1
|
Lin JY, Guo X, Sun MH, Zhang Y, Lu JX. Diverse Bone Matrix and Mineral Alterations in Osteoporosis with Different Causes: A Solid-State NMR Study. ACS Biomater Sci Eng 2025; 11:2974-2987. [PMID: 40096821 DOI: 10.1021/acsbiomaterials.4c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Osteoporosis (OP), which is a common skeletal disease with different causes, is prevalent in the aging population. Postmenopause women generally suffer from OP with bone loss due to estrogen deficiency. Diabetes is also associated with OP by complex metabolic mechanisms. Bone qualities of OP caused by aging were compared with those of the ovariectomy (OVX) model and the Type 2 diabetic model using Sprague-Dawley (SD) rats in our study. Combining with micro-computed tomography (μ-CT) and solid-state NMR (SSNMR) methods, this research studied bone changes in SD rats from tissue level to the molecular level. The studies revealed bone loss was most significant for cancellous bones but not for cortical bones in OP rats. However, at the molecular level, the content of HAP in cortical bone increased with aging, contributing to the brittleness of the bone. Triglyceride, as a senescence maker of osteocyte in cortical bone, was also identified to be closely associated with OP in aging and OVX rats but not in diabetic rats. This research suggests that changes of bone quality at the molecular level more objectively reflect the bone tissue reconstruction of OP with various causes rather than mere bone loss revealed by μ-CT analysis.
Collapse
Affiliation(s)
- Jing-Yu Lin
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ming-Hui Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifeng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
Zhong C, Zeng X, Yi X, Yang Y, Hu J, Yin R, Chen X. The Function of Myostatin in Ameliorating Bone Metabolism Abnormalities in Individuals with Type 2 Diabetes Mellitus by Exercise. Curr Issues Mol Biol 2025; 47:158. [PMID: 40136413 PMCID: PMC11941426 DOI: 10.3390/cimb47030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
PURPOSE The molecular mechanisms involved in bone metabolism abnormalities in individuals with type 2 diabetes mellitus (T2DM) are a prominent area of investigation within the life sciences field. Myostatin (MSTN), a member of the TGF-β superfamily, serves as a critical negative regulator of skeletal muscle growth and bone metabolism. Current research on the exercise-mediated regulation of MSTN expression predominantly focuses on its role in skeletal muscle. However, due to the intricate and multifaceted mechanical and biochemical interactions between muscle and bone, the precise mechanisms by which exercise modulates MSTN to enhance bone metabolic disorders in T2DM necessitate additional exploration. The objective of this review is to systematically synthesize and evaluate the role of MSTN in the development of bone metabolism disorders associated with T2DM and elucidate the underlying mechanisms influenced by exercise interventions, aiming to offer novel insights and theoretical recommendations for enhancing bone health through physical activity. METHODS Relevant articles in Chinese and English up to July 2024 were selected using specific search terms and databases (PubMed, CNKI, Web of Science); 147 studies were finally included after evaluation, and the reference lists were checked for other relevant research. RESULTS Myostatin's heightened expression in the bone and skeletal muscle of individuals with T2DM can impede various pathways, such as PI3K/AKT/mTOR and Wnt/β-catenin, hindering osteoblast differentiation and bone mineralization. Additionally, it can stimulate osteoclast differentiation and bone resorption capacity by facilitating Smad2-dependent NFATc1 nuclear translocation and PI3K/AKT/AP-1-mediated pro-inflammatory factor expression pathways, thereby contributing to bone metabolism disorders. Physical exercise plays a crucial role in ameliorating bone metabolism abnormalities in individuals with T2DM. Exercise can activate pathways like Wnt/GSK-3β/β-catenin, thereby suppressing myostatin and downstream Smads, CCL20/CCR6, and Nox4 target gene expression, fostering bone formation, inhibiting bone resorption, and enhancing bone metabolism in T2DM. CONCLUSION In the context of T2DM, MSTN has been shown to exacerbate bone metabolic disorders by inhibiting the differentiation of osteoblasts and the process of bone mineralization while simultaneously promoting the differentiation and activity of osteoclasts. Exercise interventions have demonstrated efficacy in downregulating MSTN expression, disrupting its downstream signaling pathways, and enhancing bone metabolism.
Collapse
Affiliation(s)
- Chenghao Zhong
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Xinyu Zeng
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Xiaoyan Yi
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Yuxin Yang
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Jianbo Hu
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Rongbin Yin
- School of Physical Education and Sport, Soochow University, Suzhou 215006, China;
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| |
Collapse
|
3
|
Javaid A, Omar N, Ahmad R, Mat Zin AA, Che Romli A, Isah Tsamiya R. Paederia foetida Ameliorates Diabetic Cardiomyopathy in Rats Models by Suppressing Apoptosis. PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2024; 47:1473-1489. [DOI: 10.47836/pjtas.47.4.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Diabetes mellitus is one of the most prevalent global public health issues associated with a higher risk of cardiovascular diseases, contributing to morbidity and mortality. Research has demonstrated that elevated reactive oxygen species (ROS) generation in diabetes can trigger apoptosis, exacerbating diabetic cardiomyopathy (DCM). This study investigates the cardioprotective effects of Paederia foetida in rats’ models of type 2 diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ) treatment. The diabetic model was established in Sprague Dawley rats by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg). Sprague Dawley rats were treated with varied concentrations of standardized extract of P. foetida (50 mg/kg and 100 mg/kg), administered orally once daily for four weeks. Standardized extract from P. foetida has a range of therapeutic potential, including anti-inflammatory, antioxidant, and anti-diabetic properties. The common metabolic disorder indices and myocardial apoptosis were investigated. The findings from this study demonstrated increased expression of Bcl-2 and decreased expression of Bcl-2 Associated X-protein BAX as indicated by IRS scoring in cardiomyocytes, suggesting that P. foetida has a significant protective effect on diabetic cardiomyopathy by decreasing apoptosis. Increased Bcl-2 and decreased BAX levels may be related to regulating oxidative stress and mitochondrial pathways involving myocardial apoptosis. P. foetida extract could be a potential intervention for attenuating cardiomyopathy in diabetes mellitus.
Collapse
|
4
|
Kim JY, Lee J, Kim SG, Kim NH. Recent Glycemia Is a Major Determinant of β-Cell Function in Type 2 Diabetes Mellitus. Diabetes Metab J 2024; 48:1135-1146. [PMID: 38889769 PMCID: PMC11621653 DOI: 10.4093/dmj.2023.0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGRUOUND Progressive deterioration of β-cell function is a characteristic of type 2 diabetes mellitus (T2DM). We aimed to investigate the relative contributions of clinical factors to β-cell function in T2DM. METHODS In a T2DM cohort of 470 adults (disease duration 0 to 41 years), β-cell function was estimated using insulinogenic index (IGI), disposition index (DI), oral disposition index (DIO), and homeostasis model assessment of β-cell function (HOMA-B) derived from a 75 g oral glucose tolerance test (OGTT). The relative contributions of age, sex, disease duration, body mass index, glycosylated hemoglobin (HbA1c) levels (at the time of the OGTT), area under the curve of HbA1c over time (HbA1c AUC), coefficient of variation in HbA1c (HbA1c CV), and antidiabetic agents use were compared by standardized regression coefficients. Longitudinal analyses of these indices were also performed. RESULTS IGI, DI, DIO, and HOMA-B declined over time (P<0.001 for all). Notably, HbA1c was the most significant factor affecting IGI, DI, DIO, and HOMA-B in the multivariable regression analysis. Compared with HbA1c ≥9%, DI was 1.9-, 2.5-, 3.7-, and 5.5-fold higher in HbA1c of 8%-<9%, 7%-<8%, 6%-<7%, and <6%, respectively, after adjusting for confounding factors (P<0.001). Conversely, β-cell function was not affected by the type or duration of antidiabetic agents, HbA1c AUC, or HbA1c CV. The trajectories of the IGI, DI, DIO, and HOMA-B mirrored those of HbA1c. CONCLUSION β-Cell function declines over time; however, it is flexible, being largely affected by recent glycemia in T2DM.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyoon Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Aristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, Duque-Ossman JJ, Abreu-Lomba A. SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. Am J Cardiovasc Drugs 2024; 24:707-718. [PMID: 39179723 DOI: 10.1007/s40256-024-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a heightened risk of cardiovascular and renal complications. While glycemic control remains essential, newer therapeutic options, such as SGLT2 inhibitors, offer additional benefits beyond glucose reduction. This review delves into the mechanisms underlying the cardio-renal protective effects of SGLT2 inhibitors. By inducing relative hypoglycemia, these agents promote ketogenesis, optimize myocardial energy metabolism, and reduce lipotoxicity. Additionally, SGLT2 inhibitors exert renoprotective actions by enhancing renal perfusion, attenuating inflammation, and improving iron metabolism. These pleiotropic effects, including modulation of blood pressure, reduction of uric acid, and improved endothelial function, collectively contribute to the cardiovascular and renal benefits observed with SGLT2 inhibitor therapy. This review will provide clinicians with essential knowledge, understanding, and a clear recollection of this pharmacological group's mechanism of action.
Collapse
Affiliation(s)
- David Aristizábal-Colorado
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico
| | - Martín Ocampo-Posada
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Faculty of Health, Pontificia Universidad Javeriana, Cali, Colombia
- Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Universidad Javeriana, Cali, Colombia
| | - Wilfredo Antonio Rivera-Martínez
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Department of Endocrinology, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - David Corredor-Rengifo
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
| | - Jorge Rico-Fontalvo
- Department of Nephrology. Faculty of Medicine, Universidad Simón Bolívar, Barranquilla, Colombia
- Latin American Society of Nephrology and Arterial Hypertension (SLANH), Panama City, Panamá
| | - Juan Esteban Gómez-Mesa
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico.
- Cardiology Department, Fundación Valle del Lili, Cali, Colombia.
- Department of Health Sciences, Universidad Icesi, Cali, Colombia.
| | - John Jairo Duque-Ossman
- Universidad Del Quindío, Armenia, Colombia
- Latin American Federation of Endocrinology (FELAEN), Armenia, Colombia
| | - Alin Abreu-Lomba
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Endocrinology Department, Clínica Imbanaco, Cali, Colombia
| |
Collapse
|
6
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Abdul-Ghani M, Maffei P, DeFronzo RA. Managing insulin resistance: the forgotten pathophysiological component of type 2 diabetes. Lancet Diabetes Endocrinol 2024; 12:674-680. [PMID: 39098317 DOI: 10.1016/s2213-8587(24)00127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists have gained widespread use in the treatment of individuals with type 2 diabetes because of their potent weight loss promoting effect, ability to augment β-cell function, and cardiovascular protective effects. However, despite causing impressive weight loss, GLP-1 receptor agonists do not normalise insulin sensitivity in people with type 2 diabetes and obesity, and the long-term effects of this class of antidiabetic medication on muscle mass, frailty, and bone density have been poorly studied. Although GLP-1 receptor agonists improve insulin sensitivity secondary to weight loss, the only true direct insulin-sensitising drugs are thiazolidinediones. Because of side-effects associated with type 2 diabetes therapy, these drugs have not gained widespread use. In lieu of the important role of insulin resistance in the cause of type 2 diabetes and in the pathogenesis of atherosclerotic cardiovascular disease in type 2 diabetes, development of potent insulin-sensitising drugs that can be used in combination with GLP-1 receptor agonists remains a large unmet need in the management of individuals with type 2 diabetes.
