1
|
Xia J, Wang Y, Li X, Liu L, Zhang P, Dai W, Luo P, Wang G, Li Y. The mechanism of perilla oil in regulating lipid metabolism. Food Chem 2025; 476:143318. [PMID: 39977980 DOI: 10.1016/j.foodchem.2025.143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Emerging science supports the role of lipid metabolism disorders in the occurrence and development of chronic diseases. Dietary intervention has been shown to be an effective strategy for regulating lipid metabolism. Recent studies showed that perilla is rich in various effective ingredients, including fatty acids, flavonoids, and phenolic acids. These ingredients exhibit a myriad of benefits, notably enhancing intestinal health and helping to manage metabolic diseases. Perilla oil stands out as a promising agent for regulating lipid metabolism, underscoring its potential for various health applications. This review introduces the active ingredients in perilla and provides a systematic overview of the mechanism by which perilla oil regulates lipid metabolism to expand its application value. Further research should focus on exploring the dose effect and absorption efficiency of perilla oil in clinical applications.
Collapse
Affiliation(s)
- Jiawei Xia
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 561113, China; Guizhou Rapeseed Institute, Guizhou Province Academy of Agricultural Sciences, No. 270-0061 Baiyun Road, Jinyang District, Guiyang, Guizhou 550008, China
| | - Yi Wang
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Xin Li
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Li Liu
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Pin Zhang
- Guizhou Rapeseed Institute, Guizhou Province Academy of Agricultural Sciences, No. 270-0061 Baiyun Road, Jinyang District, Guiyang, Guizhou 550008, China
| | - Wendong Dai
- Guizhou Rapeseed Institute, Guizhou Province Academy of Agricultural Sciences, No. 270-0061 Baiyun Road, Jinyang District, Guiyang, Guizhou 550008, China
| | - Peng Luo
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Guoze Wang
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 561113, China.
| | - Yanhong Li
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
2
|
Jeong AY, Ma EB, Hong SJ, Kim E, Ko S, Huh JY, Kim YM. Kombucha inhibits adipogenesis and promotes lipolytic activity in 3T3-L1 adipocytes. Food Sci Biotechnol 2025; 34:1037-1043. [PMID: 39974855 PMCID: PMC11832843 DOI: 10.1007/s10068-024-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 02/21/2025] Open
Abstract
This research was conducted to investigate the anti-obesity effects of black tea or green tea kombucha (BK, GK) and compared their compositional differences. As a result of kombucha treatment during the adipocyte differentiation process, peroxisome proliferator-activated receptor γ was significantly decreased, and CCAAT/enhancer binding protein α and adipocyte protein 2 showed a tendency to decrease with BK treatment. Oil red O staining results also demonstrated a reduction of lipid accumulation by BK treatment compared to the control. In mature adipocytes, BK significantly upregulated the gene expression of hormone-sensitive lipase and tended to increase the expression of adipose triglyceride lipase and adiponectin. Additionally, as a biomarker of lipolysis, glycerol content also marginally increased with either BK or GK treatment. The differences were observed in tea polyphenol compound and organic acid contents between BK and GK. In conclusion, these results suggest that black tea kombucha may have anti-obesity activity. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01740-8.
Collapse
Affiliation(s)
- Ah-Young Jeong
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Eun-Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Jin Hong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
- Research Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Eunhye Kim
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
| | - Sugju Ko
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
3
|
Alzubi A, Glowacki HX, Burns JL, Van K, Martin JLA, Monk JM. Dose-Dependent Effects of Short-Chain Fatty Acids on 3T3-L1 Adipocyte Adipokine Secretion and Metabolic Function. Nutrients 2025; 17:571. [PMID: 39940429 PMCID: PMC11820615 DOI: 10.3390/nu17030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) produced from microbial fermentation of non-digestible carbohydrates and protein have been shown to modulate adipocyte adipokine secretion and metabolic function, which has implications for mitigating dysfunction in obese adipose tissue; however, the individual effects of different SCFAs and the optimal concentration required is unknown. The purpose of this study was to dose-dependently determine the effects of individual SCFAs on adipocyte adipokine secretion and metabolic function. METHODS We recapitulated the obese adipocyte inflammatory conditions using mature 3T3-L1 adipocytes and a physiological concentration of lipopolysaccharide (LPS) ± individual SCFAs, namely acetate, propionate, and butyrate, in a dose-dependent manner (0.25 mM, 0.5 mM, and 1 mM) for 24 h. RESULTS SCFAs dose-dependently affected inflammatory adipokine secretion, wherein at 1 mM, all three SCFAs reduced the secretion of leptin, IL-6 and IL-1β, but only propionate and butyrate reduced MCP-1/CCL2 and MIP-1α/CCL3 compared to control (p < 0.05). Interestingly, 1 mM acetate increased RANTES/CCL5 secretion versus control, whereas propionate and butyrate decreased RANTES/CCL5 secretion, and only 1 mM propionate reduced MCP-3/CCL7 secretion (p < 0.05). At the lower 0.5 mM concentration, both propionate and butyrate reduced IL-6 and IL-1β secretion compared to control (p < 0.05), and there was no difference in adipokine secretion between groups at the 0.25 mM SCFA concentration (p > 0.05). Intracellular protein expression in the ratio of phosphorylated-to-total STAT3 was reduced by all SCFAs at 1 mM and by propionate and butyrate at 0.5 mM versus control (p < 0.05). The ratio fo phosphorylated-to-total NFκB p65 expression was reduced by propionate and butyrate at 1 mM and by butyrate alone at 0.5 mM compared to control (p < 0.05). Basal (no insulin stimulation) and insulin-stimulated glucose uptake did not differ between control and any 1 mM SCFA treatment conditions (p > 0.05). CONCLUSIONS Individual SCFAs exert different dose-dependent effects on LPS-stimulated adipocyte function.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Wada T, Senokuchi T, Shi Y, Furusho T, Morita Y, Sarie M, Hanatani S, Fukuda K, Ishii N, Matsumura T, Fujiwara Y, Komohara Y, Araki E, Kubota N. Orally administrated acetate inhibits atherosclerosis progression through AMPK activation via GPR43 in plaque macrophages. Atherosclerosis 2025; 401:119088. [PMID: 39705906 DOI: 10.1016/j.atherosclerosis.2024.119088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND AND AIMS Oral administration of acetic acid, a short-chain fatty acid, has been shown to efficiently reduce obesity and insulin resistance in both experimental animals and humans. The anti-atherosclerotic effect of acetate is expected owing to its anti-inflammatory and anti-oxidative stress characteristics; however, this remains to be fully understood. METHODS For 12 weeks, apolipoprotein E-deficient mice were administered 0.6 % sodium acetate water or vehicle water. Plaque formation and progression were investigated using histological analysis of dissected aortic root sections. Flow cytometry and gene expression analyses were employed to assess plaque macrophage characteristics and functional states. In vitro tests were performed on mouse peritoneal primary macrophages and bone marrow-derived macrophages isolated from wild-type or GPR43-deficient mice. RESULTS Atherosclerotic plaque formation was inhibited in acetate-treated ApoE-deficient mice, and AMPK activation was directly validated in plaque macrophages. Acetate inhibited macrophage proliferation, reactive oxygen species production, and pro-inflammatory molecule expression, all of which were reversed by AMPK inhibition. Bone marrow transplantation study revealed the role of GPR43-mediated AMPK activation by acetic acid in anti-atherosclerotic effect. CONCLUSIONS Oral acetate administration suppressed arteriosclerosis formation and progression in ApoE-deficient mice. Acetate inhibited macrophage proliferation, inflammatory cytokine release, and reactive oxygen species production via GPR43-mediated AMPK activation in macrophages, ameliorating plaque formation and progression.
Collapse
Affiliation(s)
- Toshiaki Wada
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Yudan Shi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Furusho
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaro Morita
- Department of Metabolism, Amakusa Medical Center, Kumamoto, Japan
| | - Maeda Sarie
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuki Fukuda
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Norio Ishii
- Department of Metabolism, Kumamoto City Hospital, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Research Center for Health and Sports Science, Kumamoto Health Science University, Kumamoto, Japan; Kikuchi Medical Association Hospital, Kumamoto, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Peng F, Yu Z, Du B, Niu K, Yu X, Wang S, Yang Y. Non-starch polysaccharides from Castanea mollissima Bl. ameliorate metabolic syndrome by remodeling barrier function, microbial community, and metabolites in high-fat-diet/streptozotocin-induced diabetic mice. Food Res Int 2025; 202:115638. [PMID: 39967138 DOI: 10.1016/j.foodres.2024.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Non-starch polysaccharides have been demonstrated to have significant benefits in treating some chronic metabolic diseases such as hyperglycemia. However, the preventive effect of non-starch polysaccharides from Castanea mollissima Bl. (CMNSP) on type 2 diabetes mellitus (T2DM) remain underexplored. The objective of this study was to investigate the effect of CMNSP on glucose and lipid metabolism, intestinal barrier, gut microbiota and their metabolites in high fat diet/streptozotocin-induced T2DM mice. The results revealed that CMNSP significantly mitigated hyperglycemia, insulin resistance, hyperlipidemia, and prevented pancreatic atrophy, hepatic steatosis and enhanced the expression at mRNA level and corresponding protein of PI3K/AKT/Glut2 signaling pathway in liver. Moreover, CMNSP enhanced the level of SCFAs and restored intestinal barrier damage and gut microbiota disturbance in diabetic mice. Further fecal metabolomics analysis identified that CMNSP primarily influenced the metabolic pathways such as Primary bile acid biosynthesis and Taurine and hypotaurine metabolism, and were significantly correlated with changes in dominant bacterial genera including Bacteroides and Lactobacillus.
Collapse
Affiliation(s)
- Fei Peng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000 China
| | - Zuoqing Yu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China
| | - Bin Du
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000 China
| | - Kui Niu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000 China
| | - Xi Yu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457 China.
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000 China.
| |
Collapse
|
6
|
Yoshimura Y, Matsui T, Kaneko N, Kobayashi I. Digestion and absorption of triacetin, a short-chain triacylglycerol. Lipids 2025. [PMID: 39891375 DOI: 10.1002/lipd.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Triacylglycerol (TG) is categorized into long-, medium-, and short-chain TG (SCTG). While the digestion of long- and medium-chain TG is well established, the process for SCTG remains unclear. This study investigated SCTG digestion by administering 2 mmol of triacetin to rats and analyzing acetin, acetic acid, and glycerol levels in the portal blood and small intestine. Triacetin was fully degraded in the upper gastrointestinal tract and absorbed as acetic acid and glycerol. Glycerol influx into the liver promoted gluconeogenesis, while acetate activated AMPK, resulting in the suppression of fatty acid synthesis-related genes and the upregulation of fatty acid β-oxidation-related genes. These findings demonstrate that triacetin not only serves as a substrate for energy metabolism but also regulates hepatic gene expression, highlighting its dual role as both a metabolic substrate and signaling molecule. Triacetin thus shows potential as a dietary modulator for improving metabolic health.
