1
|
Luo S, Li J, Yang Y, Jiang Y, Jie Y, Ge W. Spatial transcriptomics and single-cell RNA-sequencing revealed dendritic cell-mediated inflammation in keratoconus. Ocul Surf 2025; 36:134-150. [PMID: 39837422 DOI: 10.1016/j.jtos.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
Keratoconus (KC) is a corneal disorder characterized by central corneal protrusion and thinning. In this study, spatial transcriptomics was employed to investigate molecular and cellular variations in KC, revealing a distinct pattern of inflammatory responses across the cornea. Upregulation of inflammatory processes was observed in the central cornea, while downregulation was noted in the periphery, indicating complex regional inflammatory changes in the KC cornea. Integration with single-cell RNA sequencing (scRNA-seq) further identified enhanced interactions between dendritic cells (DCs) and stromal cells, particularly mediated via the IL-1β pathway, alongside increased matrix metalloproteinase (MMP) production by corneal stromal cells, underscoring the role of inflammation in KC pathogenesis. In vitro and in vivo experiments confirmed that activated DCs promoted the matrix degradation activity of stromal cells, thereby exacerbating KC pathology. Notably, inhibition of the IL-1β pathway effectively mitigated the progression of KC. These findings provide a comprehensive spatial, cellular, and molecular characterization of KC, demonstrating its inflammatory nature. The results also highlight the importance of inflammation in the peripheral cornea for early diagnosis and suggest that anti-inflammatory treatments could serve as potential adjuvant therapy for KC.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730, China
| | - Jingying Li
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730, China
| | - Yan Yang
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730, China
| | - Yang Jiang
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Wei Ge
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Kobe B, Nanson JD, Hoad M, Blumenthal A, Gambin Y, Sierecki E, Stacey KJ, Ve T, Halfmann R. Signalling by co-operative higher-order assembly formation: linking evidence at molecular and cellular levels. Biochem J 2025; 482:275-294. [PMID: 40040472 DOI: 10.1042/bcj20220094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The concept of higher-order assembly signalling or signalling by co-operative assembly formation (SCAF) was proposed based on the structures of signalling assemblies formed by proteins featuring domains from the death-fold family and the Toll/interleukin-1 receptor domain family. Because these domains form filamentous assemblies upon stimulation and activate downstream pathways through induced proximity, they were envisioned to sharpen response thresholds through the extreme co-operativity of higher-order assembly. Recent findings demonstrate that a central feature of the SCAF mechanism is the nucleation barrier that allows a switch-like, digital or 'all-or-none' response to minute stimuli. In agreement, this signalling mechanism features in cell-death and innate immunity activation pathways where a binary decision is required. Here, we broaden the concept of SCAF to encapsulate the essential kinetic properties of open-ended assembly in signalling, compare properties of filamentous assemblies and other co-operative assemblies such as biomolecular condensates, and review how this concept operates in cells.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey D Nanson
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Mikayla Hoad
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Antje Blumenthal
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Yann Gambin
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Sierecki
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, U.S.A
| |
Collapse
|
3
|
Bergqvist M, Park KS, Karimi N, Yu L, Lässer C, Lötvall J. Extracellular vesicle surface engineering with integrins (ITGAL & ITGB2) to specifically target ICAM-1-expressing endothelial cells. J Nanobiotechnology 2025; 23:64. [PMID: 39885580 PMCID: PMC11780982 DOI: 10.1186/s12951-025-03125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Extracellular vesicles (EVs) are taken up by most cells, however specific or preferential cell targeting remains a hurdle. This study aims to develop an EV that targets cells involved in inflammation, specifically those expressing intercellular adhesion molecule-1 (ICAM-1). To target these cells, we overexpress the ICAM-1 binding receptor "lymphocyte function-associated antigen-1" (LFA-1) in HEK293F cells, by sequential transfection of plasmids of the two LFA-1 subunits, ITGAL and ITGB2 (CD11a and CD18). The LFA-1 receptor was strongly overexpressed on the EVs released by the transfected cells. We further loaded these EVs with a therapeutic peptide, targeting myeloid differentiation primary response 88 (Myd88; EVMyd88), through a developed EV open-and-close procedure. Myd88 is a downstream common intracellular messenger for most TLR-receptors. EV expression of LFA-1 increases EV binding to ICAM-1-expressing cells, an effect that was dose-dependently inhibited by a specific neutralizing ICAM-1 antibody. Further, activated human endothelial cells treated with LFA-1 EVMyd88 had increased uptake of these EVs, resulting in dose-dependent inhibition of induced release of IL-8, presumably by targeting Myd88. We conclude that LFA-1-expressing EVMyd88 may be a candidate suitable for delivering therapeutic peptides in inflammatory diseases associated with TLR-activation.
Collapse
Affiliation(s)
- Markus Bergqvist
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kyong-Su Park
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nasibeh Karimi
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lijuan Yu
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Chen P, Zou Y, Wang X, Chen Z, Dong K, Yang J, Cui Y, Gu J, Wu X, Li X, Zhou Y, Guo M, Zheng Z, Chen Q, Zhu W, Wu D, Yin L, Chen L, Ouyang Q, Liang G, Tang Q. Discovery of Novel MyD88 Inhibitor A5S to Alleviate Acute Lung Injury with Favorable Drug-like Properties. J Med Chem 2024; 67:22263-22281. [PMID: 39644263 DOI: 10.1021/acs.jmedchem.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Myeloid differentiation primary response 88 (MyD88) plays a central role in inflammatory responses and diseases. However, only a few inhibitors of MyD88 with some limits have been reported currently. Herein, we identified a lead compound (L7) through virtual screening and synthesized twenty-seven L7 derivatives. An optimal compound (A5) was determined through enzyme-linked immunosorbent assay (ELISA), 2,5-diphenyl-2H-tetrazolium bromide (MTT), and biolayer interferometry (BLI) assay. The potent isomer A5S showed a high MyD88 binding ability and exerted an anti-inflammatory effect through the NF-κB/MAPK pathway. A5S had good stability and safety, showed the highest distribution concentration in the lungs, and exhibited good therapeutic effects on LPS-induced and sepsis-induced ALI mouse models. Most importantly, A5S showed advantages in PK properties, and was identified as a promising MyD88 inhibitor with favorable drug-like properties, compared to the only approved MyD88 inhibitor, TJ-M2010-5, which is currently undergoing a Phase I study, and our previously reported MyD88 inhibitors LM8.
Collapse
Affiliation(s)
- Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiemin Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Dong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yaqian Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Gu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xinyi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Rahaman MH, Thygesen SJ, Maxwell MJ, Kim H, Mudai P, Nanson JD, Jia X, Vajjhala PR, Hedger A, Vetter I, Haselhorst T, Robertson AAB, Dymock B, Ve T, Mobli M, Stacey KJ, Kobe B. o-Vanillin binds covalently to MAL/TIRAP Lys-210 but independently inhibits TLR2. J Enzyme Inhib Med Chem 2024; 39:2313055. [PMID: 38416868 PMCID: PMC10903754 DOI: 10.1080/14756366.2024.2313055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/28/2024] [Indexed: 03/01/2024] Open
Abstract
Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.
Collapse
Affiliation(s)
- Md. Habibur Rahaman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Sara J. Thygesen
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael J. Maxwell
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Hyoyoung Kim
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Prerna Mudai
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Jeffrey D. Nanson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Xinying Jia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Andrew Hedger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | | | - Avril A. B. Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Brian Dymock
- Queensland Emory Drug Discovery Initiative, University of Queensland, Brisbane, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Holze J, Lauber F, Soler S, Kostenis E, Weindl G. Label-free biosensor assay decodes the dynamics of Toll-like receptor signaling. Nat Commun 2024; 15:9554. [PMID: 39532846 PMCID: PMC11558003 DOI: 10.1038/s41467-024-53770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The discovery of Toll-like receptors (TLRs) represented a significant breakthrough that paved the way for the study of host-pathogen interactions in innate immunity. However, there are still major gaps in understanding TLR function, especially regarding the early dynamics of downstream TLR pathways. Here, we present a label-free optical biosensor-based assay as a method for detecting TLR activation in a native and label-free environment and defining the dynamics of TLR pathway activation. This technology is sufficiently sensitive to detect TLR signaling and readily discriminates between different TLR signaling pathways. We define pharmacological modulators of cell surface and endosomal TLRs and downstream signaling molecules and uncover TLR signaling signatures, including potential biased receptor signaling. These findings highlight that optical biosensor assays complement traditional assays that use a single endpoint and have the potential to facilitate the future design of selective drugs targeting TLRs and their downstream effector cascades.
Collapse
Affiliation(s)
- Janine Holze
- Pharmaceutical Institute, Section Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Felicitas Lauber
- Pharmaceutical Institute, Section Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Sofía Soler
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Evi Kostenis
- Institute for Pharmaceutical Biology, Molecular, Cellular and Pharmacobiology Section, University of Bonn, Bonn, Germany
| | - Günther Weindl
- Pharmaceutical Institute, Section Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Raizada S, Obukhov AG, Bharti S, Wadhonkar K, Baig MS. Pharmacological targeting of adaptor proteins in chronic inflammation. Inflamm Res 2024; 73:1645-1656. [PMID: 39052063 DOI: 10.1007/s00011-024-01921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Inflammation, a biological response of the immune system, can be triggered by various factors such as pathogens, damaged cells, and toxic compounds. These factors can lead to chronic inflammatory responses, potentially causing tissue damage or disease. Both infectious and non-infectious agents, as well as cell damage, activate inflammatory cells and trigger common inflammatory signalling pathways, including NF-κB, MAPK, and JAK-STAT pathways. These pathways are activated through adaptor proteins, which possess distinct protein binding domains that connect corresponding interacting molecules to facilitate downstream signalling. Adaptor molecules have gained widespread attention in recent years due to their key role in chronic inflammatory diseases. METHODS In this review, we explore potential pharmacological agents that can be used to target adaptor molecules in chronic inflammatory responses. A comprehensive analysis of published studies was performed to obtain information on pharmacological agents. CONCLUSION This review highlights the therapeutic strategies involving small molecule inhibitors, antisense oligonucleotide therapy, and traditional medicinal compounds that have been found to inhibit the inflammatory response and pro-inflammatory cytokine production. These strategies primarily block the protein-protein interactions in the inflammatory signaling cascade. Nevertheless, extensive preclinical studies and risk assessment methodologies are necessary to ensure their safety.