Collapse
|
8
|
Yang M, Yue H, Xu Q, Shao S, Chen Y. Pioglitazone reduces serum ketone bodies in sodium-glucose cotransporter-2 inhibitor-treated non-obese type 2 diabetes: A single-centre, randomized, crossover trial. Diabetes Obes Metab 2024; 26:3137-3146. [PMID: 38699792 DOI: 10.1111/dom.15641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
AIM To examine the effects of the thiazolidinedione (TZD) pioglitazone on reducing ketone bodies in non-obese patients with T2DM treated with the sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin. METHODS Crossover trials with two periods, each treatment period lasting 4 weeks, with a 4-week washout period, were conducted. Participants were randomly assigned in a 1:1 ratio to receive pioglitazone combined with canagliflozin (PIOG + CANA group) versus canagliflozin monotherapy (CANA group). The primary outcome was change (Δ) in β-hydroxybutyric acid (β-HBA) before and after the CANA or PIOG + CANA treatments. The secondary outcomes were Δchanges in serum acetoacetate and acetone, the rate of conversion into urinary ketones, and Δchanges in factors related to SGLT2 inhibitor-induced ketone body production including non-esterified fatty acids (NEFAs), glucagon, glucagon to insulin ratio, and noradrenaline (NA). Analyses were performed in accordance with the intention-to-treat principle. RESULTS Twenty-five patients with a mean age of 49 ± 7.97 years and a body mass index of 25.35 ± 2.22 kg/m2 were included. One patient discontinued the study during the washout period. Analyses revealed a significant increase in the levels of serum ketone bodies and an elevation in the rate of conversion into urinary ketones after both interventions. However, differernces in levels of ketone bodies (except for acetoacetate) in the PIOG + CANA group were significantly smaller than in the CANA group (219.84 ± 80.21 μmol/L vs. 317.69 ± 83.07 μmol/L, p < 0.001 in β-HBA; 8.98 ± 4.17 μmol/L vs. 12.29 ± 5.27 μmol/L, p = 0.018 in acetone). NEFA, glucagon, glucagon to insulin ratio, and NA were also significantly increased after both CANA and PIOG + CANA treatments; while only NEFAs demonstrated a significant difference between the two groups. Correlation analyses revealed a significant association between the difference in Δchanges in serum NEFA levels with the differences in Δchanges in ketones of β-HBA and acetoacetate. CONCLUSION Supplementation of pioglitazone could alleviate canagliflozin-induced ketone bodies. This benefit may be closely associated with decreased substrate NEFAs rather than other factors including glucagon, fasting insulin and NA.
Collapse
Affiliation(s)
- Min Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Endocrinology& Metabolism, and Ministry of Education Key Laboratory of Vascular Aging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Han Yue
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Endocrinology& Metabolism, and Ministry of Education Key Laboratory of Vascular Aging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
9
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
10
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
11
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
12
|
Kwak YB, Yoo HH, Yoon J. The impact of the administration of red ginseng ( Panax ginseng) on lipid metabolism and free fatty acid profiles in healthy horses using a molecular networking approach. Front Vet Sci 2024; 11:1285000. [PMID: 38332753 PMCID: PMC10851614 DOI: 10.3389/fvets.2024.1285000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
This study investigated the potential benefits of the administration of red ginseng (RG) on lipid metabolism and the profiles of individual free fatty acids (FFAs) in healthy horses. Eight healthy horses, raised under similar conditions, were randomly divided into two groups, each comprising four horses. The experimental group received powdered RG (600 mg/kg/day) mixed with a carrier, and the control group received only the carrier. The parameters associated with lipid metabolism and probable adverse effects were evaluated in both groups after 3 weeks. The computational molecular networking (MN) approach was applied to analyze the FFA profiles. The results indicated that RG administration significantly reduced blood triglyceride levels in the experimental group. Analysis of the FFAs using MN revealed significant decreases in specific types of FFAs (C12:0, dodecanoic acid; C14:0, myristric acid; C18:1, oleic acid; C18:2, linoleic acid). RG consumption did not produce significant adverse effects on the renal, hepatic, and immune functions. Thus, RG was found to effectively modulate lipid metabolism and the levels of individual FFAs. The application of the MN for the analysis of FFAs represents a novel approach and can be considered for future research.
Collapse
Affiliation(s)
- Young Beom Kwak
- Racing Laboratory, Korea Racing Authority, Jeju, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Jungho Yoon
- Equine Referral Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Republic of Korea
| |
Collapse
|
13
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
14
|
Al-Busaidi A, Alabri O, Alomairi J, ElSharaawy A, Al Lawati A, Al Lawati H, Das S. Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e170124225723. [PMID: 38243954 DOI: 10.2174/0115733998281910231231051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual's good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Alsalt Al-Busaidi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Omer Alabri
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jaifar Alomairi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Hanan Al Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
15
|
Ivić V, Zjalić M, Blažetić S, Fenrich M, Labak I, Scitovski R, Szűcs KF, Ducza E, Tábi T, Bagamery F, Szökő É, Vuković R, Rončević A, Mandić D, Debeljak Ž, Berecki M, Balog M, Seres-Bokor A, Sztojkov-Ivanov A, Hajagos-Tóth J, Gajović S, Imširović A, Bakula M, Mahiiovych S, Gaspar R, Vari SG, Heffer M. Elderly rats fed with a high-fat high-sucrose diet developed sex-dependent metabolic syndrome regardless of long-term metformin and liraglutide treatment. Front Endocrinol (Lausanne) 2023; 14:1181064. [PMID: 37929025 PMCID: PMC10623428 DOI: 10.3389/fendo.2023.1181064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Aim/Introduction The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.
Collapse
Affiliation(s)
- Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matija Fenrich
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Rudolf Scitovski
- School of Applied Mathematics and Computer Science, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kálmán Ferenc Szűcs
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Fruzsina Bagamery
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Alen Rončević
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Neurosurgery, Osijek University Hospital, Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Monika Berecki
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Judit Hajagos-Tóth
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Srećko Gajović
- Croatian Institute for Brain Research, and BIMIS - Biomedical Research Institute Šalata, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alen Imširović
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Bakula
- Department of Clinical Pathology and Forensic Medicine, Osijek University Hospital, Osijek, Croatia
| | - Solomiia Mahiiovych
- Department of Therapy № 1 and Medical Diagnostics, Hematology and Transfusiology, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Sandor G. Vari
- Cedars-Sinai Medical Center, International Research and Innovation in Medicine Program, Los Angeles, CA, United States
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
16
|
Shannon CE, Ní Chathail MB, Mullin SM, Meehan A, McGillicuddy FC, Roche HM. Precision nutrition for targeting pathophysiology of cardiometabolic phenotypes. Rev Endocr Metab Disord 2023; 24:921-936. [PMID: 37402955 PMCID: PMC10492734 DOI: 10.1007/s11154-023-09821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Obesity is a heterogenous disease accompanied by a broad spectrum of cardiometabolic risk profiles. Traditional paradigms for dietary weight management do not address biological heterogeneity between individuals and have catastrophically failed to combat the global pandemic of obesity-related diseases. Nutritional strategies that extend beyond basic weight management to instead target patient-specific pathophysiology are warranted. In this narrative review, we provide an overview of the tissue-level pathophysiological processes that drive patient heterogeneity to shape distinct cardiometabolic phenotypes in obesity. Specifically, we discuss how divergent physiology and postprandial phenotypes can reveal key metabolic defects within adipose, liver, or skeletal muscle, as well as the integrative involvement of the gut microbiome and the innate immune system. Finally, we highlight potential precision nutritional approaches to target these pathways and discuss recent translational evidence concerning the efficacy of such tailored dietary interventions for different obesity phenotypes, to optimise cardiometabolic benefits.
Collapse
Affiliation(s)
- Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Méabh B Ní Chathail
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Sinéad M Mullin
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Andrew Meehan
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | | | - Helen M Roche
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland.
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
17
|
Mahyoub MA, Elhoumed M, Maqul AH, Almezgagi M, Abbas M, Jiao Y, Wang J, Alnaggar M, Zhao P, He S. Fatty infiltration of the pancreas: a systematic concept analysis. Front Med (Lausanne) 2023; 10:1227188. [PMID: 37809324 PMCID: PMC10556874 DOI: 10.3389/fmed.2023.1227188] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Fatty infiltration of the pancreas (FIP) has been recognized for nearly a century, yet many aspects of this condition remain unclear. Regular literature reviews on the diagnosis, consequences, and management of FIP are crucial. This review article highlights the various disorders for which FIP has been established as a risk factor, including type 2 diabetes mellitus (T2DM), pancreatitis, pancreatic fistula (PF), metabolic syndrome (MS), polycystic ovary syndrome (PCOS), and pancreatic duct adenocarcinoma (PDAC), as well as the new investigation tools. Given the interdisciplinary nature of FIP research, a broad range of healthcare specialists are involved. This review article covers key aspects of FIP, including nomenclature and definition of pancreatic fat infiltration, history and epidemiology, etiology and pathophysiology, clinical presentation and diagnosis, clinical consequences, and treatment. This review is presented in a detailed narrative format for accessibility to clinicians and medical students.