Collapse
Affiliation(s)
| | - Tomoka Matsui
- Department of Nutrition, Kobe Gakuin University, Kobe City, Japan
| | - Nagisa Kaneko
- Department of Nutrition, Kobe Gakuin University, Kobe City, Japan
| | - Ikuha Kobayashi
- Department of Nutrition, Kobe Gakuin University, Kobe City, Japan
| |
Collapse
|
7
|
Szymczak-Pajor I, Drzewoski J, Kozłowska M, Krekora J, Śliwińska A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals (Basel) 2025; 18:55. [PMID: 39861118 PMCID: PMC11768994 DOI: 10.3390/ph18010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications. The drug primarily inhibits hepatic gluconeogenesis and increases the sensitivity of target cells (hepatocytes, adipocytes and myocytes) to insulin; however, increasing evidence suggests that it may also influence the gut. As T2DM patients exhibit gut dysbiosis, the intestinal microbiome has gained interest as a key target for metabolic diseases. Interestingly, changes in the gut microbiome were also observed in T2DM patients treated with metformin compared to those who were not. Therefore, the aim of this review is to present the current state of knowledge regarding the association of the gut microbiome with the antihyperglycemic effect of metformin. Numerous studies indicate that the reduction in glucose concentration observed in T2DM patients treated with metformin is due in part to changes in the biodiversity of the gut microbiota. These changes contribute to improved intestinal barrier integrity, increased production of short-chain fatty acids (SCFAs), regulation of bile acid metabolism, and enhanced glucose absorption. Therefore, in addition to the well-recognized reduction of gluconeogenesis, metformin also appears to exert its glucose-lowering effect by influencing gut microbiome biodiversity. However, we are only beginning to understand how metformin acts on specific microorganisms in the intestine, and further research is needed to understand its role in regulating glucose metabolism, including the impact of this remarkable drug on specific microorganisms in the gut.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Małgorzata Kozłowska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Jan Krekora
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
8
|
Abdullah, Ahmad N, Xiao J, Tian W, Khan NU, Hussain M, Ahsan HM, Hamed YS, Zhong H, Guan R. Gingerols: Preparation, encapsulation, and bioactivities focusing gut microbiome modulation and attenuation of disease symptoms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156352. [PMID: 39740381 DOI: 10.1016/j.phymed.2024.156352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects. PURPOSE This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved. METHOD Research findings from experimental and clinical studies have been summarized regarding gingerols effects on the modulation of gut microbiome and its metabolites, and attenuation of disease symptoms. RESULTS Gingerols are phenolic compounds characterized by a common 3-methoxy-4-hydroxyphenyl moiety in their chemical structures, and further divided into different gingerol types, including gingerols (major), shogaols, paradols, gingerdiols, gingerdiones, and zingerones (minor). Advanced extraction techniques (e.g., ionic liquid-based-, enzyme-assisted-, microwave-assisted-, pressurized liquid-, ultrasound-assisted-, and supercritical fluid extractions) were reported as optimal alternatives to conventional methods for gingerols extraction. Research studies reported that gingerols positively modulated the composition of gut microbiome that helped to combat disease symptoms (e.g., obesity by decreasing weight gain- (Lactobacillus reuteri and Lachnospiraceae) and increasing weight loss associated-bacteria (Akkermansia, Muribaculaceae, and Alloprevotella). Gingerols intervention also ameliorated ulcerative colitis by increasing relative abundance of the beneficial bacteria (Akkermansia, Lachnospiraceae NK4A136, and Muribaculaceae_norank), and decreasing pathogenic microorganisms (Bacteroides, Parabacteroides, and Desulfovibrio). Emerging delivery systems (e.g., microcapsules, nanoparticles, nanostructured lipid carriers, nanoemulsions, and nanoliposomes) can enhance the bioavailability and therapeutic efficacy of gingerols by preserving their inherent properties and addressing challenges of stability, solubility, and absorption. CONCLUSION Gingerols are promising therapeutic agents to modulate gut microbiome (increase beneficial bacteria and inhibit pathogenic microbes), and attenuate chronic disease symptoms such as diabetes, colitis, obesity, oxidative stress, and cancer. Despite significant progress, challenges persist in transforming research findings into industrial applications, such as stability and solubility during processing and low bioavailability in the distal gut to impart desirable health benefits.
Collapse
Affiliation(s)
- Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Naveed Ahmad
- Multan College of Food & Nutrition Sciences, Multan Medical & Dental College, Multan, Pakistan
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yahya Saud Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Alzubi A, Monk JM. Effect of Comparable Carbon Chain Length Short- and Branched-Chain Fatty Acids on Adipokine Secretion from Normoxic and Hypoxic Lipopolysaccharide-Stimulated 3T3-L1 Adipocytes. Biomedicines 2024; 12:2621. [PMID: 39595185 PMCID: PMC11592336 DOI: 10.3390/biomedicines12112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Microbial fermentation of non-digestible carbohydrates and/or protein produces short-chain fatty acids (SCFA), whereas branched-chain fatty acids (BCFA) are produced from protein fermentation. The effects of individual SCFA and BCFA of comparable carbon chain length on adipocyte inflammation have not been investigated. Objective: To compare the effects of SCFA and BCFA on inflammatory mediator secretion in an adipocyte cell culture model designed to recapitulate obesity-associated adipocyte inflammation under normoxic and hypoxic conditions. Methods: The 3T3-L1 adipocytes were cultured (24 h) without (Control, Con) and with 1 mmol/L of SCFA (butyric acid (But) or valeric acid (Val)) or 1 mmol/L of BCFA (isobutyric acid (IsoBut) or isovaleric acid (IsoVal)) and were unstimulated (cells alone, n = 6/treatment), or stimulated with 10 ng/mL lipopolysaccharide (LPS, inflammatory stimulus, n = 8/treatment) or 10 ng/mL LPS + 100 µmol/L of the hypoxia memetic cobalt chloride (LPS/CC, inflammatory/hypoxic stimulus, n = 8/treatment). Results: Compared to Con + LPS, But + LPS reduced secreted protein levels of interleukin (IL)-1β, IL-6, macrophage chemoattractant protein (MCP)-1/chemokine ligand (CCL)2, MCP3/CCL7, macrophage inflammatory protein (MIP)-1α/CCL3 and regulated upon activation, normal T cell expressed, and secreted (RANTES)/CCL5 and decreased intracellular protein expression of the ratio of phosphorylated to total signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NFκB) p65 (p < 0.05). Val + LPS reduced IL-6 secretion and increased MCP-1/CCL2 secretion compared to Con + LPS and exhibited a different inflammatory mediator secretory profile from But + LPS (p < 0.05), indicating that individual SCFA exert individual effects. There were no differences in the secretory profile of the BCFA IsoBut + LPS and IsoVal + LPS (p > 0.05). Alternatively, under inflammatory hypoxic conditions (LPS/CC) Val, IsoVal, and IsoBut all increased secretion of IL-6, MCP-1/CCL2 and MIP-1α/CCL3 compared to Con (p < 0.05), whereas mediator secretion did not differ between But and Con (p > 0.05), indicating that the proinflammatory effects of SCFA and BCFA was attenuated by But. Interestingly, But + LPS/CC decreased STAT3 activation versus Con + LPS/CC (p < 0.05). Conclusions: The decreased secretion of inflammatory mediators that is attributable to But highlights the fact that individual SCFA and BCFA exert differential effects on adipocyte inflammation under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
| | - Jennifer M. Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
10
|
Phuong-Nguyen K, O’Hely M, Kowalski GM, McGee SL, Aston-Mourney K, Connor T, Mahmood MQ, Rivera LR. The Impact of Yoyo Dieting and Resistant Starch on Weight Loss and Gut Microbiome in C57Bl/6 Mice. Nutrients 2024; 16:3138. [PMID: 39339738 PMCID: PMC11435396 DOI: 10.3390/nu16183138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cyclic weight loss and subsequent regain after dieting and non-dieting periods, a phenomenon termed yoyo dieting, places individuals at greater risk of metabolic complications and alters gut microbiome composition. Resistant starch (RS) improves gut health and systemic metabolism. This study aimed to investigate the effect of yoyo dieting and RS on the metabolism and gut microbiome. C57BL/6 mice were assigned to 6 diets for 20 weeks, including control, high fat (HF), yoyo (alternating HF and control diets every 5 weeks), control with RS, HF with RS, and yoyo with RS. Metabolic outcomes and microbiota profiling using 16S rRNA sequencing were examined. Yoyo dieting resulted in short-term weight loss, which led to improved liver health and insulin tolerance but also a greater rate of weight gain compared to continuous HF feeding, as well as a different microbiota profile that was in an intermediate configuration between the control and HF states. Mice fed HF and yoyo diets supplemented with RS gained less weight than those fed without RS. RS supplementation in yoyo mice appeared to shift the gut microbiota composition closer to the control state. In conclusion, yoyo dieting leads to obesity relapse, and increased RS intake reduces weight gain and might help prevent rapid weight regain via gut microbiome restoration.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Martin O’Hely
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Greg M. Kowalski
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sean L. McGee
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Kathryn Aston-Mourney
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Timothy Connor
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Malik Q. Mahmood
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Leni R. Rivera
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| |
Collapse
|
11
|
Maruta H, Fujii Y, Toyokawa N, Nakamura S, Yamashita H. Effects of Bifidobacterium-Fermented Milk on Obesity: Improved Lipid Metabolism through Suppression of Lipogenesis and Enhanced Muscle Metabolism. Int J Mol Sci 2024; 25:9934. [PMID: 39337421 PMCID: PMC11432277 DOI: 10.3390/ijms25189934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and Bifidobacterium, have garnered attention for their potential in obesity prevention. However, the effects of Bifidobacterium-fermented products on obesity have not been thoroughly elucidated. Bifidobacterium, which exists in the gut of animals, is known to enhance lipid metabolism. During fermentation, it produces acetic acid, which has been reported to improve glucose tolerance and insulin resistance, and exhibit anti-obesity and anti-diabetic effects. Functional foods have been very popular around the world, and fermented milk is a good candidate for enrichment with probiotics. In this study, we aim to evaluate the beneficial effects of milks fermented with Bifidobacterium strains on energy metabolism and obesity prevention. Three Bifidobacterium strains (Bif-15, Bif-30, and Bif-39), isolated from newborn human feces, were assessed for their acetic acid production and viability in milk. These strains were used to ferment milk. Otsuka-Long-Evans Tokushima Fatty (OLETF) rats administered Bif-15-fermented milk showed significantly lower weight gain compared to those in the water group. The phosphorylation of AMPK was increased and the expression of lipogenic genes was suppressed in the liver of rats given Bif-15-fermented milk. Additionally, gene expression related to respiratory metabolism was significantly increased in the soleus muscle of rats given Bif-15-fermented milk. These findings suggest that milk fermented with the Bifidobacterium strain Bif-15 can improve lipid metabolism and suppress obesity.
Collapse
Affiliation(s)
- Hitomi Maruta
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
| | - Yusuke Fujii
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Naoki Toyokawa
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Shoji Nakamura
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Hiromi Yamashita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
| |
Collapse
|
12
|
Shao W, Pan B, Li Z, Peng R, Yang W, Xie Y, Han D, Fang X, Li J, Zhu Y, Zhao Z, Kan H, Ying Z, Xu Y. Gut microbiota mediates ambient PM 2.5 exposure-induced abnormal glucose metabolism via short-chain fatty acids. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135096. [PMID: 38996677 PMCID: PMC11342392 DOI: 10.1016/j.jhazmat.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
PM2.5 exposure has been found to cause gut dysbiosis and impair glucose homeostasis in human and animals, yet their underlying biological connection remain unclear. In the present study, we aim to investigate the biological significance of gut microbiota in PM2.5-induced glucose metabolic abnormalities. Our results showed that microbiota depletion by antibiotics treatment significantly alleviated PM2.5-induced glucose intolerance and insulin resistance, as indicated by the intraperitoneal glucose tolerance test, glucose-induced insulin secretion, insulin tolerance test, insulin-induced phosphorylation levels of Akt and GSK-3β in insulin sensitive tissues. In addition, faecal microbiota transplantation (FMT) from PM2.5-exposed donor mice successfully remodeled the glucose metabolism abnormalities in recipient mice, while the transplantation of autoclaved faecal materials did not. Faecal microbiota analysis demonstrated that the composition and alpha diversity of the gut bacterial community were altered by PM2.5 exposure and in FMT recipient mice. Furthermore, short-chain fatty acids levels analysis showed that the circulating acetate was significantly decreased in PM2.5-exposed donor and FMT recipient mice, and supplementation of sodium acetate for 3 months successfully improved the glucose metabolism abnormalities induced by PM2.5 exposure. These results indicate that manipulating gut microbiota or its metabolites could be a potential strategy for preventing the adverse health effects of ambient PM2.5.
