1
|
Jiao W, Park WY, Kim YI, Kim JH, Kim B, Song G, Park JY, Jung SJ, Kwak HJ, Choe SK, Lee JH, Um JY. Browning of inguinal white adipose tissue by the novel lignan (-)-secoisolariciresinol 4-O-methyl ether attenuates diet-induced obesity through mitochondrial and peroxisomal activation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119952. [PMID: 40194601 DOI: 10.1016/j.bbamcr.2025.119952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025]
Abstract
Studies indicate that the induction and activation of brown and beige adipocytes, which can enhance energy expenditure, may be beneficial for managing obesity and its associated diseases. This study investigated whether a novel lignan (-)-secoisolariciresinol 4-O-methyl ether (S4M) obtained from arctigenin inhibited diet-induced obesity by the browning of white adipose tissue (WAT). S4M treatment inhibited adipogenesis and lipid accumulation in white-induced 3T3-L1 adipocytes and in zebrafish embryonic development. Moreover, S4M treatment promoted browning in white adipocytes by increasing TOM20, UCP1, and PGC1α protein levels and consequently upregulating the mitochondrial content. S4M treatment significantly promoted mitochondrial fission by increasing the expression of DRP1. Furthermore, it enhanced peroxisomal biogenesis and function by inducing PEX13, ACOX1, and catalase. Mdivi-1, a mitochondrial dynamics inhibitor, diminished the browning effect of white adipocytes by the S4M treatment. This study found that S4M treatment inhibited weight gain in high-fat diet-induced obese mice, decreased the weight of WAT, and increased the abundance and function of mitochondria and peroxisomes in inguinal WAT, suggesting that S4M treatment could increase energy expenditure. The results suggest that S4M has potential as a therapeutic agent for combating obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Wenjun Jiao
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Yong Park
- Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong-Il Kim
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jin-Hyung Kim
- Department of Biomedical and Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Beomsu Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gahee Song
- Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja Yeon Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Se Jin Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jong-Hyun Lee
- College of Pharmacy, Dongduk Women's University, 60 Hwarang-ro 13-gil, Seongbuk-gu, Seoul, 02748, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Khalaf F, Barayan D, Saldanha S, Jeschke MG. Metabolaging: a new geroscience perspective linking aging pathologies and metabolic dysfunction. Metabolism 2025; 166:156158. [PMID: 39947519 DOI: 10.1016/j.metabol.2025.156158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
With age, our metabolic systems undergo significant alterations, which can lead to a cascade of adverse effects that are implicated in both metabolic disorders, such as diabetes, and in the body's ability to respond to acute stress and trauma. To elucidate the metabolic imbalances arising from aging, we introduce the concept of "metabolaging." This framework encompasses the broad spectrum of metabolic disruptions associated with the hallmarks of aging, including the functional decline of key metabolically active organs, like the adipose tissue. By examining how these organs interact with essential nutrient-sensing pathways, "metabolaging" provides a more comprehensive view of the systemic metabolic imbalances that occur with age. This concept extends to understanding how age-related metabolic disturbances can influence the response to acute stressors, like burn injuries, highlighting the interplay between metabolic dysfunction and the ability to handle severe physiological challenges. Finally, we propose potential interventions that hold promise in mitigating the effects of metabolaging and its downstream consequences.