Collapse
Affiliation(s)
- Shubhi Raizada
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India.
| |
Collapse
|
8
|
Nakamura H, Arihara Y, Usami M, Takada K. ST2825, independent of MyD88, induces reactive oxygen species-dependent apoptosis in multiple myeloma cells. Biochem Biophys Rep 2024; 38:101681. [PMID: 38455592 PMCID: PMC10918488 DOI: 10.1016/j.bbrep.2024.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Myeloid differentiation factor 88 (MyD88), which is a key regulator of nuclear factor kappa B (NF-κB), plays an important role in tumorigenesis in lymphoid malignancies such as Waldenstrom's macroglobulinemia (WM). However, its biological function in multiple myeloma (MM), which is a malignant plasma cell disorder like WM, remains unexplored. In this article, we first demonstrated that higher expression MyD88 was significantly correlated with poor survival in patients with MM using multiple publicly available datasets. Interestingly, bioinformatic analysis also revealed that MyD88 gene alteration, which is recognized in nearly 80% of patients with WM, was extremely rare in MM. In addition, ST2825 (a specific inhibitor of MyD88) suppressed cell growth followed by apoptosis. Furthermore, ST2825 induced intracellular reactive oxygen species (ROS) in MM cells, and N-acetyl-l-cysteine, which is known as a ROS scavenger, significantly decreased the number of apoptotic MM cells evoked by ST2825 treatment. Taken together, our results indicated that ST2825 leads to ROS-dependent apoptosis in MM cells and could be an attractive therapeutic candidate for patients with MM. By highlighting the pathological mechanism of MyD88 in MM, this study also provides novel treatment strategies to conquer MM.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Yohei Arihara
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Makoto Usami
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
9
|
Toshchakov VY. Peptide-Based Inhibitors of the Induced Signaling Protein Interactions: Current State and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:784-798. [PMID: 38880642 DOI: 10.1134/s000629792405002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Formation of the transient protein complexes in response to activation of cellular receptors is a common mechanism by which cells respond to external stimuli. This article presents the concept of blocking interactions of signaling proteins by the peptide inhibitors, and describes the progress achieved to date in the development of signaling inhibitors that act by blocking the signal-dependent protein interactions.
Collapse
Affiliation(s)
- Vladimir Y Toshchakov
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, 354340, Russia.
| |
Collapse
|
10
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Zhang J, Gao L, Yu D, Song Y, Zhao Y, Feng Y. Three Artemisia pollens trigger the onset of allergic rhinitis via TLR4/MyD88 signaling pathway. Mol Biol Rep 2024; 51:319. [PMID: 38388914 DOI: 10.1007/s11033-024-09350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE The prevalence of allergic rhinitis is high, making it a relatively common chronic condition. Countless patients suffer from seasonal Allergic rhinitis (AR). The objective of this investigation is to examine the potential involvement of common pollen allergens in seasonal allergic rhinitis, and study the proposed mechanism of Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response gene 88 (MyD88) signaling pathway in the induction of AR. METHOD A mouse AR model (sensitized group) was constructed with pollen extracts and ovalbumin (OVA) of Artemisia annua (An), Artemisia argyi (Ar) and Artemisia Sieversiana (Si), and thereafter, AR symptom score was performed. After successful modeling, mouse serum and nasal mucosa tissues were extracted for subsequent experiments. The expression levels of immunoglobulin E (IgE), Interleukin (IL)-4, IL-5, IL-13 and Tumor Necrosis Factor-α (TNF-α) in serum were detected using Enzyme-linked immunosorbent assay (ELISA); Hematoxylin-eosin (H&E) staining methods were used to observe the pathological changes of the nasal mucosal tissue; Utilizing immunohistochemistry (IHC) staining, the expression levels of TLR4, MyD88 and Nuclear factor kappa B (NF-κB) p65 in mouse nasal mucosa were quantified; The mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of sensitized mice were detected with Quantitative reverse transcription PCR (qRT-PCR) and Western Blot. Finally, the in vitro culture of Human nasal mucosal epithelial cells (HNEpC) cells was conducted, and cells were treated with 200 µg/ml Artemisia annua pollen extract and OVA for 24 h. Western Blot assay was used to detect the expression level of TLR4, MyD88 and NF-κB p65 proteins before and after HNEpC cells were treated with MyD88 inhibitor ST-2825. RESULT On the second day after AR stimulation, the mice showed obvious AR symptoms. H&E results showed that compared to the control group, the nasal mucosal tissue in the sensitized group was significantly more inflamed. Furthermore, ELISA assay showed increased expression levels of IgE, IL-4, IL-5, IL-13 and TNF-α in serum of mice induced by OVA and Artemisia annua pollen, Artemisia argyi pollen and Artemisia Sieversiana pollen than those of the control group. However, the expression level of IL-2 was lower than that of the control group (P < 0.05). Using Immunohistochemistry staining visually observed the expression levels of TLR4, MyD88 and NF-κB p65 in mouse nasal mucosa tissues and quantitatively analyzed. The expression levels of TLR4, MyD88 and NF-κB p65 in the sensitized group were higher than those in the control group, and the differences were statistically significant (P < 0.05). The results from qRT-PCR and Western Blot showed that the mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of the sensitized group were significantly higher than those in the control group (P < 0.05). Finally, HNEpC cells were cultured in vitro and analyzed using Western Blot. The expression levels of TLR4, MyD88 and NF-κB p65 in OVA and An groups were significantly increased (P < 0.05). After ST-2825 treatment, TLR4 protein expression was significantly increased (P < 0.05) and MyD88 and NF-κB p65 protein expression were significantly decreased (P < 0.05). CONCLUSION To sum up, the occurrence and development of AR induced by OVA and pollen of Artemisia annua, Artemisia argyi and Artemisia Sieversiana were related to TLR4/MyD88 signal pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lu Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dongdong Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Song
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
12
|
Liu M, Kang W, Hu Z, Wang C, Zhang Y. Targeting MyD88: Therapeutic mechanisms and potential applications of the specific inhibitor ST2825. Inflamm Res 2023; 72:2023-2036. [PMID: 37814128 DOI: 10.1007/s00011-023-01801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Myeloid differentiation factor-88 (MyD88) is a crucial adapter protein that coordinates the innate immune response and establishes an adaptive immune response. The interaction of the Toll/Interleukin-1 receptor (IL-1R) superfamily with MyD88 triggers the activation of various signalling pathways such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), promoting the production of a variety of immune and inflammatory mediators and potentially driving the development of a variety of diseases. OBJECTIVE This article will explore the therapeutic potential and mechanism of the MyD88-specific inhibitor ST2825 and describe its use in the treatment of several diseases. We envision future research and clinical applications of ST2825 to provide new ideas for the development of anti-inflammatory drugs and disease-specific drugs to open new horizons for the prevention and treatment of related inflammatory diseases. MATERIALS AND METHODS This review analysed relevant literature in PubMed and other databases. All relevant studies on MyD88 inhibitors and ST2825 that were published in the last 20 years were used as screening criteria. These studies looked at the development and improvement of MyD88 inhibitors and ST2825. RESULTS Recent evidence using the small-molecule inhibitor of ST2825 has suggested that blocking MyD88 activity can be used to treat diseases such as neuroinflammation, inflammatory diseases such as acute liver/kidney injury, or autoimmune diseases such as systemic lupus erythematosus and can affect transplantation immunity. In addition, ST2825 has potential therapeutic value in B-cell lymphoma with the MyD88 L265P mutation. CONCLUSION Targeting MyD88 is a novel therapeutic strategy, and scientific research is presently focused on the development of MyD88 inhibitors. The peptidomimetic compound ST2825 is a widely studied small-molecule inhibitor of MyD88. Thus, ST2825 may be a potential therapeutic small-molecule agent for modulating host immune regulation in inflammatory diseases and inflammatory therapy.