Collapse
Affiliation(s)
- Wenpu Shao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yuanting Xie
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Jingyu Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Deguchi K, Yoshimoto J, Yamamoto-Wada R, Ushiroda C, Yanagi K, Kishi M, Naruse H, Iizuka K. Associations of Acetic Acid Intake with Protein and Vitamin Intake Estimated via a Food Recording Application. Nutrients 2024; 16:2977. [PMID: 39275292 PMCID: PMC11397532 DOI: 10.3390/nu16172977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
A conventional questionnaire-based assessment of acetic acid intake is based on the intake of seasonings such as mayonnaise, which could thereby lead to an underestimation. We here determine the relationships of acetic acid intake with nutrient intake estimated using a food recording app (Asken) based on meal recipes. A total of 141 individuals (48 men and 93 women) used the app for at least 7 days per month. The mean daily intake of acetic acid was 0.16 ± 0.19 g and the mean frequency of acetic acid intake was 2.77 ± 1.66 days per week. A multivariate regression analysis adjusted for age, sex, BMI, and energy intake revealed that the amount of acetic acid consumed was significantly and positively associated with the intake of protein (11.9 (5.1, 18.6), p < 0.001), cholesterol (80.7 (4.5, 156.9), p = 0.04), and all vitamins except vitamin K. The frequency of acetic acid intake was significantly and positively associated with protein (1.04 (0.20, 1.87), p = 0.015), vitamin B1 (0.3 (0.02,0.5), p = 0.031), niacin (0.5 (0.04,1.0), p = 0.032), and vitamin B12 (0.4 (0.1,0.7), p = 0.002) intake, suggesting that individuals who frequently consume acetic acid tend to consume more protein and some vitamins. Thus, the amount and frequency of acetic acid may reflect protein and vitamin intake.
Collapse
Affiliation(s)
- Kanako Deguchi
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd., 2-6 Nakamura-Cho, Handa-Shi 475-8585, Japan
| | - Risako Yamamoto-Wada
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
| | - Chihiro Ushiroda
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
| | - Kotone Yanagi
- Health Management Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co., Ltd., 2-6 Nakamura-Cho, Handa-Shi 475-8585, Japan
| | - Hiroyuki Naruse
- Department of Medical Laboratory Science, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
14
|
Kirtipal N, Seo Y, Son J, Lee S. Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response. Diabetes Metab J 2024; 48:821-836. [PMID: 39313228 PMCID: PMC11449821 DOI: 10.4093/dmj.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body's response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome's role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome's function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Youngchang Seo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jangwon Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
15
|
Barrong H, Coven H, Lish A, Fessler SN, Jasbi P, Johnston CS. Daily Vinegar Ingestion Improves Depression and Enhances Niacin Metabolism in Overweight Adults: A Randomized Controlled Trial. Nutrients 2024; 16:2305. [PMID: 39064748 PMCID: PMC11280469 DOI: 10.3390/nu16142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Depressive disorders are the most prevalent mental health conditions in the world. The commonly prescribed antidepressant medications can have serious side effects, and their efficacy varies widely. Thus, simple, effective adjunct therapies are needed. Vinegar, a fermented acetic acid solution, is emerging as a healthful dietary supplement linked to favorable outcomes for blood glucose management, heart disease risk, and adiposity reduction, and a recent report suggests vinegar may improve symptoms of depression. This randomized controlled study examined the 4-week change in scores for the Center for Epidemiological Studies Depression (CES-D) questionnaire and the Patient Health Questionnaire (PHQ-9) in healthy overweight adults ingesting 2.95 g acetic acid (4 tablespoons vinegar) vs. 0.025 g acetic acid (one vinegar pill) daily. A secondary objective explored possible underlying mechanisms using metabolomics analyses. At week 4, mean CES-D scores fell 26% and 5% for VIN and CON participants respectively, a non-significant difference between groups, and mean PHQ-9 scores fell 42% and 18% for VIN and CON participants (p = 0.036). Metabolomics analyses revealed increased nicotinamide concentrations and upregulation of the NAD+ salvage pathway for VIN participants compared to controls, metabolic alterations previously linked to improved mood. Thus, daily vinegar ingestion over four weeks improved self-reported depression symptomology in healthy overweight adults, and enhancements in niacin metabolism may factor into this improvement.
Collapse
Affiliation(s)
- Haley Barrong
- Nutrition Program, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.B.); (H.C.); (A.L.); (S.N.F.)
| | - Hannah Coven
- Nutrition Program, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.B.); (H.C.); (A.L.); (S.N.F.)
| | - Alexandra Lish
- Nutrition Program, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.B.); (H.C.); (A.L.); (S.N.F.)
| | - Samantha N. Fessler
- Nutrition Program, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.B.); (H.C.); (A.L.); (S.N.F.)
| | - Paniz Jasbi
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA;
| | - Carol S. Johnston
- Nutrition Program, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.B.); (H.C.); (A.L.); (S.N.F.)
| |
Collapse
|
16
|
Newman NK, Monnier PM, Rodrigues RR, Gurung M, Vasquez-Perez S, Hioki KA, Greer RL, Brown K, Morgun A, Shulzhenko N. Host response to cholestyramine can be mediated by the gut microbiota. MICROBIOME RESEARCH REPORTS 2024; 3:40. [PMID: 39741955 PMCID: PMC11684918 DOI: 10.20517/mrr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 01/03/2025]
Abstract
Background: The gut microbiota has been implicated as a major factor contributing to metabolic diseases and the response to drugs used for the treatment of such diseases. In this study, we tested the effect of cholestyramine, a bile acid sequestrant that reduces blood cholesterol, on the murine gut microbiota and metabolism. We also explored the hypothesis that some effects of this drug on systemic metabolism can be attributed to alterations in the gut microbiota. Methods: We used a Western diet (WD) for 8 weeks to induce metabolic disease in mice, then treated some mice with cholestyramine added to WD. Metabolic phenotyping, gene expression in liver and ileum, and microbiota 16S rRNA genes were analyzed. Then, transkingdom network analysis was used to find candidate microbes for the cholestyramine effect. Results: We observed that cholestyramine decreased glucose and epididymal fat levels and detected dysregulation of genes known to be regulated by cholestyramine in the liver and ileum. Analysis of gut microbiota showed increased alpha diversity in cholestyramine-treated mice, with fourteen taxa showing restoration of relative abundance to levels resembling those in mice fed a control diet. Using transkingdom network analysis, we inferred two amplicon sequence variants (ASVs), one from the Lachnospiraceae family (ASV49) and the other from the Muribaculaceae family (ASV1), as potential regulators of cholestyramine effects. ASV49 was also negatively linked with glucose levels, further indicating its beneficial role. Conclusion: Our results indicate that the gut microbiota has a role in the beneficial effects of cholestyramine and suggest specific microbes as targets of future investigations.
Collapse
Affiliation(s)
- Nolan K. Newman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Philip M. Monnier
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Richard R. Rodrigues
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Manoj Gurung
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Stephany Vasquez-Perez
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kaito A. Hioki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Renee L. Greer
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kevin Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Andrey Morgun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Carson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
17
|
Penazzi L, Freire TGB, Theodoro SDS, Frias JL, Ala U, Carciofi AC, Prola L. Lentils pasta by-product in a complete extruded diet for dogs and its effect on extrusion, digestibility, and carbohydrate metabolism. Front Vet Sci 2024; 11:1429218. [PMID: 38993281 PMCID: PMC11238134 DOI: 10.3389/fvets.2024.1429218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Recently, increasing effort has been directed toward environmental sustainability in pet food. The aim of this study was to evaluate the extrusion parameters, nutrient digestibility, fecal characteristics, palatability and insulinemic and glycaemic curves of a complete diet for dogs in which the main carbohydrate source was a red lentil pasta by-product (LP). Methods Five experimental diets were formulated: a basal diet (CO) based on rice and a poultry by-product meal; three experimental diets where LP substituted rice at 33, 66, or 100% (LP33, LP66, and LP100, respectively); and a diet formulated on 70% of the basal diet (CO) plus 30% LP (LPS) to evaluate the digestibility of LP ingredient. Results and discussion The extruder pressure, hardness and bulk density of the kibble increased in a linear manner with increasing LP percentage (P < 0.05), without affecting starch gelatinization. According to polynomial contrast analysis, rice replacement with LP at 33 and 66% caused no reduction in apparent total tract digestibility coefficient (ATTDC), with similar or higher values compared with the CO diet. Nitrogen balance did not change (P > 0.05), but we observed a linear increase in feces production and moisture content as the LP inclusion rate rose and a linear decrease in feces pH (P < 0.05). Nevertheless, the fecal score was unaffected. Fecal acetate, propionate, total short-chain fatty acids (SCFA), branched-chain fatty acids, and lactate all increased linearly as the LP inclusion rate increased (P < 0.05), without altering ammonia concentration in feces. Feces concentrations of cadaverine, tyramine, histamine, and spermidine also increased in a linear manner with increasing LP inclusion (P < 0.05). The fermentation of LP dietary fiber by the gut microbiota increased the concentration of desirable fermentation by-products, including SCFA and spermidine. The post-prandial glucose and insulin responses were lower in the dogs fed the LP100 diet compared with CO, suggesting the possible use of this ingredient in diets designed to generate a low glycaemic response. Finally, the palatability study results showed a preference for the LP100 ration in both the "first choice" and the "consumption rate" evaluation (P < 0.05). This trial reveals how a by-product discarded from the human-grade food chain retains both its nutritional and organoleptic properties.
Collapse
Affiliation(s)
- Livio Penazzi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Veterinary Clinic and Surgery, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | | | - Stephanie de Souza Theodoro
- Department of Veterinary Clinic and Surgery, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Juliana Lopes Frias
- Department of Veterinary Clinic and Surgery, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Aulus Cavalieri Carciofi
- Department of Veterinary Clinic and Surgery, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Liviana Prola
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
18
|
Mao Q, Shi X, Ma Y, Lu Y, Chen C. Characterization of Urinary N-Acetyltaurine as a Biomarker of Hyperacetatemia in Mice. Metabolites 2024; 14:322. [PMID: 38921457 PMCID: PMC11205699 DOI: 10.3390/metabo14060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Acetate is an important metabolite in metabolic fluxes. Its presence in biological entities originates from both exogenous inputs and endogenous metabolism. Because the change in blood acetate level has been associated with both beneficial and adverse health outcomes, blood acetate analysis has been used to monitor the systemic status of acetate turnover. The present study examined the use of urinary N-acetyltaurine (NAT) as a marker to reflect the hyperacetatemic status of mice from exogenous inputs and endogenous metabolism, including triacetin dosing, ethanol dosing, and streptozotocin-induced diabetes. The results showed that triacetin dosing increased serum acetate and urinary NAT but not other N-acetylated amino acids in urine. The co-occurrences of increased serum acetate and elevated urinary NAT were also observed in both ethanol dosing and streptozotocin-induced diabetes. Furthermore, the renal cortex was determined as an active site for NAT synthesis. Overall, urinary NAT behaved as an effective marker of hyperacetatemia in three experimental mouse models, warranting further investigation into its application in humans.