Collapse
Affiliation(s)
- Fadi Khalaf
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dalia Barayan
- David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sean Saldanha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Marc G Jeschke
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Bat-Erdene B, He M, Dong J, Li Y, Ta D. Therapeutic Effects of Different Ultrasound Intensity Stimulation on Brown Adipose Tissue for the Treatment of Type 2 Diabetes. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:830-840. [PMID: 39924417 DOI: 10.1016/j.ultrasmedbio.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Type 2 diabetes (T2D) is a persistent illness that has a high incidence rate. Still, there is no conclusive evidence on effectively improving blood sugar levels in patients through physical therapy. This study examined the regulatory effects of different intensities of low-intensity pulsed ultrasound (LIPUS) on T2D by stimulating brown adipose tissue (BAT). Eight-week-old C57BL/6J mice were divided into six groups (n = 10 per group): Control sham (C-Sham), Control-LIPUS (C-LIPUS), T2D-sham (T2D-Sham), T2D groups treated with LIPUS at spatial average-temporal-average intensity (Isata) of 60mW/cm² (T2D-L-60), 80mW/cm² (T2D-L-80), and 100mW/cm² (T2D-L-100). T2D models were induced by intraperitoneal injection of 40 mg/kg streptozotocin (STZ) three times after 12 wks of high-fat diet (HFD). The T2D-LIPUS group received LIPUS stimulation for 20 minutes per day for 6 weeks. The LIPUS stimulation had a duty cycle of 20%, a frequency of 1 MHz, and Isata of 60mW/cm², 80mW/cm², 100mW/cm². Subsequently, glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were performed, and body fat content in mice was analyzed using nuclear magnetic resonance (NMR). Metabolic changes were monitored using metabolic cages. The results indicated that 80mW/cm² intensity level significantly improved glucose tolerance, insulin sensitivity, and metabolic function after LIPUS exposure. Significant reductions in body fat content and enhanced thermogenesis were observed, highlighting the potential of LIPUS in T2D management. This provides the basis for the dose study of LIPUS in the treatment of T2D.
Collapse
Affiliation(s)
- Badamgarav Bat-Erdene
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Min He
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China.
| | - Jingsong Dong
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Dean Ta
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Academy for Engineering and Technology, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Aoki-Saito H, Mandai H, Nakakura T, Sasaki T, Kitamura T, Omori K, Hisada T, Okada S, Suga S, Yamada M, Saito T. (+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet. Biomed Pharmacother 2025; 186:118030. [PMID: 40187045 DOI: 10.1016/j.biopha.2025.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein. METHODS Male C57BL/6 J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180 mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting. RESULTS (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-γ (PPARγ). This effect was synergistic with that of a PPARγ agonist. CONCLUSION This study demonstrated that (+)-terrein effectively induces PPARγ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties.
Collapse
Affiliation(s)
- Haruka Aoki-Saito
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Gifu 509-0293, Japan
| | - Takashi Nakakura
- Department of Anatomy, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Tsutomu Sasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8514, Japan
| | - Shuichi Okada
- Department of Diabetes, Soleiyu Asahi Clinic, Maebashi, Gunma 371-0014, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama 700-8530, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tsugumichi Saito
- Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan.
| |
Collapse
|
5
|
Ponce-Lopez T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood-Brain Barrier Integrity and Glia Activation in Alzheimer's Disease. Int J Mol Sci 2025; 26:4209. [PMID: 40362446 PMCID: PMC12072112 DOI: 10.3390/ijms26094209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and synaptic dysfunction. The accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein leads to neuronal dysfunction, neuroinflammation, and glial cell activation. Emerging evidence suggests that peripheral insulin resistance and chronic inflammation, often associated with type 2 diabetes (T2D) and obesity, promote increased proinflammatory cytokines, oxidative stress, and immune cell infiltration. These conditions further damage the blood-brain barrier (BBB) integrity and promote neurotoxicity and chronic glial cell activation. This induces neuroinflammation and impaired neuronal insulin signaling, reducing glucose metabolism and exacerbating Aβ accumulation and tau hyperphosphorylation. Indeed, epidemiological studies have linked T2D and obesity with an increased risk of developing AD, reinforcing the connection between metabolic disorders and neurodegeneration. This review explores the relationships between peripheral insulin resistance, inflammation, and BBB dysfunction, highlighting their role in glial activation and the exacerbation of AD pathology.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| |
Collapse
|
6
|
Zhang K, Zhang S, Deng G, He G, Yuan Y, Fu Y, Liu Y, Gong Z, Kong L, Zheng C. Brown adipose tissue-derived extracellular vesicles regulate hepatocyte mitochondrial activity to alleviate high-fat diet-induced jawbone osteoporosis in mice. Front Endocrinol (Lausanne) 2025; 16:1583408. [PMID: 40343072 PMCID: PMC12058480 DOI: 10.3389/fendo.2025.1583408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 05/11/2025] Open