Collapse
Affiliation(s)
- Meiqi Liu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Wenyan Kang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Zhizhong Hu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Chengkun Wang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| | - Yang Zhang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| |
Collapse
|
13
|
Ramirez-Perez S, Vekariya R, Gautam S, Reyes-Perez IV, Drissi H, Bhattaram P. MyD88 dimerization inhibitor ST2825 targets the aggressiveness of synovial fibroblasts in rheumatoid arthritis patients. Arthritis Res Ther 2023; 25:180. [PMID: 37749630 PMCID: PMC10519089 DOI: 10.1186/s13075-023-03145-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Dimerization of the myeloid differentiation primary response 88 protein (MyD88) plays a pivotal role in the exacerbated response to innate immunity-dependent signaling in rheumatoid arthritis (RA). ST2825 is a highly specific inhibitor of MyD88 dimerization, previously shown to inhibit the pro-inflammatory gene expression in peripheral blood mononuclear cells from RA patients (RA PBMC). In this study, we elucidated the effect of disrupting MyD88 dimerization by ST2825 on the pathological properties of synovial fibroblasts from RA patients (RA SFs). METHODS RA SFs were treated with varying concentrations of ST2825 in the presence or absence of bacterial lipopolysaccharides (LPS) to activate innate immunity-dependent TLR signaling. The DNA content of the RA SFs was quantified by imaging cytometry to investigate the effect of ST2825 on different phases of the cell cycle and apoptosis. RNA-seq was used to assess the global response of the RA SF toward ST2825. The invasiveness of RA SFs in Matrigel matrices was measured in organoid cultures. SFs from osteoarthritis (OA SFs) patients and healthy dermal fibroblasts were used as controls. RESULTS ST2825 reduced the proliferation of SFs by arresting the cells in the G0/G1 phase of the cell cycle. In support of this finding, transcriptomic analysis by RNA-seq showed that ST2825 may have induced cell cycle arrest by primarily inhibiting the expression of critical cell cycle regulators Cyclin E2 and members of the E2F family transcription factors. Concurrently, ST2825 also downregulated the genes encoding for pain, inflammation, and joint catabolism mediators while upregulating the genes required for the translocation of nuclear proteins into the mitochondria and members of the mitochondrial respiratory complex 1. Finally, we demonstrated that ST2825 inhibited the invasiveness of RA SFs, by showing decreased migration of LPS-treated RA SFs in spheroid cultures. CONCLUSIONS The pathological properties of the RA SFs, in terms of their aberrant proliferation, increased invasiveness, upregulation of pain and inflammation mediators, and disruption of mitochondrial homeostasis, were attenuated by ST2825 treatment. Taken together with the previously reported anti-inflammatory effects of ST2825 in RA PBMC, this study strongly suggests that targeting MyD88 dimerization could mitigate both systemic and synovial pathologies in a variety of inflammatory arthritic diseases.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| | - Rushi Vekariya
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Surabhi Gautam
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Itzel Viridiana Reyes-Perez
- Department of Molecular Biology and Genomics, University Center for Health Science, University of Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| |
Collapse
|
14
|
Sim J, Park J, Moon JS, Lim J. Dysregulation of inflammasome activation in glioma. Cell Commun Signal 2023; 21:239. [PMID: 37723542 PMCID: PMC10506313 DOI: 10.1186/s12964-023-01255-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
Gliomas are the most common brain tumors characterized by complicated heterogeneity. The genetic, molecular, and histological pathology of gliomas is characterized by high neuro-inflammation. The inflammatory microenvironment in the central nervous system (CNS) has been closely linked with inflammasomes that control the inflammatory response and coordinate innate host defenses. Dysregulation of the inflammasome causes an abnormal inflammatory response, leading to carcinogenesis in glioma. Because of the clinical importance of the various physiological properties of the inflammasome in glioma, the inflammasome has been suggested as a promising treatment target for glioma management. Here, we summarize the current knowledge on the contribution of the inflammasomes in glioma and therapeutic insights. Video Abstract.
Collapse
Affiliation(s)
- JeongMin Sim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - JeongMan Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jaejoon Lim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea.
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea.
| |
Collapse
|
15
|
Minderman M, Lantermans H, van der Zwaan C, Hoogendijk AJ, van den Biggelaar M, Kersten MJ, Spaargaren M, Pals ST. The oncogenic human B-cell lymphoma MYD88 L265P mutation genocopies activation by phosphorylation at the Toll/interleukin-1 receptor (TIR) domain. Blood Cancer J 2023; 13:125. [PMID: 37591861 PMCID: PMC10435502 DOI: 10.1038/s41408-023-00896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.
Collapse
Affiliation(s)
- Marthe Minderman
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Hildo Lantermans
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Chen P, Zhou Y, Li X, Yang J, Zheng Z, Zou Y, Li X, Liao J, Dai J, Xu Y, Yin L, Chen G, Gu J, Ouyang Q, Cho WJ, Tang Q, Liang G. Design, Synthesis, and Bioevaluation of Novel MyD88 Inhibitor c17 against Acute Lung Injury Derived from the Virtual Screen. J Med Chem 2023; 66:6938-6958. [PMID: 37130331 DOI: 10.1021/acs.jmedchem.3c00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Myeloid differentiation primary response protein 88 (MyD88) is crucial to immune cascades mediated by Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 dysregulation has been linked to a wide variety of inflammatory diseases, making it a promising new target for anti-inflammatory and cancer therapy development. In this study, 46 compounds were designed and synthesized inspired by virtual screen hit. The anti-inflammatory activity of designed compounds was evaluated biologically, and c17 was discovered to have a high binding affinity with MyD88. It inhibited the interaction of TLR4 and MyD88 and suppressed the NF-κB pathway. In addition, c17 treatment led to the accumulation in the lungs of rats and attenuated LPS-induced ALI mice model. Furthermore, c17 showed negligible toxicity in vivo. Together, these findings suggest that c17 may serve as a potential therapeutical method for the treatment of ALI and as a lead structure for the continued development of MyD88 inhibitors.
Collapse
Affiliation(s)
- Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuye Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Gu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
17
|
Park KS, Bergqvist M, Lässer C, Lötvall J. Targeting Myd88 using peptide-loaded mesenchymal stem cell membrane-derived synthetic vesicles to treat systemic inflammation. J Nanobiotechnology 2022; 20:451. [PMID: 36243859 PMCID: PMC9571445 DOI: 10.1186/s12951-022-01660-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Mesenchymal stem cells (MSC) secrete extracellular vesicles (EV) with a regenerative profile, and an increasing number of studies have focused on the utilization of MSC-EV for therapeutic drug delivery. However, EV are usually produced by cells in low quantities and are packed with numerous cytoplasmic components, which may be unfavorable for further drug loading. In this study, we developed a simple process for generating membrane vesicles directly from the cells, which we refer to as synthetic eukaryotic vesicles (SyEV). We hypothesized that MSC-derived SyEV can be efficiently loaded with an anti-inflammatory drug and the loaded vesicles can strongly suppress the systemic inflammation induced by bacterial outer membrane vesicles (OMV). SyEV were generated from MSC membranes through serial extrusion of the cells, ionic stress, and subsequent vesiculation of the membrane sheets, leading to high yield and purity of the SyEV with few cytosolic components remaining. When these SyEV were given to macrophages or mice exposed to OMV, the release of pro-inflammatory cytokines was similarly attenuated comparable to treatment with natural EV. We then loaded the SyEV with large numbers of peptides targeting Myd88 and observed enhanced therapeutic potential of the loaded vesicles in OMV-induced macrophages. Further, in vivo experiments showed that the peptide-encapsulated MSC-SyEV suppressed cytokine production synergistically. Taken together, these findings suggest that SyEV-based therapeutics is a highly interesting platform for delivering an advanced therapeutic drug for the treatment of systemic inflammation without severe side effects.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Markus Bergqvist
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Kojima N, Kojima S, Hosokawa S, Oda Y, Zenke D, Toura Y, Onohara E, Yokota SI, Nagaoka M, Kuroda Y. Wall teichoic acid-dependent phagocytosis of intact cell walls of Lactiplantibacillus plantarum elicits IL-12 secretion from macrophages. Front Microbiol 2022; 13:986396. [PMID: 36016797 PMCID: PMC9396385 DOI: 10.3389/fmicb.2022.986396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Selected lactic acid bacteria can stimulate macrophages and dendritic cells to secrete IL-12, which plays a key role in activating innate and cellular immunity. In this study, we investigated the roles of cell wall teichoic acids (WTAs) displayed on whole intact cell walls (ICWs) of Lactiplantibacillus plantarum in activation of mouse macrophages. ICWs were prepared from whole bacterial cells of several lactobacilli without physical disruption, and thus retaining the overall shapes of the bacteria. WTA-displaying ICWs of several L. plantarum strains, but not WTA-lacking ICWs of strains of other lactobacilli, elicited IL-12 secretion from mouse bone marrow-derived macrophages (BMMs) and mouse macrophage-like J774.1 cells. The ability of the ICWs of L. plantarum to induce IL-12 secretion was abolished by selective chemical elimination of WTAs from ICWs, but was preserved by selective removal of cell wall glycopolymers other than WTAs. BMMs prepared from TLR2- or TLR4-deficient mouse could secret IL-12 upon stimulation with ICWs of L. plantarum and a MyD88 dimerization inhibitor did not affect ICW-mediated IL-12 secretion. WTA-displaying ICWs, but not WTA-lacking ICWs, were ingested in the cells within 30 min. Treatment with inhibitors of actin polymerization abolished IL-12 secretion in response to ICW stimulation and diminished ingestion of ICWs. When overall shapes of ICWs of L. plantarum were physically disrupted, the disrupted ICWs (DCWs) failed to induce IL-12 secretion. However, DCWs and soluble WTAs inhibited ICW-mediated IL-12 secretion from macrophages. Taken together, these results show that WTA-displaying ICWs of L. plantarum can elicit IL-12 production from macrophages via actin-dependent phagocytosis but TLR2 signaling axis independent pathway. WTAs displayed on ICWs are key molecules in the elicitation of IL-12 secretion, and the sizes and shapes of the ICWs have an impact on actin remodeling and subsequent IL-12 production.
Collapse
Affiliation(s)
- Naoya Kojima
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
- *Correspondence: Naoya Kojima,
| | - Shohei Kojima
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Shin Hosokawa
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Yoshiki Oda
- Technology Joint Management Office, Tokai University, Hiratsuka, Japan
| | - Daisuke Zenke
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Yuta Toura
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Emi Onohara
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| |
Collapse
|
19
|
Proteoglycan 4 (PRG4) treatment enhances wound closure and tissue regeneration. NPJ Regen Med 2022; 7:32. [PMID: 35750773 PMCID: PMC9232611 DOI: 10.1038/s41536-022-00228-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/20/2022] [Indexed: 01/13/2023] Open
Abstract
The wound healing response is one of most primitive and conserved physiological responses in the animal kingdom, as restoring tissue integrity/homeostasis can be the difference between life and death. Wound healing in mammals is mediated by immune cells and inflammatory signaling molecules that regulate tissue resident cells, including local progenitor cells, to mediate closure of the wound through formation of a scar. Proteoglycan 4 (PRG4), a protein found throughout the animal kingdom from fish to elephants, is best known as a glycoprotein that reduces friction between articulating surfaces (e.g. cartilage). Previously, PRG4 was also shown to regulate the inflammatory and fibrotic response. Based on this, we asked whether PRG4 plays a role in the wound healing response. Using an ear wound model, topical application of exogenous recombinant human (rh)PRG4 hastened wound closure and enhanced tissue regeneration. Our results also suggest that rhPRG4 may impact the fibrotic response, angiogenesis/blood flow to the injury site, macrophage inflammatory dynamics, recruitment of immune and increased proliferation of adult mesenchymal progenitor cells (MPCs) and promoting chondrogenic differentiation of MPCs to form the auricular cartilage scaffold of the injured ear. These results suggest that PRG4 has the potential to suppress scar formation while enhancing connective tissue regeneration post-injury by modulating aspects of each wound healing stage (blood clotting, inflammation, tissue generation and tissue remodeling). Therefore, we propose that rhPRG4 may represent a potential therapy to mitigate scar and improve wound healing.