Collapse
Affiliation(s)
| | | | | | | | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA; (Q.M.); (X.S.); (Y.M.); (Y.L.)
| |
Collapse
|
19
|
Chen Y, Yang K, Xu M, Zhang Y, Weng X, Luo J, Li Y, Mao YH. Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients 2024; 16:1634. [PMID: 38892567 PMCID: PMC11175060 DOI: 10.3390/nu16111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The intestinal tract of humans harbors a dynamic and complex bacterial community known as the gut microbiota, which plays a crucial role in regulating functions such as metabolism and immunity in the human body. Numerous studies conducted in recent decades have also highlighted the significant potential of the gut microbiota in promoting human health. It is widely recognized that training and nutrition strategies are pivotal factors that allow athletes to achieve optimal performance. Consequently, there has been an increasing focus on whether training and dietary patterns influence sports performance through their impact on the gut microbiota. In this review, we aim to present the concept and primary functions of the gut microbiota, explore the relationship between exercise and the gut microbiota, and specifically examine the popular dietary patterns associated with athletes' sports performance while considering their interaction with the gut microbiota. Finally, we discuss the potential mechanisms by which dietary patterns affect sports performance from a nutritional perspective, aiming to elucidate the intricate interplay among dietary patterns, the gut microbiota, and sports performance. We have found that the precise application of specific dietary patterns (ketogenic diet, plant-based diet, high-protein diet, Mediterranean diet, and high intake of carbohydrate) can improve vascular function and reduce the risk of illness in health promotion, etc., as well as promoting recovery and controlling weight with regard to improving sports performance, etc. In conclusion, although it can be inferred that certain aspects of an athlete's ability may benefit from specific dietary patterns mediated by the gut microbiota to some extent, further high-quality clinical studies are warranted to substantiate these claims and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510500, China;
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Jiaji Luo
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yanshuo Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou 510500, China
| |
Collapse
|
20
|
Meeusen H, Romagnolo A, Holsink SAC, van den Broek TJM, van Helvoort A, Gorter JA, van Vliet EA, Verkuyl JM, Silva JP, Aronica E. A novel hepatocyte ketone production assay to help the selection of nutrients for the ketogenic diet treatment of epilepsy. Sci Rep 2024; 14:11940. [PMID: 38789658 PMCID: PMC11126716 DOI: 10.1038/s41598-024-62723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The classic ketogenic diet is an effective treatment option for drug-resistant epilepsy, but its high fat content challenges patient compliance. Optimizing liver ketone production guided by a method comparing substrates for their ketogenic potential may help to reduce the fat content of the diet without loss in ketosis induction. Here, we present a liver cell assay measuring the β-hydroxybutyrate (βHB) yield from fatty acid substrates. Even chain albumin-conjugated fatty acids comprising between 4 and 18 carbon atoms showed a sigmoidal concentration-βHB response curve (CRC) whereas acetate and omega-3 PUFAs produced no CRC. While CRCs were not distinguished by their half-maximal effective concentration (EC50), they differed by maximum response, which related inversely to the carbon chain length and was highest for butyrate. The assay also suitably assessed the βHB yield from fatty acid blends detecting shifts in maximum response from exchanging medium chain fatty acids for long chain fatty acids. The assay further detected a dual role for butyrate and hexanoic acid as ketogenic substrate at high concentration and ketogenic enhancer at low concentration, augmenting the βHB yield from oleic acid and a fatty acid blend. The assay also found propionate to inhibit ketogenesis from oleic acid and a fatty acid blend at low physiological concentration. Although the in vitro assay shows promise as a tool to optimize the ketogenic yield of a fat blend, its predictive value requires human validation.
Collapse
Affiliation(s)
- Hester Meeusen
- Department of (Neuro)Pathology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Alessia Romagnolo
- Department of (Neuro)Pathology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Sophie A C Holsink
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Thijs J M van den Broek
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Ardy van Helvoort
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
- Department of Respiratory Medicine, NUTRIM - Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - J Martin Verkuyl
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Jose P Silva
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
21
|
Wang Q, Liu P, Peng J, Zhao B, Cai J. Postbiotic properties of exopolysaccharide produced by Levilactobacillus brevis M-10 isolated from natural fermented sour porridge through in vitro simulated digestion and fermentation. J Food Sci 2024; 89:3110-3128. [PMID: 38591339 DOI: 10.1111/1750-3841.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
The simulated digestion and fermentation characteristics in vitro of exopolysaccharide (EPS) of Levilactobacillus brevis M-10 were studied to evaluate its postbiotic properties. The simulated digestion results showed that EPS could not be degraded in saliva but could be very slightly degraded in gastric juice and could be degraded in intestinal juice. The results of simulated fermentation demonstrated that EPS could lower the intestine pH and be utilized by gut microbes to produce short-chain fatty acids such as propionic acid and butyric acid. Meanwhile, EPS significantly raised the diversity of human gut microbiota, and the relative abundances of Phascolarctobacterium were significantly increased, whereas Fusobacterium and Morganella significantly decreased. In conclusion, EPS from L. brevis M-10 was a good postbiotic as inulin. This was the first report about EPS as the postbiotic of L. brevis M-10 screened from broomcorn millet sour porridge in northwestern Shanxi Province, China.
Collapse
Affiliation(s)
- Qi Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Pengfan Liu
- Jiangxi Lidu Liquor Company Limited, Nanchang, Jiangxi, China
| | - Jiawei Peng
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Bin Zhao
- Drug Safety Evaluation Center, China Institute for Radiation Protection, Taiyuan, Shanxi, China
| | - Jin Cai
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
22
|
Zhang S, Zhang Y, Li J, Wang X, Zhang M, Du M, Jiang W, Li C. Butyrate and Propionate are Negatively Correlated with Obesity and Glucose Levels in Patients with Type 2 Diabetes and Obesity. Diabetes Metab Syndr Obes 2024; 17:1533-1541. [PMID: 38586541 PMCID: PMC10998531 DOI: 10.2147/dmso.s434499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Background Growing evidence has demonstrated the important roles of gut microbiota and short chain fatty acids, especially acetate, propionate and butyrate, in the development of obesity and metabolic diseases. To date, the effects of acetate, propionate and butyrate on human adiposity and glucose metabolism remain controversial. This study aimed to explore the associations of systemically acetate, propionate and butyrate with obesity and glucose homeostasis in patients with type 2 diabetes (T2D) and obesity. Methods A total of 12 patients with T2D and obesity and 8 age- and sex-matched healthy individuals with BMI <24 kg/m2 were enrolled in this study. Height, weight, body composition, blood pressure, biochemical indices, a 75-g oral glucose tolerance test, and plasma acetate, propionate and butyrate were measured at baseline. Then, participants in T2D group were given a weight control therapy, in addition to conventional medication, and all the measurements were repeated 12 months from baseline. The direct segmental multi-frequency bioelectrical impedance analysis was used to assess body composition. Acetate, propionate and butyrate levels were determined by liquid chromatography coupled to tandem mass spectrometry. Results Butyrate concentration significantly increased from baseline after obvious weight loss (P<0.05). Correlation analysis showed that propionate was negatively correlated with percent of body fat (PBF) and 2-h plasma glucose (2-h PG) (P<0.05), and butyrate was negatively associated with body mass index, visceral fat area, PBF and 2-h PG (P<0.05). No association was found between acetate and obesity. Conclusion Butyrate and propionate are negatively correlated with obesity and glucose levels in patients with T2D and obesity.
Collapse
Affiliation(s)
- Shi Zhang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Yanju Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jing Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Xincheng Wang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Minying Zhang
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Meiyang Du
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Weiran Jiang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Chunjun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
23
|
Mishra N, Garg A, Ashique S, Bhatt S. Potential of postbiotics for the treatment of metabolic disorders. Drug Discov Today 2024; 29:103921. [PMID: 38382867 DOI: 10.1016/j.drudis.2024.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Postbiotics, the next generation of probiotics, are extracts that are free of living and nonviable bacteria and show strong modulatory effects on the gut flora. Examples include vitamin B12, vitamin K, folate, lipopolysaccharides, enzymes, and short-chain fatty acids (SCFAs), representing a subset of essential nutrients commonly found in the human diet. Postbiotics have been observed to demonstrate antiobesity and antidiabetic effects through a variety of mechanisms. These pathways primarily involve an elevation in energy expenditure, a decrease in the formation and differentiation of adipocytes and food intake, modification of lipid and carbohydrate absorption and metabolism, and regulation of gut dysbiosis. Based on these above effects and mechanisms, the use of postbiotics can be considered as potential strategy for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru RamdasKhalsa Institute of Science and Technology (Pharmacy), Jabalpur 483001, Madhya Pradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Shvetank Bhatt
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| |
Collapse
|
24
|
Wang N, Gao X, Huo Y, Li Y, Cheng F, Zhang Z. Lead exposure aggravates glucose metabolism disorders through gut microbiota dysbiosis and intestinal barrier damage in high-fat diet-fed mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3057-3068. [PMID: 38057285 DOI: 10.1002/jsfa.13197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Lead (Pb) is an ancient toxic metal and is still a major public health issue. Our previous study found that Pb exposure promotes metabolic disorders in obese mice, but the molecular mechanisms remain unclear. The present study explored the effects of Pb exposure on glucose homeostasis in mice fed a normal diet (ND) and high-fat diet (HFD) from the perspective of gut microbiota. RESULTS Pb exposure had little effect on glucose metabolism in ND mice, but exacerbated hyperglycemia and insulin resistance, and impaired glucose tolerance in HFD mice. Pb exposure impaired intestinal tight junctions and mucin expression in HFD mice, increasing intestinal permeability and inflammation. Moreover, Pb exposure altered the composition and structure of the gut microbiota and decreased short-chain fatty acids (SCFAs) levels in HFD mice. Correlation analysis revealed that the gut microbiota and SCFAs were significantly correlated with the gut barrier and glucose homeostasis. Furthermore, the fecal microbiota transplantation from Pb-exposed HFD mice resulted in glucose homeostasis imbalance, intestinal mucosal structural damage and inflammation in recipient mice. However, Pb did not exacerbate the metabolic toxicity in HFD mice under depleted gut microbiota. CONCLUSION The findings of the present study suggest that Pb induces impairment of glucose metabolism in HFD mice by perturbing the gut microbiota. Our study offers new perspectives on the mechanisms of metabolic toxicity of heavy metals and demonstrates that the gut microbiota may be a target of action for heavy metal exposure. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nana Wang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, China
| | - Xue Gao
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, China
| | - Yuan Huo
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, China
| | - Yuting Li
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, China
| | - Fangru Cheng
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Abou-Khalil R, Andary J, El-Hayek E. Apple cider vinegar for weight management in Lebanese adolescents and young adults with overweight and obesity: a randomised, double-blind, placebo-controlled study. BMJ Nutr Prev Health 2024; 7:61-67. [PMID: 38966098 PMCID: PMC11221284 DOI: 10.1136/bmjnph-2023-000823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 07/06/2024] Open
Abstract
Background and aims Obesity and overweight have become significant health concerns worldwide, leading to an increased interest in finding natural remedies for weight reduction. One such remedy that has gained popularity is apple cider vinegar (ACV). Objective To investigate the effects of ACV consumption on weight, blood glucose, triglyceride and cholesterol levels in a sample of the Lebanese population. Materials and methods 120 overweight and obese individuals were recruited. Participants were randomly assigned to either an intervention group receiving 5, 10 or 15 mL of ACV or a control group receiving a placebo (group 4) over a 12-week period. Measurements of anthropometric parameters, fasting blood glucose, triglyceride and cholesterol levels were taken at weeks 0, 4, 8 and 12. Results Our findings showed that daily consumption of the three doses of ACV for a duration of between 4 and 12 weeks is associated with significant reductions in anthropometric variables (weight, body mass index, waist/hip circumferences and body fat ratio), blood glucose, triglyceride and cholesterol levels. No significant risk factors were observed during the 12 weeks of ACV intake. Conclusion Consumption of ACV in people with overweight and obesity led to an improvement in the anthropometric and metabolic parameters. ACV could be a promising antiobesity supplement that does not produce any side effects.