Collapse
Affiliation(s)
- Mueataz A. Mahyoub
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases (Oncology) of Shaanxi Province, Xi'an, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Gastroenterology, Faculty of Medicine, Thamar University, Dhamar, Yemen
| | - Mohamed Elhoumed
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- National Institute of Public Health Research (INRSP), Nouakchott, Mauritania
| | - Abdulfatah Hassan Maqul
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Imaging, Sahan Diagnostic Center, Mogadishu, Somalia
| | - Maged Almezgagi
- The Key Laboratory of High-altitude Medical Application of Qinghai Province, Xining, Qinghai, China
- Department of Immunology, Qinghai University, Xining, Qinghai, China
- Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Mustafa Abbas
- Department of Internal Medicine, Faculty of Medicine, Thamar University, Dhamar, Yemen
| | - Yang Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mohammed Alnaggar
- Department of Oncology, South Hubei Cancer Hospital, Xianning, Hubei, China
- Department of Internal Medicine, Clinic Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ping Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases (Oncology) of Shaanxi Province, Xi'an, China
| |
Collapse
|
18
|
Tian Y, Shi D, Liao H, Lu B, Pang Z. The role of Huidouba in regulating skeletal muscle metabolic disorders in prediabetic mice through AMPK/PGC-1α/PPARα pathway. Diabetol Metab Syndr 2023; 15:145. [PMID: 37391779 PMCID: PMC10314379 DOI: 10.1186/s13098-023-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/23/2023] [Indexed: 07/02/2023] Open
Abstract
Prediabetes is a transitional state between normal blood glucose levels and diabetes, but it is also a reversible process. At the same time, as one of the most important tissues in the human body, the metabolic disorder of skeletal muscle is closely related to prediabetes. Huidouba (HDB) is a clinically proven traditional Chinese medicine with significant effects in regulating disorders of glucose and lipid metabolism. Our study aimed to investigate the efficacy and mechanism of HDB in prediabetic model mice from the perspective of skeletal muscle. C57BL/6J mice (6 weeks old) were fed a high-fat diet (HFD) for 12 weeks to replicate the prediabetic model. Three concentrations of HDB were treated with metformin as a positive control. After administration, fasting blood glucose was measured as an indicator of glucose metabolism, as well as lipid metabolism indicators such as total triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), free fatty acid (FFA), and lactate dehydrogenase (LDH). Muscle fat accumulation and glycogen accumulation were observed. The protein expression levels of p-AMPK, AMPK, PGC-1α, PPAR-α, and GLUT-4 were detected. After HDB treatment, fasting blood glucose was significantly improved, and TG, LDL-C, FFA, and LDH in serum and lipid accumulation in muscle tissue were significantly reduced. In addition, HDB significantly upregulated the expression levels of p-AMPK/AMPK, PGC-1α, PPAR-α, and GLUT-4 in muscle tissue. In conclusion, HDB can alleviate the symptoms of prediabetic model mice by promoting the AMPK/PGC-1α/PPARα pathway and upregulating the expression of GLUT-4 protein.
Collapse
Affiliation(s)
- Yu Tian
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Dongxu Shi
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Haiying Liao
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| |
Collapse
|
19
|
Jang EJ, Lee DH, Im SS, Yee J, Gwak HS. Correlation between PPARG Pro12Ala Polymorphism and Therapeutic Responses to Thiazolidinediones in Patients with Type 2 Diabetes: A Meta-Analysis. Pharmaceutics 2023; 15:1778. [PMID: 37376225 PMCID: PMC10303709 DOI: 10.3390/pharmaceutics15061778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Thiazolidinediones (TZDs) are a type of oral drug that are utilized for the treatment of type 2 diabetes mellitus (T2DM). They function by acting as agonists for a nuclear transcription factor known as peroxisome proliferator-activated receptor-gamma (PPAR-γ). TZDs, such as pioglitazone and rosiglitazone, help enhance the regulation of metabolism in individuals with T2DM by improving their sensitivity to insulin. Previous studies have suggested a relationship between the therapeutic efficacy of TZDs and the PPARG Pro12Ala polymorphism (C > G, rs1801282). However, the small sample sizes of these studies may limit their applicability in clinical settings. To address this limitation, we conducted a meta-analysis assessing the influence of the PPARG Pro12Ala polymorphism on the responsiveness of TZDs. Method: We registered our study protocol with PROSPERO, number CRD42022354577. We conducted a comprehensive search of the PubMed, Web of Science, and Embase databases, including studies published up to August 2022. We examined studies investigating the association between the PPARG Pro12Ala polymorphism and metabolic parameters such as hemoglobin A1C (HbA1C), fasting plasma glucose (FPG), triglyceride (TG), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and total cholesterol (TC). The mean difference (MD) and 95% confidence intervals (CIs) between pre- and post-drug administration were evaluated. The quality of the studies included in the meta-analysis was assessed by using the Newcastle-Ottawa Scale (NOS) tool for cohort studies. Heterogeneity across studies was assessed by using the I2 value. An I2 value greater than 50% indicated substantial heterogeneity, and a random-effects model was used for meta-analysis. If the I2 value was below 50%, a fixed-effects model was employed instead. Both Begg's rank correlation test and Egger's regression test were performed to detect publication bias, using R Studio software. Results: Our meta-analysis incorporated 6 studies with 777 patients for blood glucose levels and 5 studies with 747 patients for lipid levels. The included studies were published between 2003 and 2016, with the majority involving Asian populations. Five of the six studies utilized pioglitazone, while the remaining study employed rosiglitazone. The quality scores, as assessed with the NOS, ranged from 8 to 9. Patients carrying the G allele exhibited a significantly greater reduction in HbA1C (MD = -0.3; 95% CI = -0.55 to -0.05; p = 0.02) and FPG (MD = -10.91; 95% CI = -19.82 to -2.01; p = 0.02) levels compared to those with the CC genotype. Furthermore, individuals with the G allele experienced a significantly larger decrease in TG levels than those with the CC genotype (MD = -26.88; 95% CI = -41.30 to -12.46; p = 0.0003). No statistically significant differences were observed in LDL (MD = 6.69; 95% CI = -0.90 to 14.29; p = 0.08), HDL (MD = 0.31; 95% CI = -1.62 to 2.23; p = 0.75), and TC (MD = 6.4; 95% CI = -0.05 to 12.84; p = 0.05) levels. No evidence of publication bias was detected based on Begg's test and Egger's test results. Conclusions: This meta-analysis reveals that patients with the Ala12 variant in the PPARG Pro12Ala polymorphism are more likely to exhibit positive responses to TZD treatment in terms of HbA1C, FPG, and TG levels compared to those with the Pro12/Pro12 genotype. These findings suggest that genotyping the PPARG Pro12Ala in diabetic patients may be advantageous for devising personalized treatment strategies, particularly for identifying individuals who are likely to respond favorably to TZDs.
Collapse
Affiliation(s)
- Eun Jeong Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; (E.J.J.); (D.H.L.); (J.Y.)
| | - Da Hoon Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; (E.J.J.); (D.H.L.); (J.Y.)
| | - Sae-Seul Im
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; (E.J.J.); (D.H.L.); (J.Y.)
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; (E.J.J.); (D.H.L.); (J.Y.)
| |
Collapse
|
20
|
Chilakala R, Moon HJ, Kim K, Yang S, Cheong SH. Anti-obesity effects of Camellia (Camellia oleifera Abel) oil treatment on high-fat diet-induced obesity in C57BL/6J mice. Phys Act Nutr 2023; 27:50-61. [PMID: 37583072 PMCID: PMC10440180 DOI: 10.20463/pan.2023.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE In the current study, we investigated the effects of camellia oil and camellia oil infused with herbs (Camellia oleifera Abel) on obesity in obese mice fed a high-fat diet (HFD). METHODS The antioxidant activity of camellia oil in scavenging free radicals was investigated. Additionally, body and organ weight changes, serum and liver marker parameters, antioxidant enzyme activities, liver and epididymal fat histology, protein and gene expression associated with lipogenesis and hyperglycemia effect on adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, were examined in HFD-induced obese mice. RESULTS The hepatic steatosis and epididymal fat were significantly reduced by the oral administration of camellia oil and herb-infused camellia oil. Moreover, hepatic and serum marker parameters such as total cholesterol, insulin, triglycerides, tumor necrosis factor-α, adiponectin, thiobarbituric acid reactive substances, aspartate aminotransferase, and alanine transaminase were beneficially impacted. Additionally, the activity of antioxidant enzymes also increased. Camellia oil and herb-infused camellia oil treatments reduced the expression of genes linked to hyperglycemia and lipogenesis via activation of AMPK phosphorylation. CONCLUSION For many people, exercise poses an obstacle in the daily routine due to lack of ease, difficulty in maintaining consistency, and hard work. Camellia oil combined with herbs has anti-obesity and antihyperglycemic effects. These findings indicate that treatment with herb-infused camellia oil is most beneficial for elderly individuals who do not prefer frequent exercise.
Collapse
Affiliation(s)
- Ramakrishna Chilakala
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Hyeon Jeong Moon
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | | | | | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
21
|
van der Velde JHPM, Boone SC, Winters-van Eekelen E, Hesselink MKC, Schrauwen-Hinderling VB, Schrauwen P, Lamb HJ, Rosendaal FR, de Mutsert R. Timing of physical activity in relation to liver fat content and insulin resistance. Diabetologia 2023; 66:461-471. [PMID: 36316401 PMCID: PMC9892088 DOI: 10.1007/s00125-022-05813-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that the insulin-sensitising effect of physical activity depends on the timing of the activity. Here, we examined cross-sectional associations of breaks in sedentary time and timing of physical activity with liver fat content and insulin resistance in a Dutch cohort. METHODS In 775 participants of the Netherlands Epidemiology of Obesity (NEO) study, we assessed sedentary time, breaks in sedentary time and different intensities of physical activity using activity sensors, and liver fat content by magnetic resonance spectroscopy (n=256). Participants were categorised as being most active in the morning (06:00-12:00 hours), afternoon (12:00-18:00 hours) or evening (18:00-00:00 hours) or as engaging in moderate-to-vigorous-physical activity (MVPA) evenly distributed throughout the day. Most active in a certain time block was defined as spending the majority (%) of total daily MVPA in that block. We examined associations between sedentary time, breaks and timing of MVPA with liver fat content and HOMA-IR using linear regression analyses, adjusted for demographic and lifestyle factors including total body fat. Associations of timing of MVPA were additionally adjusted for total MVPA. RESULTS The participants (42% men) had a mean (SD) age of 56 (4) years and a mean (SD) BMI of 26.2 (4.1) kg/m2. Total sedentary time was not associated with liver fat content or insulin resistance, whereas the amount of breaks in sedentary time was associated with higher liver fat content. Total MVPA (-5%/h [95% CI -10%/h, 0%/h]) and timing of MVPA were associated with reduced insulin resistance but not with liver fat content. Compared with participants who had an even distribution of MVPA throughout the day, insulin resistance was similar (-3% [95% CI -25%, 16%]) in those most active in morning, whereas it was reduced in participants who were most active in the afternoon (-18% [95% CI -33%, -2%]) or evening (-25% [95% CI -49%, -4%]). CONCLUSIONS/INTERPRETATION The number of daily breaks in sedentary time was not associated with lower liver fat content or reduced insulin resistance. Moderate-to-vigorous activity in the afternoon or evening was associated with a reduction of up to 25% in insulin resistance. Further studies should assess whether timing of physical activity is also important for the occurrence of type 2 diabetes.