Collapse
|
20
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Ramirez-Perez S, Oregon-Romero E, Reyes-Perez IV, Bhattaram P. Targeting MyD88 Downregulates Inflammatory Mediators and Pathogenic Processes in PBMC From DMARDs-Naïve Rheumatoid Arthritis Patients. Front Pharmacol 2021; 12:800220. [PMID: 35002734 PMCID: PMC8735861 DOI: 10.3389/fphar.2021.800220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
MyD88-dependent intracellular signalling cascades and subsequently NF-kappaB-mediated transcription lead to the dynamic inflammatory processes underlying the pathogenesis of rheumatoid arthritis (RA) and related autoimmune diseases. This study aimed to identify the effect of the MyD88 dimerization inhibitor, ST2825, as a modulator of pathogenic gene expression signatures and systemic inflammation in disease-modifying antirheumatic drugs (DMARDs)-naïve RA patients. We analyzed bulk RNA-seq from peripheral blood mononuclear cells (PBMC) in DMARDs-naïve RA patients after stimulation with LPS and IL-1β. The transcriptional profiles of ST2825-treated PBMC were analyzed to identify its therapeutic potential. Ingenuity Pathway Analysis was implemented to identify downregulated pathogenic processes. Our analysis revealed 631 differentially expressed genes between DMARDs-naïve RA patients before and after ST2825 treatment. ST2825-treated RA PBMC exhibited a gene expression signature similar to that of healthy controls PBMC by downregulating the expression of proinflammatory cytokines, chemokines and matrix metalloproteases. In addition, B cell receptor, IL-17 and IL-15 signalling were critically downregulated pathways by ST2825. Furthermore, we identified eight genes (MMP9, CXCL9, MZB1, FUT7, TGM2, IGLV1-51, LINC01010, and CDK1) involved in pathogenic processes that ST2825 can potentially inhibit in distinct cell types within the RA synovium. Overall, our findings indicate that targeting MyD88 effectively downregulates systemic inflammatory mediators and modulates the pathogenic processes in PBMC from DMARDs-naïve RA patients. ST2825 could also potentially inhibit upregulated genes in the RA synovium, preventing synovitis and joint degeneration.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Edith Oregon-Romero
- Biomedical Sciences Research Institute (IICB), University of Guadalajara, Guadalajara, Mexico
| | | | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Bayer AL, Alcaide P. MyD88: At the heart of inflammatory signaling and cardiovascular disease. J Mol Cell Cardiol 2021; 161:75-85. [PMID: 34371036 PMCID: PMC8629847 DOI: 10.1016/j.yjmcc.2021.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide and is associated with systemic inflammation. In depth study of the cell-specific signaling mechanisms mediating the inflammatory response is vital to improving anti-inflammatory therapies that reduce mortality and morbidity. Cellular damage in the cardiovascular system results in the release of damage associated molecular patterns (DAMPs), also known as "alarmins," which activate myeloid cells through the adaptor protein myeloid differentiation primary response 88 (MyD88). MyD88 is broadly expressed in most cell types of the immune and cardiovascular systems, and its role often differs in a cardiovascular disease context and cell specific manner. Herein we review what is known about MyD88 in the setting of a variety of cardiovascular diseases, discussing cell specific functions and the relative contributions of MyD88-dependent vs. independent alarmin triggered inflammatory signaling. The widespread involvement of these pathways in cardiovascular disease, and their largely unexplored complexity, sets the stage for future in depth mechanistic studies that may place MyD88 in both immune and non-immune cell types as an attractive target for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Abraham L Bayer
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| |
Collapse
|
23
|
Badal D, Sachdeva N, Maheshwari D, Basak P. Role of nucleic acid sensing in the pathogenesis of type 1 diabetes. World J Diabetes 2021; 12:1655-1673. [PMID: 34754369 PMCID: PMC8554372 DOI: 10.4239/wjd.v12.i10.1655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
During infections, nucleic acids of pathogens are also engaged in recognition via several exogenous and cytosolic pattern recognition receptors, such as the toll-like receptors, retinoic acid inducible gene-I-like receptors, and nucleotide-binding and oligomerization domain-like receptors. The binding of the pathogen-derived nucleic acids to their corresponding sensors initiates certain downstream signaling cascades culminating in the release of type-I interferons (IFNs), especially IFN-α and other cytokines to induce proinflammatory responses towards invading pathogens leading to their clearance from the host. Although these sensors are hardwired to recognize pathogen associated molecular patterns, like viral and bacterial nucleic acids, under unusual physiological conditions, such as excessive cellular stress and increased apoptosis, endogenous self-nucleic acids like DNA, RNA, and mitochondrial DNA are also released. The presence of these self-nucleic acids in extranuclear compartments or extracellular spaces or their association with certain proteins sometimes leads to the failure of discriminating mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in autoimmune disorders, like systemic lupus erythematosus, psoriasis and to some extent in type 1 diabetes (T1D). This review discusses the involvement of various nucleic acid sensors in autoimmunity and discusses how aberrant recognition of self-nucleic acids by their sensors activates the innate immune responses during the pathogenesis of T1D.
Collapse
Affiliation(s)
- Darshan Badal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deep Maheshwari
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Preetam Basak
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
24
|
Targeting Toll-like Receptor (TLR) Pathways in Inflammatory Arthritis: Two Better Than One? Biomolecules 2021; 11:biom11091291. [PMID: 34572504 PMCID: PMC8464963 DOI: 10.3390/biom11091291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory arthritis is a cluster of diseases caused by unregulated activity of the immune system. The lost homeostasis is followed by the immune attack of one’s self, what damages healthy cells and tissues and leads to chronic inflammation of various tissues and organs (e.g., joints, lungs, heart, eyes). Different medications to control the excessive immune response are in use, however, drug resistances, flare-reactions and adverse effects to the current therapies are common in the affected patients. Thus, it is essential to broaden the spectrum of alternative treatments and to develop disease-modifying drugs. In the last 20 years, the involvement of the innate immune receptors TLRs in inflammatory arthritis has been widely investigated and targeting either the receptor itself or the proteins in the downstream signalling cascades has emerged as a promising therapeutic strategy. Yet, concerns about the use of pharmacological agents that inhibit TLR activity and may leave the host unprotected against invading pathogens and toxicity issues amid inhibition of downstream kinases crucial in various cellular functions have arisen. This review summarizes the existing knowledge on the role of TLRs in inflammatory arthritis; in addition, the likely druggable related targets and the developed inhibitors, and discusses the pros and cons of their potential clinical use.
Collapse
|
25
|
Liu S, Gao J, Liu K, Zhang HL. Microbiota-gut-brain axis and Alzheimer's disease: Implications of the blood-brain barrier as an intervention target. Mech Ageing Dev 2021; 199:111560. [PMID: 34411603 DOI: 10.1016/j.mad.2021.111560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
The microbiota-gut-brain axis has emerged as a focal point of biomedical research. Alterations of gut microbiota are involved in not only various immune/inflammatory disorders but also neurological disorders including Alzheimer's disease (AD). The initial stage of the involvement of gut microbiota in the pathogenesis of AD may be the dysfunction of the blood-brain barrier (BBB). Gut microbiota-derived products in the circulation can worsen the BBB integrity, easily cross the disrupted BBB and enter the brain to promote pathological changes in AD. In this review, we first summarize the current evidence of the associations among gut microbiota, AD, and BBB integrity. We then discuss the mechanism of gut microbiota on BBB dysfunction with a focus on bacteria-derived lipopolysaccharide and exosomal high-mobility group box 1. Novel insights into the modification of the BBB as an intervention approach for AD are highlighted as well.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Changchun, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, 100085, Beijing, China.