Abstract
Background Lipid metabolic disorder (LMD) serves as a systemic driver of osteoporosis (OP), with jawbone osteoporosis (JOP) representing a clinically significant yet underexplored complication. Current clinical treatments for JOP remain suboptimal, highlighting the need for innovative approaches. The use of metabolic regulators represents a promising therapeutic strategy for OP management. While brown adipose tissue-derived extracellular vesicles (BEV) exhibit metabolic regulatory potential, their capacity to mitigate LMD-associated OP remains unclear. Methods A high-fat diet (HFD)-induced LMD mouse model was established to identify the JOP phenotype through micro-computed tomography (micro-CT) and transcriptomic profiling. BEV isolation was optimized using liberase enzyme-enhanced differential centrifugation, with in vivo tracking confirming biodistribution. In vitro, BEV effects on hepatocytes were assessed with triglyceride (TG) content, free fatty acid (FFA) levels, and mitochondrial function. The additional benefits of BEV on the osteogenic microenvironment were evaluated via AML12/MC3T3-E1 indirect co-culture under high-lipid conditions. Dual therapeutic effects of BEV on LMD and JOP in vivo were validated through metabolic phenotyping, micro-CT and histomorphometry analysis. Results Sixteen weeks of HFD successfully induced typical LMD and JOP manifestations in mice. Transcriptomic sequencing revealed downregulation of osteogenic-related genes concomitant with upregulation of lipid metabolism-associated genes in the jawbone of LMD mice. In vivo tracking showed the exogenous BEV predominantly accumulated in the liver rather than the jawbone. BEV treatment significantly reduced intracellular TG and FFA content in hepatocytes, while enhancing osteogenic activity of MC3T3-E1 cells through indirect co-culture. Mitochondrial analyses revealed that BEV effectively increased the proportion of active mitochondria, reduced reactive oxygen species (ROS) generation rate, and enhanced oxygen consumption rate (OCR) in hepatocytes. Biochemical assay and metabolic cage testing showed a lower systemic lipid content level along with improved fat utilization and thermogenesis capacity in BEV-treated mice. Micro-CT and immunofluorescence staining further confirm significant improvements in the jawbone of BEV-treated mice regarding bone volume fraction, trabecular number, trabecular thickness, trabecular separation, and RUNX2 expression. Conclusion This study establishes LMD as a crucial driver factor in JOP and identifies BEV-mediated mitochondrial transferring in hepatocytes as a therapeutic strategy for LMD-related JOP.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Sha Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- College of Basic Medicine, Shaanxi Key Laboratory of Research on TCM Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Guorong Deng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guangxiang He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yu Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yihan Liu
- Department of Stomatology, The First Medical Center, Chinese Chinese PLA General Hospital, Beijing, China
| | - Zhen Gong
- Analysis & Testing Laboratory for Life Sciences and Medicine of Fourth Military Medical University, Xi’an, China
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Chenxi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Asahi R, Udagawa H, Oshiro R, Nakajima S, Kanzawa N, Sano K, Shimizu Y, Okamura T, Fujimi TJ. Histidine and soy isoflavones co-ingestion induces browning of white adipose tissue and promotes lipolysis in female rats. Exp Anim 2025; 74:239-250. [PMID: 39675964 PMCID: PMC12044354 DOI: 10.1538/expanim.24-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Beige adipocytes arise from white adipocytes in response to cold or other stimuli, known as browning of white adipose. Beige adipocytes play a role similar to that of brown adipocytes, express high levels of uncoupling protein 1 (UCP1), and are responsible for energy consumption via heat production, thus aiding in fat loss. Although histidine (His) and soy isoflavones (Iso) co-ingestion reportedly reduces food intake, body weight, and fat accumulation in female rats, the underlying mechanism remains unclear. Therefore, this study aimed to elucidate the mechanisms whereby histidine and soy isoflavones (His-Iso) co-ingestion suppresses fat accumulation. Female rats were fed a control diet or diet containing Iso, His, or His-Iso for 2 weeks, followed by sampling of periovarian white adipose tissue (poWAT) and retroperitoneal white adipose tissue (rWAT) and adipocyte morphology analysis. Additionally, the expression of browning- and lipid metabolism-related genes was examined. Histochemical analysis revealed the presence of multilocular lipid droplets, representative of beige adipocytes, in the poWAT and rWAT of rats in the His-Iso co-ingestion group. Quantitative PCR analysis showed that His-Iso co-ingestion upregulated brown adipocyte and beige adipocyte markers, including UCP1, indicating that His-Iso intake induces beige adipocytes. Moreover, His-Iso co-ingestion upregulated genes related to fatty acid oxidation (carnitine palmitoyl transferase 1A) and lipolysis (adipose triglyceride lipase) in WATs. In conclusion, His-Iso co-ingestion increases UCP1 expression and morphological changes to beige adipocytes, and suppresses fat accumulation by promotion of lipolysis and fatty acid oxidation in WAT.