Collapse
Affiliation(s)
| | - Sebastiaan C Boone
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
22
|
Loh KW, Shaz N, Singh S, Malliga Raman M, Balaji Raghavendran HR, Kamarul T. Cytokine release by human bone marrow stromal cells isolated from osteoarthritic and diabetic osteoarthritic patients in vitro. J Basic Clin Physiol Pharmacol 2023; 34:177-185. [PMID: 34182614 DOI: 10.1515/jbcpp-2020-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/15/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Primary Osteoarthritis (OA) is a disease of progressive joints degeneration due to idiopathic causes. Recent evidence showed a positive relationship between OA and metabolic syndrome. This pilot study aimed to assess the baseline level of pro and anti-inflammatory cytokines in OA patients with or without Diabetic Mellitus (DM) and assess the effect of hydrogen peroxide (H2O2) in cytokine production. METHODS Patients with primary hip and knee OA were recruited, and 3 mL of bone marrow was harvested during joint replacement surgery. Bone marrow stromal cells (BMSC) was isolated and cultured in a culture flask for three passages. Later experiment was then sub-cultured in a well plate labeled as the control group and H2O2 (0.1 mM) treated group. ProcartaPlex® Multiplex Immunoassay was performed to measure cytokine levels produced by the BMSC at 0 h, as well as 72 h. RESULTS Cytokines such as tumor necrosis factor-alpha, interleukin (IL)-6, IL-8, and IL-1β generally exhibited higher cytokine levels in subjects with DM than in nonDM subjects at 0 and 72 h. For IL-17, its expression was similar in nonDM and DM groups at 0 and 72 h. Cytokine IL-10 showed no significant difference in both the groups while DM and nonDM groups treated with H2O2 showed decreased IL-4 levels compared to control groups at 72 h. Bone marrow cells from DM-OA are more vulnerable to chemical insult and are associated with higher levels of proinflammatory cytokines production and lower IL-4 level production. CONCLUSIONS This study provides a clue that management of OA with co-morbidity like DM needs future studies.
Collapse
Affiliation(s)
- Kar Wai Loh
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norshazliza Shaz
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Simmrat Singh
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Murali Malliga Raman
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hanumantha Rao Balaji Raghavendran
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Tunku Kamarul
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Bays HE, Bindlish S, Clayton TL. Obesity, diabetes mellitus, and cardiometabolic risk: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2023. OBESITY PILLARS 2023; 5:100056. [PMID: 37990743 PMCID: PMC10661981 DOI: 10.1016/j.obpill.2023.100056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) is intended to provide clinicians an overview of type 2 diabetes mellitus (T2DM), an obesity-related cardiometabolic risk factor. Methods The scientific support for this CPS is based upon published citations and clinical perspectives of OMA authors. Results Topics include T2DM and obesity as cardiometabolic risk factors, definitions of obesity and adiposopathy, and mechanisms for how obesity causes insulin resistance and beta cell dysfunction. Adipose tissue is an active immune and endocrine organ, whose adiposopathic obesity-mediated dysfunction contributes to metabolic abnormalities often encountered in clinical practice, including hyperglycemia (e.g., pre-diabetes mellitus and T2DM). The determination as to whether adiposopathy ultimately leads to clinical metabolic disease depends on crosstalk interactions and biometabolic responses of non-adipose tissue organs such as liver, muscle, pancreas, kidney, and brain. Conclusions This review is intended to assist clinicians in the care of patients with the disease of obesity and T2DM. This CPS provides a simplified overview of how obesity may cause insulin resistance, pre-diabetes, and T2DM. It also provides an algorithmic approach towards treatment of a patient with obesity and T2DM, with "treat obesity first" as a priority. Finally, treatment of obesity and T2DM might best focus upon therapies that not only improve the weight of patients, but also improve the health outcomes of patients (e.g., cardiovascular disease and cancer).
Collapse
Affiliation(s)
- Harold Edward Bays
- Louisville Metabolic and Atherosclerosis Research Center, University of Louisville School of Medicine, 3288 Illinois Avenue, Louisville, KY, 40213, USA
| | - Shagun Bindlish
- Diabetology, One Medical, Adjunct Faculty Touro University, CA, USA
| | | |
Collapse
|
24
|
Moody AJ, Molina-Wilkins M, Clarke GD, Merovci A, Solis-Herrera C, Cersosimo E, Chilton RJ, Iozzo P, Gastaldelli A, Abdul-Ghani M, DeFronzo RA. Pioglitazone reduces epicardial fat and improves diastolic function in patients with type 2 diabetes. Diabetes Obes Metab 2023; 25:426-434. [PMID: 36204991 PMCID: PMC9812869 DOI: 10.1111/dom.14885] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 02/02/2023]
Abstract
AIMS To examine the effect of pioglitazone on epicardial (EAT) and paracardial adipose tissue (PAT) and measures of diastolic function and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). METHODS Twelve patients with T2DM without clinically manifest cardiovascular disease and 12 subjects with normal glucose tolerance (NGT) underwent cardiac magnetic resonance imaging to quantitate EAT and PAT and diastolic function before and after pioglitazone treatment for 24 weeks. Whole-body insulin sensitivity was measured with a euglycaemic insulin clamp and the Matsuda Index (oral glucose tolerance test). RESULTS Pioglitazone reduced glycated haemoglobin by 0.9% (P < 0.05), increased HDL cholesterol by 7% (P < 0.05), reduced triacylglycerol by 42% (P < 0.01) and increased whole-body insulin-stimulated glucose uptake by 71% (P < 0.01) and Matsuda Index by 100% (P < 0.01). In patients with T2DM, EAT (P < 0.01) and PAT (P < 0.01) areas were greater compared with subjects with NGT, and decreased by 9% (P = 0.03) and 9% (P = 0.09), respectively, after pioglitazone treatment. Transmitral E/A flow rate and peak left ventricular flow rate (PLVFR) were reduced in T2DM versus NGT (P < 0.01) and increased following pioglitazone treatment (P < 0.01-0.05). At baseline normalized PLVFR inversely correlated with EAT (r = -0.45, P = 0.03) but not PAT (r = -0.29, P = 0.16). E/A was significantly and inversely correlated with EAT (r = -0.55, P = 0.006) and PAT (r = -0.40, P = 0.05). EAT and PAT were inversely correlated with whole-body insulin-stimulated glucose uptake (r = -0.68, P < 0.001) and with Matsuda Index (r = 0.99, P < 0.002). CONCLUSION Pioglitazone reduced EAT and PAT areas and improved left ventricular (LV) diastolic function in T2DM. EAT and PAT are inversely correlated (PAT less strongly) with LV diastolic function and both EAT and PAT are inversely correlated with measures of insulin sensitivity.
Collapse
Affiliation(s)
- Alexander J Moody
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX
| | | | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX
| | | | | | | | - Robert J Chilton
- Division of Cardiology, UTHSCSA and South Texas Veterans Health Care System, San Antonio, TX
| | - Patricia Iozzo
- Consiglio Nazionale delle Richerche, Pisa, Italy; Diabetes Division, UTHSCSA, Texas
| | - Amalia Gastaldelli
- Consiglio Nazionale delle Richerche, Pisa, Italy; Diabetes Division, UTHSCSA, Texas
| | | | - Ralph A. DeFronzo
- Diabetes Division, UTHSCSA
- Diabetes Institute, and South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
25
|
McClelland TJ, Fowler AJ, Davies TW, Pearse R, Prowle J, Puthucheary Z. Can pioglitazone be used for optimization of nutrition in critical illness? A systematic review. JPEN J Parenter Enteral Nutr 2023; 47:459-475. [PMID: 36700419 DOI: 10.1002/jpen.2481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Skeletal muscle wasting is a determinant of physical disability in survivors of critical illness. Intramuscular bioenergetic failure, altered substrate metabolim, and inflammation are likely underpinning mechanisms. We examined the effect of pioglitazone, a peroxisome proliferator-activated receptor γ agonist, on muscle-related outcomes in adults. METHODS We included randomized controlled trials in which pioglitazone was administered (no dose/dosage restrictions) and muscle-related outcomes were reported. We searched MEDLINE, CENTRAL, EMBASE, CINAHL, and trial registries. Risk of bias was assessed using RoB 2. Primary outcomes were physical function and symptoms, muscle mass and function, or body composition and muscular compositional change. Secondary outcomes included muscle insulin sensitivity, mitochondrial effects, and intramuscular inflammation. RESULTS Fourteen studies over 19 publications (n = 474 patients) were included. Lean body mass was unaffected in three studies (n = 126) and increased by 1.8-1.92 kg in two studies (P = 0.02 and 0.003, respectively; n = 48). Pioglitazone was associated with increased peripheral insulin sensitivity (+23%-72%, standardized mean difference of 0.97 from trial start point to end point [95% CI, 0.36-1.58; n = 213]). Treatment reduced intramuscular tumor necrosis factor-α (TNF-α) levels (-30%; P = 0.02; n = 29), with mixed effects on serum TNF-α and intramyocellular lipid concentrations. Treatment increased intramuscular markers of adenosine triphosphate (ATP) biosynthesis (ATP5A [+33%, P ≤ 0.05], ETFA [+60%, P ≤ 0.05], and CX6B1 [+ 33%, P = 0.01] [n = 24]), PGC1α and PGC1β messenger RNA expression (P < 0.05; n = 26), and AMPK phosphorylation (+38%, P < 0.05; n = 26). These data have low-quality evidence profiles owing to risk of bias. CONCLUSIONS Pioglitazone therapy increases skeletal muscle insulin sensitivity and can decrease intramuscular inflammation.
Collapse
Affiliation(s)
- Thomas J McClelland
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Alexander J Fowler
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Thomas W Davies
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Rupert Pearse
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| | - John Prowle
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
26
|
Alghanem L, Zhang X, Jaiswal R, Seyoum B, Mallisho A, Msallaty Z, Yi Z. Effect of Insulin and Pioglitazone on Protein Phosphatase 2A Interaction Partners in Primary Human Skeletal Muscle Cells Derived from Obese Insulin-Resistant Participants. ACS OMEGA 2022; 7:42763-42773. [PMID: 36467954 PMCID: PMC9713796 DOI: 10.1021/acsomega.2c04473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/01/2022] [Indexed: 05/16/2023]
Abstract
Skeletal muscle insulin resistance is a major contributor to type-2 diabetes (T2D). Pioglitazone is a potent insulin sensitizer of peripheral tissues by targeting peroxisome proliferator-activated receptor gamma. Pioglitazone has been reported to protect skeletal muscle cells from lipotoxicity by promoting fatty acid mobilization and insulin signaling. However, it is unclear whether pioglitazone increases insulin sensitivity through changes in protein-protein interactions involving protein phosphatase 2A (PP2A). PP2A regulates various cell signaling pathways such as insulin signaling. Interaction of the catalytic subunit of PP2A (PP2Ac) with protein partners is required for PP2A specificity and activity. Little is known about PP2Ac partners in primary human skeletal muscle cells derived from lean insulin-sensitive (Lean) and obese insulin-resistant (OIR) participants. We utilized a proteomics method to identify PP2Ac interaction partners in skeletal muscle cells derived from Lean and OIR participants, with or without insulin and pioglitazone treatments. In this study, 216 PP2Ac interaction partners were identified. Furthermore, 26 PP2Ac partners exhibited significant differences in their interaction with PP2Ac upon insulin treatments between the two groups. Multiple pathways and molecular functions are significantly enriched for these 26 interaction partners, such as nonsense-mediated decay, metabolism of RNA, RNA binding, and protein binding. Interestingly, pioglitazone restored some of these abnormalities. These results provide differential PP2Ac complexes in Lean and OIR in response to insulin/pioglitazone, which may help understand molecular mechanisms underpinning insulin resistance and the insulin-sensitizing effects of pioglitazone treatments, providing multiple targets in various pathways to reverse insulin resistance and prevent and/or manage T2D with less drug side effects.
