1
|
Eid RK, Arafa MF, El Maghraby GM. Water in nigella oil microemulsion for enhanced oral bioavailability of linagliptin. Drug Deliv Transl Res 2025; 15:596-608. [PMID: 38740693 PMCID: PMC11683016 DOI: 10.1007/s13346-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Linagliptin is hydrophilic antidiabetic with poor oral bioavailability due to poor permeability and pre-systemic metabolism. The objective was to assess w/o microemulsion for enhanced oral bioavailability of linagliptin. Nigella oil was used as oily phase based on its reported antidiabetic effect. Isopropyl myristate (IPM) or capryol were combined with nigella oil to impart intestinal membrane permeabilizing abilities. Pseudoternary phase diagrams were constructed utilizing nigella oil in presence and absence of isopropyl myristate or capryol as oily phase using Tween 60 as surfactant. W/O microemulsion formulations were selected from the constructed phase diagrams and linagliptin was loaded in the internal aqueous phase at a concentration of 0.5 mg/ml. The prepared formulations were physically evaluated and linagliptin in vitro release was monitored. Eventually, the in vivo hypoglycemic effect was assessed using diabetic rats. The developed microemulsions were of w/o type and exhibited Newtonian flow behavior with nigella/capryol microemulsion recording the lowest viscosity. The recorded droplet size values were 104.9, 121.2 and 86.4 nm for nigella, nigella/IPM and nigella/capryol microemulsions, respectively. All microemulsion formulations showed slower drug release rate compared with aqueous suspension with nigella/capryol microemulsion showing the highest release rate compared to other microemulsions. Release data from microemulsion best fitted to Higuchi model. In vivo oral hypoglycemic activity measurement reflected a more intensified hypoglycemic effect with rapid onset after oral ingestion of microemulsion compared to linagliptin dispersion. Nigella oil/IPM-based microemulsion was ranked as the most effective. The investigation highlighted the feasibility of w/o microemulsion for enhanced oral bioavailability of hydrophilic drugs like linagliptin.
Collapse
Affiliation(s)
- Rania K Eid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Mona F Arafa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Department of pharmaceutics, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Tsuchitani T, Kato M, Tomaru A, Aoki Y, Sugiyama Y. Trends of in vitro pharmacological potency and in vivo pharmacokinetics parameters of modern drugs: Can the therapeutic/subtherapeutic dose be estimated from in vitro K i and pharmacokinetic parameters? Clin Transl Sci 2024; 17:e70034. [PMID: 39600105 PMCID: PMC11599425 DOI: 10.1111/cts.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 09/07/2024] [Indexed: 11/29/2024] Open
Abstract
In drug discovery and development, estimating therapeutic and subtherapeutic doses is crucial for designing early-phase clinical trials, particularly first-in-human (FIH) studies. While increasing the in vitro pharmacological potency (lowering Ki) of a compound to its target is expected to decrease the therapeutic dose, its benefit is not necessarily clarified. We analyzed in vitro Ki, human in vivo pharmacokinetics (PK) parameters, and therapeutics doses of 144 oral small-molecule drugs approved in Japan (2010-2021). The data on classic drugs were obtained from Goodman and Gilman's textbook, 9th ed. (published in 1996). Modern drugs had lower Ki (2.5 nM) and daily doses (88 μmol/day) than classic drugs (33 nM and 313 μmol/day), but 3.6-fold higher intrinsic clearance (CLint; 171 vs. 47 L/h), suggest that increasing potency over the years has not resulted in a reduction in dosage as expected. Estimating therapeutic doses using target receptor occupancy (tRO)-optimized approach improved estimation accuracy (63% within 10-fold of observed values) compared with tRO-fixed approaches. Subtherapeutic dose estimations revealed a risk of overdosing in FIH trials, indicating that these estimates are not necessarily as conservative as is generally understood. Notably, the unbound average concentration-to-Ki ratio (Cave,u/Ki) varied among drugs and correlated negatively with Ki, suggesting the possible necessity of incorporating it into dose estimation methods. This study provides insights into the relationship between in vitro Ki, in vivo PK parameters, and therapeutic dose of modern drugs, proposing strategies and revealing the risk for dose estimation and drug development in the era of highly potent small molecules.
Collapse
Affiliation(s)
- Toshiaki Tsuchitani
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, School of PharmacyJosai International University (JIU)TokyoJapan
| | - Motohiro Kato
- Research Institute of Pharmaceutical Sciences, Musashino UniversityTokyoJapan
| | - Atsuko Tomaru
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, School of PharmacyJosai International University (JIU)TokyoJapan
| | - Yasunori Aoki
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, School of PharmacyJosai International University (JIU)TokyoJapan
- Drug Metabolism and Pharmacokinetics, Research and Early Development, CardiovascularRenal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Yuichi Sugiyama
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, School of PharmacyJosai International University (JIU)TokyoJapan
| |
Collapse
|
3
|
Aref H, Hammad S, Darwish KM, Elgawish MS. Unveiling Pharmacokinetics and Drug Interaction of Linagliptin and Pioglitazone HCl in Rat Plasma Using LC-MS/MS. Chem Res Toxicol 2024; 37:779-790. [PMID: 38684131 DOI: 10.1021/acs.chemrestox.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The linagliptin (LIN) and pioglitazone HCl (PIO) combination, currently undergoing phase III clinical trials for diabetes mellitus treatment, demonstrated significant improvements in glycemic control. However, the absence of an analytical method for simultaneous determination in biological fluids highlights a crucial gap. This underscores the pressing need for sensitive bioanalytical methods, emphasizing the paramount importance of developing such tools to advance diabetes management strategies and enhance patient care. Herein, a sensitive reverse-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for simultaneous determination of LIN and PIO in rat plasma using alogliptin as an internal standard. Chromatographic separation was performed on an Agilent Eclipse Plus C18 (4.6 × 100 mm, 3.5 μm) using an isocratic mobile phase system consisting of ammonium formate (pH 4.5) and methanol using an acetonitrile-induced protein precipitation technique for sample preparation. Multiple reaction monitoring in positive ion mode was used for quantitation of the precursor to production at m/z 473.2 → 419.9 for LIN, 357.1 → 134.2 for PIO, and 340.3 → 116.1 for ALO. The linearity range was 0.5 to 100 and 1 to 2000 ng/mL for LIN and PIO, respectively. The developed method was validated as per US-FDA guidelines and successfully applied to clinical pharmacokinetic and drug-drug interaction studies with a single oral administration of LIN and PIO in rat plasma. Pharmacokinetic parameters of LIN were significantly influenced by the concomitant administration of PIO and vice versa. Molecular modeling revealed the significant interaction of LIN and PIO with P-glycoprotein. Therefore, the drug-drug interaction between LIN and PIO deserves further study to improve drug therapy and prevent dangerous adverse effects.
Collapse
Affiliation(s)
- Heba Aref
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, El Menoufia University, El Menoufia, Shebin El Kom 32511, Egypt
| | - Sherin Hammad
- Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed S Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Chemistry Department, Korea University, Seoul 02841, Korea Republic
| |
Collapse
|
4
|
Li Q, Deng X, Xu YJ, Dong L. Development of Long-Acting Dipeptidyl Peptidase-4 Inhibitors: Structural Evolution and Long-Acting Determinants. J Med Chem 2023; 66:11593-11631. [PMID: 37647598 DOI: 10.1021/acs.jmedchem.3c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Considerable effort has been made to achieve less frequent dosing in the development of DPP-4 inhibitors. Enthusiasm for long-acting DPP-4 inhibitors is based on the promise that such agents with less frequent dosing regimens are associated with improved patient adherence, but the rational design of long-acting DPP-4 inhibitors remains a major challenge. In this Perspective, the development of long-acting DPP-4 inhibitors is comprehensively summarized to highlight the evolution of initial lead compounds on the path toward developing long-acting DPP-4 inhibitors over nearly three decades. The determinants for long duration of action are then examined, including the nature of the target, potency, binding kinetics, crystal structures, selectivity, and preclinical and clinical pharmacokinetic and pharmacodynamic profiles. More importantly, several possible approaches for the rational design of long-acting drugs are discussed. We hope that this information will facilitate the design and development of safer and more effective long-acting DPP-4 inhibitors and other oral drugs.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoyan Deng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan-Jun Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lin Dong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Saini K, Sharma S, Khan Y. DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Front Mol Biosci 2023; 10:1130625. [PMID: 37287751 PMCID: PMC10242023 DOI: 10.3389/fmolb.2023.1130625] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
DPP-4 inhibition is an interesting line of therapy for treating Type 2 Diabetes Mellitus (T2DM) and is based on promoting the incretin effect. Here, the authors have presented a brief appraisal of DPP-4 inhibitors, their modes of action, and the clinical efficiency of currently available drugs based on DPP-4 inhibitors. The safety profiles as well as future directions including their potential application in improving COVID-19 patient outcomes have also been discussed in detail. This review also highlights the existing queries and evidence gaps in DPP-4 inhibitor research. Authors have concluded that the excitement surrounding DPP-4 inhibitors is justified because in addition to controlling blood glucose level, they are good at managing risk factors associated with diabetes.
Collapse
|
6
|
Liu J, Zhu X, Zhang H, Wei H, Yang D, Xu Z, Huo D, Li X, Ding Y. First-in-Human, Double-Blind, Randomized, Placebo-Controlled Trial of TQ-F3083, a New Dipeptidyl Peptidase-4 Inhibitor, in Healthy Chinese Adults. Front Pharmacol 2021; 12:689523. [PMID: 34366847 PMCID: PMC8339258 DOI: 10.3389/fphar.2021.689523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background: As a novel dipeptidyl peptidase-4 (DPP-4) inhibitor, TQ-F3083 represents a promising new drug for type 2 diabetes mellitus (T2DM). This phase I, first-in-human study evaluated the tolerability, pharmacokinetics, and pharmacodynamics of TQ-F3083 in healthy Chinese adults. Methods: Sixty healthy participants total were enrolled in the single-ascending dose, multiple-dose, and food-effect studies. Safety endpoints included adverse events (AEs), vital signs, 12-lead electrocardiogram, abdominal ultrasound, chest X-ray, physical examination, and clinical laboratory tests. Blood, urine, and feces samples were collected for pharmacokinetic analyses. Pharmacodynamic parameters were evaluated based on DPP-4 activity and the active glucagon-like peptide-1 concentration. Results: In total, 22 treatment-related AEs, mostly grade 1 or 2, were reported in 14 individuals. No deaths, serious AEs, or grade ≥4 AEs occurred, and no dose-dependent AEs were demonstrated. For pharmacokinetic characteristics, dose linearity was analyzed using power model. The slopes (90% CIs) were 1.08 (1.02–1.13) and 1.05 (0.99–1.11) for AUC0-t and AUC0-∞, suggesting liner pharmacokinetic characteristic after oral dose TQ-F3083 from 2 to 160 mg. The accumulation factor was 1.39 after multiple dose for 7 days. Decreased plasma exposure (84.87% decrease in Cmax, 49.23% in AUC0-t, and 47.77% in AUC0-∞) was observed with administration after a high-fat and high-calorie standardized breakfast. The 0–72 h TQ-F3083 excretion recovery percentages were 7.84% in urine and 5.76% in feces. Over 80% DPP-4 inhibition for 24 h was observed in the 20–160 mg cohorts, and the model-estimated 50% effective concentration was 1.10 ng/ml. The concentration of active glucagon-like peptide-1 increased after TQ-F3083 administration, but no obvious dose dependency was observed. Conclusion: TQ-F3083 was well tolerated in healthy Chinese adults, and the pharmacokinetic and pharmacodynamic characteristics support further evaluation of TQ-F3083 in a trial in T2DM patients.