Collapse
Affiliation(s)
- Riku Asahi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| | - Haruhide Udagawa
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| | - Remiko Oshiro
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| | - Shigeru Nakajima
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| | - Nobuyuki Kanzawa
- Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, 7-1 Kioi, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai Sakado-shi, Saitama 350-0295, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takahiko J Fujimi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki-shi, Kanagawa 253-8550, Japan
| |
Collapse
|
8
|
Manabe Y, Sugawara T. Potential of siphonaxanthin, a green algal carotenoid, to prevent obesity and related diseases. J Nat Med 2025:10.1007/s11418-025-01897-4. [PMID: 40220069 DOI: 10.1007/s11418-025-01897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/13/2025] [Indexed: 04/14/2025]
Abstract
The increasing prevalence of obesity and its related diseases, including diabetes mellitus and metabolic dysfunction-associated fatty liver disease, has become a significant social problem. These diseases are believed to be preventable through healthy diet and exercise habits, and the investigation of food ingredients that are useful for prevention of these diseases is actively ongoing. Carotenoids are the major lipophilic pigments responsible for yellow-to-red colors in our diet, and the ingestion of certain carotenoids has been reported to prevent obesity. For example, β-carotene suppresses adipogenic differentiation of mouse preadipocyte line 3T3-L1 through its provitamin A activity. Fucoxanthin, a carotenoid found in brown algae, also has the similar effect via a different mechanism and is used as an active ingredient in foods with functional claims in Japan. In contrast, siphonaxanthin, a carotenoid found in some green algae such as Caulerpa lentillifera (commonly known as sea grape), exhibited stronger biological activities than other carotenoids in cell-based studies; it significantly suppressed adipogenic differentiation of 3T3-L1 cells even at low concentrations where β-carotene and fucoxanthin did not show inhibitory effects. However, its practical applications have not yet been realized. This review summarizes the studies on the anti-obesity effects of carotenoids and discusses the potential of siphonaxanthin as a novel functional food ingredient.
Collapse
Affiliation(s)
- Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Youn D, Kim B, Jeong D, Lee JY, Kim S, Sumberzul D, Ginting RP, Lee MW, Song JH, Park YS, Kim Y, Oh CM, Lee M, Cho J. Cross-talks between Metabolic and Translational Controls during Beige Adipocyte Differentiation. Nat Commun 2025; 16:3373. [PMID: 40204764 PMCID: PMC11982337 DOI: 10.1038/s41467-025-58665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Whether and how regulatory events at the translation stage shape the cellular and metabolic features of thermogenic adipocytes is hardly understood. In this study, we report two hitherto unidentified cross-talk pathways between metabolic and translational regulation in beige adipocytes. By analysing temporal profiles of translation activity and protein level changes during precursor-to-beige differentiation, we found selective translational down-regulation of OXPHOS component-coding mRNAs. The down-regulation restricted to Complexes I, III, IV, and V, is coordinated with enhanced translation of TCA cycle genes, engendering distinct stoichiometry of OXPHOS and TCA cycle components and altering the related metabolic activities in mitochondria of thermogenic adipocytes. Our high-resolution description of ribosome positioning unveiled potentiated ribosome pausing at glutamate codons. The increased stalling is attributable to remodelled glutamate metabolism that decreases glutamates for tRNA charging during pan-adipocyte differentiation. The ribosome pauses decrease protein synthesis and mRNA stability of glutamate codon-rich genes, such as actin cytoskeleton-associated genes.
