: 39521042 DOI: 10.1016/j.neuropharm.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, share key characteristics, notably cognitive impairment and significant cell death in specific brain regions. Cognition, a complex mental process allowing individuals to perceive time and place, is disrupted in these conditions. This consistent disruption suggests the possibility of a shared underlying mechanism across all neurodegenerative diseases. One potential common factor is the activation of pathways leading to cell death. Despite significant progress in understanding cell death pathways, no definitive treatments have emerged. This has shifted focus towards less-explored mechanisms like ferroptosis, which holds potential due to its involvement in oxidative stress and iron metabolism. Unlike apoptosis or necrosis, ferroptosis offers a novel therapeutic avenue due to its distinct biochemical and genetic underpinnings, making it a promising target in neurodegenerative disease treatment. Ferroptosis is distinguished from other cellular death mechanisms, by distinctive characteristics such as an imbalance of iron hemostasis, peroxidation of lipids in the plasma membrane, and dysregulated glutathione metabolism. In this review, we discuss the potential role of ferroptosis in cognitive impairment. We then summarize the evidence linking ferroptosis biomarkers to cognitive impairment brought on by neurodegeneration while highlighting recent advancements in our understanding of the molecular and genetic mechanisms behind the condition. Finally, we discuss the prospective therapeutic implications of targeting ferroptosis for the treatment of cognitive abnormalities associated with neurodegeneration, including natural and synthetic substances that suppress ferroptosis via a variety of mechanisms. Promising therapeutic candidates, including antioxidants and iron chelators, are being explored to inhibit ferroptosis and mitigate cognitive decline.
Collapse
Affiliation(s)
- Soudabeh Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Torabi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Hamid Gholami Pourbadie
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
39
|
Mansur AAP, Carvalho SM, Lobato ZIP, Leite MF, Krambrock K, Mansur HS. Bioengineering stimuli-responsive organic-inorganic nanoarchitetures based on carboxymethylcellulose-poly-l-lysine nanoplexes: Unlocking the potential for bioimaging and multimodal chemodynamic-magnetothermal therapy of brain cancer cells. Int J Biol Macromol 2025; 290:138985. [PMID: 39706409 DOI: 10.1016/j.ijbiomac.2024.138985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up"). One nanocomponent was based on cationic epsilon-poly-l-lysine polypeptide (εPL) conjugated with ZnS quantum dots (QDs) acting as chemical ligand and cell-penetrating peptide (CPP) for bioimaging of cancer cells (QD@εPL). The second nanocomponent was based on anionic carboxymethylcellulose (CMC) polysaccharide surrounding superparamagnetic magnetite "nanozymes" (MNZ) behaving as a capping macromolecular shell (MNZ@CMC) for killing cancer cells through chemodynamic therapy (CDT) and magnetohyperthermia (MHT). The results demonstrated the effective production of supramolecular aqueous colloidal nanoplexes (QD@εPL_MNZ@CMC, NPX) integrated into single nanoplatforms, mainly electrostatically stabilized by εPL/CMC biomolecules with anticancer activity against U-87 cells using 2D and 3D spheroid models. They displayed nanotheranostics (i.e., diagnosis and therapy) behavior credited to the photonic activity of QD@εPL with luminescent intracellular bioimaging, amalgamated with a dual-mode killing effect of GBM cancer cells through CDT by nanozyme-induced biocatalysis and as "nanoheaters" by magnetically-responsive hyperthermia therapy.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Zélia I P Lobato
- Department of Preventive Veterinary Medicine School of Veterinary, Federal University of Minas Gerais, UFMG, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais - UFMG, Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil.