Collapse
Affiliation(s)
- Jingrui Liu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Hong Zhang
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Haijing Wei
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Deming Yang
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Zhongnan Xu
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Dandan Huo
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Xiaojiao Li
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Ding
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Mayer AL, Scheitacker I, Ebert N, Klein T, Amann K, Daniel C. The dipeptidyl peptidase 4 inhibitor linagliptin ameliorates renal injury and accelerated resolution in a rat model of crescentic nephritis. Br J Pharmacol 2021; 178:878-895. [PMID: 33171531 DOI: 10.1111/bph.15320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Dipeptidyl peptidase 4 (DPP-4) inhibitors are a class of oral glucose-lowering drugs used in the treatment of type 2 diabetes. In a pilot study using human kidney biopsies, we observed high DPP-4 expression in early crescent formation. This glomerular lesion occurs in different kidney diseases and is a hallmark in the pathogenesis of renal dysfunction. Therefore, we investigated the potential involvement of DPP-4 in the pathogenesis of nephritis induced by anti-glomerular basement membrane (GBM) antibody in rats. EXPERIMENTAL APPROACH Linagliptin and vehicle were used to treat anti-GBM nephritis in a 2- and 8-week regimen, that is either preventive or therapeutic (treatment started 7 days or 4 weeks after disease induction). Kidney function, morphologic changes, inflammation and fibrosis were monitored. KEY RESULTS In the long-term experiment, linagliptin preventive treatment in anti-GBM nephritic rats significantly reduced the number of crescents, glomerulosclerosis, tubular injury and renal fibrosis, compared with those in untreated nephritic rats. Both linagliptin regimes significantly lowered the number of Pax8+ cells on the glomerular tuft in anti-GBM nephritis, indicating accelerated resolution of the cellular crescents. The linagliptin treatment did not change the podocyte stress in both therapeutic groups. Therapeutic intervention with linagliptin resulted in weaker amelioration of renal disease on Week 8 than did preventive intervention. CONCLUSION AND IMPLICATIONS DPP-4 inhibition with linagliptin ameliorates renal injury in a rat model of anti-GBM, indicating that linagliptin not only is a secure therapy in diabetes but also can improve resolution of glomerular injury and healing in non-diabetic renal disease.
Collapse
Affiliation(s)
- Anna-Lena Mayer
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Scheitacker
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nadja Ebert
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Klein
- Department of Cardio-metabolic Diseases, Boehringer Ingelheim Pharma GmbH Co KG, Biberach, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Schnapp G, Hoevels Y, Bakker RA, Schreiner P, Klein T, Nar H. A Single Second Shell Amino Acid Determines Affinity and Kinetics of Linagliptin Binding to Type 4 Dipeptidyl Peptidase and Fibroblast Activation Protein. ChemMedChem 2020; 16:630-639. [PMID: 33030297 PMCID: PMC7984154 DOI: 10.1002/cmdc.202000591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 01/10/2023]
Abstract
Drugs targeting type 4 dipeptidyl peptidase (DPP‐4) are beneficial for glycemic control, whereas fibroblast activation protein alpha (FAP‐α) is a potential target for cancer therapies. Unlike other gliptins, linagliptin displays FAP inhibition. We compared biophysical and structural characteristics of linagliptin binding to DPP‐4 and FAP to better understand what differentiates linagliptin from other gliptins. Linagliptin exhibited high binding affinity (KD) and a slow off‐rate (koff) when dissociating from DPP‐4 (KD 6.6 pM; koff 5.1×10−5 s−1), and weaker inhibitory potency to FAP (KD 301 nM; koff>1 s−1). Co‐structures of linagliptin with DPP‐4 or FAP were similar except for one second shell amino acid difference: Asp663 (DPP‐4) and Ala657 (FAP). pH dependence of enzymatic activities and binding of linagliptin for DPP‐4 and FAP are dependent on this single amino acid difference. While linagliptin may not display any anticancer activity at therapeutic doses, our findings may guide future studies for the development of optimized inhibitors.
Collapse
Affiliation(s)
- Gisela Schnapp
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Yvette Hoevels
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Remko A Bakker
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | | | - Thomas Klein
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Herbert Nar
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| |
Collapse
|
9
|
Wu N, An G. Incorporating Pharmacological Target-Mediated Drug Disposition (TMDD) in a Whole-Body Physiologically Based Pharmacokinetic (PBPK) Model of Linagliptin in Rat and Scale-up to Human. AAPS JOURNAL 2020; 22:125. [PMID: 32996028 DOI: 10.1208/s12248-020-00481-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Linagliptin demonstrates substantial nonlinear pharmacokinetics due to its saturable binding to its pharmacological target dipeptidyl peptide 4 (DPP-4), a phenomenon known as target-mediated drug disposition (TMDD). In the current study, we established a novel whole-body physiologically-based pharmacokinetic (PBPK)-TMDD model for linagliptin. This comprehensive model contains plasma and 14 tissue compartments, among which TMDD binding process was incorporated in 9 of them, namely the plasma, kidney, liver, spleen, lung, skin, salivary gland, thymus, and reproductive organs. Our final model adequately captured the concentration-time profiles of linagliptin in both plasma and various tissues in both wildtype rats and DPP4-deficient rats following different doses. The association rate constant (kon) in plasma and tissues were estimated to be 0.943 and 0.00680 nM-1 h-1, respectively, and dissociation rate constant (koff), in plasma and tissues were estimated to be 0.0698 and 0.00880 h-1, respectively. The binding affinity of linagliptin to DPP-4 (Kd) was predicted to be higher in plasma (0.0740 nM) than that in tissue (1.29 nM). When scaled up to a human, this model captured the substantial and complex nonlinear pharmacokinetic behavior of linagliptin in human adults that is characterized by less-than dose-proportional increase in plasma exposure, dose-dependent clearance and volume of distribution, as well as long terminal half-life with minimal accumulation after repeated doses. Our modeling work is not only novel but also of high significance as the whole-body PBPK-TMDD model platform developed using linagliptin as the model compound could be applied to other small-molecule compounds exhibiting TMDD to facilitate their optimal dose selection. Graphical abstract.
Collapse
Affiliation(s)
- Nan Wu
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA
| | - Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
10
|
Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv Transl Res 2020; 11:1166-1185. [PMID: 32804301 DOI: 10.1007/s13346-020-00839-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Linagliptin (LGP), a novel anti-diabetic drug, is a DPP-4 inhibitor used in the treatment of type II diabetes. One of the major disadvantages of LGP is its low oral bioavailability (29.5%) due to first-pass metabolism and P-gp efflux. In an attempt to increase the oral bioavailability, LGP solid lipid nanoparticles (LGP-SLNs) were developed with poloxamer 188 and Tween 80 as P-gp inhibitors. LGP-SLNs were formulated using palmitic acid, poloxamer 188 and Tween 80 as lipid, surfactant and co-surfactant, respectively, by hot homogenization ultrasonication method and optimized using 32 full factorial designs. Particle size, entrapment efficiency (%EE) and drug release at 24 h were evaluated as responses. An optimized batch of LGP-SLNs (L12) was evaluated for intestinal transport of LGP by conducting in situ single-pass intestinal perfusion (SPIP), everted gut sac and Caco-2 permeability study. The pharmacokinetic and pharmacodynamic evaluation of L12 was carried out in albino Wistar rats. The mean particle size, polydispersity index, zeta potential and %EE of L12 were found to be 225.96 ± 2.8 nm, 0.180 ± 0.034, - 5.4 ± 1.07 mV and 73.8 ± 1.73%, respectively. %CDR of 80.96 ± 3.13% was observed in 24 h. The permeability values of LGP-SLNs in the absorptive direction were 1.82-, 1.76- and 1.74-folds higher than LGP-solution (LGP-SOL) in SPIP, everted gut sac and Caco-2 permeability studies, respectively. LGP-SLNs exhibited relative bioavailability of 300% and better reduction in glucose levels in comparison with LGP-SOL in rats. The enhanced oral bioavailability exhibited by LGP-SLNs bioavailability may be due to P-gp efflux inhibition and lymphatic targeting. Improved bioabsorption can cause reduction in dose, dose-related side effects and frequency of administration. Thus, LGP-SLNs can be considered promising carriers for oral delivery but clinical studies are required to confirm the proof of concept.Graphical abstract.