Collapse
Affiliation(s)
- Rony Abou-Khalil
- Department of Biology, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Jeanne Andary
- Nutrition and Food Science Department, American University of Science and Technology, Beirut, Lebanon
| | - Elissar El-Hayek
- Department of Biology, Holy Spirit University of Kaslik, Jounieh, Lebanon
| |
Collapse
|
26
|
Van K, Burns JL, Monk JM. Effect of Short-Chain Fatty Acids on Inflammatory and Metabolic Function in an Obese Skeletal Muscle Cell Culture Model. Nutrients 2024; 16:500. [PMID: 38398822 PMCID: PMC10891728 DOI: 10.3390/nu16040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The fermentation of non-digestible carbohydrates produces short-chain fatty acids (SCFAs), which have been shown to impact both skeletal muscle metabolic and inflammatory function; however, their effects within the obese skeletal muscle microenvironment are unknown. In this study, we developed a skeletal muscle in vitro model to mimic the critical features of the obese skeletal muscle microenvironment using L6 myotubes co-treated with 10 ng/mL lipopolysaccharide (LPS) and 500 µM palmitic acid (PA) for 24 h ± individual SCFAs, namely acetate, propionate and butyrate at 0.5 mM and 2.5 mM. At the lower SCFA concentration (0.5 mM), all three SCFA reduced the secreted protein level of RANTES, and only butyrate reduced IL-6 protein secretion and the intracellular protein levels of activated (i.e., ratio of phosphorylated-total) NFκB p65 and STAT3 (p < 0.05). Conversely, at the higher SCFA concentration (2.5 mM), individual SCFAs exerted different effects on inflammatory mediator secretion. Specifically, butyrate reduced IL-6, MCP-1 and RANTES secretion, propionate reduced IL-6 and RANTES, and acetate only reduced RANTES secretion (p < 0.05). All three SCFAs reduced intracellular protein levels of activated NFκB p65 and STAT3 (p < 0.05). Importantly, only the 2.5 mM SCFA concentration resulted in all three SCFAs increasing insulin-stimulated glucose uptake compared to control L6 myotube cultures (p < 0.05). Therefore, SCFAs exert differential effects on inflammatory mediator secretion in a cell culture model, recapitulating the obese skeletal muscle microenvironment; however, all three SCFAs exerted a beneficial metabolic effect only at a higher concentration via increasing insulin-stimulated glucose uptake, collectively exerting differing degrees of a beneficial effect on obesity-associated skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Kelsey Van
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Jessie L. Burns
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Jennifer M. Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
27
|
Morissette A, de Wouters d'Oplinter A, Andre DM, Lavoie M, Marcotte B, Varin TV, Trottier J, Pilon G, Pelletier M, Cani PD, Barbier O, Houde VP, Marette A. Rebaudioside D decreases adiposity and hepatic lipid accumulation in a mouse model of obesity. Sci Rep 2024; 14:3077. [PMID: 38321177 PMCID: PMC10847429 DOI: 10.1038/s41598-024-53587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Overconsumption of added sugars has been pointed out as a major culprit in the increasing rates of obesity worldwide, contributing to the rising popularity of non-caloric sweeteners. In order to satisfy the growing demand, industrial efforts have been made to purify the sweet-tasting molecules found in the natural sweetener stevia, which are characterized by a sweet taste free of unpleasant aftertaste. Although the use of artificial sweeteners has raised many concerns regarding metabolic health, the impact of purified stevia components on the latter remains poorly studied. The objective of this project was to evaluate the impact of two purified sweet-tasting components of stevia, rebaudioside A and D (RebA and RebD), on the development of obesity, insulin resistance, hepatic health, bile acid profile, and gut microbiota in a mouse model of diet-induced obesity. Male C57BL/6 J mice were fed an obesogenic high-fat/high-sucrose (HFHS) diet and orally treated with 50 mg/kg of RebA, RebD or vehicle (water) for 12 weeks. An additional group of chow-fed mice treated with the vehicle was included as a healthy reference. At weeks 10 and 12, insulin and oral glucose tolerance tests were performed. Liver lipids content was analyzed. Whole-genome shotgun sequencing was performed to profile the gut microbiota. Bile acids were measured in the feces, plasma, and liver. Liver lipid content and gene expression were analyzed. As compared to the HFHS-vehicle treatment group, mice administered RebD showed a reduced weight gain, as evidenced by decreased visceral adipose tissue weight. Liver triglycerides and cholesterol from RebD-treated mice were lower and lipid peroxidation was decreased. Interestingly, administration of RebD was associated with a significant enrichment of Faecalibaculum rodentium in the gut microbiota and an increased secondary bile acid metabolism. Moreover, RebD decreased the level of lipopolysaccharide-binding protein (LBP). Neither RebA nor RebD treatments were found to impact glucose homeostasis. The daily consumption of two stevia components has no detrimental effects on metabolic health. In contrast, RebD treatment was found to reduce adiposity, alleviate hepatic steatosis and lipid peroxidation, and decrease LBP, a marker of metabolic endotoxemia in a mouse model of diet-induced obesity.
Collapse
Affiliation(s)
- Arianne Morissette
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Alice de Wouters d'Oplinter
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Diana Majolli Andre
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Marilou Lavoie
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Bruno Marcotte
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Jocelyn Trottier
- Infectious and Immune Diseases Research Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Geneviève Pilon
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Martin Pelletier
- Laboratory of Molecular Pharmacology, Endocrinology and Nephrology Axis, Faculty of Pharmacy, CHU of Québec Research Center, Québec, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Olivier Barbier
- Infectious and Immune Diseases Research Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Vanessa P Houde
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Cardiology Axis, Québec Heart and Lung Institute (IUCPQ), Université Laval, Québec, QC, G1V 0A6, Canada.
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada.
| |
Collapse
|
28
|
Langhi C, Vallier M, Bron A, Otero YF, Maura M, Le Joubioux F, Blomberg N, Giera M, Guigas B, Maugard T, Chassaing B, Peltier S, Blanquet-Diot S, Bard JM, Sirvent P. A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice. Front Cardiovasc Med 2024; 11:1342388. [PMID: 38317864 PMCID: PMC10839041 DOI: 10.3389/fcvm.2024.1342388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.
Collapse
Affiliation(s)
| | | | - Auriane Bron
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | | | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources Pour la Santé), UMR CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | | | - Stéphanie Blanquet-Diot
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Marie Bard
- Laboratoire de Biochimie Générale et Appliquée, UFR de Pharmacie, ISOMer-UE 2160, IUML-Institut Universitaire Mer et Littoral-FR3473 CNRS, Université de Nantes, Nantes, France
| | | |
Collapse
|
29
|
Yang MH, Yang Y, Zhou X, Chen HG. Advances in polysaccharides of natural source of anti-diabetes effect and mechanism. Mol Biol Rep 2024; 51:101. [PMID: 38217792 DOI: 10.1007/s11033-023-09081-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE Diabetes is a chronic disease in metabolic disorder, and the pathology is characterized by insulin resistance and insulin secretion disorder in blood. In current, many studies have revealed that polysaccharides extracted from natural sources with significant anti-diabetic effects. Natural polysaccharides can ameliorate diabetes through different action mechanisms. All these polysaccharides are expected to have an important role in the clinic. METHODS Existing polysaccharides for the treatment of diabetes are reviewed, and the mechanism of polysaccharides in the treatment of diabetes and its structural characteristics are described in detail. RESULTS This article introduced the natural polysaccharide through different mechanisms of action in the treatment of diabetes, including oxidative stress, apoptosis, inflammatory response and regulation of intestinal bacteria. Natural polysaccharides can treat of diabetes by regulating signaling pathways is also a research hotspot. In addition, the structural characteristics of polysaccharides were explored. There are some structure-activity relationships between natural polysaccharides and the treatment of diabetes.
Collapse
Affiliation(s)
- Mao-Hui Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Yan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China.
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
30
|
Zaplana T, Miele S, Tolonen AC. Lachnospiraceae are emerging industrial biocatalysts and biotherapeutics. Front Bioeng Biotechnol 2024; 11:1324396. [PMID: 38239921 PMCID: PMC10794557 DOI: 10.3389/fbioe.2023.1324396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
The Lachnospiraceae is a family of anaerobic bacteria in the class Clostridia with potential to advance the bio-economy and intestinal therapeutics. Some species of Lachnospiraceae metabolize abundant, low-cost feedstocks such as lignocellulose and carbon dioxide into value-added chemicals. Others are among the dominant species of the human colon and animal rumen, where they ferment dietary fiber to promote healthy gut and immune function. Here, we summarize recent studies of the physiology, cultivation, and genetics of Lachnospiraceae, highlighting their wide substrate utilization and metabolic products with industrial applications. We examine studies of these bacteria as Live Biotherapeutic Products (LBPs), focusing on in vivo disease models and clinical studies using them to treat infection, inflammation, metabolic syndrome, and cancer. We discuss key research areas including elucidation of intra-specific diversity and genetic modification of candidate strains that will facilitate the exploitation of Lachnospiraceae in industry and medicine.
Collapse
Affiliation(s)
| | | | - Andrew C. Tolonen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
31
|
Li O, Xu H, Kim D, Yang F, Bao Z. Roles of Human Gut Microbiota in Liver Cirrhosis Risk: A Two-Sample Mendelian Randomization Study. J Nutr 2024; 154:143-151. [PMID: 37984746 DOI: 10.1016/j.tjnut.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that alterations in gut microbiota composition and diversity are associated with liver cirrhosis. But whether gut microbiota promotes or hampers the genesis and development of liver cirrhosis remains vague. OBJECTIVES This study aimed to establish a causal relationship between gut microbiota and the development of liver fibrosis and cirrhosis. To achieve this, we employed a 2-sample Mendelian randomization (MR) analysis utilizing genome-wide association study (GWAS) summary statistics. This approach enabled us to assess the potential impact of gut microbiota on liver cirrhosis. METHODS The independent genetic instruments of gut microbiota were obtained from the MiBioGen (up to 18,340 participants), which is a large-scale genome-wide genotype and 16S fecal microbiome dataset. Cirrhosis data were derived from the FinnGen biobank analysis, which included 214,403 individuals of European ancestry (811 patients and 213,592 controls). To assess the causal relationship between gut microbiota and cirrhosis, we applied 4 different methods of MR analysis: the inverse-variance weighted method (IVW), the MR-Egger regression, the weighted median analysis (WME), and the weighted mode. Furthermore, sensitivity analyses were conducted to evaluate heterogeneity and horizontal pleiotropy. RESULTS Results of MR analyses provided evidence of a causal association between 4 microbiota features and cirrhosis, including 2 family [Lachnosiraceae: odds ratio (OR): 1.82626178; 95% confidence interval (CI): 1.05208209, 3.17012532; P = 0.0323194; Lactobacillaceae : OR: 0.62897502; 95% CI: 0.42513162, 0.93055788; P = 0.02033345] and 2 genus [Butyricicoccus: OR: 0.41432215; 95% CI: 0.22716865, 0.75566257; P = 0.0040564; Lactobacillus: OR: 0.6663767; 95% CI: 0.45679511, 0.97211616; P = 0.03513627]. CONCLUSIONS Our findings offered compelling evidence of a causal association between gut microbiota and cirrhosis in European population and identified specific bacteria taxa that may regulate the genesis and progression of liver fibrosis and cirrhosis, may offer a new direction for the treatment of cirrhosis.
Collapse
Affiliation(s)
- Ouyang Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Han Xu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Dayoung Kim
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fan Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Amin U, Huang D, Dhir A, Shindler AE, Franks AE, Thomas CJ. Effects of gastric bypass bariatric surgery on gut microbiota in patients with morbid obesity. Gut Microbes 2024; 16:2427312. [PMID: 39551972 PMCID: PMC11581163 DOI: 10.1080/19490976.2024.2427312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
The Western diet is associated with gastrointestinal dysbiosis, an active contributor to the pathophysiology of obesity and its comorbidities. Gastrointestinal dysbiosis is strongly linked to increased adiposity, low-grade inflammation, dyslipidaemia, and insulin resistance in individuals with morbid obesity. Bariatric bypass surgery remains the most effective treatment for achieving significant weight loss and alleviating obesity-related comorbidities. A growing body of evidence indicates that traditional Roux-en-Y Gastric Bypass (RYGB) improves the disrupted gut microbiota linked with obesity, potentially contributing to sustained weight loss and reduction of comorbidities. One Anastomosis Gastric Bypass (OAGB), a relatively new and technically simpler bariatric procedure, has shown both safety and efficacy in promoting weight loss and improving comorbidities. Few studies have investigated the impact of OAGB on gut microbiota. This review provides insights into the pathogenesis of obesity, current treatment strategies and our current understanding of the gut microbiota in health and disease, including modulating the gut microbiota as a promising and novel way to alleviate the burden of obesity and cardiometabolic conditions. By exploring the impact of gastric bypass surgery on gut microbiota-host interactions, we aim to shed light on this evolving field of research and uncover potential therapeutic targets for elevating outcomes in bariatric surgery.