| |
Collapse
|
26
|
Jacobovitz MR, Rupp S, Voss PA, Maegele I, Gornik SG, Guse A. Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. Nat Microbiol 2021; 6:769-782. [PMID: 33927382 PMCID: PMC7611106 DOI: 10.1038/s41564-021-00897-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/25/2021] [Indexed: 02/02/2023]
Abstract
Alveolata comprises diverse taxa of single-celled eukaryotes, many of which are renowned for their ability to live inside animal cells. Notable examples are apicomplexan parasites and dinoflagellate symbionts, the latter of which power coral reef ecosystems. Although functionally distinct, they evolved from a common, free-living ancestor and must evade their host's immune response for persistence. Both the initial cellular events that gave rise to this intracellular lifestyle and the role of host immune modulation in coral-dinoflagellate endosymbiosis are poorly understood. Here, we use a comparative approach in the cnidarian endosymbiosis model Aiptasia, which re-establishes endosymbiosis with free-living dinoflagellates every generation. We find that uptake of microalgae is largely indiscriminate, but non-symbiotic microalgae are expelled by vomocytosis, while symbionts induce host cell innate immune suppression and form a lysosomal-associated membrane protein 1-positive niche. We demonstrate that exogenous immune stimulation results in symbiont expulsion and, conversely, inhibition of canonical Toll-like receptor signalling enhances infection of host animals. Our findings indicate that symbiosis establishment is dictated by local innate immune suppression, to circumvent expulsion and promote niche formation. This work provides insight into the evolution of the cellular immune response and key steps involved in mediating endosymbiotic interactions.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sebastian Rupp
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Philipp A Voss
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Ira Maegele
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sebastian G Gornik
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Annika Guse
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
27
|
Azeggagh S, Berwick DC. The development of inhibitors of leucine-rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson's disease: the current state of play. Br J Pharmacol 2021; 179:1478-1495. [PMID: 34050929 DOI: 10.1111/bph.15575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Current therapeutic approaches for Parkinson's disease (PD) are based around treatments that alleviate symptoms but do not slow or prevent disease progression. As such, alternative strategies are needed. A promising approach is the use of molecules that reduce the function of leucine-rich repeat kinase (LRRK2). Gain-of-function mutations in LRRK2 account for a notable proportion of familial Parkinson's disease cases, and significantly, elevated LRRK2 kinase activity is reported in idiopathic Parkinson's disease. Here, we describe progress in finding therapeutically effective LRRK2 inhibitors, summarising studies that range from in vitro experiments to clinical trials. LRRK2 is a complex protein with two enzymatic activities and a myriad of functions. This creates opportunities for a rich variety of strategies and also increases the risk of unintended consequences. We comment on the strength and limitations of the different approaches and conclude that with two molecules under clinical trial and a diversity of alternative options in the pipeline, there is cause for optimism.
Collapse
Affiliation(s)
- Sonia Azeggagh
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Daniel C Berwick
- Institute of Medical and Biomedical Education, St George's, University of London, London, UK
| |
Collapse
|
28
|
Zhang L, Cheng L, Cui Y, Wu Z, Cai L, Yang L, Duan M, Zhang D, Zhou C, Xie J. The virulence factor GroEL directs the osteogenic and adipogenic differentiation of human periodontal ligament stem cells through the involvement of JNK/MAPK and NF-κB signaling. J Periodontol 2021; 92:103-115. [PMID: 33913537 DOI: 10.1002/jper.20-0869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE GroEL, a bacterial metabolite, is an important stimulator of inflammation. The aim of this study is to confirm the effect of the virulence factor GroEL on differentiation potential of periodontal ligament (PDL) stem cells (PDLSCs) and the potential mechanisms. METHODS PDLSCs were obtained from extracted human premolars. GroEL was administered to osteogenic- and adipogenic-induced hPDLSCs. Alkaline phosphatase (ALP) staining, Alizarin Red staining and Oil Red staining were performed. Gene and protein expression were separately measured by qPCR and Western blotting. The expression and localization of activated signaling factors were confirmed by immunofluorescence staining. The inhibitors of myeloid differentiation factor 88 (MyD88, an adaptor protein of TLRs), JNK/MAPK and NF-κB signaling were used to verify their specific effects. RESULTS First, we found that GroEL inhibited the osteogenic differentiation and enhanced the adipogenic differentiation of hPDLSCs. Next, we found that GroEL increased the expression of TLR2 and TLR4 and GroEL activated JNK/MAPK and NF-κB signaling, which can be blocked by inhibition of MyD88. Finally, we found that inhibition of MyD88 restored GroEL-induced osteogenic and adipogenic differentiation and blocking JNK/MAPK or NF-κB signaling partly restored GroEL effects. CONCLUSION In the current study, we revealed a potential interaction between bacteria and host cells by showing that GroEL directs the osteogenic and adipogenic differentiation of hPDLSCs by the involvement of JNK/MAPK and NF-κB signaling. This study provides evidence that bacterial products can influence the differentiation of stem cells and reveals potential effect of GroEL on the context of tissue regeneration.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Debuque RJ, Nowoshilow S, Chan KE, Rosenthal NA, Godwin JW. Distinct toll-like receptor signaling in the salamander response to tissue damage. Dev Dyn 2021; 251:988-1003. [PMID: 33797128 DOI: 10.1002/dvdy.340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Efficient wound healing or pathogen clearance both rely on balanced inflammatory responses. Inflammation is essential for effective innate immune-cell recruitment; however, excessive inflammation will result in local tissue destruction, pathogen egress, and ineffective pathogen clearance. Sterile and nonsterile inflammation operate with competing functional priorities but share common receptors and overlapping signal transduction pathways. In regenerative organisms such as the salamander, whole limbs can be replaced after amputation while exposed to a nonsterile environment. In mammals, exposure to sterile-injury Damage Associated Molecular Patterns (DAMPS) alters innate immune-cell responsiveness to secondary Pathogen Associated Molecular Pattern (PAMP) exposure. RESULTS Using new phospho-flow cytometry techniques to measure signaling in individual cell subsets we compared mouse to salamander inflammation. These studies demonstrated evolutionarily conserved responses to PAMP ligands through toll-like receptors (TLRs) but identified key differences in response to DAMP ligands. Co-exposure of macrophages to DAMPs/PAMPs suppressed MAPK signaling in mammals, but not salamanders, which activate sustained MAPK stimulation in the presence of endogenous DAMPS. CONCLUSIONS These results reveal an alternative signal transduction network compatible with regeneration that may ultimately lead to the promotion of enhanced tissue repair in mammals.
Collapse
Affiliation(s)
- Ryan J Debuque
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Sergej Nowoshilow
- The Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | | | - James W Godwin
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia.,The Jackson Laboratory, Bar Harbour, Maine, USA.,The MDI Biological Laboratory (MDIBL), Salisbury Cove, Maine, USA
| |
Collapse
|
30
|
Saikh KU. MyD88 and beyond: a perspective on MyD88-targeted therapeutic approach for modulation of host immunity. Immunol Res 2021; 69:117-128. [PMID: 33834387 PMCID: PMC8031343 DOI: 10.1007/s12026-021-09188-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
The continuous emergence of infectious pathogens along with antimicrobial resistance creates a need for an alternative approach to treat infectious diseases. Targeting host factor(s) which are critically involved in immune signaling pathways for modulation of host immunity offers to treat a broad range of infectious diseases. Upon pathogen-associated ligands binding to the Toll-like/ IL-1R family, and other cellular receptors, followed by recruitment of intracellular signaling adaptor proteins, primarily MyD88, trigger the innate immune responses. But activation of host innate immunity strongly depends on the correct function of MyD88 which is tightly regulated. Dysregulation of MyD88 may cause an imbalance that culminates to a wide range of inflammation-associated syndromes and diseases. Furthermore, recent reports also describe that MyD88 upregulation with many viral infections is linked to decreased antiviral type I IFN response, and MyD88-deficient mice showed an increase in survivability. These reports suggest that MyD88 is also negatively involved via MyD88-independent pathways of immune signaling for antiviral type I IFN response. Because of its expanding role in controlling host immune signaling pathways, MyD88 has been recognized as a potential drug target in a broader drug discovery paradigm. Targeting BB-loop of MyD88, small molecule inhibitors were designed by structure-based approach which by blocking TIR-TIR domain homo-dimerization have shown promising therapeutic efficacy in attenuating MyD88-mediated inflammatory impact, and increased antiviral type I IFN response in experimental mouse model of diseases. In this review, we highlight the reports on MyD88-linked immune response and MyD88-targeted therapeutic approach with underlying mechanisms for controlling inflammation and antiviral type I IFN response. HIGHLIGHTS: • Host innate immunity is activated upon PAMPs binding to PRRs followed by immune signaling through TIR domain-containing adaptor proteins mainly MyD88. • Structure-based approach led to develop small-molecule inhibitors which block TIR domain homodimerization of MyD88 and showed therapeutic efficacy in limiting severe inflammation-associated impact in mice. • Therapeutic intervention of MyD88 also showed an increase in antiviral effect with strong type I IFN signaling linked to increased phosphorylation of IRFs via MyD88-independent pathway. • MyD88 inhibitors might be potentially useful as a small-molecule therapeutics for modulation of host immunity against inflammatory diseases and antiviral therapy. • However, prior clinical use of more in-depth efforts should be focused for suitability of the approach in deploying to complex diseases including COPD and COVID-19 in limiting inflammation-associated syndrome to infection.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacterial Immunology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| |
Collapse
|
31
|
McWhirter SM, Jefferies CA. Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity 2021; 53:78-97. [PMID: 32668230 DOI: 10.1016/j.immuni.2020.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Innate immune sensors that detect nucleic acids are attractive targets for therapeutic intervention because of their diverse roles in many disease processes. In detecting RNA and DNA from either self or non-self, nucleic acid sensors mediate the pathogenesis of many autoimmune and inflammatory conditions. Despite promising pre-clinical data and investigational use in the clinic, relatively few drugs targeting nucleic acid sensors are approved for therapeutic use. Nevertheless, there is growing appreciation for the untapped potential of nucleic acid sensors as therapeutic targets, driven by the need for better therapies for cancer, infectious diseases, and autoimmune disorders. This review highlights the diverse mechanisms by which nucleic acid sensors are activated and exert their biological effects in the context of various disease settings. We discuss current therapeutic strategies utilizing agonists and antagonists targeting nucleic acid sensors to treat infectious disease, cancer, and autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
| | - Caroline A Jefferies
- Department of Biomedical Sciences and Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
32
|
Abstract
ABSTRACT Host cells recognize molecules that signal danger using pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the most studied class of PRRs and detect pathogen-associated molecular patterns and danger-associated molecular patterns. Cellular TLR activation and signal transduction can therefore contain, combat, and clear danger by enabling appropriate gene transcription. Here, we review the expression, regulation, and function of different TLRs, with an emphasis on TLR-4, and how TLR adaptor protein binding directs intracellular signaling resulting in activation or termination of an innate immune response. Finally, we highlight the recent progress of research on the involvement of S100 proteins as ligands for TLR-4 in inflammatory disease.