Collapse
|
11
|
Aref HA, Hammad SF, Elgawish MS, Darwish KM. Novel spectrofluorimetric quantification of linagliptin in biological fluids exploiting its interaction with 4‐chloro‐7‐nitrobenzofurazan. LUMINESCENCE 2020; 35:626-635. [DOI: 10.1002/bio.3767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Heba A. Aref
- Medicinal Chemistry Department, Faculty of PharmacyEl Mounufia University El Mounufia Egypt
- Medicinal Chemistry Department, Faculty of PharmacySuez Canal University Ismailia 41522 Egypt
| | - Sherin F. Hammad
- Analytical Chemistry Department, Faculty of PharmacyTanta University Tanta Egypt
| | - Mohamed Saleh Elgawish
- Medicinal Chemistry Department, Faculty of PharmacySuez Canal University Ismailia 41522 Egypt
| | - Khaled M. Darwish
- Medicinal Chemistry Department, Faculty of PharmacySuez Canal University Ismailia 41522 Egypt
| |
Collapse
|
12
|
Sato N, Nakamura Y, Yamadera S, Inagaki M, Kenmotsu S, Saito H, Oguchi T, Tsuji M, Chokki H, Ohsawa I, Gotoh H, Iwai S, Kiuchi Y. Linagliptin Inhibits Lipopolysaccharide-Induced Inflammation Concentration-Dependently And -Independently. J Inflamm Res 2019; 12:285-291. [PMID: 31695471 PMCID: PMC6814358 DOI: 10.2147/jir.s221761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Dipeptidyl peptidase-4 inhibitors, including linagliptin, prevent inflammation. However, the in vitro effects of linagliptin are unclear. Moreover, although linagliptin inhibits lipopolysaccharide (LPS)-induced inflammation, the anti-inflammatory effects of linagliptin in this context are not concentration-dependent. In the absence of LPS-binding protein (LBP), the pro-inflammatory effects of LPS involve pathways other than the Toll-like receptor (TLR) 4 pathway. Here, we aimed to determine the anti-inflammatory mechanisms of linagliptin in an experimental model in which LBP was added to the medium. Methods Human U937 monocytes were cultured at 1 × 106 cells/mL in Roswell Park Memorial Institute medium and differentiated into macrophages using phorbol myristate acetate. All processes were carried out in medium containing 10% fetal bovine serum (FBS). After 48 hrs of culture, we replaced the medium and pretreated the cells with 100, 250, 500, or 2500 nM linagliptin for 1 hr. We exchanged the medium again, and the cells were treated with 1 ng/mL LPS with or without 100, 250, 500, or 2500 nM linagliptin. Interleukin (IL)-6 and LBP in the supernatant, nuclear factor (NF)-κB/p65 in the nucleus, and reactive oxygen species (ROS) in the cells, as important markers of the mechanism of inflammation induction by LPS, were measured using enzyme-linked immunosorbent assay kits. Results Linagliptin significantly prevented LPS-stimulated IL-6 production and intranuclear NF-κB/p65 levels in a concentration-dependent manner. LPS-induced intracellular ROS levels were significantly decreased by linagliptin at all concentrations. LBP levels were markedly higher in FBS-containing medium than in medium without FBS. However, LBP levels did not change following administration of linagliptin and/or LPS. Conclusion Concentration-dependent and -independent inflammatory suppression was observed following linagliptin treatment in the context of LPS-induced pro-inflammatory responses. Thus, our findings suggested that linagliptin induced two different mechanisms to repress inflammation, i.e., TLR4-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan.,Department of Research Center, Tanabe Pharmacy Inc., Tokyo, Japan
| | - Yuya Nakamura
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan.,Department of Nephrology, Saiyu Soka Hospital, Soka City, Saitama-ken, Japan
| | - Shiho Yamadera
- Department of Hospital Pharmaceutics, Showa University School of Pharmacy, Shinagawa-ku, Tokyo, Japan
| | - Masahiro Inagaki
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan.,Fuculty of Arts and Sciences at Fujiyoshida, Showa University, Fujiyoshida City, Yamanashi-ken, Japan
| | - Sachiyo Kenmotsu
- Fuculty of Arts and Sciences at Fujiyoshida, Showa University, Fujiyoshida City, Yamanashi-ken, Japan
| | - Hiroshi Saito
- Department of Hospital Pharmaceutics, Showa University School of Pharmacy, Shinagawa-ku, Tokyo, Japan.,Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Shinagawa-ku, Tokyo, Japan
| | - Tatsunori Oguchi
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Hirokazu Chokki
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Isao Ohsawa
- Department of Nephrology, Saiyu Soka Hospital, Soka City, Saitama-ken, Japan
| | - Hiromichi Gotoh
- Department of Nephrology, Saiyu Soka Hospital, Soka City, Saitama-ken, Japan
| | - Shinichi Iwai
- Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Shinagawa-ku, Tokyo, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
13
|
Çadirci K, Türkez H, Özdemir Ö. THE IN VITRO CYTOTOXICITY, GENOTOXICITY AND OXIDATIVE DAMAGE POTENTIAL OF THE ORAL DIPEPTIDYL PEPTIDASE-4 INHIBITOR, LINAGLIPTIN, ON CULTURED HUMAN MONONUCLEAR BLOOD CELLS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; -5:9-15. [PMID: 31149054 PMCID: PMC6535332 DOI: 10.4183/aeb.2019.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Linagliptin (LNG) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor that ameliorates blood glucose control of patients with type 2 diabetes, without developing hypoglycemic risk and weight gain with a good clinical and biological tolerance profile. To the best of our knowledge, its cytotoxic, genotoxic and oxidative effects have never been studied on any cell line. AIM To evaluate the in vitro cytotoxic, genotoxic damage potential and antioxidant/oxidant activity of LNG in cultured peripheral blood mononuclear cells (PBMC). MATERIAL AND METHODS After exposure to different doses (from 0.5 to 500 mg/L) of LNG, cell viability was measured by the MTT (3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) leakage tests. The antioxidant activity was assessed by the total antioxidant capacity (TAC) and total oxidative stress (TOS) assays. To evaluate the genotoxic damage potential, chromosomal aberration (CA) frequencies and 8-oxo-2'-deoxyguanosine (8-oxo-dG) levels were determined. RESULTS Treatment with LNG did not cause statistically significant decreases of cell viability at lower concentrations than 100 mg/L as compared to untreated cultures. However, LNG exhibited cytotoxic action at 250 and 500 mg/L. Also, IC20 and IC50 values of LNG were determined as 8.827 and 70.307 mg/L, respectively. In addition, the oxidative analysis revealed that LNG supported antioxidant capacity at concentrations of 2.5, 5, 10, 25, 50 and 100 mg/L without generating oxidative stress. Besides, the results of CA and 8-oxo-dG assays showed in vitro non-genotoxic feature of LNG. As a conclusion, our findings clearly revealed that LNG had no cytotoxic and genotoxic actions, but exhibited antioxidative activity. In conclusion, therefore it is suggested that LNG use in diabetic patients is safe and provides protection against diabetic vascular and oxidative complications.
Collapse
Affiliation(s)
- K. Çadirci
- Health Science University, Erzurum Regional Training and Research Hospital - Department of Internal Medicine, Erzurum, Turkey
| | - H. Türkez
- Erzurum Technical University, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Ö. Özdemir
- Erzurum Technical University, Department of Molecular Biology and Genetics, Erzurum, Turkey
| |
Collapse
|
14
|
Yamadera S, Nakamura Y, Inagaki M, Kenmotsu S, Nohara T, Sato N, Oguchi T, Tsuji M, Ohsawa I, Gotoh H, Goto Y, Yura A, Kiuchi Y, Iwai S. Linagliptin inhibits lipopolysaccharide-induced inflammation in human U937 monocytes. Inflamm Regen 2018; 38:13. [PMID: 30151063 PMCID: PMC6100723 DOI: 10.1186/s41232-018-0071-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
Background Atherosclerosis and inflammation are more common in patients with diabetes than in patients without diabetes, and atherosclerosis progression contributes to inflammation. Therefore, anti-inflammatory therapy is important for the prognosis of patients with diabetes. Linagliptin is the only bile-excreted, anti-diabetic oral dipeptidyl peptidase-4 (DPP-4) inhibitor. Although the anti-inflammatory effects of DPP-4 inhibitors in vivo and in vitro have been reported, few in vitro studies have examined the effects of linagliptin using monocytes, which play a central role in arteriosclerosis-related inflammation. Herein, we assessed the anti-inflammatory effects of linagliptin in human U937 monocytes. Methods U937 cells at densities of 1 × 106 cells/mL were cultured in Roswell Park Memorial Institute medium supplied with 10% fetal bovine serum and treated with 100 nM phorbol myristate acetate for 48 h for differentiation into macrophages. The media were replaced, and the cells were pretreated with 1, 5, 10, 50, and 100 nM linagliptin for 1 h or were left untreated. The media were then replaced again, and the cells were treated with 1 μg/mL lipopolysaccharide (LPS) or 10 nM interleukin (IL)-1β only, in combination with 1, 5, 10, 50, and 100 nM linagliptin or were left untreated. The extracted media were used to measure IL-6 and tumor necrosis factor (TNF)-α levels using enzyme-linked immunosorbent assay kits. Results LPS alone significantly increased IL-6 and TNF-α production compared with the control treatment. The treatment of cells with linagliptin at all concentrations significantly inhibited the LPS-stimulated IL-6 and TNF-α production. Meanwhile, IL-1β alone significantly increased IL-6 production compared with the control treatment. No significant difference in IL-6 production was noted between the cells treated with IL-1β and simultaneous treatment with IL-1β and linagliptin. Conclusions Linagliptin inhibited LPS-induced inflammation in human monocytic U937 cells.
Collapse
Affiliation(s)
- Shiho Yamadera
- 1Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Shinagawa-ku, Tokyo Japan
| | - Yuya Nakamura
- 2Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo Japan.,Saiyu Soka Hospital, Soka City, Saitama-ken Japan
| | - Masahiro Inagaki
- 4Department of Chemistry, College of Arts and Sciences, Showa University, Fujiyoshida City, Yamanashi-ken Japan
| | - Sachiyo Kenmotsu
- 4Department of Chemistry, College of Arts and Sciences, Showa University, Fujiyoshida City, Yamanashi-ken Japan
| | - Tetsuhito Nohara
- 2Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo Japan
| | - Naoki Sato
- 2Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo Japan
| | - Tatsunori Oguchi
- 2Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo Japan
| | - Mayumi Tsuji
- 2Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo Japan
| | - Isao Ohsawa
- Saiyu Soka Hospital, Soka City, Saitama-ken Japan
| | | | | | - Akihiko Yura
- 5School of Medicine, Showa University Preventive Medicine center, Koto-ku, Tokyo Japan
| | - Yuji Kiuchi
- 2Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo Japan
| | - Shinichi Iwai
- 1Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Shinagawa-ku, Tokyo Japan
| |
Collapse
|
15
|
Gallwitz B. A safety evaluation of empagliflozin plus linagliptin for treating type 2 diabetes. Expert Opin Drug Saf 2017; 16:1399-1405. [PMID: 28934557 DOI: 10.1080/14740338.2017.1382471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Dipeptidyl-peptidase-IV inhibitors (DPP-4i) and sodium-glucose-transporter-2 inhibitors (SGLT-2i) are oral antidiabetic drugs that improve glycemic parameters and possess a very low intrinsic hypoglycemia risk and favorable cardiovascular data. Areas covered: An overview on the clinical studies investigating the combination therapy with the DPP-4i linagliptin and the SGLT-2i empagliflozin is given. The clinical evidence for the efficacy and safety of free combinations as well as for their fixed dose combinations is presented. Empagliflozin has recently proved to reduce cardiovascular risk in type 2 diabetes and cardiovascular high risk situations. A fixed dose combination (FDC) of empagliflozin and linagliptin as add on therapy to metformin or as initial treatment lowered the HbA1c by approximately 1.1% and reduced the body weight by 2.0-3.0 kg. The hypoglycemia risk was not significantly increased. The relevant studies were identified by a search in Medline and in clinicaltrials.gov. Expert opinion/commentary: A DPP-4i/SGLT-2i FDC may be especially useful to simplify treatment, to reduce the tablet burden and to increase medication adherence. This FDC may be particularly beneficial for patients where the reduction of body weight, blood pressure and cardiovascular risk are important and in whom hypoglycemia should be avoided.