| |
Collapse
|
40
|
Jang N, Kim IK, Jung D, Chung Y, Kang YP. Regulation of Ferroptosis in Cancer and Immune Cells. Immune Netw 2025; 25:e6. [PMID: 40078787 PMCID: PMC11896659 DOI: 10.4110/in.2025.25.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is driven by lipid peroxidation and shaped by metabolic and antioxidant pathways. In immune cells, ferroptosis susceptibility varies by cell types, lipid composition, and metabolic demands, influencing immune responses in cancer, infections, and autoimmune diseases. Therapeutically, targeting ferroptosis holds promise in cancer immunotherapy by enhancing antitumor immunity or inhibiting immunosuppressive cells. This review highlights the metabolic pathways underlying ferroptosis, its regulation in immune cells, its dual role in tumor progression and antitumor immunity, and its context-dependent therapeutic implications for optimizing cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
He N, Yuan D, Luo M, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Ferroptosis contributes to immunosuppression. Front Med 2025; 19:1-22. [PMID: 39560919 DOI: 10.1007/s11684-024-1080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 11/20/2024]
Abstract
As a novel form of cell death, ferroptosis is mainly regulated by the accumulation of soluble iron ions in the cytoplasm and the production of lipid peroxides and is closely associated with several diseases, including acute kidney injury, ischemic reperfusion injury, neurodegenerative diseases, and cancer. The term "immunosuppression" refers to various factors that can directly harm immune cells' structure and function and affect the synthesis, release, and biological activity of immune molecules, leading to the insufficient response of the immune system to antigen production, failure to successfully resist the invasion of foreign pathogens, and even organ damage and metabolic disorders. An immunosuppressive phase commonly occurs in the progression of many ferroptosis-related diseases, and ferroptosis can directly inhibit immune cell function. However, the relationship between ferroptosis and immunosuppression has not yet been published due to their complicated interactions in various diseases. Therefore, this review deeply discusses the contribution of ferroptosis to immunosuppression in specific cases. In addition to offering new therapeutic targets for ferroptosis-related diseases, the findings will help clarify the issues on how ferroptosis contributes to immunosuppression.
Collapse
Affiliation(s)
- Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China.
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China.
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China.
| |
Collapse
|
42
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
43
|
Zhang Y, Yi S, Luan M. Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment. Front Oncol 2025; 15:1519119. [PMID: 39949740 PMCID: PMC11821507 DOI: 10.3389/fonc.2025.1519119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Cell death mechanisms are broadly classified into accidental cell death (ACD) and regulated cell death (RCD). ACD such as necrosis, is an uncontrolled, accidental process, while RCD is tightly regulated by specific signaling pathways and molecular mechanisms. Tumor cells are characterized by their ability to evade cell death and sustain uncontrolled proliferation. The failure of programmed cell death is a key contributor to tumor initiation, progression, and resistance to cancer therapies. Traditionally, research has focused primarily on apoptosis as the dominant form of RCD in cancer. However, emerging evidence highlights the importance of other non-apoptotic forms of RCD, such as pyroptosis, ferroptosis, necroptosis, and parthanatos, in tumorigenesis and treatment response. These pathways are gaining attention for their potential roles in overcoming therapy resistance. In this review, we will discuss the recent advances in the study of non-apoptotic cell death pathways in malignant tumors and explore their therapeutic implications, offering insights into new targets for cancer treatment strategies.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Shiqi Yi
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Mingyuan Luan
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Huang B, Wang H, Liu S, Hao M, Luo D, Zhou Y, Huang Y, Nian Y, Zhang L, Chu B, Yin C. Palmitoylation-dependent regulation of GPX4 suppresses ferroptosis. Nat Commun 2025; 16:867. [PMID: 39833225 PMCID: PMC11746948 DOI: 10.1038/s41467-025-56344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
S-palmitoylation is a reversible and widespread post-translational modification, but its role in the regulation of ferroptosis has been poorly understood. Here, we elucidate that GPX4, an essential regulator of ferroptosis, is reversibly palmitoylated on cysteine 66. The acyltransferase ZDHHC20 palmitoylates GPX4 and increases its protein stability. ZDHHC20 depletion or inhibition of protein palmitoylation by 2-BP sensitizes cancer cells to ferroptosis. Moreover, we identify APT2 as the depalmitoylase of GPX4. Genetic silencing or pharmacological inhibition of APT2 with ML349 increases GPX4 palmitoylation, thereby stabilizing the protein and conferring resistance to ferroptosis. Notably, disrupting GPX4 palmitoylation markedly potentiates ferroptosis in xenografted and orthotopically implanted tumor models, and inhibits tumor metastasis through blood vessels. In the chemically induced colorectal cancer model, knockout of APT2 significantly aggravates cancer progression. Furthermore, pharmacologically modulating GPX4 palmitoylation impacts liver ischemia-reperfusion injury. Overall, our findings uncover the intricate network regulating GPX4 palmitoylation, highlighting its pivotal role in modulating ferroptosis sensitivity.