Collapse
Affiliation(s)
- Lana Alghanem
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan48201, United States
| | - Xiangmin Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan48201, United States
| | - Ruchi Jaiswal
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan48201, United States
| | - Berhane Seyoum
- Division
of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan48201, United States
| | - Abdullah Mallisho
- Division
of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan48201, United States
| | - Zaher Msallaty
- Division
of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan48201, United States
| | - Zhengping Yi
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan48201, United States
| |
Collapse
|
27
|
O'Donovan SD, Erdős B, Jacobs DM, Wanders AJ, Thomas EL, Bell JD, Rundle M, Frost G, Arts ICW, Afman LA, van Riel NAW. Quantifying the contribution of triglycerides to metabolic resilience through the mixed meal model. iScience 2022; 25:105206. [PMID: 36281448 DOI: 10.1016/j.isci.2022.105206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the pivotal role played by elevated circulating triglyceride levels in the pathophysiology of cardio-metabolic diseases many of the indices used to quantify metabolic health focus on deviations in glucose and insulin alone. We present the Mixed Meal Model, a computational model describing the systemic interplay between triglycerides, free fatty acids, glucose, and insulin. We show that the Mixed Meal Model can capture deviations in the post-meal excursions of plasma glucose, insulin, and triglyceride that are indicative of features of metabolic resilience; quantifying insulin resistance and liver fat; validated by comparison to gold-standard measures. We also demonstrate that the Mixed Meal Model is generalizable, applying it to meals with diverse macro-nutrient compositions. In this way, by coupling triglycerides to the glucose-insulin system the Mixed Meal Model provides a more holistic assessment of metabolic resilience from meal response data, quantifying pre-clinical metabolic deteriorations that drive disease development in overweight and obesity.
Collapse
Affiliation(s)
- Shauna D O'Donovan
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Eindhoven Artifical Intelligence Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Balázs Erdős
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Doris M Jacobs
- Unilever Global Food Innovation Centre, Bronland 14, 6708WH Wageningen, the Netherlands
| | - Anne J Wanders
- Unilever Global Food Innovation Centre, Bronland 14, 6708WH Wageningen, the Netherlands
| | - E Louise Thomas
- Research Center for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Jimmy D Bell
- Research Center for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Milena Rundle
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Eindhoven Artifical Intelligence Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
28
|
Zhang JS, Yeh WC, Tsai YW, Chen JY. The Relationship between Atherogenic Index of Plasma and Obesity among Adults in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214864. [PMID: 36429582 PMCID: PMC9691148 DOI: 10.3390/ijerph192214864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 05/27/2023]
Abstract
Atherogenic index of plasma (AIP), a novel biomarker, is associated with cardiovascular diseases and obesity. The main aim of this study was to investigate the relationship between AIP and obesity among Taiwanese hospital employees. A total of 1312 subjects with an average age of 42.39 years were enrolled in this cross-sectional study. AIP was calculated as log10 (TG/HDL-C). All subjects were divided into three groups according to AIP tertiles. Chi-square test, independent t-test and one-way ANOVA were used to compare the demographic and clinical lab characteristics of the three groups. Multivariate logistic regression analysis was used to assess the relationship between AIP and obesity. The results showed that subjects with obesity or with high AIP levels exhibited significant differences in systolic blood pressure, diastolic blood pressure, waist circumference, alanine aminotransferase, fasting plasma glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides and prevalence of diabetes mellitus, hypertension, hyperlipidemia and metabolic syndrome. In addition, age and total cholesterol were increased in the high AIP group. Increased AIP levels were strongly associated with obesity.
Collapse
Affiliation(s)
| | - Wei-Chung Yeh
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yi-Wen Tsai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Family Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City 236, Taiwan
| | - Jau-Yuan Chen
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| |
Collapse
|
29
|
Alser M, Elrayess MA. From an Apple to a Pear: Moving Fat around for Reversing Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114251. [PMID: 36361131 PMCID: PMC9659102 DOI: 10.3390/ijerph192114251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 06/02/2023]
Abstract
Type 2 diabetes (T2D) is a chronic condition where the body is resistant to insulin, leading to an elevated blood glucose state. Obesity is a main factor leading to T2D. Many clinical studies, however, have described a proportion of obese individuals who express a metabolically healthy profile, whereas some lean individuals could develop metabolic disorders. To study obesity as a risk factor, body fat distribution needs to be considered rather than crude body weight. Different individuals' bodies favor storing fat in different depots; some tend to accumulate more fat in the visceral depot, while others tend to store it in the femoral depot. This tendency relies on different factors, including genetic background and lifestyle. Consuming some types of medications can cause a shift in this tendency, leading to fat redistribution. Fat distribution plays an important role in the progression of risk of insulin resistance (IR). Apple-shaped individuals with enhanced abdominal obesity have a higher risk of IR compared to BMI-matched pear-shaped individuals, who store their fat in the gluteal-femoral depots. This is related to the different adipose tissue physiology between these two depots. In this review, we will summarize the recent evidence highlighting the underlying protective mechanisms in gluteal-femoral subcutaneous adipose tissues compared to those associated with abdominal adipose tissue, and we will revise the recent evidence showing antidiabetic drugs that impact fat distribution as they manage the T2D condition.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
30
|
Sasaki N, Maeda R, Ozono R, Yoshimura K, Nakano Y, Higashi Y. Early-Phase Changes in Serum Free Fatty Acid Levels After Glucose Intake Are Associated With Type 2 Diabetes Incidence: The Hiroshima Study on Glucose Metabolism and Cardiovascular Diseases. Diabetes Care 2022; 45:2309-2315. [PMID: 35944240 DOI: 10.2337/dc21-2554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/27/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Experimental studies suggest that excess serum free fatty acid (FFA) levels result in impaired glucose metabolism. This study investigated the relationship between changes in serum FFA levels after glucose intake and type 2 diabetes risk. RESEARCH DESIGN AND METHODS This observational study included 6,800 individuals without diabetes who underwent a 75-g oral glucose tolerance test. Serum FFA levels were measured before and 30 and 60 min after glucose intake. The percentages of changes in serum FFA levels from 0 to 30 and from 30 to 60 min were compared, and a low rate of change in FFA levels was determined using the receiver operating characteristic curve analysis. RESULTS Over a mean 5.3-year follow-up period, 485 participants developed type 2 diabetes. After adjusting for plasma glucose levels and indices of insulin resistance and β-cell function, low rates of change in FFA levels at 0-30 min (adjusted odds ratio [aOR] 1.91; 95% CI 1.54-2.37) and 30-60 min (aOR 1.48; 95% CI 1.15-1.90) were associated with the incidence of type 2 diabetes. Stratified analysis revealed that the low rate of change in FFA levels at 30-60 min (aOR 1.97; 95% CI 1.05-3.69) was associated with the incidence of type 2 diabetes even in participants with normal fasting glucose levels or glucose tolerance. CONCLUSIONS Changes in serum FFA levels within the 1st h after glucose intake could be a primary predictor of type 2 diabetes. This change may occur prior to the onset of impaired glucose metabolism.
Collapse
Affiliation(s)
- Nobuo Sasaki
- Health Management and Promotion Center, Hiroshima Atomic Bomb Casualty Council, Hiroshima, Japan
| | - Ryo Maeda
- Health Management and Promotion Center, Hiroshima Atomic Bomb Casualty Council, Hiroshima, Japan
| | - Ryoji Ozono
- Department of General Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenichi Yoshimura
- Department of Biostatistics, Medical Center for Translational and Clinical Research, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
31
|
Najjar SM, Abdolahipour R, Ghadieh HE, Jahromi MS, Najjar JA, Abuamreh BAM, Zaidi S, Kumarasamy S, Muturi HT. Regulation of Insulin Clearance by Non-Esterified Fatty Acids. Biomedicines 2022; 10:biomedicines10081899. [PMID: 36009446 PMCID: PMC9405499 DOI: 10.3390/biomedicines10081899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin stores lipid in adipocytes and prevents lipolysis and the release of non-esterified fatty acids (NEFA). Excessive release of NEFA during sustained energy supply and increase in abdominal adiposity trigger systemic insulin resistance, including in the liver, a major site of insulin clearance. This causes a reduction in insulin clearance as a compensatory mechanism to insulin resistance in obesity. On the other hand, reduced insulin clearance in the liver can cause chronic hyperinsulinemia, followed by downregulation of insulin receptor and insulin resistance. Delineating the cause–effect relationship between reduced insulin clearance and insulin resistance has been complicated by the fact that insulin action and clearance are mechanistically linked to insulin binding to its receptors. This review discusses how NEFA mobilization contributes to the reciprocal relationship between insulin resistance and reduced hepatic insulin clearance, and how this may be implicated in the pathogenesis of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2376; Fax: +1-740-593-2320
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Balamand P.O. Box 100, Lebanon
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Internal Medicine, College of Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Basil A. M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sobia Zaidi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
32
|
Saad B, Kmail A, Haq SZH. Anti-Diabesity Middle Eastern Medicinal Plants and Their Action Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2276094. [PMID: 35899227 PMCID: PMC9313926 DOI: 10.1155/2022/2276094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/19/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
Over the last four decades, the escalation in diabetes and obesity rates has become epidemic all over the world. Diabesity describes the strong link between T2D and obesity. It correlates deeper with the elevated risks of developing cardiovascular disease hypertension, stroke, and several malignancies. Therapeutic usage of medicinal plants and natural products in the treatment of diabetes and obesity has long been known to physicians of Greco-Arab and Islamic medicine. Improved versions of their abundant medicinal plant-based formulations are at present some of the most popular herbal treatments used. Preclinical and clinical data about medicinal plants along with their bioactive constituents are now available, justifying the traditionally known therapeutic uses of products derived from them for the prevention and cure of obesity-related T2D and other health problems. The aim of this review is to systematize published scientific data dealing with the efficiency of active ingredients or extracts from Middle Eastern medicinal plants and diet in the management of diabesity and its complications. Google Scholar, MEDLINE, and PubMed were searched for publications describing the medicinal plants and diet used in the management of T2D, obesity, and their complications. The used keywords were "medicinal plants" or "herbals" in combination with "obesity," "diabetes," "diabetes," or nephropathy. More than 130 medicinal plants were identified to target diabesity and its complications. The antidiabetic and anti-obesity effects and action mechanisms of these plants are discussed here. These include the regulation of appetite, thermogenesis, lipid absorption, and lipolysis; pancreatic lipase activity and adipogenesis; glucose absorption in the intestine, insulin secretion, glucose transporters, gluconeogenesis, and epigenetic mechanisms.