Collapse
Affiliation(s)
- Baptist Gallwitz
- a Department of Medicine IV , Eberhard Karls University Tübingen , Tübingen , Germany
| |
Collapse
|
16
|
Park SH, Nam JY, Han E, Lee YH, Lee BW, Kim BS, Cha BS, Kim CS, Kang ES. Efficacy of different dipeptidyl peptidase-4 (DPP-4) inhibitors on metabolic parameters in patients with type 2 diabetes undergoing dialysis. Medicine (Baltimore) 2016; 95:e4543. [PMID: 27512877 PMCID: PMC4985332 DOI: 10.1097/md.0000000000004543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hyperglycemia is associated with increased mortality and morbidity in patients with type 2 diabetes mellitus (T2DM) who are undergoing dialysis. Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used in end-stage renal disease (ESRD) patients with T2DM, there are few studies on their efficacy in this population. We studied the effect of 3 different DPP-4 inhibitors on metabolic parameters in ESRD patients with T2DM.Two hundred ESRD patients with T2DM who were treated with DPP-4 inhibitors (sitagliptin, vildagliptin, or linagliptin) were enrolled and analyzed retrospectively. The changes in glycated hemoglobin (HbA1c), fasting plasma glucose, and lipid profiles were assessed before and after 3 months of treatment with DPP-4 inhibitors. Subgroup analysis was done for each hemodialysis (HD) and peritoneal dialysis (PD) group.There was no significant difference in the decrease in the HbA1c level among sitagliptin, vildagliptin, and linagliptin treatment groups (-0.74 ± 1.57, -0.39 ± 1.45, and -0.08 ± 1.40, respectively, P = 0.076). The changes in fasting blood glucose and lipid profiles were also not significantly different. In HD patients (n = 115), there was no difference in the HbA1c level among the 3 groups. In contrast, in PD patients (n = 85), HbA1c was reduced more after 3 months of treatment with sitagliptin compared with vildagliptin and linagliptin (-1.58 ± 0.95, -0.46 ± 0.98, -0.04 ± 1.22, respectively, P = 0.001).There was no significant difference in the glucose-lowering effect between the different DPP-4 inhibitors tested in ESRD patients. In PD patients, sitagliptin tends to lower the HbA1c level more than the other inhibitors. The glucose-lowering efficacy of the 3 DPP-4 inhibitors was comparable.
Collapse
Affiliation(s)
- Se Hee Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine
- Department of Medicine, The Graduate School, Yonsei University College of Medicine, Seoul
| | - Joo Young Nam
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Gyeonggi
| | - Eugene Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine
- Department of Medicine, The Graduate School, Yonsei University College of Medicine, Seoul
| | - Yong-ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Beom Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul
| | - Bong-Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Chul Sik Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| |
Collapse
|
17
|
Ceriello A, Inagaki N. Pharmacokinetic and pharmacodynamic evaluation of linagliptin for the treatment of type 2 diabetes mellitus, with consideration of Asian patient populations. J Diabetes Investig 2016; 8:19-28. [PMID: 27180612 PMCID: PMC5217889 DOI: 10.1111/jdi.12528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
Our aims were to summarize the clinical pharmacokinetics and pharmacodynamics of the dipeptidyl‐peptidase‐4 inhibitor, linagliptin, and to consider how these characteristics influence its clinical utility. Differences between linagliptin and other dipeptidyl‐peptidase‐4 inhibitors were also considered, in addition to the influence of Asian race on the pharmacology of linagliptin. Linagliptin has a xanthine‐based structure, a difference that might account for some of the pharmacological differences observed with linagliptin versus other dipeptidyl‐peptidase‐4 inhibitors. The long terminal half‐life of linagliptin results from its strong binding to dipeptidyl‐peptidase‐4. Despite this, linagliptin shows a short accumulation half‐life, as a result of saturable, high‐affinity binding to dipeptidyl‐peptidase‐4. The pharmacokinetic characteristics of linagliptin make it suitable for once‐daily dosing in a broad range of patients with type 2 diabetes mellitus. Unlike most other dipeptidyl‐peptidase‐4 inhibitors, linagliptin has a largely non‐renal excretion route, and dose adjustment is not required in patients with renal impairment. Furthermore, linagliptin exposure is not substantially altered in patients with hepatic impairment, and dose adjustment is not necessary for these patients. The 5‐mg dose is also suitable for patients of Asian ethnicity. Linagliptin shows unique pharmacological features within the dipeptidyl‐peptidase‐4 inhibitor class. Although most clinical trials of linagliptin have involved largely Caucasian populations, data on the pharmacokinetic/pharmacodynamic properties of linagliptin show that these features are not substantially altered in Asian populations. The 5‐mg dose of linagliptin is suitable for patients with type 2 diabetes mellitus irrespective of their ethnicity or the presence of renal or hepatic impairment.
Collapse
Affiliation(s)
- Antonio Ceriello
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain.,Institute of Hospitalization and Scientific Care (IRCCS) MultiMedica Sesto San Giovanni, Milan, Italy
| | - Nobuya Inagaki
- Graduate School of Medicine, Department of Diabetes and Clinical Nutrition, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Hanafy A, Mahgoub H. A Validated HPLC Method for the Determination of Linagliptin in Rat Plasma. Application to a Pharmacokinetic Study. J Chromatogr Sci 2016; 54:1573-1577. [DOI: 10.1093/chromsci/bmw106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Indexed: 11/12/2022]
|
19
|
Sekar R, Singh K, Arokiaraj AWR, Chow BKC. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:279-341. [PMID: 27572131 DOI: 10.1016/bs.ircmb.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon.
Collapse
Affiliation(s)
- R Sekar
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - K Singh
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - A W R Arokiaraj
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - B K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Chen XW, He ZX, Zhou ZW, Yang T, Zhang X, Yang YX, Duan W, Zhou SF. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol 2016; 42:999-1024. [PMID: 26173919 DOI: 10.1111/1440-1681.12455] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/11/2015] [Accepted: 07/06/2015] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral antidiabetic drugs that improve glycaemic control without causing weight gain or increasing hypoglycaemic risk in patients with type 2 diabetes mellitus (T2DM). The eight available DPP-4 inhibitors, including alogliptin, anagliptin, gemigliptin, linagliptin, saxagliptin, sitagliptin, teneligliptin, and vildagliptin, are small molecules used orally with identical mechanism of action and similar safety profiles in patients with T2DM. DPP-4 inhibitors may be used as monotherapy or in double or triple combination with other oral glucose-lowering agents such as metformin, thiazolidinediones, or sulfonylureas. Although DPP-4 inhibitors have the same mode of action, they differ by some important pharmacokinetic and pharmacodynamic properties that may be clinically relevant in some patients. The main differences between the eight gliptins include: potency, target selectivity, oral bioavailability, elimination half-life, binding to plasma proteins, metabolic pathways, formation of active metabolite(s), main excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug-drug interactions. The off-target inhibition of selective DPP-4 inhibitors is responsible for multiorgan toxicities such as immune dysfunction, impaired healing, and skin reactions. As a drug class, the DPP-4 inhibitors have become accepted in clinical practice due to their excellent tolerability profile, with a low risk of hypoglycaemia, a neutral effect on body weight, and once-daily dosing. It is unknown if DPP-4 inhibitors can prevent disease progression. More clinical studies are needed to validate the optimal regimens of DPP-4 inhibitors for the management of T2DM when their potential toxicities are closely monitored.
Collapse
Affiliation(s)
- Xiao-Wu Chen
- Department of General Surgery, The First People's Hospital of Shunde, Southern Medical University, Shunde, Foshan, Guangdong, China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Centre & Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Centre, Salt Lake City, UT, USA
| | - Xueji Zhang
- Research Centre for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, China
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Vic., Australia
| | - Shu-Feng Zhou
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Centre & Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
21
|
Nakamura Y, Hasegawa H, Tsuji M, Oguchi T, Mihara M, Suzuki H, Nishida K, Inoue M, Shimizu T, Ohsawa I, Gotoh H, Goto Y, Inagaki M, Oguchi K. Linagliptin inhibits lipopolysaccharide-stimulated interleukin-6 production, intranuclear p65 expression, and p38 mitogen-activated protein kinase phosphorylation in human umbilical vein endothelial cells. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Sarashina A, Friedrich C, Crowe S, Patel S, Graefe-Mody U, Hayashi N, Horie Y. Comparable pharmacodynamics, efficacy, and safety of linagliptin 5 mg among Japanese, Asian and white patients with type 2 diabetes. J Diabetes Investig 2016; 7:744-50. [PMID: 27180969 PMCID: PMC5009137 DOI: 10.1111/jdi.12482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/19/2015] [Accepted: 01/07/2016] [Indexed: 01/21/2023] Open
Abstract
Aims/Introduction The efficacy and safety of drugs can vary between different races or ethnic populations because of differences in the relationship of dose to exposure, pharmacodynamic response or clinical efficacy and safety. In the present post‐hoc analysis, we assessed the influence of race on the pharmacokinetics, pharmacodynamics, efficacy and safety of monotherapy with the dipeptidyl peptidase‐4 inhibitor, linagliptin, in patients with type 2 diabetes enrolled in two comparable, previously reported randomized phase III trials. Materials and Methods Study 1 (with a 12‐week placebo‐controlled phase) recruited Japanese patients only (linagliptin, n = 159; placebo, n = 80); study 2 (24‐week trial) enrolled Asian (non‐Japanese; linagliptin, n = 156; placebo, n = 76) and white patients (linagliptin, n = 180; placebo, n = 90). Results Linagliptin trough concentrations were equivalent across study and race groups, and were higher than half‐maximal inhibitory concentration, resulting in dipeptidyl peptidase‐4 inhibition >80% at trough. Linagliptin inhibited plasma dipeptidyl peptidase‐4 activity to a similar degree in study 1 and study 2. Linagliptin reduced fasting plasma glucose concentrations by a similar magnitude across groups, leading to clinically relevant reductions in glycated hemoglobin in all groups. Glycated hemoglobin levels decreased to a slightly greater extent in study 1 (Japanese) and in Asian (non‐Japanese) patients from study 2. Linagliptin had a favorable safety profile in each race group. Conclusions Trough exposure, pharmacodynamic response, and efficacy and safety of linagliptin monotherapy were comparable among Japanese, Asian (non‐Japanese) and white patients, confirming that the recommended 5‐mg once‐daily dose of linagliptin is appropriate for use among different race groups.