Collapse
|
33
|
Toshchakov VY, Javmen A. Targeting the TLR signalosome with TIR domain-derived cell-permeable decoy peptides: the current state and perspectives. Innate Immun 2020; 26:35-47. [PMID: 31955621 PMCID: PMC6974878 DOI: 10.1177/1753425919844310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to engineer pharmaceuticals that target the signal-dependent
interactions of signaling proteins should revolutionize drug development. One
approach to the rational design of protein interaction inhibitors uses decoy
peptides, i.e. segments of protein primary sequence, which are derived from
interfaces that mediate functional protein interactions. Decoy peptides often
retain the ability of the full-length prototype to bind the docking site of the
folded protein and thereby block the signal transduction. This review summarizes
advances made in the last decade in the development of cell-permeable decoy
peptide (CPDP) inhibitors to target the Toll/IL-1R resistance (TIR)
domain-mediated protein interactions in TLR signaling, in connection with the
recent progress in understanding of the TLR signalosome assembly mechanisms. We
present a large collection of currently available, TIR-targeting CPDPs and
propose their classification based on the types of TIR–TIR interactions they
target. The binding behavior of different CPDP-TIR pairs, studied in cell-based
assays and in binary in vitro systems using recombinant TIR
domains, is also reviewed. The available affinity data provide benchmarks for
rapid preliminary evaluation of future inhibitors. We review literature that
evaluates the in vivo potency of select CPDPs and attempt to
outline the areas of forthcoming progress, towards the development of CPDP-based
TLR inhibitors of pharmaceutical grade.
Collapse
Affiliation(s)
- Vladimir Y Toshchakov
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Artur Javmen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Downregulation of Inflammatory Cytokine Release from IL-1β and LPS-Stimulated PBMC Orchestrated by ST2825, a MyD88 Dimerisation Inhibitor. Molecules 2020; 25:molecules25184322. [PMID: 32967164 PMCID: PMC7570868 DOI: 10.3390/molecules25184322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
The inflammatory process implicates homeostasis disruption and increased production of inflammatory mediators. Myeloid differentiation primary response 88 (MyD88) is an essential protein recruited after lipopolysaccharide (LPS) and interleukin (IL)-1β stimulation, a process that converges in nuclear factor kappa B (NF-κB) activation, as well as a transcription of several genes of both pro- and anti-inflammatory cytokines. The inhibition of MyD88 has shown efficacy by decrease inflammatory response, and has demonstrated potential application as a therapeutic target in chronic diseases. In this study, we investigate the effect of MyD88 dimerisation inhibitor ST2825 on cytokine production from rhIL-1β and LPS-stimulated peripheral blood mononuclear cells (PBMC) from healthy blood donors (HBD). ST2825 significantly downregulates the production of IFN-γ, IL-6, IL-12, IL-2, IL-15, IL-7, VEGF, IL-1Ra, IL-4, IL-5, IL-13 and IL-9 (p < 0.05) in LPS-stimulated PBMC. Moreover, ST2825 had a relatively low impact on IL-1β signalling pathway inhibition, showing that only a few specific cytokines, such as IFN-γ and IL-1Ra, are inhibited in rhIL-1β-stimulated PBMC (p < 0.01). In conclusion, MyD88 dimerisation inhibitor ST2825 showed high efficacy by inhibiting pro- and anti-inflammatory cytokine production in LPS-stimulated PBMC. Moreover, although rhIL-1β induced a sustained cytokine production (p < 0.05), ST2825 did not show a significant effect in the secretion of neither pro- nor anti-inflammatory cytokines in rhIL-1β-stimulated PBMC.
Collapse
|
35
|
Singh A, Devkar R, Basu A. Myeloid Differentiation Primary Response 88-Cyclin D1 Signaling in Breast Cancer Cells Regulates Toll-Like Receptor 3-Mediated Cell Proliferation. Front Oncol 2020; 10:1780. [PMID: 33072559 PMCID: PMC7531238 DOI: 10.3389/fonc.2020.01780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor 3 (TLR3)-mediated apoptotic changes in cancer cells are well-documented, and hence, several synthetic ligands of TLR3 are being used for adjuvant therapy, but there are reports showing a contradictory effect of TLR3 signaling, which include our previous report that had shown cell proliferation following surface localization of TLR 3. However, the underlying mechanism of cell surface localization of TLR3 and subsequent cell proliferation lacks clarity. This study addresses the TLR3 ligand-mediated signaling cascade that regulates a proliferative effect in breast cancer cells (MDA-MB-231 and T47D) challenged with TLR3 ligand in the presence of myeloid differentiation primary response 88 (MyD88) inhibitor. Evidences were obtained using immunoblotting, coimmunoprecipitation, confocal microscopy, immunocytochemistry, ELISA, and flow cytometry. Results had revealed that TLR3 ligand treatment significantly enhanced breast cancer cell proliferation marked by an upregulated expression of cyclinD1, but the same was suppressed by the addition of MyD88 inhibitor. Also, expression of interleukin 1 receptor-associated kinase 1 (IRAK1)-TNF receptor-associated factor 6 (TRAF6)-transforming growth factor beta-activated kinase 1 (TAK1) was altered in the given TLR3-signaling pathway. Inhibition of MyD88 disrupted the downstream adaptor complex and mediated signaling through the TLR3-MyD88-NF-κB (p65)-IL-6-cyclin D1 pathway. TLR3-mediated alternative signaling of the TLR3-MyD88-IRAK1-TRAF6-TAK1-TAB1-NF-κB axis leads to upregulation of IL6 and cyclin D1. This response is hypothesized to be via the MyD88 gateway that culminates in the proliferation of breast cancer cells. Overall, this study provides first comprehensive evidence on the involvement of canonical signaling of TLR3 using MyD88-cyclin D1-mediated breast cancer cell proliferation. The findings elucidated herein will provide valuable insights into understanding the TLR3-mediated adjuvant therapy in cancer.
Collapse
Affiliation(s)
- Aradhana Singh
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, India
| |
Collapse
|
36
|
Chen L, Zheng L, Chen P, Liang G. Myeloid Differentiation Primary Response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. J Med Chem 2020; 63:13316-13329. [DOI: 10.1021/acs.jmedchem.0c00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Pengqin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
37
|
Seltzer J, Moorad R, Schifano JM, Landis JT, Dittmer DP. Interleukin-1 Receptor-Associated Kinase (IRAK) Signaling in Kaposi Sarcoma-Associated Herpesvirus-Induced Primary Effusion Lymphoma. J Virol 2020; 94:e02123-19. [PMID: 32161170 PMCID: PMC7199399 DOI: 10.1128/jvi.02123-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for primary effusion lymphoma (PEL) development. Alterations in cellular signaling pathways are also a characteristic of PEL. Other B cell lymphomas have acquired an oncogenic mutation in the myeloid differentiation primary response 88 (MYD88) gene. The MYD88 L265P mutant results in the activation of interleukin-1 receptor associated kinase (IRAK). To probe IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable deletion clones in BCBL-1Cas9 and BC-1Cas9 cells. To look for off-target effects, we determined the complete exome of the BCBL-1Cas9 and BC-1Cas9 cells. Deletion of either MYD88, IRAK4, or IRAK1 abolished interleukin-1 beta (IL-1β) signaling; however, we were able to grow stable subclones from each population. Transcriptome sequencing (RNA-seq) analysis of IRAK4 knockout cell lines (IRAK4 KOs) showed that the IRAK pathway induced cellular signals constitutively, independent of IL-1β stimulation, which was abrogated by deletion of IRAK4. Transient complementation with IRAK1 increased NF-κB activity in MYD88 KO, IRAK1 KO, and IRAK4 KO cells even in the absence of IL-1β. IL-10, a hallmark of PEL, was dependent on the IRAK pathway, as IRAK4 KOs showed reduced IL-10 levels. We surmise that, unlike B cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in PEL, but that under cell culture conditions, PEL rapidly became independent of this pathway.IMPORTANCE One hundred percent of primary effusion lymphoma (PEL) cases are associated with Kaposi sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse for understanding this human oncovirus and the host pathways that KSHV dysregulates. Understanding their function is important for developing new therapies as well as identifying high-risk patient groups. The myeloid differentiation primary response 88 (MYD88)/interleukin-1 receptor associated kinase (IRAK) pathway, which has progrowth functions in other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 knockout (KO) studies targeting the IRAK pathway in PEL, we were able to determine that established PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the deletion clones are deficient in interleukin-10 (IL-10) production. Since IL-10 suppresses T cell function, this suggests that the IRAK pathway may serve a function in vivo and during early-stage development of PEL.