Collapse
Affiliation(s)
- Urja Amin
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, Victoria, Australia
| | - Dora Huang
- Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
- Body Genesis Institute, Bundoora, Victoria, Australia
| | - Arun Dhir
- Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
- Body Genesis Institute, Bundoora, Victoria, Australia
| | - Anya E Shindler
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Ashley E Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Colleen J Thomas
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, Victoria, Australia
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Cisbani G, Chouinard-Watkins R, Smith ME, Malekanian A, Valenzuela R, Metherel AH, Bazinet RP. Dietary triacetin, but not medium chain triacylglycerides, blunts weight gain in diet-induced rat model of obesity. Lipids 2023; 58:257-270. [PMID: 37997471 DOI: 10.1002/lipd.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Consumption of a Western diet (WD) is known to increase the risk of obesity. Short or medium chain fatty acids influence energy metabolism, and triacetin, a synthetic short chain triacylglyceride, has been shown to lower body fat under normal conditions. This study aimed to investigate if triacetin as part of a WD modifies rat weight and body fat. Male rats were fed a control diet or WD for 8 weeks. At week 8, rats in the WD group were maintained on a WD diet or switched to a WD diet containing 30% energy from medium-chain triacylglyceride (WD-MCT) or triacetin (WD-T) for another 8 weeks. At week 16, rats were euthanized and liver, adipose and blood were collected. Tissue fatty acids (FAs) were quantified by gas chromatography (GC) and hepatic FAs were measured by GC-combustion-isotope ratio mass spectrometry for δ13 C-palmitic acid (PAM)-a novel marker of de novo lipogenesis (DNL). Rats fed WD-T had a body weight not statistically different to the control group, and gained less body weight than rats fed WD alone. Furthermore, WD-T fed rats had a lower fat mass, and lower total liver and plasma FAs compared to the WD group. Rats fed WD-T did not differ from WD in blood ketone or glucose levels, however, had a significantly lower hepatic δ13 C-PAM value than WD fed rats; suggestive of lower DNL. In summary, we show that triacetin has the potential to blunt weight gain and adipose tissue accumulation in a rodent model of obesity, possibly due to a decrease in DNL.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mackenzie E Smith
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arezou Malekanian
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Freitas PLD, Barros MVC, Fróes RBL, França LM, Paes AMDA. Prebiotic effects of plant-derived (poly)phenols on host metabolism: Is there a role for short-chain fatty acids? Crit Rev Food Sci Nutr 2023; 63:12285-12293. [PMID: 35833476 DOI: 10.1080/10408398.2022.2100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota has been extensively investigated during the last decade because of its effects on host neuroendocrine pathways and other processes. The imbalance between beneficial and pathogenic bacteria, known as dysbiosis, may be a determining predisposing factor for many noncommunicable chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, and Alzheimer's disease. On the other hand, interventions aiming to reestablish the balance between microbiota components have been suggested as potential preventive therapeutic strategies against these disorders. Among these interventions, dietary supplementation with (poly)phenols has been highlighted due to the modulatory effects exerted by those compounds on the gut microbiota. In addition, (poly)phenol consumption is associated with increased production of short-chain fatty acids (SCFAs), a set of microbial metabolites whose actions are ascribed to improving the abovementioned metabolic disorders. Thus, this review discusses the modulation of the gut microbiota by prebiotic (poly)phenols based on in vivo studies performed with isolated (poly)phenolic compounds, their interaction with the gut microbiota and the production of SCFAs in pursuit of the molecular mechanisms underlying the health effects of (poly)phenols on host metabolism.
Collapse
Affiliation(s)
- Perla Lopes de Freitas
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Marcus Vinicius Câmara Barros
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Rômulo Brênno Lopes Fróes
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
35
|
Rad ZA, Mousavi SN, Chiti H. A low-carb diet increases fecal short-chain fatty acids in feces of obese women following a weight-loss program: randomized feeding trial. Sci Rep 2023; 13:18146. [PMID: 37875472 PMCID: PMC10598010 DOI: 10.1038/s41598-023-45054-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023] Open
Abstract
To compare fecal level of short-chain fatty acid (SCFA) and some serum inflammatory markers between the low-carbohydrate (LCD) and the habitual (HD) diet, subjects were enrolled from our previous study on the effect of LCD vs. HD on gut microbiota in obese women following an energy-restricted diet. Serum interleukin-6 (IL-6) significantly increased in the HD group (p < 0.001). Adjusted for the baseline parameters, fecal level of butyric, propionic, and acetic acid were significantly different between the LCD and HD groups (p < 0.001, p = 0.02, and p < 0.001, respectively). Increase in serum insulin level correlated with decrease in fecal propionic acid by 5.3-folds (95% CI = - 2.7, - 0.15, p = 0.04). Increase in serum high sensitive C-reactive protein (hs-CRP) correlated with decrease in the percentage of fecal butyric acid by 25% (p = 0.04). Serum fasting blood sugar (FBS) and insulin showed a significant effect on fecal acetic acid (p = 0.009 and p = 0.01, respectively). Elevated serum FBS and insulin correlated with increase in fecal acetic acid by 2.8 and 8.9-folds (95%CI = 0.34, 1.9 and 1.2, 9.2), respectively. The LCD increased fecal SCFAs and a significant correlation was seen between serum IL-6 and fecal propionic acid level. More studies are needed to reach a concise correlation. Trial registration number: The trial was registered in Iranian ClinicalTrials.gov IRCT20200929048876N3.
Collapse
Affiliation(s)
- Zahra Abbaspour Rad
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hossein Chiti
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
36
|
Xie Y, Pei F, Liu Y, Liu Z, Chen X, Xue D. Fecal fermentation and high-fat diet-induced obesity mouse model confirmed exopolysaccharide from Weissella cibaria PFY06 can ameliorate obesity by regulating the gut microbiota. Carbohydr Polym 2023; 318:121122. [PMID: 37479437 DOI: 10.1016/j.carbpol.2023.121122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 07/23/2023]
Abstract
Obesity associated with diet and intestinal dysbiosis is a worldwide public health crisis, and exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) have prebiotic potential to ameliorate obesity. Therefore, the present study obtained LAB with the ability to produce high EPS, examined the structure of EPS, and explained its mechanism of alleviating obesity by in vivo and in vitro models. The results showed that Weissella cibaria PFY06 with a high EPS yield was isolated from strawberry juice, and pure polysaccharide (PFY06-EPS) was purified by Sephadex G-100. The structural characteristics of PFY06-EPS showed that the molecular weight was 8.08 × 106 Da and composed of α-(1,6)-D glucosyl residues. An in vitro simulated human colon fermentation test demonstrated that PFY06-EPS increased the abundance of Prevotella and Bacteroides. Cell tests confirmed that PFY06-EPS after fecal fermentation inhibited fat accumulation by promoting the secretion of endogenous gastrointestinal hormones and insulin and inhibiting the secretion of inflammatory factors. Notably, PFY06-EPS reduced weight gain, fat accumulation, inflammatory reactions and insulin resistance in a high-fat diet-induced obesity mouse model and improved glucolipid metabolism. PFY06-EPS intervention reversed obesity-induced microflora disorders, such as reducing the Firmicutes/Bacteroides ratio and increasing butyrate-producing bacteria (Roseburia and Oscillibacter), and reduced endotoxemia to maintain intestinal barrier integrity. Therefore, in vivo and in vitro models showed that PFY06-EPS had potential as a prebiotic that may play an anti-obesity role by improving the function of the gut microbiota.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Fangyi Pei
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China.
| | - Yuchao Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Zhenyan Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Xiaoting Chen
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Di Xue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| |
Collapse
|
37
|
Du L, Lü H, Chen Y, Yu X, Jian T, Zhao H, Wu W, Ding X, Chen J, Li W. Blueberry and Blackberry Anthocyanins Ameliorate Metabolic Syndrome by Modulating Gut Microbiota and Short-Chain Fatty Acids Metabolism in High-Fat Diet-Fed C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14649-14665. [PMID: 37755883 DOI: 10.1021/acs.jafc.3c04606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In this study, blueberry (Vaccinium ssp.) anthocyanins (VA) and blackberry (Rubus L.) anthocyanins (RA) were used to investigate the effects on metabolic syndrome (MetS) and the potential mechanisms. Importantly, all of the data presented in this study were obtained from experiments conducted on mice. As a result, VA and RA reduced body weight gain and fat accumulation while improving liver damage, inflammation, glucose, and lipid metabolism induced by a high-fat diet. Moreover, VA and RA regulated the gut microbiota composition, decreasing the pro-obesity and proinflammation bacteria taxa, such as the phylum Actinobacterium and the genera Allobaculum and Bifidobacterium, and increasing those negatively associated with obesity and inflammation, such as the phylum Bacteroidetes and the genera Prevotella and Oscillospira. Additionally, the supplementation with VA and RA reversed the elevated levels of valeric, caproic, and isovaleric acids observed in the high-fat diet (HFD) group, bringing them closer to the levels observed in the Chow group. This reversal indicated that alterations in the composition and abundance of gut microbiota may contribute to the restoration of short-chain fatty acids (SCFAs) levels. Additionally, PICRUSt2 exhibited that cyanamino acid metabolism and betalain biosynthesis might be the major metabolic pathways in the HVA group compared with the HFD group, while in the HRA group, it was the phosphotransferase system. These findings suggest that VA and RA can ameliorate MetS by modulating the gut microbiota and production of SCFAs.
Collapse
Affiliation(s)
- Lanlan Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Han Lü
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiaohua Yu
- Jiangsu Zhongzhi Ecological Plant Research Institute Co., Ltd., Nanjing 211200, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Huifang Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
38
|
Román-Camacho JJ, García-García I, Santos-Dueñas IM, García-Martínez T, Mauricio JC. Latest Trends in Industrial Vinegar Production and the Role of Acetic Acid Bacteria: Classification, Metabolism, and Applications-A Comprehensive Review. Foods 2023; 12:3705. [PMID: 37835358 PMCID: PMC10572879 DOI: 10.3390/foods12193705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Vinegar is one of the most appreciated fermented foods in European and Asian countries. In industry, its elaboration depends on numerous factors, including the nature of starter culture and raw material, as well as the production system and operational conditions. Furthermore, vinegar is obtained by the action of acetic acid bacteria (AAB) on an alcoholic medium in which ethanol is transformed into acetic acid. Besides the highlighted oxidative metabolism of AAB, their versatility and metabolic adaptability make them a taxonomic group with several biotechnological uses. Due to new and rapid advances in this field, this review attempts to approach the current state of knowledge by firstly discussing fundamental aspects related to industrial vinegar production and then exploring aspects related to AAB: classification, metabolism, and applications. Emphasis has been placed on an exhaustive taxonomic review considering the progressive increase in the number of new AAB species and genera, especially those with recognized biotechnological potential.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| |
Collapse
|
39
|
Ou H, Chen Q, Lin Z, Yang Y, Wang P, Sriboonvorakul N, Lin S. RNA-seq Analysis Reveals Potential Synergic Effects of Acetate and Cold Exposure on Interscapular Brown Adipose Tissue in Mice. BIOLOGY 2023; 12:1285. [PMID: 37886995 PMCID: PMC10603878 DOI: 10.3390/biology12101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023]
Abstract
Brown adipose tissue (BAT) exhibits remarkable morphological and functional plasticity in response to environmental (e.g., cold exposure) and nutrient (e.g., high-fat diet) stimuli. Notably, a number of studies have showed that acetate, the main fermentation product of dietary fiber in gut, profoundly influences the differentiation and activity of BAT. However, the potential synergic or antagonistic effects of acetate and cold exposure on BAT have not been well examined. In the present study, the C57BL/6J mice were treated with acetate at the systemic level before a short period of cold exposure. Physiological parameters including body weight, blood glucose, and Respiratory Exchange Ratio (RER) were monitored, and thermal imaging of body surface temperature was captured. Moreover, the transcriptome profiles of interscapular BAT were also determined and analyzed afterwards. The obtained results showed that acetate treatment prior to cold exposure could alter the gene expression profile, as evidenced by significant differential clusters between the two groups. GO analysis and KEGG analysis further identified differentially expressed genes being mainly enriched for a number of biological terms and pathways related to lipid metabolism and brown adipose activity such as "G-protein-coupled receptor activity", "cAMP metabolic process", "PPAR signaling pathway", and "FoxO signaling pathway". GSEA analysis further suggested that activation status of key pathways including "PPAR signaling pathway" and "TCA cycle" were altered upon acetate treatment. Taken together, our study identified the potential synergistic effect of acetic acid with cold exposure on BAT, which highlighted the positive dietary and therapeutic aspects of acetate.