Collapse
Affiliation(s)
- Akiko Sarashina
- Clinical Pharmacokinetics/Pharmacodynamics Department, Nippon Boehringer Ingelheim Co., Ltd, Hyogo, Japan
| | | | - Susanne Crowe
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | | | | - Naoyuki Hayashi
- Clinical Research Department, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Yoshiharu Horie
- Medical Data Service Department, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| |
Collapse
|
23
|
Retlich S, Duval V, Graefe-Mody U, Friedrich C, Patel S, Jaehde U, Staab A. Population Pharmacokinetics and Pharmacodynamics of Linagliptin in Patients with Type 2 Diabetes Mellitus. Clin Pharmacokinet 2016; 54:737-50. [PMID: 25637172 PMCID: PMC4486092 DOI: 10.1007/s40262-014-0232-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background and Objectives Linagliptin is a dipeptidyl peptidase (DPP)-4 inhibitor, used to treat type 2 diabetes mellitus (T2DM). Population pharmacokinetic and pharmacodynamic analyses were performed to characterize the impact of clinically relevant intrinsic/extrinsic factors (covariates) on linagliptin exposure and DPP-4 inhibition in patients with T2DM. Methods Linagliptin plasma concentrations and DPP-4 activities were obtained from four studies (two phase 1, two phase 2b). Non-linear mixed-effects modelling techniques were implemented using NONMEM software. The covariates that were studied comprised demographic information and laboratory values, including liver enzyme levels and creatinine clearance, as well as study-related factors such as metformin co-treatment. Covariate effects on parameters describing the pharmacokinetics and pharmacokinetic/pharmacodynamic relationship were investigated using stepwise forward inclusion/backward elimination. Results The pharmacokinetic analysis included 6,907 measurements of plasma linagliptin concentrations from 462 patients; the pharmacokinetic/pharmacodynamic analysis included 9,674 measurements of plasma DPP-4 activity and linagliptin plasma concentrations from 607 patients. The non-linear pharmacokinetics were described by a target-mediated drug disposition model accounting for the concentration-dependent binding of linagliptin to its target, DPP-4. The difference in exposure between the 5th and 95th percentiles of the covariate distributions and median was <20 % for each single covariate. Likewise, the impact of the covariates on both the half-maximum effect (EC50) and the concentration leading to 80 % DPP-4 inhibition was <20 %. Conclusion These analyses show that the investigated factors do not alter the pharmacokinetics and DPP-4 inhibitory activity of linagliptin to a clinically relevant extent and that dose adjustment is not necessary on the basis of factors including age, sex and weight. Electronic supplementary material The online version of this article (doi:10.1007/s40262-014-0232-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silke Retlich
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany,
| | | | | | | | | | | | | |
Collapse
|
24
|
Nannapaneni NK, Jalalpure SS, Muppavarapu R, Sirigiri SK. An ultra high performance liquid chromatography-tandem mass spectrometry method for the quantification of linagliptin in human plasma. RSC Adv 2016. [DOI: 10.1039/c6ra10450a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
First report of a quality linagliptin assay in human plasma using UHPLC-ESI-MS/MS.
Collapse
Affiliation(s)
- Nagaraj Kumar Nannapaneni
- Dr. Prabhakar Kore Basic Science Research Centre
- KLE College of Pharmacy
- KLE University
- Belagavi 590 010
- India
| | - Sunil S. Jalalpure
- Dr. Prabhakar Kore Basic Science Research Centre
- KLE College of Pharmacy
- KLE University
- Belagavi 590 010
- India
| | | | - Sunil Kumar Sirigiri
- Bioanalytical Research Unit
- Jeevan Scientific Technology Ltd
- Hyderabad 500 008
- India
| |
Collapse
|
25
|
Lim SW, Jin JZ, Jin L, Jin J, Li C. Role of dipeptidyl peptidase-4 inhibitors in new-onset diabetes after transplantation. Korean J Intern Med 2015; 30:759-70. [PMID: 26552451 PMCID: PMC4642005 DOI: 10.3904/kjim.2015.30.6.759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Despite strict pre- and post-transplantation screening, the incidence of new-onset diabetes after transplantation (NODAT) remains as high as 60%. This complication affects the risk of cardiovascular events and patient and graft survival rates. Thus, reducing the impact of NODAT could improve overall transplant success. The pathogenesis of NODAT is multifactorial, and both modifiable and nonmodifiable risk factors have been implicated. Monitoring and controlling the blood glucose profile, implementing multidisciplinary care, performing lifestyle modifications, using a modified immunosuppressive regimen, administering anti-metabolite agents, and taking a conventional antidiabetic approach may diminish the incidence of NODAT. In addition to these preventive strategies, inhibition of dipeptidyl peptidase-4 (DPP4) by the gliptin family of drugs has recently gained considerable interest as therapy for type 2 diabetes mellitus and NODAT. This review focuses on the role of DPP4 inhibitors and discusses recent literature regarding management of NODAT.
Collapse
Affiliation(s)
- Sun Woo Lim
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Zhe Jin
- Division of Nephrology, Department of Internal Medicine, Yanbian University Hospital, Yanji, China
| | - Long Jin
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jian Jin
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Yanbian University Hospital, Yanji, China
| | - Can Li
- Division of Nephrology, Department of Internal Medicine, Yanbian University Hospital, Yanji, China
- Correspondence to Can Li, M.D. Division of Nephrology, Department of Internal Medicine, Yanbian University Hospital, #1327 JuZi St., Yanji 133000, China Tel: +86-433-266-0065 Fax: +86-433-251-3610 E-mail:
| |
Collapse
|
26
|
Wada N, Mori K, Nakagawa C, Sawa J, Kumeda Y, Shoji T, Emoto M, Inaba M. Improved glycemic control with teneligliptin in patients with type 2 diabetes mellitus on hemodialysis: Evaluation by continuous glucose monitoring. J Diabetes Complications 2015; 29:1310-3. [PMID: 26298521 DOI: 10.1016/j.jdiacomp.2015.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022]
Abstract
AIMS Recent reports suggest that appropriate glycemic control without hypoglycemia could decrease mortality in patients with diabetes mellitus (DM) and end-stage renal disease (ESRD). However, an indication of oral anti-diabetic drugs is limited in this population. The aim of this study was to evaluate efficacy of teneligliptin, a novel DPP-4 inhibitor, by continuous glucose monitoring (CGM) in patients with type 2 DM (T2DM) on hemodialysis (HD). METHODS This 4-week, open label, single arm, intervention trial included 10 diabetic patients undergoing HD and with glycated albumin (GA) level of ≥18.3%. Teneligliptin treatment was administered on days with HD sessions (HD day) and on days without HD sessions (NHD day); blood glucose values were measured by CGM. The primary endpoint was improvement of glycemic control evaluated by area under the curve (AUC). As secondary endpoints, changes in GA, HbA1c and fasting plasma glucose (FPG) were evaluated. RESULTS Teneligliptin improved blood glucose AUC on both HD days (p=0.004), and NHD days (p=0.004). This was accompanied by a significant reduction in GA, HbA1c, and FPG, without severe hypoglycemia. CONCLUSIONS Teneligliptin is one of the useful options for glycemic control in T2DM patients undergoing HD.
Collapse
Affiliation(s)
- Noritsugu Wada
- Department of Internal Medicine, Minami-Osaka Hospital, Osaka, Japan
| | - Katsuhito Mori
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Chie Nakagawa
- Department of Internal Medicine, Minami-Osaka Hospital, Osaka, Japan
| | - Jun Sawa
- Department of Internal Medicine, Minami-Osaka Hospital, Osaka, Japan
| | - Yasuro Kumeda
- Department of Internal Medicine, Minami-Osaka Hospital, Osaka, Japan
| | - Tetsuo Shoji
- Department of Geriatrics and Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Abstract
Asia has a growing diabetic population. Linagliptin, a member of dipeptidyl peptidase-4 inhibitor class, is unique in its nonlinear pharmacokinetics with the characteristics of rapid attainment of steady state, little accumulation, predominantly nonrenal route of elimination, prolonged terminal half-life, and sustained inhibition of dipeptidyl peptidase-4 enzyme. No clinically relevant difference in pharmacokinetics was observed between Asians and non-Asians. The management of type 2 diabetes is increasingly challenging with the progression of disease, especially with the requirements of minimal hypoglycemia, weight gain, fluid retention, and other adverse effects. Linagliptin was efficacious and well-tolerated in Asian type 2 diabetes patients with or without renal or hepatic dysfunctions, comparable to that in Caucasians. This review will focus on the usage of linagliptin in clinical studies in Asians.
Collapse
Affiliation(s)
- Chu-Qing Cao
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu-Fei Xiang
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhi-Guang Zhou
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
28
|
Effects of Inhibiting Dipeptidyl Peptidase-4 (DPP4) in Cows with Subclinical Ketosis. PLoS One 2015; 10:e0136078. [PMID: 26291537 PMCID: PMC4546328 DOI: 10.1371/journal.pone.0136078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022] Open
Abstract
The inhibition of dipeptidyl peptidase-4 (DPP4) via specific inhibitors is known to result in improved glucose tolerance and insulin sensitivity and decreased accumulation of hepatic fat in type II diabetic human patients. The metabolic situation of dairy cows can easily be compared to the status of human diabetes and non-alcoholic fatty liver. For both, insulin sensitivity is reduced, while hepatic fat accumulation increases, characterized by high levels of non-esterified fatty acids (NEFA) and ketone bodies.Therefore, in the present study, a DPP4 inhibitor was employed (BI 14332) for the first time in cows. In a first investigation BI 14332 treatment (intravenous injection at dosages of up to 3 mg/kg body weight) was well tolerated in healthy lactating pluriparous cows (n = 6) with a significant inhibition of DPP4 in plasma and liver. Further testing included primi- and pluriparous lactating cows suffering from subclinical ketosis (β-hydroxybutyrate concentrations in serum > 1.2 mM; n = 12). The intension was to offer effects of DPP4 inhibition during comprehensive lipomobilisation and hepatosteatosis. The cows of subclinical ketosis were evenly allocated to either the treatment group (daily injections, 0.3 mg BI 14332/kg body weight, 7 days) or the control group. Under condition of subclinical ketosis, the impact of DPP4 inhibition via BI 14332 was less, as in particular β-hydroxybutyrate and the hepatic lipid content remained unaffected, but NEFA and triglyceride concentrations were decreased after treatment. Owing to lower NEFA, the revised quantitative insulin sensitivity check index (surrogate marker for insulin sensitivity) increased. Therefore, a positive influence on energy metabolism might be quite possible. Minor impacts on immune-modulating variables were limited to the lymphocyte CD4+/CD8+ ratio for which a trend to decreased values in treated versus control animals was noted. In sum, the DPP4 inhibition in cows did not affect glycaemic control like it is shown in humans, but was able to impact hyperlipemia, as NEFA and TG decreased.
Collapse
|
29
|
Aroor AR, Sowers JR, Jia G, DeMarco VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 307:H477-92. [PMID: 24929856 DOI: 10.1152/ajpheart.00209.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipeptidylpeptidase-4 (DPP-4) is a ubiquitously expressed transmembrane protein that removes NH2-terminal dipeptides from various substrate hormones, chemokines, neuropeptides, and growth factors. Two known substrates of DPP-4 include the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are secreted by enteroendocrine cells in response to postprandial hyperglycemia and account for 60–70% of postprandial insulin secretion. DPP-4 inhibitors (DPP-4i) block degradation of GLP-1 and gastric inhibitory peptide, extend their insulinotropic effect, and improve glycemia. Since 2006, several DPP-4i have become available for treatment of type 2 diabetes mellitus. Clinical trials confirm that DPP-4i raises GLP-1 levels in plasma and improves glycemia with very low risk for hypoglycemia and other side effects. Recent studies also suggest that DPP-4i confers cardiovascular and kidney protection, beyond glycemic control, which may reduce the risk for further development of the multiple comorbidities associated with obesity/type 2 diabetes mellitus, including hypertension and cardiovascular disease (CVD) and kidney disease. The notion that DPP-4i may improve CVD outcomes by mechanisms beyond glycemic control is due to both GLP-1-dependent and GLP-1-independent effects. The CVD protective effects by DPP-4i result from multiple factors including insulin resistance, oxidative stress, dyslipidemia, adipose tissue dysfunction, dysfunctional immunity, and antiapoptotic properties of these agents in the heart and vasculature. This review focuses on cellular and molecular mechanisms mediating the CVD protective effects of DPP-4i beyond favorable effects on glycemic control.