Collapse
Affiliation(s)
- Bashar Saad
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
- Al-Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, Baqa El-Gharbia 30100, Israel
| | - Abdalsalam Kmail
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
| | | |
Collapse
|
33
|
Ke C, Narayan KMV, Chan JCN, Jha P, Shah BR. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat Rev Endocrinol 2022; 18:413-432. [PMID: 35508700 PMCID: PMC9067000 DOI: 10.1038/s41574-022-00669-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 02/08/2023]
Abstract
Nearly half of all adults with type 2 diabetes mellitus (T2DM) live in India and China. These populations have an underlying predisposition to deficient insulin secretion, which has a key role in the pathogenesis of T2DM. Indian and Chinese people might be more susceptible to hepatic or skeletal muscle insulin resistance, respectively, than other populations, resulting in specific forms of insulin deficiency. Cluster-based phenotypic analyses demonstrate a higher frequency of severe insulin-deficient diabetes mellitus and younger ages at diagnosis, lower β-cell function, lower insulin resistance and lower BMI among Indian and Chinese people compared with European people. Individuals diagnosed earliest in life have the most aggressive course of disease and the highest risk of complications. These characteristics might contribute to distinctive responses to glucose-lowering medications. Incretin-based agents are particularly effective for lowering glucose levels in these populations; they enhance incretin-augmented insulin secretion and suppress glucagon secretion. Sodium-glucose cotransporter 2 inhibitors might also lower blood levels of glucose especially effectively among Asian people, while α-glucosidase inhibitors are better tolerated in east Asian populations versus other populations. Further research is needed to better characterize and address the pathophysiology and phenotypes of T2DM in Indian and Chinese populations, and to further develop individualized treatment strategies.
Collapse
Affiliation(s)
- Calvin Ke
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
- Centre for Global Health Research, Unity Health Toronto, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China.
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Nutrition and Health Sciences Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Prabhat Jha
- Centre for Global Health Research, Unity Health Toronto, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Baiju R Shah
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Tagi VM, Mainieri F, Chiarelli F. Hypertension in Patients with Insulin Resistance: Etiopathogenesis and Management in Children. Int J Mol Sci 2022; 23:ijms23105814. [PMID: 35628624 PMCID: PMC9144705 DOI: 10.3390/ijms23105814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin resistance (IR) is a key component in the etiopathogenesis of hypertension (HS) in patients with diabetes mellitus (DM). Several pathways have been found to be involved in this mechanism in recent literature. For the above-mentioned reasons, treatment of HS should be specifically addressed in patients affected by DM. Two relevant recently published guidelines have stressed this concept, giving specific advice in the treatment of HS in children belonging to this group: the European Society of HS guidelines for the management of high blood pressure in children and adolescents and the American Academy of Pediatrics Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Our aim is to summarize the main pathophysiological mechanisms through which IR causes HS and to highlight the specific principles of treatment of HS for children with DM.
Collapse
|
35
|
Takase M, Nakamura T, Hirata T, Tsuchiya N, Kogure M, Itabashi F, Nakaya N, Hamanaka Y, Sugawara J, Suzuki K, Fuse N, Uruno A, Kodama EN, Kuriyama S, Tsuji I, Kure S, Hozawa A. Association between fat mass index, fat-free mass index and hemoglobin A1c in a Japanese population: The Tohoku Medical Megabank Community-based Cohort Study. J Diabetes Investig 2022; 13:858-867. [PMID: 34860465 PMCID: PMC9077739 DOI: 10.1111/jdi.13729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS/INTRODUCTION Fat mass and fat-free mass affect glycated hemoglobin A1c (HbA1c) levels and blood glucose levels, respectively. The aim of the present study was to examine the association between the fat mass index and fat-free mass index with HbA1c. MATERIALS AND METHODS We carried out a cross-sectional study that included 3,731 men and 9,191 women aged ≥20 years, living in Miyagi Prefecture, Japan, who were not treated for diabetes. The fat mass index and fat-free mass index were calculated as fat mass and fat-free mass divided by the height squared, respectively. The indices were classified into sex-specific quartiles and combined into 16 groups. An analysis of covariance was used to assess associations between the combined fat mass index and fat-free mass index with HbA1c adjusted for potential confounders. The linear trend test was carried out by stratifying the fat mass index and fat-free mass index, entering the number as a continuous term in the regression model. RESULTS In multivariable models, a higher fat mass index was related to higher HbA1c levels in men and women in all fat-free mass index subgroups (P < 0.001 for linear trend). When we excluded the participants who had been identified as having diabetes, the fat-free mass index was also related to higher HbA1c levels in most fat mass index subgroups (P < 0.05 for linear trend). CONCLUSIONS Fat mass index was positively related to HbA1c levels. The fat-free mass index was also related to HbA1c levels when we excluded participants who had been identified as having have diabetes.
Collapse
Affiliation(s)
- Masato Takase
- Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Tomohiro Nakamura
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Takumi Hirata
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- Department of Public HealthFaculty of MedicineHokkaido UniversitySapporoJapan
| | - Naho Tsuchiya
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Mana Kogure
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Fumi Itabashi
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Naoki Nakaya
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- Department of Health SciencesSaitama Prefectural UniversityKoshigayaJapan
| | - Yohei Hamanaka
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Junichi Sugawara
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- Tohoku University HospitalTohoku UniversitySendaiJapan
| | - Kichiya Suzuki
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Nobuo Fuse
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Akira Uruno
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Eiichi N Kodama
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
| | - Shinichi Kuriyama
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
| | - Ichiro Tsuji
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Shigeo Kure
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- Tohoku University HospitalTohoku UniversitySendaiJapan
| | - Atsushi Hozawa
- Graduate School of MedicineTohoku UniversitySendaiJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| |
Collapse
|
36
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
37
|
Inhibition of palmitic acid induced adipogenesis by natural polyphenols in 3T3-L1 adipocytes. In Vitro Cell Dev Biol Anim 2022; 58:396-407. [PMID: 35678984 DOI: 10.1007/s11626-022-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/30/2022] [Indexed: 11/05/2022]
Abstract
Dietary free fatty acids induce preadipocyte differentiation in the presence of a hormonal cocktail in 3T3-L1 adipocytes. Plant polyphenols are curb adipocyte differentiation and protect from metabolic stress. In the present study, we examined the effects of the saturated fatty acid, palmitic acid (PA) in presence of flavonoids, chrysin (CR) and hesperidin (HD) and phenolic acid, syringic acid (SYA) and sinapic acid (SIA). Adipocytes were incubated for 10 d with 100 μmol of PA along with 10-100 µmol CR/HD and 100-1000 µmol SYA/SIA. PA induced clonal expansion of preadipocytes, differentiation and oxidative stress in 3T3-L1 cells following 10 d of differentiation. Adipocytes treated with PA exhibited an increase of 300% in clonal population, 110% lipid and 172% reactive oxygen species accumulation. But treatment with CR, HD, SYA and SIA in the presence of PA concentration-dependent effect was observed. Concentrations of CR/HD and SYA/SIA inhibited PA-induced mRNA expression of PPARγ, C/EBPα, SREBP-1c, FAS and NOX4. Moreover, CR, HD, SYA and SIA did not exhibit toxicity in Drosophila DNA. In summary, these results suggest that dietary fatty acids act directly on adipocytes and addition of CR, HD, SYA and SIA resulted in reduction of PA-induced negative effects on 3T3-L1 adipocytes. HIGHLIGHTS: • Palmitic acid, the common dietary free fatty acid, is known to induce adipogenesis in 3T3-L1 adipocytes. • Treatment of differentiating adipocytes with flavonoids and phenolic acids reduced palmitic acid-induced clonal expansion of preadipocytes. • Phytocompounds reduced lipid accumulation and triglyceride production as well as ROS accumulation. • Thus, the phytocompounds showed effective anti-adipogenic activity even in palmitic acid challenged environment in adipocytes.
Collapse
|
38
|
Norton L, Shannon C, Gastaldelli A, DeFronzo RA. Insulin: The master regulator of glucose metabolism. Metabolism 2022; 129:155142. [PMID: 35066003 DOI: 10.1016/j.metabol.2022.155142] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023]
Abstract
Insulin is the master regulator of glucose, lipid, and protein metabolism. Following ingestion of an oral glucose load or mixed meal, the plasma glucose concentration rises, insulin secretion by the beta cells is stimulated and the hyperinsulinemia, working in concert with hyperglycemia, causes: (i) suppression of endogenous (primarily reflects hepatic) glucose production, (ii) stimulation of glucose uptake by muscle, liver, and adipocytes, (iii) inhibition of lipolysis leading to a decline in plasma FFA concentration which contributes to the suppression of hepatic glucose production and augmentation of muscle glucose uptake, and (iv) vasodilation in muscle, which contributes to enhanced muscle glucose disposal. Herein, the integrated physiologic impact of insulin to maintain normal glucose homeostasis is reviewed and the molecular basis of insulin's diverse actions in muscle, liver, adipocytes, and vasculature are discussed.
Collapse
Affiliation(s)
- Luke Norton
- Diabetes Division, UT Health, San Antonio, TX, United States of America
| | - Chris Shannon
- Diabetes Division, UT Health, San Antonio, TX, United States of America
| | - Amalia Gastaldelli
- Diabetes Division, UT Health, San Antonio, TX, United States of America; Cardiometabolic Risk Unit Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Ralph A DeFronzo
- Diabetes Division, UT Health, San Antonio, TX, United States of America.
| |
Collapse
|
39
|
Papaetis GS. Pioglitazone, Bladder Cancer and the Presumption of Innocence. Curr Drug Saf 2022; 17:294-318. [PMID: 35249505 DOI: 10.2174/1574886317666220304124756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Thiazolidinediones are potent exogenous agonists of PPAR-γ, which augment the effects of insulin to its cellular targets and mainly at the level of adipose tissue. Pioglitazone, the main thiazolidinedione in clinical practice, has shown cardiovascular and renal benefits in patients with type 2 diabetes, durable reduction of glycated hemoglobulin levels, important improvements of several components of the metabolic syndrome and beneficial effects of non-alcoholic fatty liver disease. OBJECTIVE Despite all of its established advantages, the controversy for an increased risk of developing bladder cancer, combined with the advent of newer drug classes that achieved major cardiorenal effects have significantly limited its use spreading a persistent shadow of doubt for its future role. METHODS Pubmed, Google and Scope databases have been thoroughly searched and relevant studies were selected. RESULTS This paper explores thoroughly both in vitro and in vivo (animal models and humans) studies that investigated the possible association of pioglitazone with bladder cancer. CONCLUSION Currently the association of pioglitazone with bladder cancer cannot be based on solid evidence. This evidence cannot justify its low clinical administration, especially in the present era of individualised treatment strategies. Definite clarification of this issue is imperative and urgently anticipated from future high quality and rigorous pharmacoepidemiologic research, keeping in mind its unique mechanism of action and its significant pleiotropic effects.