Collapse
Affiliation(s)
- Hongtao Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| | - Qingyan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| | - Zhongjing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| | - Yang Yang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518051, China
| | - Peixin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| | - Natthida Sriboonvorakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| |
Collapse
|
40
|
Mao J, Zhao Y, Wang L, Wu T, Jin Y, Meng J, Zhang M. Sea Cucumber Peptide Alleviates Ulcerative Colitis Induced by Dextran Sulfate Sodium by Alleviating Gut Microbiota Imbalance and Regulating miR-155/SOCS1 Axis in Mice. Foods 2023; 12:3434. [PMID: 37761144 PMCID: PMC10530247 DOI: 10.3390/foods12183434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Sea cucumber peptides have been proven to exhibit a variety of biological activities. Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of the rectum and colon with increasing incidence and long duration, and is difficult to cure. The effect of sea cucumber peptide on UC is currently unknown. In this study, 1.5% dextran sulfate sodium (DSS) was added to the drinking water of mice to induce a UC model, and the daily doses of sea cucumber peptide (SP) solution of 200 mg/kg·BW, 500 mg/kg·BW, and 1000 mg/kg·BW were given to UC mice to detect the relieving effect of SP. The results showed that SP can reduce the disease activity index (DAI) of UC mice induced by DSS and can alleviate colon shortening, intestinal tissue damage, and the loss of intestinal tight junction proteins (Claudin-1, Occludin). SP decreased the spleen index, pro-inflammatory factors (IL-1β, IL-6, TNF-α), and myeloperoxidase (MPO) levels in UC mice. SP can alleviate the imbalance of gut microbiota in UC mice, increase the abundance of the Lachnospiraceae NK4A136 group, Prevotellaceae UCG-001, and Ligilactobacillus, and reduce the abundance of Bacteroides and the Eubacterium rum group, as well as alleviating the decrease in short-chain fatty acid (SCFA) content in the feces of UC mice. Notably, SP inhibited miR-155 expression in the colon tissue of UC mice and increased its target protein, suppressor of cytokine signaling 1 (SOCS1), which acts as an inflammatory inhibitor. In summary, the ameliorative effect of SP on UC may be achieved by improving the imbalance of gut microbiota and regulating the miR-155/SOCS1 axis. This study provides a new idea for developing SP as a nutritional supplement to maintain intestinal health.
Collapse
Affiliation(s)
- Jing Mao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Min Zhang
- China−Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
41
|
Duan G, Li L. Deciphering the mechanism of jujube vinegar on hyperlipoidemia through gut microbiome based on 16S rRNA, BugBase analysis, and the stamp analysis of KEEG. Front Nutr 2023; 10:1160069. [PMID: 37275638 PMCID: PMC10235701 DOI: 10.3389/fnut.2023.1160069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023] Open
Abstract
Background Growing data indicate that the gut microbiome may contribute to the rising incidence of hyperlipoidemia. Jujube vinegar lowers lipids, protects the liver, and reduces oxidant capacity, however, it is unknown whether this is due to the gut flora. To further research the role of the gut microbiome in treating hyperlipidemia with jujube vinegar, we looked into whether the action of jujube vinegar is related to the regulation of the gut microbiome. Method Thirty male ICR mice were used. The control group (CON), the high-fat diet (HFD) group, and the vinegar group (VIN) each consisted of ten female ICR mice fed consistently for eight weeks. For each treatment, we kept track of body mass, liver index, blood lipid levels, and oxidative stress state. We also analyzed mouse feces using high-throughput 16srRNA sequencing to examine the relationship between jujube vinegar's hypolipidemic effect and antioxidant activity and how it affects the gut microbiome. Results Jujube vinegar reduced body weight by 19.92%, serum TC, TG, and LDL-C by 25.09%, 26.83%, and 11.66%, and increased HDL-C by 1.44 times, serum AST and ALT decreased by 26.36% and 34.87% respectively, the blood levels of SOD and GSH-Px increased 1.35-fold and 1.60-fold, respectively. While blood MDA decreased 33.21%, the liver's SOD and GSH-Px increased 1.32-fold and 1.60-fold, respectively, and the liver's MDA decreased 48.96% in HFD mice. The gut microbiome analysis revealed that jujube vinegar increased the intestinal microbial ASV count by 13.46%, and the F/B (Firmicutes/Bacteroidota) ratio by 2.08-fold in high-fat diet mice, and the proportion was significantly inversely correlated with TC, TG, and LDL-C and positively correlated with HDL-C. Biomarker bacteria in the vinegar group included Lactobacillaceae and Lactobacillus, which correlated favorably with HDL-C, SOD, and GSH-Px and negatively with LDL-C, TC, and TG. Jujube vinegar increased the abundance of the Aerobic, Contains Mobile Elements, and Facultative Aerobic by 2.84 times, 1.45 times, and 2.40 times, while decreased the abundance of Potential pathogens by 44.72%, according to the BugBase study. The KEGG analysis showed that jujube vinegar was predominantly reflected in the biological process of gene function and related to signal transduction pathways, including glucagon signaling system, HIF-1 signaling pathway, adipocytokine signaling pathway, amino sugar, and nucleotide sugar metabolism, and so forth. Conclusion Based on these findings, jujube vinegar may reduce hyperlipoidemia by controlling the gut microbiome and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Guofeng Duan
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lijuan Li
- Jinzhong College of Information, Taigu, Shanxi, China
| |
Collapse
|
42
|
Zhao R, Zhang C, Yu L, Zhang C, Zhao J, Narbad A, Zhai Q, Tian F. In Vitro Fermentation of Hyaluronan with Different Molecular Weights by Human Gut Microbiota: Differential Effects on Gut Microbiota Structure and Metabolic Function. Polymers (Basel) 2023; 15:2103. [PMID: 37177246 PMCID: PMC10180753 DOI: 10.3390/polym15092103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Hyaluronan (HA) has various biological functions and is used extensively as a dietary supplement. Previous studies have shown that the probiotic effects of polysaccharides are closely associated with their molecular properties. The intestinal microbiota has been demonstrated to degrade HA; however, the regulatory effects of different molecular weights (MW) of HA on gut microbiota and metabolites are unknown. In the present study, we performed in vitro fermentation of human-derived feces for three MWs of HA (HA1, 32.3 kDa; HA2, 411 kDa; and HA3, 1510 kDa) to investigate the differences in the fermentation properties of HA with different MWs. We found that gut microbiota can utilize all HAs and, consequently, produce large amounts of short-chain fatty acids (SCFAs). In addition, we showed that all three HA MWs promoted the growth of Bacteroides, Parabacteroides, and Faecalibacterium, with HA1 being more effective at promoting the growth of Bacteroides. HAs have various regulatory effects on the structure and metabolites of the gut microbiota. Spearman's correlation analysis revealed that alterations in gut microbiota and their metabolites were significantly correlated with changes in metabolic markers. For instance, HA1 enriched α-eleostearic acid and DL-3-aminoisobutyric acid by regulating the abundance of Bacteroides, and HA3 enriched Thymidin by regulating Faecalibacterium. Collectively, the fermentation properties of HA vary across MW, and our results provide insights into the potential association between the MW of HA and its fermentation characteristics by the gut microbiota. These findings provide insights into the influence of the gut microbiota and HAs on the health of the host.
Collapse
Affiliation(s)
- Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
43
|
Igudesman D, Crandell JL, Corbin KD, Hooper J, Thomas JM, Bulik CM, Pence BW, Pratley RE, Kosorok MR, Maahs DM, Carroll IM, Mayer-Davis EJ. Associations of Dietary Intake with the Intestinal Microbiota and Short-Chain Fatty Acids Among Young Adults with Type 1 Diabetes and Overweight or Obesity. J Nutr 2023; 153:1178-1188. [PMID: 36841667 PMCID: PMC10356993 DOI: 10.1016/j.tjnut.2022.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diet, a key component of type 1 diabetes (T1D) management, modulates the intestinal microbiota and its metabolically active byproducts-including SCFA-through fermentation of dietary carbohydrates such as fiber. However, the diet-microbiome relationship remains largely unexplored in longstanding T1D. OBJECTIVES We evaluated whether increased carbohydrate intake, including fiber, is associated with increased SCFA-producing gut microbes, SCFA, and intestinal microbial diversity among young adults with longstanding T1D and overweight or obesity. METHODS Young adult men and women with T1D for ≥1 y, aged 19-30 y, and BMI of 27.0-39.9 kg/m2 at baseline provided stool samples at baseline and 3, 6, and 9 mo of a randomized dietary weight loss trial. Diet was assessed by 1-2 24-h recalls. The abundance of SCFA-producing microbes was measured using 16S rRNA gene sequencing. GC-MS measured fecal SCFA (acetate, butyrate, propionate, and total) concentrations. Adjusted and Bonferroni-corrected generalized estimating equations modeled associations of dietary fiber (total, soluble, and pectins) and carbohydrate (available carbohydrate, and fructose) with microbiome-related outcomes. Primary analyses were restricted to data collected before COVID-19 interruptions. RESULTS Fiber (total and soluble) and carbohydrates (available and fructose) were positively associated with total SCFA and acetate concentrations (n = 40 participants, 52 visits). Each 10 g/d of total and soluble fiber intake was associated with an additional 8.8 μmol/g (95% CI: 4.5, 12.8 μmol/g; P = 0.006) and 24.0 μmol/g (95% CI: 12.9, 35.1 μmol/g; P = 0.003) of fecal acetate, respectively. Available carbohydrate intake was positively associated with SCFA producers Roseburia and Ruminococcus gnavus. All diet variables except pectin were inversely associated with normalized abundance of Bacteroides and Alistipes. Fructose was inversely associated with Akkermansia abundance. CONCLUSIONS In young adults with longstanding T1D, fiber and carbohydrate intake were associated positively with fecal SCFA but had variable associations with SCFA-producing gut microbes. Controlled feeding studies should determine whether gut microbes and SCFA can be directly manipulated in T1D.
Collapse
Affiliation(s)
- Daria Igudesman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; AdventHealth Translational Research Institute, Orlando, FL, USA.
| | - Jamie L Crandell
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Julie Hooper
- Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Joan M Thomas
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia M Bulik
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brian W Pence
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Michael R Kosorok
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ian M Carroll
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Al Samarraie A, Pichette M, Rousseau G. Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24065420. [PMID: 36982492 PMCID: PMC10051145 DOI: 10.3390/ijms24065420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the primary cause of death globally, with nine million deaths directly attributable to ischemic heart diseases in 2020. Since the last few decades, great effort has been put toward primary and secondary prevention strategies through identification and treatment of major cardiovascular risk factors, including hypertension, diabetes, dyslipidemia, smoking, and a sedentary lifestyle. Once labelled “the forgotten organ”, the gut microbiota has recently been rediscovered and has been found to play key functions in the incidence of ASCVD both directly by contributing to the development of atherosclerosis and indirectly by playing a part in the occurrence of fundamental cardiovascular risk factors. Essential gut metabolites, such as trimethylamine N-oxide (TMAO), secondary bile acids, lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs), have been associated with the extent of ischemic heart diseases. This paper reviews the latest data on the impact of the gut microbiome in the incidence of ASCVD.