Collapse
Affiliation(s)
- Bin Huang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Hui Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China
| | - Shuo Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Hao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Dan Luo
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yi Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ying Huang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yong Nian
- College of Pharmacy, Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lei Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| |
Collapse
|
45
|
Cao J, Zhou T, Wu T, Lin R, Huang J, Shi D, Yu J, Ren Y, Qian C, He L, Wu G, Dong Z, Yuan S, Gu H. Targeting estrogen-regulated system x c- promotes ferroptosis and endocrine sensitivity of ER+ breast cancer. Cell Death Dis 2025; 16:30. [PMID: 39833180 PMCID: PMC11756422 DOI: 10.1038/s41419-025-07354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Estrogen receptor positive (ER+) breast cancer accounts for approximately 70% of cases. Endocrine therapies targeting estrogen are the first line therapies for ER+ breast cancer. However, resistance to these therapies occurs in about half of patients, leading to decreased survival rates. Inducing ferroptosis is a promising therapeutic strategy for cancer treatment for refractory and malignant cancers including triple-negative breast cancer. Nevertheless, ER+ breast cancer is relatively resistant to ferroptosis inducers. Here, we uncovered that ERα suppressed ferroptosis in ER+ breast cancer. Silencing ERα triggered ferroptosis, which was attenuated by ferroptosis inhibitor Ferrostatin-1, and was enhanced by ferroptosis inducer Erastin. Mechanistically, ERα transcriptionally upregulated the expression of SLC7A11 and SLC3A2, two subunits of the system xc-, which is one key inhibitory regulator of ferroptosis. Overexpression of the exogenous SLC7A11 and SLC3A2 was able to mitigate ferroptosis induced by ERα inhibition. Moreover, SLC7A11 and SLC3A2 levels were elevated in endocrine-resistant breast cancer cells and tumors. Importantly, the system xc- inhibitor Sorafenib or Imidazole ketone erastin effectively inhibited the growth of tamoxifen-resistant breast cells in vitro and in vivo. In conclusion, our data reveal that targeting estrogen-regulated SLC7A11 and SLC3A2 enhances ferroptosis in ER+ breast cancer, offering a novel therapeutic option for patients with ER+ breast cancer, particularly those with endocrine resistance.
Collapse
Affiliation(s)
- Jiawei Cao
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China.
| | - Tong Zhou
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Tao Wu
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Rixu Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, China
| | - Ju Huang
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Dejin Shi
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jiawei Yu
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Yinrui Ren
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Licai He
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Guang Wu
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zhixiong Dong
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China
| | - Shaofei Yuan
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, China.
| | - Haihua Gu
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
46
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2025; 33:42-59. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
47
|
Huo G, Lin Y, Liu L, He Y, Qu Y, Liu Y, Zhu R, Wang B, Gong Q, Han Z, Yin H. Decoding ferroptosis: transforming orthopedic disease management. Front Pharmacol 2024; 15:1509172. [PMID: 39712490 PMCID: PMC11659002 DOI: 10.3389/fphar.2024.1509172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
As a mechanism of cell death, ferroptosis has gained popularity since 2012. The process is distinguished by iron toxicity and phospholipid accumulation, in contrast to autophagy, apoptosis, and other cell death mechanisms. It is implicated in the advancement of multiple diseases across the body. Researchers currently know that osteosarcoma, osteoporosis, and other orthopedic disorders are caused by NRF2, GPX4, and other ferroptosis star proteins. The effective relief of osteoarthritis symptoms from deterioration has been confirmed by clinical treatment with multiple ferroptosis inhibitors. At the same time, it should be reminded that the mechanisms involved in ferroptosis that regulate orthopedic diseases are not currently understood. In this manuscript, we present the discovery process of ferroptosis, the mechanisms involved in ferroptosis, and the role of ferroptosis in a variety of orthopedic diseases. We expect that this manuscript can provide a new perspective on clinical diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guanlin Huo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Yi Qu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Bo Wang
- Department of Orthopaedics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Qing Gong
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhongyu Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongbing Yin
- Orthopedic Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
48
|