Collapse
Affiliation(s)
- Georgios S Papaetis
- Internal Medicine and Diabetes Clinic, Eleftherios Venizelos Avenue 62, Paphos, Cyprus.
- CDA College, 73 Democratias Avenue, Paphos, Cyprus
| |
Collapse
|
40
|
Bays HE, Muñoz-Mantilla DX, Morgan R, Nwizu C, Garcia T“T. Obesity Pillars Roundtable: Obesity and Diversity. OBESITY PILLARS (ONLINE) 2022; 1:100008. [PMID: 37990704 PMCID: PMC10662096 DOI: 10.1016/j.obpill.2021.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2023]
Abstract
Background The clinical implications of obesity differ, depending on race, ethnicity, and sexual orientation. Methods This roundtable discussion included 4 obesity specialists with expertise in the clinical management of obesity among diverse populations including Blacks, Hispanics/Latinos, Lesbian-Gay-Bisexual-Transgender-Questioning (LGBTQ) individuals, and Native-Americans. Results One of the first obstacles towards overcoming disparities in managing obesity and its complications among diverse populations is understanding applicable terminology. This includes categorization terminology relative to Native Americans (for the purpose of assessing culture and possibly genetic predispositions), understanding the differences between Black African Americans and Black Africans, understanding the differences between the terms Hispanic and Latinx, and basic concepts behind different pronouns applicable to Lesbian-Gay-Bisexual-Transgender-Questioning (LGBTQ) individuals. After being better able to grasp the input from patients with diverse backgrounds, universal obesity assessment and management principles can be then tailored utilizing a patient-centered approach. Conclusion Understanding the unique genetic, culture, and terminology regarding patients of different races, ethnicities, and sexual orientation may help clinicians better engage patients in managing obesity via utilizing a more patient-centered approach.
Collapse
Affiliation(s)
- Harold Edward Bays
- Medical Director/President Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, Louisville, KY, 40213, USA
- Clinical Associate Professor, University of Louisville School of Medicine, Louisville KY
| | | | - Ryan Morgan
- LLC, Sub-investigator for Lynn Health Science Institute, Adjunct Clinical Professor for Oklahoma State University Center for Health Sciences, 3330 NW 56th St., STE 608, Oklahoma City, OK, 73118, USA
| | - Chima Nwizu
- Department of Clinical Affairs, Rocky Vista University Parker, Family Physicians of Greeley, 6801 W 20th Street, Suite 101, Greeley, CO, 80634, USA
| | - Theresa “Tess” Garcia
- Garcia Family Medicine, 1416 NW 7 Highway, Union Square, Eastern Jackson County, Blue Springs, MO, 64014, USA
| |
Collapse
|
41
|
Palavicini JP, Chavez-Velazquez A, Fourcaudot M, Tripathy D, Pan M, Norton L, DeFronzo RA, Shannon CE. The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Front Physiol 2021; 12:784391. [PMID: 34925073 PMCID: PMC8674727 DOI: 10.3389/fphys.2021.784391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-sensitizer pioglitazone exerts its cardiometabolic benefits in type 2 diabetes (T2D) through a redistribution of body fat, from ectopic and visceral areas to subcutaneous adipose depots. Whereas excessive weight gain and lipid storage in obesity promotes insulin resistance and chronic inflammation, the expansion of subcutaneous adipose by pioglitazone is associated with a reversal of these immunometabolic deficits. The precise events driving this beneficial remodeling of adipose tissue with pioglitazone remain unclear, and whether insulin-sensitizers alter the lipidomic composition of human adipose has not previously been investigated. Using shotgun lipidomics, we explored the molecular lipid responses in subcutaneous adipose tissue following 6months of pioglitazone treatment (45mg/day) in obese humans with T2D. Despite an expected increase in body weight following pioglitazone treatment, no robust effects were observed on the composition of storage lipids (i.e., triglycerides) or the content of lipotoxic lipid species (e.g., ceramides and diacylglycerides) in adipose tissue. Instead, pioglitazone caused a selective remodeling of the glycerophospholipid pool, characterized by a decrease in lipids enriched for arachidonic acid, such as plasmanylethanolamines and phosphatidylinositols. This contributed to a greater overall saturation and shortened chain length of fatty acyl groups within cell membrane lipids, changes that are consistent with the purported induction of adipogenesis by pioglitazone. The mechanism through which pioglitazone lowered adipose tissue arachidonic acid, a major modulator of inflammatory pathways, did not involve alterations in phospholipase gene expression but was associated with a reduction in its precursor linoleic acid, an effect that was also observed in skeletal muscle samples from the same subjects. These findings offer important insights into the biological mechanisms through which pioglitazone protects the immunometabolic health of adipocytes in the face of increased lipid storage.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alberto Chavez-Velazquez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcel Fourcaudot
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luke Norton
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ralph A. DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Christopher E. Shannon
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
42
|
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells 2021; 10:cells10123328. [PMID: 34943836 PMCID: PMC8699655 DOI: 10.3390/cells10123328] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| | - Davidson Correa Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Leticia Prates Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany;
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| |
Collapse
|
43
|
Abdul-Ghani M, DeFronzo RA. Personalized approach for type 2 diabetes pharmacotherapy: where are we and where do we need to be? Expert Opin Pharmacother 2021; 22:2113-2125. [PMID: 34435523 DOI: 10.1080/14656566.2021.1967319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cluster analysis has identified distinct groups of type 2 diabetes (T2D) subjects with distinct metabolic characteristics. Thus, personalizing pharmacologic therapy to individual phenotypic and pathophysiologic characteristics has potential to improve metabolic control and reduce risk of microvascular and macrovascular complications. AREAS COVERED The authors review the classification of T2D, genetic markers, pathophysiology and natural history of T2D, the ABCDE approach to therapy, the ADA/EASD stepwise approach to therapy, available antidiabetic agents, and provide a more rational therapeutic approach based upon pathophysiology and cardiovascular and renal outcome trials. EXPERT OPINION Although insulin resistance is the earliest detectable abnormality, overt T2D does not occur in the absence of progressive beta cell failure. Because of the complex etiology of T2D (Ominous Octet), initiation of therapy with combined agents that (i) target both insulin resistance and beta cell dysfunction and (ii) prevent macrovascular, as well as microvascular, complications will be required. The ratio of C-peptide at 120 minutes (OGTT) to baseline C-peptide predicts with high sensitivity who will respond to metformin, the response to glucose-lowering agents and provides a useful tool to guide optimal glucose lowering therapy.
Collapse
|
44
|
DI Giuseppe G, Ciccarelli G, Cefalo CM, Cinti F, Moffa S, Improta F, Capece U, Pontecorvi A, Giaccari A, Mezza T. Prediabetes: how pathophysiology drives potential intervention on a subclinical disease with feared clinical consequences. Minerva Endocrinol (Torino) 2021; 46:272-292. [PMID: 34218657 DOI: 10.23736/s2724-6507.21.03405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder whose rising incidence suggests the epidemic proportions of the disease. Impaired Fasting Glucose (IFG) and Impaired Glucose Tolerance (IGT) - alone or combined - represent two intermediate metabolic condition between Normal Glucose Tolerance (NGT) and overt T2DM. Several studies have demonstrated that insulin resistance and beta-cell impairment can be identified even in normoglycemic prediabetic individuals. Worsening of these two conditions may lead to progression of IGT and/or IFG status to overt diabetes. Starting from these assumptions, it seems logical to suppose that interventions aimed at improving metabolic conditions, even in prediabetes, could represent an effective target to halt transition from IGT/IFG to manifest T2DM. Starting from pathophysiological knowledge, in this review we evaluate two possible interventions (lifestyle modifications and pharmacological agents) eligible as prediabetes therapy since they have been demonstrated to improve insulin resistance and beta-cell impairment. Detecting high-risk people and treating them could represent an effective strategy to slow down progression to overt diabetes, normalize glucose tolerance, and even prevent micro- and macrovascular complications.
Collapse
Affiliation(s)
- Gianfranco DI Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara M Cefalo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Improta
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy - .,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
45
|
Kharazmi-Khorassani J, Ghafarian Zirak R, Ghazizadeh H, Zare-Feyzabadi R, Kharazmi-Khorassani S, Naji-Reihani-Garmroudi S, Kazemi E, Esmaily H, Javan-Doust A, Banpour H, Mohammadi-Bajgiran M, Besharatlou MR, Ferns GA, Hashemi M, Ghayour-Mobarhan M. The role of serum monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) in cardiovascular disease risk. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021049. [PMID: 33988177 PMCID: PMC8182619 DOI: 10.23750/abm.v92i2.9235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fatty acids have been observed as independent risk factors of cardiovascular diseases (CVD). In this study we investigated FFA levels in patients with CVD, and, its risk factors. MATERIAL AND METHODS In this case-control study, 346 unrelated Iranian patients who underwent coronary angiography were enrolled. Participants were categorized into two groups: who had >50% stenosis were assigned to the angiogram positive group (N=90) and those with <30% stenosis were assigned to the angiogram negative group (N=124) and also 222 subjects were healthy. Several risk factors were assessed in all participants, including anthropometric indices, blood pressure, lipid profiles, and biochemical factors. The levels of FFAs were determined using gas chromatography. Serum FFA concentrations were compared between healthy and patients with positive and negative angiograms. The association of serum FFA levels with four major risk factors (hypertension, high fasting blood glucose (FBG) level, high BMI and WHR) were also assessed. RESULTS According to our data, it has been shown that median of FFAs was higher in patients than healthy subjects (p<0.0001), such as SFA and n6-FFAs (in patients 1.59 (1.27) and 1.22 (1.06), respectively and healthy subjects 0.33 (0.38) and 0.36 (0.35)). According to anthropometric and biochemical data, we did not show statistical differences between the groups, except FBG, SBP and hs-CRP that showed significantly higher levels in the patients than controls (p<0.0001, p=0.001). Also, lower median levels of total cholesterol, LDL-C, HDL-C and DBP were observed in patients which can due to lipid-lowering medication use like Statins. CONCLUSION High serum levels of FFAs are considered as an independent risk factor for CVDs, while various types of FFAs can have different influences on CVD risk factors. Therefore, longitudinal studies are needed to clarify the association between FFAs and CVD risk factors. High serum levels of FFAs are considered as an independent risk factor for CVDs, while various types of FFAs can have different influences on CVD risk factors. Therefore, longitudinal studies are needed to clarify the association between FFAs and CVD risk factors.