Collapse
|
30
|
Nakamura Y, Hasegawa H, Tsuji M, Udaka Y, Mihara M, Shimizu T, Inoue M, Goto Y, Gotoh H, Inagaki M, Oguchi K. Diabetes therapies in hemodialysis patients: Dipeptidase-4 inhibitors. World J Diabetes 2015; 6:840-9. [PMID: 26131325 PMCID: PMC4478579 DOI: 10.4239/wjd.v6.i6.840] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/16/2015] [Accepted: 04/01/2015] [Indexed: 02/05/2023] Open
Abstract
Although several previous studies have been published on the effects of dipeptidase-4 (DPP-4) inhibitors in diabetic hemodialysis (HD) patients, the findings have yet to be reviewed comprehensively. Eyesight failure caused by diabetic retinopathy and aging-related dementia make multiple daily insulin injections difficult for HD patients. Therefore, we reviewed the effects of DPP-4 inhibitors with a focus on oral antidiabetic drugs as a new treatment strategy in HD patients with diabetes. The following 7 DPP-4 inhibitors are available worldwide: sitagliptin, vildagliptin, alogliptin, linagliptin, teneligliptin, anagliptin, and saxagliptin. All of these are administered once daily with dose adjustments in HD patients. Four types of oral antidiabetic drugs can be administered for combination oral therapy with DPP-4 inhibitors, including sulfonylureas, meglitinide, thiazolidinediones, and alpha-glucosidase inhibitor. Nine studies examined the antidiabetic effects in HD patients. Treatments decreased hemoglobin A1c and glycated albumin levels by 0.3% to 1.3% and 1.7% to 4.9%, respectively. The efficacy of DPP-4 inhibitor treatment is high among HD patients, and no patients exhibited significant severe adverse effects such as hypoglycemia and liver dysfunction. DPP-4 inhibitors are key drugs in new treatment strategies for HD patients with diabetes and with limited choices for diabetes treatment.
Collapse
|
31
|
Godinho R, Mega C, Teixeira-de-Lemos E, Carvalho E, Teixeira F, Fernandes R, Reis F. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A "Me Too" or "the Special One" Antidiabetic Class? J Diabetes Res 2015; 2015:806979. [PMID: 26075286 PMCID: PMC4449938 DOI: 10.1155/2015/806979] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/12/2022] Open
Abstract
Incretin-based therapies, the most recent therapeutic options for type 2 diabetes mellitus (T2DM) management, can modify various elements of the disease, including hypersecretion of glucagon, abnormal gastric emptying, postprandial hyperglycaemia, and, possibly, pancreatic β cell dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) increase glucagon-like peptide-1 (GLP-1) availability and correct the "incretin defect" seen in T2DM patients. Clinical studies have shown good glycaemic control with minimal risk of hypoglycaemia or any other adverse effects, despite the reports of pancreatitis, whose association remains to be proved. Recent studies have been focusing on the putative ability of DPP-4 inhibitors to preserve pancreas function, in particular due to the inhibition of apoptotic pathways and stimulation of β cell proliferation. In addition, other cytoprotective effects on other organs/tissues that are involved in serious T2DM complications, including the heart, kidney, and retina, have been increasingly reported. This review outlines the therapeutic potential of DPP-4 inhibitors for the treatment of T2DM, focusing on their main features, clinical applications, and risks, and discusses the major challenges for the future, in particular the possibility of becoming the preferred therapy for T2DM due to their ability to modify the natural history of the disease and ameliorate nephropathy, retinopathy, and cardiovascular complications.
Collapse
Affiliation(s)
- Ricardo Godinho
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
| | - Cristina Mega
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Edite Teixeira-de-Lemos
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
- The Portuguese Diabetes Association (APDP), 1250-189 Lisbon, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
32
|
Gallwitz B. Management of patients with type 2 diabetes and mild/moderate renal impairment: profile of linagliptin. Ther Clin Risk Manag 2015; 11:799-805. [PMID: 25999728 PMCID: PMC4437596 DOI: 10.2147/tcrm.s67076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dipeptidyl-peptidase-IV (DPP-4) inhibitors are oral antidiabetic agents that can be administered as monotherapy in patients with contraindications to metformin or metformin intolerance, and in combination with other oral compounds and/or insulin. DPP-4 inhibitors act in a glucose-dependent manner and only increase insulin secretion and inhibit glucagon secretion under hyperglycemic conditions. Renal impairment is frequent in type 2 diabetes as a result of microvascular complications and diabetes treatment, and options in these patients are limited. Linagliptin is a DPP-4 inhibitor with a hepatobiliary route of elimination. In comparative studies, it was noninferior to metformin and sulfonylureas in lowering glycated hemoglobin (HbA1c) and improving glycemic parameters. It can be used throughout all stages of renal impairment without dose adjustments. This review gives an overview of linagliptin in various stages of chronic kidney disease and has a focus on efficacy and safety parameters from clinical studies in patients with impaired renal function. These data are interpreted in the context of type 2 diabetes therapy in general.
Collapse
Affiliation(s)
- Baptist Gallwitz
- Department of Medicine IV, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
33
|
Nakao T, Inaba M, Abe M, Kaizu K, Shima K, Babazono T, Tomo T, Hirakata H, Akizawa T. Best Practice for Diabetic Patients on Hemodialysis 2012. Ther Apher Dial 2015; 19 Suppl 1:40-66. [DOI: 10.1111/1744-9987.12299] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Masanori Abe
- Japanese Society for Dialysis Therapy; Tokyo Japan
| | - Kazo Kaizu
- Japanese Society for Dialysis Therapy; Tokyo Japan
| | - Kenji Shima
- Japanese Society for Dialysis Therapy; Tokyo Japan
| | | | - Tadashi Tomo
- Japanese Society for Dialysis Therapy; Tokyo Japan
| | | | | | | |
Collapse
|
34
|
Toth PP. Linagliptin: A New DPP-4 Inhibitor for the Treatment of Type 2 Diabetes Mellitus. Postgrad Med 2015; 123:46-53. [DOI: 10.3810/pgm.2011.07.2303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Ran Y, Pei H, Xie C, Ma L, Wu Y, Lei K, Shao M, Tang M, Xiang M, Peng A, Wei Y, Chen L. Scaffold-based design of xanthine as highly potent inhibitors of DPP-IV for improving glucose homeostasis in DIO mice. Mol Divers 2015; 19:333-46. [PMID: 25672287 DOI: 10.1007/s11030-015-9570-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus, commonly characterized by hyperglycemia, is a group of metabolic diseases. Some oral anti-diabetic drugs show poor tolerability during chronic treatment, and associate with undesired side effects. Recent advances in the understanding of physiological functions of incretins and their degrading enzyme dipeptidyl peptidase DPP-IV have led to the discovery of DPP-IV inhibitors as a new class of oral anti-diabetic drugs. Several DPP-IV inhibitors have different chemical structures of which the xanthine scaffold has specific advantages. Combining previous work with the research strategy of pharmacophore hybridization, we retained this scaffold and synthesized a new series of amino-alcohol or diamino-modified xanthine compounds. Some xanthines exhibited submicromolar inhibitory activities against DPP-IV. The most potent compound 40 [Formula: see text] exhibits a good in vivo efficacy in reducing glucose excursion at a single dose and a better chronic effect in reducing body weight than metformin in DIO mice. In other words, the combined effect improved the pathological state of DIO mice.
Collapse
Affiliation(s)
- Yan Ran
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
DPP-4 specifically degrades the incretin hormone GLP-1 and GIP, both of which are vital modulators of blood glucose homeostasis. Attributed to its potential biological function, DPP-4 inhibition has presently represented an attractive therapeutic strategy for treating diabetes and aroused a significant interest in the pharmaceutical industry. Chemical stability, selectivity and pharmacokinetic properties have been continuously emphasized during the long journey of R&D centered on DPP-4 inhibitors. The current landscape of the development of DPP-4 inhibitors is outlined in this review, with a focus on rational drug design and structural optimization to pursue chemical stability, selectivity and favorable pharmacokinetic properties. In addition, the structure-activity relationships, based on reported DPP-4 inhibitors, will be discussed.
Collapse
|
37
|
Abstract
Incretin-based therapies are steadily gaining clinical popularity, with many more products in the developmental pipeline. Current treatment recommendations incorporate GLP-1 RAs and DPP-4 inhibitors as important agents for consideration in the treatment of T2DM owing to their low hypoglycemia risk, ability to address postprandial hyperglycemia (DPP-4 inhibitors and short-acting GLP-1 RAs), and potential for weight reduction (GLP-1 RAs). These properties may likewise prove advantageous in older adults in whom hypoglycemia is particularly undesirable, although older adults may be more prone to the nausea and vomiting associated with GLP-1 RA therapy. Other safety issues for incretin-based therapies, such as pancreatitis, C-cell hyperplasia, and renal failure, should be considered when choosing an appropriate patient to receive such therapies. Ongoing CV outcome studies will further inform the health care community regarding the CV safety of incretin-based therapies. The availability of both short-acting and long-acting GLP-1 RAs currently allows practitioners to consider individualized blood glucose trends and therapeutic needs when choosing an optimal agent.