Chang Y, Jiang X, Dou J, Xie R, Zhao W, Cao Y, Gao J, Yao F, Wu D, Mei H, Zhong Y, Ge Y, Xu H, Jiang W, Xiao X, Jiang Y, Hu S, Wu Y, Liu Y. Investigating the potential risk of cadmium exposure on seizure severity and anxiety-like behaviors through the ferroptosis pathway in epileptic mice: An integrated multi-omics approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135814. [PMID: 39303606 DOI: 10.1016/j.jhazmat.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Cadmium, a toxic heavy metal from industrial activities, poses a neurotoxic risk, especially to children. While seizures are common in children, the link between cadmium and seizure activity is unclear. Ferroptosis, an iron-dependent cell death, is key in seizure-induced hippocampal damage and related anxiety. This study aims to elucidate these mechanisms and assess the broader implications of cadmium exposure. Our research contributes in three significant areas: Firstly, through a combination of observational studies in long-term cadmium-exposed workers, Mendelian randomization analysis, NHANES analysis, urinary metabolomics, and machine learning analysis, we explored the impact of long-term cadmium exposure on inflammatory cytokines, ferroptosis-related gene expression, and lipid and iron metabolism. Secondly, by harnessing public databases for human disorders and metal-associated gene targets, alongside therapeutic molecular analyses, we identified critical human gene targets for cadmium toxicity in seizures and proposed melatonin as a promising therapeutic agent. Finally, utilizing mouse behavioral assays, T2 MRI, and MRS, we provide evidence of how prolonged cadmium exposure disrupts iron and lipid metabolism in the brain, triggering ferroptosis in the hippocampus.
Collapse
Affiliation(s)
- Yuanjin Chang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jianrui Dou
- Department of Occupational Safety and Health, Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Yangzhou Polytechnic College, Yangzhou, China
| | - Wenjing Zhao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yingsi Cao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ju Gao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Fanglong Yao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Dongqin Wu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - YuXi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hua Xu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wenjun Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xue Xiao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuanying Jiang
- Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
49
|
Zhao X, Zhang M, He J, Li X, Zhuang X. Emerging insights into ferroptosis in cholangiocarcinoma (Review). Oncol Lett 2024; 28:606. [PMID: 39483963 PMCID: PMC11526429 DOI: 10.3892/ol.2024.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 11/03/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that arises within the biliary system, which exhibits a progressively increasing incidence and a poor patient prognosis. A thorough understanding of the molecular pathogenesis that drives the progression of CCA is essential for the development of effective molecular target therapeutic approaches. Ferroptosis is driven by excessive iron accumulation and catalysis, lipid peroxidation and the failure of antioxidant defense systems. Key molecular targets of iron metabolism, lipid metabolism and antioxidant defense systems involve molecules such as transferrin receptor, ACSL4 and GPX4, respectively. Inhibitors of ferroptosis include ferrostatin-1, liproxstatin-1, vitamin E and coenzyme Q10. By contrast, compounds such as erastin, RSL3 and FIN56 have been identified as inducers of ferroptosis. Ferroptosis serves a notable role in the onset and progression of CCA. CCA cells exhibit high sensitivity to ferroptosis and aberrant iron metabolism in these cells increases oxidative stress and iron accumulation. The induction of ferroptosis markedly reduces the ability of CCA cells to proliferate and migrate. Certain ferroptosis agonists, such as RSL3 and erastin, cause lipid peroxide build up and GPX4 inhibition to induce ferroptosis in CCA cells. Current serological markers, such as CA-199, have low specificity and cause difficulties in the diagnosis of CCA. However, novel techniques, such as non-invasive liquid biopsy and assays for oxidative stress markers and double-cortin-like kinase 1, could improve diagnostic accuracy. CCA is primarily treated with surgery and chemotherapy. A close association between the progression of CCA with ferroptosis mechanisms and related regulatory pathways has been demonstrated. Therefore, it could be suggested that multi-targeted therapeutic approaches, such as ferroptosis inducers, iron chelating agents and novel modulators such as YL-939, may improve treatment efficacy. Iron death-related genes, such as GPX4, that are highly expressed in CCA and are associated with a poor prognosis for patients may represent potential prognostic markers for CCA. The present review focused on molecular targets such as p53 and ACSL4, the process of targeted medications in combination with PDT in CCA and the pathways of lipid peroxidation, the Xc-system and GSH-GPX4 in ferroptosis. The present review thus offered novel perspectives to improve the current understanding of CCA.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Miao Zhang
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Jing He
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xin Li
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xuewei Zhuang
- Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
50
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|