Collapse
|
46
|
Alipourfard I, Bakhtiyari S, Gheysarzadeh A, Di Renzo L, De Lorenzo A, Mikeladze D, Khamoushi A. The Key Role of Akt Protein Kinase in Metabolic-Inflammatory Pathways Cross-Talk: TNF-α Down-Regulation and Improving of Insulin Resistance in HepG2 Cell Line. Curr Mol Med 2021; 21:257-264. [PMID: 32338219 DOI: 10.2174/1566524020666200427102209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Elevation of plasma free fatty acids as a principal aspect of type 2 diabetes maintains etiologically insulin insensitivity in target cells. TNF-α inhibitory effects on key insulin signaling pathway elements remain to be verified in insulinresistant hepatic cells. Thus, TNF-α knockdown effects on the key elements of insulin signaling were investigated in the palmitate-induced insulin-resistant hepatocytes. The Akt serine kinase, a key protein of the insulin signaling pathway, phosphorylation was monitored to understand the TNF-α effect on probable enhancing of insulin resistance. METHODS Insulin-resistant HepG2 cells were produced using 0.5 mM palmitate treatment and shRNA-mediated TNF-α gene knockdown and its down-regulation confirmed using ELISA technique. Western blotting analysis was used to assess the Akt protein phosphorylation status. RESULTS Palmitate-induced insulin resistance caused TNF-α protein overexpression 1.2-, 2.78, and 2.25- fold as compared to the control cells at post-treatment times of 8 h, 16 h, and 24 h, respectively. In the presence of palmitate, TNF-α expression showed around 30% reduction in TNF-α knockdown cells as compared to normal cells. In the TNF-α down-regulated cell, Akt phosphorylation was approximately 62% more than control cells after treatment with 100 nM insulin in conjugation with 0.5 mM palmitate. CONCLUSIONS The obtained data demonstrated that TNF-α protein expression reduction improved insulin-stimulated Akt phosphorylation in the HepG2 cells and decreased lipidinduced insulin resistance of the diabetic hepatocytes.
Collapse
Affiliation(s)
- Iraj Alipourfard
- Institute of Chemical Biology, School of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Gheysarzadeh
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Antonio De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - David Mikeladze
- Institute of Chemical Biology, School of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia
| | | |
Collapse
|
47
|
Shannon CE, Ragavan M, Palavicini JP, Fourcaudot M, Bakewell TM, Valdez IA, Ayala I, Jin ES, Madesh M, Han X, Merritt ME, Norton L. Insulin resistance is mechanistically linked to hepatic mitochondrial remodeling in non-alcoholic fatty liver disease. Mol Metab 2021; 45:101154. [PMID: 33359401 PMCID: PMC7811046 DOI: 10.1016/j.molmet.2020.101154] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Insulin resistance and altered hepatic mitochondrial function are central features of type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), but the etiological role of these processes in disease progression remains unclear. Here we investigated the molecular links between insulin resistance, mitochondrial remodeling, and hepatic lipid accumulation. METHODS Hepatic insulin sensitivity, endogenous glucose production, and mitochondrial metabolic fluxes were determined in wild-type, obese (ob/ob) and pioglitazone-treatment obese mice using a combination of radiolabeled tracer and stable isotope NMR approaches. Mechanistic studies of pioglitazone action were performed in isolated primary hepatocytes, whilst molecular hepatic lipid species were profiled using shotgun lipidomics. RESULTS Livers from obese, insulin-resistant mice displayed augmented mitochondrial content and increased tricarboxylic acid cycle (TCA) cycle and pyruvate dehydrogenase (PDH) activities. Insulin sensitization with pioglitazone mitigated pyruvate-driven TCA cycle activity and PDH activation via both allosteric (intracellular pyruvate availability) and covalent (PDK4 and PDP2) mechanisms that were dependent on PPARγ activity in isolated primary hepatocytes. Improved mitochondrial function following pioglitazone treatment was entirely dissociated from changes in hepatic triglycerides, diacylglycerides, or fatty acids. Instead, we highlight a role for the mitochondrial phospholipid cardiolipin, which underwent pathological remodeling in livers from obese mice that was reversed by insulin sensitization. CONCLUSION Our findings identify targetable mitochondrial features of T2D and NAFLD and highlight the benefit of insulin sensitization in managing the clinical burden of obesity-associated disease.
Collapse
Affiliation(s)
- Chris E Shannon
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
| | - Mukundan Ragavan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Juan Pablo Palavicini
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marcel Fourcaudot
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
| | - Terry M Bakewell
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
| | - Ivan A Valdez
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
| | - Iriscilla Ayala
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Muniswamy Madesh
- Division of Nephrology, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
| | - Xianlin Han
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Luke Norton
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA.
| |
Collapse
|
48
|
Huang M, Yang X, Wang Z, Long J, Wang A, Zhang Y, Yan D. Lipophagy: A New Perspective of Natural Products in Type 2 Diabetes Mellitus Treatment. Diabetes Metab Syndr Obes 2021; 14:2985-2999. [PMID: 34234495 PMCID: PMC8256822 DOI: 10.2147/dmso.s310166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy has been reported to involve in the pathogenesis of type 2 diabetes mellitus (T2DM), which protects the insulin target tissues and pancreatic β-cells. However, autophagy is inhibited when the cells are lipid overload. That, in turn, increases the accumulation of fat. Lipotoxicity caused by excessive lipid accumulation contributes to pathogenesis of T2DM. Therefore, it is undeniable to break the vicious circles between lipid excess and autophagy deficiency. Lipophagy, a selective form of autophagy, is characterized by selective breakdown of lipid droplets (LDs). The nutritional status of cells contributes to the way of autophagy (selective or non-selective), while selective autophagy helps to accurately remove excess substances. It seems that lipophagy could be an effective means to decrease abnormal lipid accumulation that leads to insulin resistance and β-cell impairment by removing ectopic LDs. Based on this process, many natural compounds have been reported to decrease lipid accumulation in tissues through autophagy-lysosomal pathway, which gradually highlights the significance of lipophagy. In this review, we focus on the mechanisms that lipophagy improves T2DM and natural products that are applied to induce lipophagy. It is also suggested that natural herbs with rich contents of natural products inducing lipophagy would be potential candidates for alleviating T2DM.
Collapse
Affiliation(s)
- Mingyue Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People’s Republic of China
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People’s Republic of China
| | - Xinyu Yang
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People’s Republic of China
| | - Zhenzhen Wang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jianglan Long
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Aiting Wang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yi Zhang
- Department of Traditional Chinese Medicine and Natural Medicine, Chongqing Institute for Food and Drug Control, Chongqing, 401121, People’s Republic of China
- Yi Zhang Department of Traditional Chinese Medicine and Natural Medicine, Chongqing Institute for Food and Drug Control, No. 1, Chunlan 2nd Road, Yubei District, Chongqing, 401121, People’s Republic of ChinaTel +86 23-86072771 Email
| | - Dan Yan
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Correspondence: Dan Yan Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong’an Road, Xicheng District, Beijing, 100050, People’s Republic of ChinaTel +86 10-63139318 Email
| |
Collapse
|
49
|
He Q, Bo J, Shen R, Li Y, Zhang Y, Zhang J, Yang J, Liu Y. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. J Diabetes Res 2021; 2021:1341750. [PMID: 34751249 PMCID: PMC8571914 DOI: 10.1155/2021/1341750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is very complicated. The currently well-accepted etiology is the "Ominous Octet" theory proposed by Professor Defronzo. Since presently used drugs for T2DM have limitations and harmful side effects, studies regarding alternative treatments are being conducted. Analyzing the pharmacological mechanism of biomolecules in view of pathogenesis is an effective way to assess new drugs. Sphingosine 1 phosphate (S1P), an endogenous lipid substance in the human body, has attracted increasing attention in the T2DM research field. This article reviews recent study updates of S1P, summarizing its effects on T2DM with respect to pathogenesis, promoting β cell proliferation and inhibiting apoptosis, reducing insulin resistance, protecting the liver and pancreas from lipotoxic damage, improving intestinal incretin effects, lowering basal glucagon levels, etc. With increasing research, S1P may help treat and prevent T2DM in the future.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaqi Bo
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ruihua Shen
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Li
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
50
|
Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc Natl Acad Sci U S A 2020; 117:32584-32593. [PMID: 33293421 PMCID: PMC7768680 DOI: 10.1073/pnas.1922169117] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adiponectin has emerged as a potential therapy for type 2 diabetes mellitus, but the molecular mechanism by which adiponectin reverses insulin resistance remains unclear. Two weeks of globular adiponectin (gAcrp30) treatment reduced fasting plasma glucose, triglyceride (TAG), and insulin concentrations and reversed whole-body insulin resistance, which could be attributed to both improved insulin-mediated suppression of endogenous glucose production and increased insulin-stimulated glucose uptake in muscle and adipose tissues. These improvements in liver and muscle sensitivity were associated with ∼50% reductions in liver and muscle TAG and plasma membrane (PM)-associated diacylglycerol (DAG) content and occurred independent of reductions in total ceramide content. Reductions of PM DAG content in liver and skeletal muscle were associated with reduced PKCε translocation in liver and reduced PKCθ and PKCε translocation in skeletal muscle resulting in increased insulin-stimulated insulin receptor tyrosine1162 phosphorylation, IRS-1/IRS-2-associated PI3-kinase activity, and Akt-serine phosphorylation. Both gAcrp30 and full-length adiponectin (Acrp30) treatment increased eNOS/AMPK activation in muscle and muscle fatty acid oxidation. gAcrp30 and Acrp30 infusions also increased TAG uptake in epididymal white adipose tissue (eWAT), which could be attributed to increased lipoprotein lipase (LPL) activity. These data suggest that adiponectin and adiponectin-related molecules reverse lipid-induced liver and muscle insulin resistance by reducing ectopic lipid storage in these organs, resulting in decreased plasma membrane sn-1,2-DAG-induced nPKC activity and increased insulin signaling. Adiponectin mediates these effects by both promoting the storage of TAG in eWAT likely through stimulation of LPL as well as by stimulation of AMPK in muscle resulting in increased muscle fat oxidation.
Collapse
|