Collapse
Affiliation(s)
- Joshua J Neumiller
- Department of Pharmacotherapy, College of Pharmacy, Washington State University, PO Box 1495, Spokane, WA 99210-1495, USA.
| |
Collapse
|
38
|
Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A. DPP4 inhibition attenuates filtration barrier injury and oxidant stress in the zucker obese rat. Obesity (Silver Spring) 2014; 22:2172-9. [PMID: 24995775 PMCID: PMC4180797 DOI: 10.1002/oby.20833] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity-related glomerulopathy is characterized initially by glomerular hyperfiltration with hypertrophy and then development of proteinuria. Putative mechanisms include endothelial dysfunction and filtration barrier injury due to oxidant stress and immune activation. There has been recent interest in targeting dipeptidyl peptidase 4 (DPP4) enzyme due to increasing role in non-enzymatic cellular processes. METHODS The Zucker obese (ZO) rat (aged 8 weeks) fed a normal chow or diet containing the DPP4 inhibitor linagliptin for 8 weeks (83 mg/kg rat chow) was utilized. RESULTS Compared to lean controls, there were increases in plasma DPP4 activity along with proteinuria in ZO rats. ZO rats further displayed increases in glomerular size and podocyte foot process effacement. These findings occurred in parallel with decreased endothelial stromal-derived factor-1α (SDF-1α), increased oxidant markers, and tyrosine phosphorylation of nephrin and serine phosphorylation of the mammalian target of rapamycin (mTOR). DPP4 inhibition improved proteinuria along with filtration barrier remodeling, circulating and kidney tissue DPP4 activity, increased active glucagon like peptide-1 (GLP-1) as well as SDF-1α, and improved oxidant markers and the podocyte-specific protein nephrin. CONCLUSIONS These data support a role for DPP4 in glomerular filtration function and targeting DPP4 with inhibition improves oxidant stress-related glomerulopathy and associated proteinuria.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Javad Habibi
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Annayya Aroor
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - James R Sowers
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Medical Pharmacology and Physiology, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Melvin R Hayden
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
| | - Alex Meuth
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - William Knight
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Tamara Hancock
- College of Veterinary Medicine, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | | | - Vincent G DeMarco
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Medical Pharmacology and Physiology, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Adam Whaley-Connell
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| |
Collapse
|
39
|
Davis TME. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics, efficacy, tolerability and safety in renal impairment. Diabetes Obes Metab 2014; 16:891-9. [PMID: 24684351 DOI: 10.1111/dom.12295] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 01/18/2023]
Abstract
The dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of blood glucose-lowering therapy with proven efficacy, tolerability and safety. Four of the five commercially available DPP-4 inhibitors are subject to significant renal clearance, and pharmacokinetic studies in people with renal impairment have led to lower recommended doses based on creatinine clearance in order to prevent drug accumulation. Data from these pharmacokinetic studies and from supratherapeutic doses in healthy individuals and people with uncomplicated diabetes during development suggest, however, that there is a wide therapeutic margin. This should protect against toxicity if people with renal impairment are inadvertently prescribed higher doses than recommended. Doses appropriate to renal function are associated with reductions in HbA1c that are equivalent to those observed in people with type 2 diabetes who do not have renal impairment. Recent large-scale cardiovascular safety trials of saxagliptin and alogliptin have identified heart failure as a potential concern and renal impairment may increase the risk of this complication. Although the incidence of pancreatitis does not appear to be significantly increased by DPP-4 inhibitor therapy, renal impairment is also an independent risk factor. Additional data from other ongoing DPP-4 inhibitor cardiovascular safety trials should provide a more precise assessment of the risks of these uncommon complications, including in people with renal impairment.
Collapse
Affiliation(s)
- T M E Davis
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, Fremantle, Australia
| |
Collapse
|
40
|
Schernthaner G, Mogensen CE, Schernthaner GH. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system. Diab Vasc Dis Res 2014; 11:306-23. [PMID: 25116004 PMCID: PMC4230539 DOI: 10.1177/1479164114542802] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetic nephropathy (DN) affects an estimated 20%-40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway.
Collapse
Affiliation(s)
| | - Carl Erik Mogensen
- Medical Department M (Diabetes & Endocrinology), Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
41
|
Graefe-Mody U, Friedrich C, von Eynatten M, Thiemann S, Heise T, Woerle HJ. Letter to the editor regarding: “Pharmacokinetics of teneligliptin in subjects with renal impairment.” Halabi et al., Clinical Pharmacology in Drug Development2013;2:246-254. Clin Pharmacol Drug Dev 2014; 3:417-8. [DOI: 10.1002/cpdd.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/08/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Christian Friedrich
- Boehringer Ingelheim; Biberach Germany (current address: Bayer Healthcare, Berlin, Germany)
| | | | | | | | | |
Collapse
|
42
|
Dejager S, Schweizer A. Incretin therapies in the management of patients with type 2 diabetes mellitus and renal impairment. Hosp Pract (1995) 2014; 40:7-21. [PMID: 22615074 DOI: 10.3810/hp.2012.04.965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Renal impairment (RI) is common among patients with type 2 diabetes mellitus (T2DM), and these patients also experience an age-related decline in renal function. At the same time, treatment options are more limited and treatment is more complex, particularly in patients with moderate or severe RI due to contraindications, need for dose adjustment and/or regular monitoring, and side effects, such as fluid retention and hypoglycemia, which are a more serious concern in this patient population. Incretin therapies, consisting of the injectable glucagon-like peptide-1 (GLP-1) receptor agonists and the oral dipeptidyl peptidase-4 (DPP-4) inhibitors, are a promising new class of antihyperglycemic drugs. In the overall population, they improve glycemic control in a glucose-dependent manner and are not likely to cause hypoglycemia, representing a clear advantage in at-risk populations. Data regarding use of these agents in renally impaired patients have started to emerge, and the objective of this article is to provide an overview of the currently available data and the potential role of these novel agents in the management of patients with T2DM and RI. Data for the GLP-1 receptor agonists in patients with moderate or severe RI are still limited, with no trials dedicated to these populations currently published. In addition, their potential to cause gastrointestinal side effects may limit use in patients with RI due to the risk of dehydration and hypovolemia. The use of GLP-1 receptor agonists in patients with moderate or severe RI is therefore, at present, underlying caution and/or restrictions. On the other hand, data from specific trials in patients with moderate or severe RI are now becoming available for most of the DPP-4 inhibitors. These studies demonstrate good efficacy and tolerability of the DPP-4 inhibitors in patients with moderate or severe RI, thus opening a place for these therapies in the treatment of populations with T2DM and RI. Several of the DPP-4 inhibitors are already approved for use in patients with moderate or severe RI, including for those with end-stage renal disease. While discussing the advantages related to their common mechanism of action, this article also describes differences among the DPP-4 inhibitors (eg, related to their pharmacokinetic properties and the available clinical data). In conclusion, while initial data for these new therapies are promising, further experience is needed to fully assess the risk-benefit balance and clinical positioning of these agents in RI populations.
Collapse
|
43
|
Renal impairment has no clinically relevant effect on the long-term exposure of linagliptin in patients with type 2 diabetes. Am J Ther 2014; 20:618-21. [PMID: 23411609 DOI: 10.1097/mjt.0b013e31826232dc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Linagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor with a primarily nonrenal route of excretion. Consequently, renal impairment should not substantially affect drug exposure. This analysis was undertaken to compare steady-state trough concentrations of linagliptin among patients with type-2 diabetes receiving linagliptin 5 mg in phase 3 studies. Data were pooled from 3 randomized studies from the global phase 3 program of linagliptin (5 mg daily in each) in patients with type-2 diabetes. These studies were selected for their inclusion of pharmacokinetic data. Linagliptin plasma concentrations were available for 969 patients who were determined by estimated glomerular filtration rate to have normal renal function (n = 438), mild renal impairment (RI) (n = 429), moderate RI (n = 44), or severe RI (n = 58). In patients with normal renal function, the geometric mean linagliptin trough concentration (coefficient of variation) was 5.93 nmol/L (56.3%); in patients with mild, moderate, or severe RI, geometric mean concentrations were 6.07 nmol/L (62.9%), 7.34 nmol/L (58.6%), and 8.13 nmol/L (49.8%), respectively. In patients with type-2 diabetes, RI had a minor effect on linagliptin exposure. Therefore, neither dose-adjustment nor drug-related monitoring of estimated glomerular filtration rate is necessary for patients with RI.
Collapse
|
44
|
Lehrke M, Marx N, Patel S, Seck T, Crowe S, Cheng K, von Eynatten M, Johansen OE. Safety and Tolerability of Linagliptin in Patients With Type 2 Diabetes: A Comprehensive Pooled Analysis of 22 Placebo-controlled Studies. Clin Ther 2014; 36:1130-46. [PMID: 25015594 DOI: 10.1016/j.clinthera.2014.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/15/2014] [Accepted: 06/11/2014] [Indexed: 01/26/2023]
Abstract
PURPOSE Dipeptidyl peptidase (DPP)-4 inhibitors are an increasingly used antihyperglycemic therapy for patients with type 2 diabetes mellitus (T2DM). Linagliptin, an orally administered DPP-4 inhibitor, has demonstrated favorable efficacy/safety in clinical trials. The aim of this post hoc pooled analysis was to expand current knowledge of the safety of linagliptin. METHODS Safety data for once-daily linagliptin 5 mg (1 study of linagliptin 2.5 mg twice daily) were analyzed from 22 randomized, double-blind, Phase I-III, placebo-controlled clinical trials of ≤102 weeks' duration. Assessments of pooled data included incidence of patient-reported adverse events (AEs). FINDINGS Data from 7400 patients (linagliptin, 4810; placebo, 2590) were pooled. Most patients (58.4%) had T2DM diagnosis for >5 years; approximately 75% were receiving ≥1 type of background therapy in addition to linagliptin/placebo. Overall exposure to the study drug was 2412.8 years for linagliptin and 1481.4 years for placebo (mean [SD], 183 [120] days and 209 [150] days, respectively). Overall frequencies of AEs were similar for linagliptin- and placebo-treated patients (57.3% and 61.8%, respectively). The incidence of neoplastic AEs was low (0.6% and 0.9%, respectively); there were no reports of pancreatic neoplasia. Pancreatitis was observed in 2 linagliptin-treated patients (<0.1%) and 1 placebo-treated patient (<0.1%). The occurrence of cardiac disorder AEs was similar in linagliptin- and placebo-treated patients (3.2% [n = 153] and 3.3% [n = 83], respectively); the incidence of heart failure AEs for linagliptin- and placebo-treated patients was 0.2% (n = 11) and 0.3% (n = 7), respectively. Overall, linagliptin was weight neutral. Occurrence of investigator-defined hypoglycemic AEs was low for both linagliptin and placebo (11.5% vs 14.0%). In patients receiving concomitant sulfonylurea therapy, investigator-defined hypoglycemic AEs were more frequent with linagliptin versus placebo (22.1% [238/1079] vs 14.5% [61/421], respectively). Subgroup analyses showed similar frequencies of AEs for linagliptin- and placebo-treated patients across different age groups and renal function levels. IMPLICATIONS This updated and expanded pooled, post hoc analysis of 22 placebo-controlled trials of linagliptin 5 mg daily supports previous findings of the acceptable overall safety/tolerability profile of linagliptin when administered to a broad range of patients with T2DM. Linagliptin-treated patients demonstrated a low overall risk of hypoglycemia (risk increased by concomitant sulfonylurea therapy). As with all pooled analyses, this study is limited by the use of data from different studies, and the relatively short duration of some included studies, although use of individual patient data from consistently designed trials should minimize methodological differences between trials. Results from ongoing clinical trials will provide additional insight into the long-term safety/tolerability of linagliptin.