Collapse
Affiliation(s)
- Ahmad Al Samarraie
- Internal Medicine Department, Faculty of Medicine, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Maxime Pichette
- Cardiology Department, Faculty of Medicine, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Guy Rousseau
- Centre de Biomédecine, CIUSSS-NÎM/Hôpital du Sacré-Cœur, Montréal, QC H4J 1C5, Canada
- Correspondence:
| |
Collapse
|
45
|
Xu T, Wang X, Chen Y, Li H, Zhao L, Ding X, Zhang C. Microbiome Features Differentiating Unsupervised-Stratification-Based Clusters of Patients with Abnormal Glycometabolism. mBio 2023; 14:e0348722. [PMID: 36651735 PMCID: PMC9973283 DOI: 10.1128/mbio.03487-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
The alteration of gut microbiota structure plays a pivotal role in the pathogenesis of abnormal glycometabolism. However, the microbiome features identified in patient groups stratified solely based on glucose levels remain controversial among different studies. In this study, we stratified 258 participants (discovery cohort) into three clusters according to an unsupervised method based on 16 clinical parameters involving the levels of blood glucose, insulin, and lipid. We found 67 cluster-specific microbiome features (i.e., amplicon sequence variants [ASVs]) based on 16S rRNA gene V3-V4 region sequencing. Specifically, ASVs belonging to Barnesville and Alistipes were enriched in cluster 1, in which participants had the lowest blood glucose levels, high insulin sensitivity, and a high-fecal short-chain fatty acid concentration. ASVs belonging to Prevotella copri and Ruminococcus gnavus were enriched in cluster 2, which was characterized by a moderate level of blood glucose, serious insulin resistance, and high levels of cholesterol and triglyceride. Cluster 3 was characterized by a high level of blood glucose and insulin deficiency, enriched with ASVs in P. copri and Bacteroides vulgatus. In addition, machine learning classifiers using the 67 cluster-specific ASVs were used to distinguish individuals in one cluster from those in the other two clusters both in discovery and testing cohorts (n = 83). Therefore, microbiome features identified based on the unsupervised stratification of patients with more inclusive clinical parameters may better reflect microbiota alterations associated with the progression of abnormal glycometabolism. IMPORTANCE The gut microbiota is altered in patients with type 2 diabetes (T2D) and prediabetes. The association of particular bacteria with T2D, however, varied among studies, which has made it challenging to develop precision medicine approaches for the prevention and alleviation of T2D. Blood glucose level is the only parameter in clustering patients when identifying the T2D-related bacteria in previous studies. This stratification ignores the fact that patients within the same blood glucose range differ in their insulin resistance and dyslipidemia, which also may be related to disordered gut microbiota. In addition to parameters of blood glucose levels, we also used additional parameters involving insulin and lipid levels to stratify participants into three clusters and further identified cluster-specific microbiome features. We further validated the association between these microbiome features and glycometabolism with an independent cohort. This study highlights the importance of stratification of patients with blood glucose, insulin, and lipid levels when identifying the microbiome features associated with the progression of abnormal glycometabolism.
Collapse
Affiliation(s)
- Ting Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids. Foods 2023; 12:foods12051023. [PMID: 36900540 PMCID: PMC10001013 DOI: 10.3390/foods12051023] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Foods contain dietary fibers which can be classified into soluble and insoluble forms. The nutritional composition of fast foods is considered unhealthy because it negatively affects the production of short-chain fatty acids (SCFAs). Dietary fiber is resistant to digestive enzymes in the gut, which modulates the anaerobic intestinal microbiota (AIM) and fabricates SCFAs. Acetate, butyrate, and propionate are dominant in the gut and are generated via Wood-Ljungdahl and acrylate pathways. In pancreatic dysfunction, the release of insulin/glucagon is impaired, leading to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell function, leptin release, mitochondrial function, and intestinal gluconeogenesis in human organs, which positively affects type 2 diabetes (T2D). Research models have shown that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine), or promotes the release of leptin hormone in adipose tissues through G-protein receptors GPR-41 and GPR-43. Dietary fiber is a component that influences the production of SCFAs by AIM, which may have beneficial effects on T2D. This review focuses on the effectiveness of dietary fiber in producing SCFAs in the colon by the AIM as well as the health-promoting effects on T2D.
Collapse
|
47
|
Guo Q, Hou X, Cui Q, Li S, Shen G, Luo Q, Wu H, Chen H, Liu Y, Chen A, Zhang Z. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Crit Rev Food Sci Nutr 2023; 64:6714-6736. [PMID: 36756885 DOI: 10.1080/10408398.2023.2173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pectin is a complex polysaccharide found in plant cell walls and interlayers. As a food component, pectin is benefit for regulating intestinal flora. Metabolites of intestinal flora, including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), are involved in blood glucose regulation. SCFAs promote insulin synthesis through the intestine-GPCRs-derived pathway and hepatic adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to promote hepatic glycogen synthesis. On the one hand, BAs stimulate intestinal L cells and pancreatic α cells to secrete Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) through receptors G protein-coupled receptor (TGR5) and farnesoid X receptor (FXR). On the other hand, BAs promote hepatic glycogen synthesis through AMPK pathway. LPS inhibits the release of inflammatory cytokines through Toll-like receptors (TLRs)-myeloid differentiation factor 88 (MYD88) pathway and mitogen-activated protein kinase (MAPK) pathway, thereby alleviating insulin resistance (IR). In brief, both SCFAs and BAs promote GLP-1 secretion through different pathways, employing strategies of increasing glucose consumption and decreasing glucose production to maintain normal glucose levels. Notably, pectin can also directly inhibit the release of inflammatory cytokines through the -TLRs-MYD88 pathway. These data provide valuable information for further elucidating the relationship between pectin-intestinal flora-glucose metabolism.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
48
|
Okamura T, Hamaguchi M, Hasegawa Y, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Sasano R, Nakanishi Y, Seno H, Takano H, Fukui M. Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27006. [PMID: 36821708 PMCID: PMC9945580 DOI: 10.1289/ehp11072] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Microplastics (MPs) are small particles of plastic (≤5mm in diameter). In recent years, oral exposure to MPs in living organisms has been a cause of concern. Leaky gut syndrome (LGS), associated with a high-fat diet (HFD) in mice, can increase the entry of foreign substances into the body through the intestinal mucosa. OBJECTIVES We aimed to evaluate the pathophysiology of intestinal outcomes associated with consuming a high-fat diet and simultaneous intake of MPs, focusing on endocrine and metabolic systems. METHODS C57BL6/J mice were fed a normal diet (ND) or HFD with or without polystyrene MP for 4 wk to investigate differences in glucose tolerance, intestinal permeability, gut microbiota, as well as metabolites in serum, feces, and liver. RESULTS In comparison with HFD mice, mice fed the HFD with MPs had higher blood glucose, serum lipid concentrations, and nonalcoholic fatty liver disease (NAFLD) activity scores. Permeability and goblet cell count of the small intestine (SI) in HFD-fed mice were higher and lower, respectively, than in ND-fed mice. There was no obvious difference in the number of inflammatory cells in the SI lamina propria between mice fed the ND and mice fed the ND with MP, but there were more inflammatory cells and fewer anti-inflammatory cells in mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. The expression of genes related to inflammation, long-chain fatty acid transporter, and Na+/glucose cotransporter was significantly higher in mice fed the HFD with MPs than in mice fed the HFD without MPs. Furthermore, the genus Desulfovibrio was significantly more abundant in the intestines of mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. Muc2 gene expression was decreased when palmitic acid and microplastics were added to the murine intestinal epithelial cell line MODE-K cells, and Muc2 gene expression was increased when IL-22 was added. DISCUSSION Our findings suggest that in this study, MP induced metabolic disturbances, such as diabetes and NAFLD, only in mice fed a high-fat diet. These findings suggest that LGS might have been triggered by HFD, causing MPs to be deposited in the intestinal mucosa, resulting in inflammation of the intestinal mucosal intrinsic layer and thereby altering nutrient absorption. These results highlight the need for reducing oral exposure to MPs through remedial environmental measures to improve metabolic disturbance under high-fat diet conditions. https://doi.org/10.1289/EHP11072.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
49
|
Rosas-Campos R, Meza-Rios A, Rodriguez-Sanabria JS, la Rosa-Bibiano RD, Corona-Cervantes K, García-Mena J, Santos A, Sandoval-Rodriguez A, Armendariz-Borunda J. Dietary supplementation with Mexican foods, Opuntia ficus indica, Theobroma cacao, and Acheta domesticus: Improving obesogenic and microbiota features in obese mice. Front Nutr 2022; 9:987222. [PMID: 36532548 PMCID: PMC9755723 DOI: 10.3389/fnut.2022.987222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION An obesogenic diet, a diet high in saturated fats and sugars, is a risk factor for the development of multiple obesity-related diseases. In this study, our aim was to evaluate the effect of supplementation with a mixture of Mexican functional foods (MexMix), Opuntia ficus indica (nopal), Theobroma cacao, and Acheta domesticus (edible crickets), compared with a high-fat and fructose/sucrose diet on an obesogenic mice model. METHODS For this study, 18 male C57BL/6J mice were used, which were divided into three groups: (1) control group: normal diet (ND), (2) HF/FS group: high-fat diet along with 4.2% fructose/sucrose and water (ad libitum access), and (3) therapeutic group (MexMix): HF/FS diet up to week 8, followed by HF/FS diet supplemented with 10% nopal, 10% cocoa, and 10% cricket for 8 weeks. RESULTS MexMix mice showed significantly reduced body weight, liver weight, visceral fat, and epididymal fat compared with HF/FS mice. Levels of triglycerides, cholesterol, LDL cholesterol, insulin, glucose, GIP, leptin, PAI-1, and resistin were also significantly reduced. For identifying the gut microbiota in the model, 16S rRNA gene sequencing analysis was performed, and the results showed that MexMix supplementation increased the abundance of Lachnospira, Eubacterium coprostanoligenes, and Blautia, bacteria involved in multiple beneficial metabolic effects. It is noteworthy that the mice supplemented with MexMix showed improvements in cognitive parameters, as evaluated by the novel object recognition test. CONCLUSION Hence, supplementation with MexMix food might represent a potential strategy for the treatment of obesity and other diseases associated with excessive intake of fats and sugars.
Collapse
Affiliation(s)
- Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Alejandra Meza-Rios
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - J. Samael Rodriguez-Sanabria
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Ricardo De la Rosa-Bibiano
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | | | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Ciudad de México, Mexico
| | | | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
- Tecnológico de Monterrey, EMCS, Guadalajara, Mexico
| |
Collapse
|
50
|
Perumpuli B, Dilrukshi N. Vinegar: A functional ingredient for human health. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vinegar is a well-known natural food product derived from alcoholic and subsequently acetous fermentation of carbohydrate-rich foods. Vinegar is widely used in the food industry; domestically for pickling vegetables and fruits, and as an ingredient in condiments like salad dressings, ketchups, and mayonnaise; and traditionally as a food seasoning and preservative. Historically, vinegar has been used for medicinal purposes such as a cure for stomach aches, wounds, burns, rashes, and oedema conditions. Different types of vinegar are found worldwide such as rice, black, balsamic, grain, and fruit vinegars. These are produced from different raw materials, and using different fermentation methods to give unique tastes and flavours. Vinegar, while enhancing physiological functions such as lipid metabolism, blood glucose level control, and body weight management, also possesses anticancer, antibacterial, antioxidant, and anti-infection properties. It is considered as a good source material for many bioactive compounds including organic acids, melanoidins, polyphenols, ligustrazine, and tryptophol. The pharmacological and metabolic benefits of vinegar are believed to be due to these bioactive compounds present in vinegar. Acetic acid (CH3COOH) is the essential component of vinegar; it is slightly volatile and has a strong and sour aroma and flavour. Regular consumption of vinegar-containing foods is considered important for keeping many life-style related diseases like diabetes, hypertension, hyperlipidaemia, cancers, and obesity in check. Therefore, the present review aims at highlighting the health benefits associated with vinegar consumption for the physiological well-being of an individual.
Collapse
|