Collapse
Affiliation(s)
- Jedediah Seltzer
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Razia Moorad
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason M Schifano
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin T Landis
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
38
|
Shirey KA, Lai W, Brown LJ, Blanco JCG, Beadenkopf R, Wang Y, Vogel SN, Snyder GA. Select targeting of intracellular Toll-interleukin-1 receptor resistance domains for protection against influenza-induced disease. Innate Immun 2020; 26:26-34. [PMID: 31955622 PMCID: PMC6974880 DOI: 10.1177/1753425919846281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
TLRs are a family of PRRs that respond to PAMPs or host-derived Danger-Associated Molecular Patterns (DAMPs) to initiate host inflammation and immune responses. TLR dimerization and recruitment of adapter molecules is critical for intracellular signaling and is mediated through intracellular Toll-Interleukin 1 Receptor Resistance (TIR) domain interactions. Human TIR domains, including reported structures of TIR1, TIR2, TIR6, TIR10, TIRAP, and MyD88, contain Cysteine (Cys) interactions or modifications that are disproportionally at, or near, reported biological TIR interfaces, or in close proximity to functionally important regions. Therefore, we hypothesized that intracellular TIR Cys regulation may have greater functional importance than previously appreciated. Expression of mutant TLR4-C747S or treatment of TLR4 reporter cells with a small molecule, Cys-binding inhibitor of TLR4, TAK-242, abrogated LPS signaling in vitro . Using TAK-242, mice were protected from lethal influenza challenge as previously reported for extracellular TLR4 antagonists. Molecular modeling and sequence analysis of the region surrounding TLR4-Cys747 indicate conservation of a WxxxE motif identified among bacterial and NAD+-consuming TIRs, as well as within the TIRs domains of surface TLRs 1, 2, 4, 6, and 10. Together, these data support the hypothesis that critical Cys within the TIR domain are essential for TLR4 functionality.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, USA
| | - Lindsey J Brown
- Institute of Human Virology, Department of Medicine, University
of Maryland School of Medicine, USA
| | | | - Robert Beadenkopf
- Institute of Human Virology, Department of Medicine, University
of Maryland School of Medicine, USA
| | - Yajing Wang
- Institute of Human Virology, Department of Medicine, University
of Maryland School of Medicine, USA
- China Pharmaceutical University, Nanjing, P.R. China
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, USA
| | - Greg A Snyder
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, USA
- Institute of Human Virology, Department of Medicine, University
of Maryland School of Medicine, USA
| |
Collapse
|
39
|
Zhao J, Zhao X, Dou ZY, Rong ZH. [Association between autophagy and systemic juvenile idiopathic arthritis and related mechanism: a preliminary study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:966-971. [PMID: 31642428 PMCID: PMC7389724 DOI: 10.7499/j.issn.1008-8830.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the role of autophagy in the development of systemic juvenile idiopathic arthritis (sJIA) by analyzing the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), myeloid differentiation factor 88 (MyD88), and suppressor of T-cell receptor signaling 1 (STS-1) in peripheral blood lymphocytes of children with sJIA. METHODS A total of 26 children with sJIA were enrolled as the sJIA group, and 26 healthy children were enrolled as the control group. Western blot was used to measure the protein expression of LC3-II, STS-1, and MyD88 in peripheral blood lymphocytes. Immunofluorescence assay was used to measure the expression of LC3-II in the cytoplasm of lymphocytes. Pearson correlation analysis was used to assess the correlation between indices. RESULTS Compared with the control group, the sJIA group had significant increases in the expression of LC3-II, STS-1, and MyD88 (P<0.05). In the sJIA group, the expression of LC3-II was positively correlated with that of MyD88 (r=0.478, P<0.05), and the expression of STS-1 was also positively correlated with that of MyD88 (r=0.817, P<0.05). CONCLUSIONS There is high expression of LC3-II in peripheral blood lymphocytes of children with sJIA, suggesting that the development of sJIA may be associated with excessive expression of autophagy. STS-1 may induce autophagy by activating some signaling pathways, and MyD88 may participate in autophagy through the Toll-like receptor signaling pathway.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Pediatrics, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | | | | | | |
Collapse
|
40
|
Disrupting myddosome assembly in diffuse large B‑cell lymphoma cells using the MYD88 dimerization inhibitor ST2825. Oncol Rep 2019; 42:1755-1766. [PMID: 31432184 PMCID: PMC6775815 DOI: 10.3892/or.2019.7282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkins lymphoma, is classified into germinal center and activated B cell (ABC) subtypes. The myeloid differentiation primary response gene 88 (MYD88) L265P mutation is the most prevalent oncogenic mutation among patients with ABC DLBCL, the subtype that has the more inferior outcome. MYD88 oligomerization driven by the L265P mutant augments myddosome assembly and triggers the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, highlighting MYD88 oligomerization as a potential therapeutic target for this malignancy. The synthetic peptidomimetic compound ST2825, which has previously been used as an anti-inflammatory agent, has been reported to inhibit MYD88 dimerization. In the present study, the anticancer effects of ST2825 were investigated using L265P-expressing ABC DLBCL cell lines. Using confocal microscopy and high-molecular-weight fraction experiments, it was revealed that L265P-associated myddosome assembly was disrupted by ST2825. The results also revealed that disrupting myddosome assembly promoted the death of ABC DLBCL cells harboring the L265P mutation, as well as downregulating survival signals, including the inhibition of NF-κB and the suppression of IL-10 and interferon-β production. Further co-immunoprecipitation studies demonstrated that MYD88 bound to BTK in L265P-DLBCL cells, and that this binding was abrogated following ST2825 treatment. Furthermore, the combination of myddosome-assembly disruption and BTK or BCL-2 signaling inhibition led to synergistic ABC DLBCL cell death, and more robust inhibition of NF-κB activity or increased apoptosis, respectively. The results of the present study provide evidence that the synthetic peptidomimetic compound ST2825, which targets myddosome assembly, may serve as a pharmacological inhibitor. ST2825 has the potential for clinical use in patients with L265P DLBCL, and other B-cell neoplasms driven by activated MYD88 signaling.
Collapse
|
41
|
Dickinson SE, Wondrak GT. TLR4 in skin cancer: From molecular mechanisms to clinical interventions. Mol Carcinog 2019; 58:1086-1093. [PMID: 31020719 DOI: 10.1002/mc.23016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
The health and economic burden imposed by skin cancer is substantial, creating an urgent need for the development of improved molecular strategies for its prevention and treatment. Cutaneous exposure to solar ultraviolet (UV) radiation is a causative factor in skin carcinogenesis, and TLR4-dependent inflammatory dysregulation is an emerging key mechanism underlying detrimental effects of acute and chronic UV exposure. Direct and indirect TLR4 activation, upstream of inflammatory signaling, is elicited by a variety of stimuli, including pathogen-associated molecular patterns (such as lipopolysaccharide) and damage-associated molecular patterns (such as HMGB1) that are formed upon exposure to environmental stressors, such as solar UV. TLR4 involvement has now been implicated in major types of skin malignancies, including nonmelanoma skin cancer, melanoma and Merkel cell carcinoma. Targeted molecular interventions that positively or negatively modulate TLR4 signaling have shown promise in translational, preclinical, and clinical investigations that may benefit skin cancer patients in the near future.
Collapse
Affiliation(s)
- Sally E Dickinson
- Department of Pharmacology, College of Medicine and The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
42
|
Dickinson SE, Wondrak GT. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. Curr Med Chem 2019; 25:5487-5502. [DOI: 10.2174/0929867324666170828125328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/16/2023]
Abstract
Background:
Exposure to solar ultraviolet (UV) radiation is a causative factor in
skin photodamage and carcinogenesis, and inflammatory dysregulation is a key mechanism
underlying detrimental effects of acute and chronic UV exposure. The health and economic
burden of skin cancer treatment is substantial, creating an increasingly urgent need for the development
of improved molecular strategies for photoprotection and photochemoprevention.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature
revealed 139 articles including our own that are presented and critically evaluated in this
TLR4-directed review.
Objective:
To understand the molecular role of Toll-like receptor 4 (TLR4) as a key regulator
of skin anti-microbial defense, wound healing, and cutaneous tumorigenic inflammation. The
specific focus of this review is on recent published evidence suggesting that TLR4 represents
a novel molecular target for skin photoprotection and cancer photochemoprevention.
Results:
Cumulative experimental evidence indicates that pharmacological and genetic antagonism
of TLR4 suppresses UV-induced inflammatory signaling involving the attenuation
of cutaneous NF-κB and AP-1 stress signaling observable in vitro and in vivo. TLR4-directed
small molecule pharmacological antagonists [including eritoran, (+)-naloxone, ST2825, and
resatorvid] have now been identified as a novel class of molecular therapeutics. TLR4 antagonists
are in various stages of preclinical and clinical development for the modulation of
dysregulated TLR4-dependent inflammatory signaling that may also contribute to skin photodamage
and photocarcinogenesis in human populations.
Conclusion:
Future research should explore the skin photoprotective and photochemopreventive
efficacy of topical TLR4 antagonism if employed in conjunction with other molecular
strategies including sunscreens.
Collapse
Affiliation(s)
- Sally E. Dickinson
- Department of Pharmacology, College of Medicine and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
43
|
Chen L, Chen H, Chen P, Zhang W, Wu C, Sun C, Luo W, Zheng L, Liu Z, Liang G. Development of 2-amino-4-phenylthiazole analogues to disrupt myeloid differentiation factor 88 and prevent inflammatory responses in acute lung injury. Eur J Med Chem 2019; 161:22-38. [PMID: 30342423 DOI: 10.1016/j.ejmech.2018.09.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
|
44
|
Xing S, Zhang X, Huang X, Xie L, Jiang F, Zhou P. Modulating the conformation of the TIR domain by a neoteric MyD88 inhibitor leads to the separation of GVHD from GVT. Leuk Lymphoma 2018; 60:1528-1539. [PMID: 30501537 DOI: 10.1080/10428194.2018.1537487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Graft-versus-host disease (GVHD) remains the least curable complication after allogeneic bone marrow transplantation (BMT). Myeloid differentiation factor 88 (MyD88) is an adaptor molecule critically involved in the toll-like receptor (TLR) signaling pathway. The Toll/IL-1 receptor (TIR) domains of MyD88 and TLR are interactional modules responsible for sorting and signaling via direct or indirect TIR-TIR interactions, which can contribute to all phases of GVHD progression. Here, we describe the mechanisms of the novel MyD88 inhibitor, TJ-M2010-5, and the discovery of its immunosuppressive properties in the context of GVHD and the graft-versus-tumor (GVT) effect in a fully MHC-mismatched murine model. TJ-M2010-5 potentially interrupted the conformation of the TIR domain through its predicted DD loops, BB loops, and Poc site, and inhibited the homodimerization of MyD88, the LPS-stimulated activation of dendritic cells, and the priming of donor allogeneic T cell proliferation in a dose-dependent manner. Oral administration of TJ-M2010-5 ameliorated the inflammatory environment, decreased the number of apoptotic cells, increased tissue repair in GVHD target organs, and suppressed lethal GVHD. Further, protection against GVHD by TJ-M2010-5 did not abrogate a GVT effect against SP2/0, a myeloma cell line. Our data define the mechanisms of actions and provide novel insight into the potential clinical uses of TJ-M2010-5 for GVHD prevention.