Collapse
Affiliation(s)
- Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Sanjay Patel
- Boehringer Ingelheim Ltd, Bracknell, United Kingdom
| | - Thomas Seck
- Boehringer Ingelheim GmbH & Co KG, Ingelheim, Germany
| | - Susanne Crowe
- Boehringer Ingelheim GmbH & Co KG, Ingelheim, Germany
| | - Karen Cheng
- Boehringer Ingelheim GmbH & Co KG, Ingelheim, Germany
| | | | | |
Collapse
|
45
|
Abstract
PURPOSE The nature of biomedical research affords a broad range of investigational topics at the preclinical stage, not all of which may be explored in subsequent clinical studies. To provide a comprehensive perspective on the physiologic effects of the dipeptidyl peptidase-4 inhibitor linagliptin, this review will discuss the results of both preclinical and clinical research, summarizing data describing outcomes associated with its use. SUMMARY Clinical studies demonstrate an overall favorable safety profile, low risk for hypoglycemia, weight neutrality, primarily nonrenal clearance, and efficacy for glycosylated hemoglobin reduction, typically ranging from 0.6% to 0.8% depending on baseline levels. In addition to these characteristics, preclinical research on linagliptin has yielded several interesting findings such as improved wound healing, reduced hepatic fat content, decreased infarct size following myocardial infarction or intracranial stroke, and improved vascular function with decreased oxidative stress. In accordance with its preclinical profile, linagliptin is unique among available dipeptidyl peptidase-4 compounds because it does not require dose adjustment when used in patients with renal dysfunction. Reduction of albuminuria with linagliptin on top of inhibitors of the renin-angiotensin-aldosterone system in both preclinical and post hoc clinical analysis serves as the foundation for ongoing clinical trials. CONCLUSION In addition to its efficacy for glycemic control, current literature points to other potential opportunities associated with linagliptin therapy. These results warrant further investigation and underscore the importance of translational study based on findings from preclinical research. Moving forward, we can expect that future research on linagliptin and other incretin-based therapies will continue to expand their applications beyond the maintenance of glycemic control in patients with type 2 diabetes.
Collapse
Affiliation(s)
- John Doupis
- Iatriko Palaiou Falirou Medical Center, Division of Diabetes, Athens, Greece
| |
Collapse
|
46
|
Filippatos TD, Athyros VG, Elisaf MS. The pharmacokinetic considerations and adverse effects of DPP-4 inhibitors [corrected]. Expert Opin Drug Metab Toxicol 2014; 10:787-812. [PMID: 24746233 DOI: 10.1517/17425255.2014.907274] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Dipeptidyl-peptidase-4 (DPP-4) inhibitors are a class of anti-hyperglycemic agents with proven efficacy in patients with type 2 diabetes mellitus (T2DM). AREAS COVERED This review considers the pharmacokinetic profile, adverse effects and drug interactions of DPP-4 inhibitors. DPP-4 inhibitors have certain differences in their structure, metabolism, route of elimination and selectivity for DPP-4 over structurally related enzymes, such as DPP-8/DPP-9. They have a low potential for drug interactions, with the exception of saxagliptin that is largely metabolized by cytochrome CYP3A4/A5. Reports of pancreatitis and pancreatic cancer have raised concerns regarding the safety of DPP-4 inhibitors and are under investigation. Post-marketing surveillance has revealed less common adverse effects, especially a number of skin- and immune-related adverse effects. These issues are covered in the present review. EXPERT OPINION DPP-4 inhibitors are useful and efficient drugs. DPP-4 inhibitors have similar mechanism of action and similar efficacy. However, DPP-4 inhibitors have certain differences in their pharmacokinetic properties that may be associated with different clinical effects and adverse event profiles. Although clinical trials indicated a favorable safety profile, post-marketing reports revealed certain safety aspects that need further investigation. Certainly, more research is needed to clarify if the differences among DPP-4 inhibitors could lead to a different clinical and safety profile.
Collapse
Affiliation(s)
- Theodosios D Filippatos
- Aristotle University of Thessaloniki, Hippokration Hospital, Medical School, Second Propedeutic Department of Internal Medicine , Thessaloniki , Greece
| | | | | |
Collapse
|
47
|
Friedrich C, Glund S, Lionetti D, Kissling CJ, Righetti J, Patel S, Graefe-Mody U, Retlich S, Woerle HJ. Pharmacokinetic and pharmacodynamic evaluation of linagliptin in African American patients with type 2 diabetes mellitus. Br J Clin Pharmacol 2013; 76:445-54. [PMID: 23331248 PMCID: PMC3769671 DOI: 10.1111/bcp.12077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/26/2012] [Indexed: 11/29/2022] Open
Abstract
AIM This was an open label, multicentre phase I trial to study the pharmacokinetics and pharmacodynamics of the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin in African American patients with type 2 diabetes mellitus (T2DM). METHODS Forty-one African American patients with T2DM were included in this study. Patients were admitted to a study clinic and administered 5 mg linagliptin once daily for 7 days, followed by 7 days of outpatient evaluation. RESULTS Primary endpoints were area under the plasma concentration-time curve (AUC), maximum plasma concentration (Cmax ) and plasma DPP-4 trough inhibition at steady-state. Linagliptin geometric mean AUC was 194 nmol l(-1) h (geometric coefficient of variation, 26%), with a Cmax of 16.4 nmol l(-1) (41%). Urinary excretion was low (0.5% and 4.4% of the dose excreted over 24 h, days 1 and 7). The geometric mean DPP-4 inhibition at steady-state was 84.2% at trough and 91.9% at maximum. The exposure range and overall pharmacokinetic/pharmacodynamic profile of linagliptin in this study of African Americans with T2DM was comparable with that in other populations. Laboratory data, vital signs and physical examinations did not show any relevant findings. No safety concerns were identified. CONCLUSIONS The results of this study in African American patients with T2DM support the use of the standard 5 mg dose recommended in all populations.
Collapse
|
48
|
Inagaki N, Watada H, Murai M, Kagimura T, Gong Y, Patel S, Woerle HJ. Linagliptin provides effective, well-tolerated add-on therapy to pre-existing oral antidiabetic therapy over 1 year in Japanese patients with type 2 diabetes. Diabetes Obes Metab 2013; 15:833-43. [PMID: 23565760 DOI: 10.1111/dom.12110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/26/2013] [Accepted: 03/24/2013] [Indexed: 01/26/2023]
Abstract
AIMS To evaluate the long-term safety and efficacy of linagliptin as add-on therapy to one approved oral antidiabetic drug (OAD) in Japanese patients with type 2 diabetes mellitus and insufficient glycaemic control. METHODS This 52-week, multicentre, open-label, parallel-group study evaluated once-daily linagliptin 5 mg as add-on therapy to one OAD [biguanide, glinide, glitazone, sulphonylurea (SU) or α-glucosidase inhibitors (A-GI)] in 618 patients. After a 2-week run-in, patients on SU or A-GI were randomized to either linagliptin (once daily, 5 mg) or metformin (twice or thrice daily, up to 2250 mg/day) as add-on therapy. Patients receiving the other OADs received linagliptin add-on therapy (non-randomized). RESULTS Adverse events were mostly mild or moderate, and rates were similar across all groups. Hypoglycaemic events were rare, except in the SU group. Overall, 26 (5.8%) hypoglycaemic events were reported in patients receiving linagliptin (non-randomized). Hypoglycaemic events were similar for linagliptin and metformin added to A-GI (1/61 vs. 2/61, respectively) or SU (17/124 vs. 10/63, respectively). Significant reductions in glycated haemoglobin (HbA1c) levels (between -0.7 and -0.9%) occurred throughout the study period for the background therapy groups that received linagliptin (baseline HbA1c 7.9-8.1%). The decline in HbA1c levels was indistinguishable between linagliptin and metformin groups when administered as add-on therapy to A-GI or SU. CONCLUSIONS Once-daily linagliptin showed safety and tolerability over 1 year and provided effective add-on therapy leading to significant HbA1c reductions, similar to metformin, over 52 weeks in Japanese patients.
Collapse
Affiliation(s)
- N Inagaki
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
INTRODUCTION Dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as new options in the management of type 2 diabetes mellitus, demonstrating meaningful antihyperglycemic effects and good tolerability profiles. Glycemic control is improved by preventing the DPP-4-mediated degradation of incretin hormones, with a resulting increase in insulin secretion and inhibition of glucagon secretion. PURPOSE This article provides a discussion of the clinical utility of linagliptin. RESULTS AND CONCLUSION Linagliptin is a xanthine-based, oral DPP-4 inhibitor that has been approved in the United States and Europe. It has been evaluated extensively in clinical trials, and results in improved glycemic control when used as monotherapy, initial combination therapy with metformin or pioglitazone, add-on therapy to metformin and/or a sulfonylurea, or add-on therapy to basal insulin (with or without oral antidiabetic drugs). Consistent with other members of its class, the benefits of linagliptin also include a low risk of hypoglycemia and weight gain. However, linagliptin is the first DPP-4 inhibitor to be approved as a once-daily, 5-mg dose and, due to its primarily non-renal route of excretion, no dosage adjustment is required for patients with renal or hepatic impairment. The pharmacokinetics and pharmacodynamics of linagliptin are not affected to a clinically meaningful degree by race or ethnicity and linagliptin has very low potential for drug-drug interactions.
Collapse
|
50
|
Friedrich C, Metzmann K, Rose P, Mattheus M, Pinnetti S, Woerle HJ. A randomized, open-label, crossover study to evaluate the pharmacokinetics of empagliflozin and linagliptin after coadministration in healthy male volunteers. Clin Ther 2013; 35:A33-42. [PMID: 23328275 DOI: 10.1016/j.clinthera.2012.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Empagliflozin is an oral, potent, and selective inhibitor of sodium glucose cotransporter 2, inhibition of which reduces renal glucose reabsorption and results in increased urinary glucose excretion. Linagliptin is an oral inhibitor of dipeptidyl peptidase-4 approved for the treatment of type 2 diabetes in the United States, Europe, Japan, and Canada. Due to their complementary modes of action, there is a good rationale to combine empagliflozin with linagliptin to improve glycemic control in patients with type 2 diabetes. OBJECTIVE This study was conducted to investigate the pharmacokinetics of empagliflozin and linagliptin after coadministration in healthy volunteers. METHODS This was an open-label, randomized, multiple-dose, crossover study with 3 treatments in 2 treatment sequences. Sixteen healthy male subjects received treatment A (empagliflozin 50 mg once daily [QD] for 5 days), treatment B (empagliflozin 50 mg QD and linagliptin 5 mg QD for 7 days), and treatment C (linagliptin 5 mg QD for 7 days) in sequence AB then C, or sequence C then AB. RESULTS Sixteen healthy male subjects aged between 18 and 50 years with a body mass index of 18.5 to 29.9 kg/m(2) were included in the study. Linagliptin total exposure (AUC over a uniform dosing interval τ at steady state geometric mean ratio [GMR], 1.03 [90% CI, 0.96-1.11]) and peak exposure (C(max) at steady state GMR, 1.01 [90% CI, 0.87-1.19) exposure was unaffected by coadministration of empagliflozin. Empagliflozin total exposure (AUC over a uniform dosing interval τ at steady state GMR, 1.02 [90% CI, 0.97-1.07]) was unaffected by coadministration of linagliptin. There was a reduction in empagliflozin peak exposure (C(max) at steady state GMR, 0.88 [90% CI, 0.79-0.99]) when linagliptin was coadministered that was not considered clinically meaningful. No adverse events were reported during the coadministration period. No hypoglycemia was reported. Empagliflozin and linagliptin were well tolerated. CONCLUSION These data support the coadministration of empagliflozin and linagliptin without dose adjustments. European Union Drug Regulating Authorities Clinical Trials Registration: EudraCT 2008-006089-27.
Collapse
|