Collapse
Affiliation(s)
- Shuai Xing
- a Department of Gastroenterology , Tongji Hospital TongjiMedical College Huazhong University of Science and Technology , Wuhan , China.,b Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education , Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xue Zhang
- b Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education , Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xia Huang
- b Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education , Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Lin Xie
- b Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education , Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Fengchao Jiang
- c Academy of Pharmacology , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ping Zhou
- b Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education , Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
45
|
Tang R, Yi J, Yang J, Chen Y, Luo W, Dong S, Fei J. Interleukin-37 inhibits osteoclastogenesis and alleviates inflammatory bone destruction. J Cell Physiol 2018; 234:7645-7658. [PMID: 30414292 PMCID: PMC6587950 DOI: 10.1002/jcp.27526] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Excessive osteoclast formation is one of the important pathological features of inflammatory bone destruction. Interleukin‐37 (IL‐37) is an anti‐inflammatory agent that is present throughout the body, but it displays low physiological retention. In our study, high levels of the IL‐37 protein were detected in clinical specimens from patients with bone infections. However, the impact of IL‐37 on osteoclast formation remains unclear. Next, IL‐37 alleviated the inflammatory bone destruction in the mouse in vivo. We used receptor activator of nuclear factor‐κB ligand and lipopolysaccharide to trigger osteoclastogenesis under physiological and pathological conditions to observe the role of IL‐37 in this process and explore the potential mechanism of this phenomenon. In both induction models, IL‐37 exerted inhibitory effects on osteoclast differentiation and bone resorption. Furthermore, IL‐37 decreased the phosphorylation of inhibitor of κBα and p65 and the expression of nuclear factor of activated T cells c1, while the dimerization inhibitor of myeloid differentiation factor 88 reversed the effects. These data provide evidence that IL‐37 modulates osteoclastogenesis and a theoretical basis for the clinical application of IL‐37 as a treatment for bone loss–related diseases.
Collapse
Affiliation(s)
- Ruohui Tang
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jin Yi
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Yang
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Luo
- Department of Osteological, Guizhou Province People's Hospital, Guiyang, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Jun Fei
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Chen J, He J, Yang Y, Jiang J. An analysis of the expression and function of myeloid differentiation factor 88 in human osteosarcoma. Oncol Lett 2018; 16:4929-4936. [PMID: 30250559 PMCID: PMC6144908 DOI: 10.3892/ol.2018.9297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the expression and function of myeloid differentiation factor 88 (MyD88) in osteosarcoma. Immunohistochemical staining was used to detect MyD88 protein in osteosarcoma tissues and matched normal bone tissues. The association between MyD88 expression and the clinical characteristics of patients with osteosarcoma was analyzed. Furthermore, survival analysis of patients with osteosarcoma was performed to study the association between MyD88 expression and patient prognosis. Finally, the effect of the MyD88 inhibitor, ST2825, on the proliferation and apoptosis of the human osteosarcoma cell line U2OS was examined. Additionally, cell proliferation, invasion and apoptosis were examined using an MTT assay, Transwell assay and Annexin V-fluorescein isothiocyanate staining kit, respectively. The expression of proteins associated with the NF-κB signaling pathway was analyzed by western blotting. The positive expression rate of MyD88 in osteosarcoma and normal bone tissues was 71.4 and 6.1%, respectively. Statistical analysis demonstrated that MyD88 was not associated with gender, age, histological type or tumor location, but that it was associated with Enneking stage and tumor metastasis (P<0.05). According to the survival analysis, patients with osteosarcoma in the high MyD88 expression group displayed a reduced overall survival rate (P<0.05). Furthermore, inhibition of MyD88 by ST2825 in U2OS cells resulted in a marked decrease in cellular proliferation and migration, and an increase in the rate of apoptosis (P<0.05). Notably, ST2825 significantly decreased cyclin D1, matrix metallopeptidase-9 and nucleus p65 expression, but increased cleaved-caspase 3 expression in ST2825-treated U2OS cells (P<0.05). The results of the present study indicated that MyD88 expression is associated with the progression of osteosarcoma and may be a potential therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jun Chen
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Jian He
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Yue Yang
- Department of Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Jiannong Jiang
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| |
Collapse
|
47
|
Ippagunta SK, Pollock JA, Sharma N, Lin W, Chen T, Tawaratsumida K, High AA, Min J, Chen Y, Guy RK, Redecke V, Katzenellenbogen JA, Häcker H. Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Sci Signal 2018; 11:11/543/eaaq1077. [PMID: 30108181 DOI: 10.1126/scisignal.aaq1077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) recognize various pathogen- and host tissue-derived molecules and initiate inflammatory immune responses. Exaggerated or prolonged TLR activation, however, can lead to etiologically diverse diseases, such as bacterial sepsis, metabolic and autoimmune diseases, or stroke. Despite the apparent medical need, no small-molecule drugs against TLR pathways are clinically available. This may be because of the complex signaling mechanisms of TLRs, which are governed by a series of protein-protein interactions initiated by Toll/interleukin-1 receptor homology domains (TIR) found in TLRs and the cytoplasmic adaptor proteins TIRAP and MyD88. Oligomerization of TLRs with MyD88 or TIRAP leads to the recruitment of members of the IRAK family of kinases and the E3 ubiquitin ligase TRAF6. We developed a phenotypic drug screening system based on the inducible homodimerization of either TIRAP, MyD88, or TRAF6, that ranked hits according to their hierarchy of action. From a bioactive compound library, we identified methyl-piperidino-pyrazole (MPP) as a TLR-specific inhibitor. Structure-activity relationship analysis, quantitative proteomics, protein-protein interaction assays, and cellular thermal shift assays suggested that MPP targets the TIR domain of MyD88. Chemical evolution of the original MPP scaffold generated compounds with selectivity for distinct TLRs that interfered with specific TIR interactions. Administration of an MPP analog to mice protected them from TLR4-dependent inflammation. These results validate this phenotypic screening approach and suggest that the MPP scaffold could serve as a starting point for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Sirish K Ippagunta
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Julie A Pollock
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Naina Sharma
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kazuki Tawaratsumida
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anthony A High
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yizhe Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vanessa Redecke
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
48
|
Development of a Novel Backbone Cyclic Peptide Inhibitor of the Innate Immune TLR/IL1R Signaling Protein MyD88. Sci Rep 2018; 8:9476. [PMID: 29930295 PMCID: PMC6013495 DOI: 10.1038/s41598-018-27773-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022] Open
Abstract
MyD88 is a cytoplasmic adaptor protein that plays a central role in signaling downstream of the TLRs and the IL1R superfamily. We previously demonstrated that MyD88 plays a critical role in EAE, the murine model of multiple sclerosis, and showed that the MyD88 BB-loop decoy peptide RDVLPGT ameliorates EAE. We now designed and screened a library of backbone cyclized peptides based on the linear BB loop peptide, to identify a metabolically stable inhibitor of MyD88 that retains the binding properties of the linear peptide. We identified a novel cyclic peptide protein mimetic that inhibits inflammatory responses to TLR ligands, and NFκB activation in response to IL-1 activation. The inhibitor, c(MyD 4-4), is metabolically stable in comparison to the linear peptide, blocks MyD88 in a specific manner, and inhibits MyD88 function by preventing MyD88 dimerization. Finally, treatment of mice with c(MyD 4-4) reduced the severity of clinical disease in the murine EAE model of multiple sclerosis. Thus, modulation of MyD88-dependent signaling using c(MyD 4-4) is a potential therapeutic strategy to lower innate immune inflammation in autoimmune CNS disease.
Collapse
|
49
|
Chasset F, Arnaud L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev 2017; 17:44-52. [PMID: 29108825 DOI: 10.1016/j.autrev.2017.11.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023]
Abstract
Significant advances in the understanding of the molecular basis of innate immunity have led to the identification of interferons (IFNs), particularly IFN-α, as central mediators in the pathogenesis of Systemic Lupus Erythematosus. Therefore, targeting of IFNs and of their downstream pathways has emerged as important developments for novel drug research in SLE. Based on this, several specific interferon blocking strategies using anti-IFN-α antibodies, anti-type I interferon receptor antibodies, Interferon-α-kinoid, or anti-IFN-γ antibodies have all been assessed in recent clinical trials. Alternative strategies targeting the plasmacytoid dendritic cells (pDCs), Toll-Like Receptors (TLRs)-7/9 or their downstream pathways such as the myeloid differentiation primary-response protein 88 (MYD88), spleen tyrosine kinase (Syk), Janus-kinases (JAKs), interleukin-1 receptor-associated kinase 4 (IRAK4), or the Tyrosine Kinase 2 (TYK2) are also investigated actively in SLE, at more preliminary clinical development stages, except for JAK inhibitors which have reached phase 2 studies. In a near future, in-depth and personalized functional characterization of IFN pathways may provide further guidance for the selection of the most relevant therapeutic strategy in SLE, tailored at the patient-level.
Collapse
Affiliation(s)
- François Chasset
- AP-HP, Service de Dermatologie et d'Allergologie, Hôpital Tenon, F-75020, Paris, France
| | - Laurent Arnaud
- Service de rhumatologie, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Université de Strasbourg, INSERM UMR-S 1109, F-67000 Strasbourg, France.
| |
Collapse
|
50
|
Wang N, Han X, Liu H, Zhao T, Li J, Feng Y, Mi X, Zhang Y, Chen Y, Wang X. Myeloid differentiation factor 88 is up-regulated in epileptic brain and contributes to experimental seizures in rats. Exp Neurol 2017; 295:23-35. [DOI: 10.1016/j.expneurol.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/27/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
|