Collapse
Affiliation(s)
- Daehwa Youn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Boseon Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Dahee Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ju Yeon Lee
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Seha Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dulguun Sumberzul
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Rehna Paula Ginting
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ju Hwan Song
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Ye Seul Park
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
10
|
Zhou YQ, Chang XY, Yang L, Pan D, Huang HY. Loss of lysyl oxidase in adipose tissue ameliorates metabolic inflexibility induced by high-fat diet. Obesity (Silver Spring) 2025; 33:720-731. [PMID: 40025831 DOI: 10.1002/oby.24253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/23/2024] [Accepted: 12/31/2024] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Systemic administration of β-aminopropionitrile to inhibit lysyl oxidase (Lox) activity improves metabolism, but it exhibits a broad spectrum of effects. Clarification of the role of Lox in adipose tissue metabolism under high-fat diet (HFD) conditions is needed. METHODS Mice with adipose tissue knockout of Lox (LoxAKO) and wild-type mice were subjected to a 16-week HFD regimen. A detailed evaluation encompassing adipose tissue, hepatic function, and systemic metabolism was conducted. RNA sequencing analysis was used to unravel the intricate mechanisms behind the metabolic enhancements in LoxAKO mice. RESULTS Compared with the control, although there was no difference in body weight, LoxAKO mice exhibited an improved metabolic phenotype, including enhanced insulin sensitivity, improved glucose tolerance, and reduced liver steatosis, along with reduced adipose tissue inflammation and fibrosis. LoxAKO mice showed increased thermogenic activity in brown adipose tissue with increased uncoupling protein 1 (UCP1) expression and oxygen consumption rate. Additionally, RNA sequencing analysis revealed that adipose deletion of Lox might facilitate the metabolic processing of glucose, branched-chain amino acids, and fatty acids in brown adipose tissue. CONCLUSIONS These findings indicate that adipocyte Lox deletion improves metabolic adaptability under an HFD, highlighting Lox as a promising therapeutic target for obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Yun-Qian Zhou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xin-Yue Chang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Lei Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Luo Y, Liu Q, Mao Y, Wen J, Chen G. Different action of glucocorticoid receptor in adipose tissue remodelling to modulate energy homeostasis by chronic restraint stress. Lipids Health Dis 2025; 24:121. [PMID: 40148860 PMCID: PMC11948944 DOI: 10.1186/s12944-025-02539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Chronic stress in daily life is a well-known trigger for various health issues. Despite advancements in obesity research, the mechanisms governing lipid metabolism in adipose tissue during cachexia remain poorly understood. METHODS A chronic restraint stress (CRS) model was used to induce significant physiological and psychological stress in mice. Mice were subjected to 6 h of restraint daily in 50 mL plastic tubes for seven consecutive days. A fasting control group was included for comparison. Post-stress assessments included behavioural tests, glucose and insulin tolerance tests and indirect calorimetry. Blood and adipose tissue samples were collected for mRNA and protein analyses. RESULTS CRS induced significant psychological and physiological changes in mice, including depression-like behaviours, weight loss and reduced insulin sensitivity. Notably, CRS caused extensive adipose tissue remodelling. White adipose tissue (WAT) underwent significant 'browning' accompanied by an increase in the expression of thermogenic proteins. This counteracted the stress-induced 'whitening' of brown adipose tissue (BAT), which exhibited impaired thermogenesis and functionality, thereby maintaining energy balance systematically. The glucocorticoid receptor (GR) plays a crucial role in lipid metabolism regulation during these changes. GR expression levels were inversely correlated in BAT and WAT, but aligned with the expression patterns of thermogenic proteins across adipose tissues. These findings suggest that under chronic metabolic stress, GR mediates tissue-specific responses in adipose tissues, driving functional and phenotypic transitions in BAT and WAT to maintain energy homeostasis. CONCLUSIONS This study provides novel insights into the contrasting thermogenic phenotypes of BAT and WAT under emaciation and highlights the critical role of GRs in adipose tissue remodelling during CRS and its potential as a therapeutic target. Addressing GR-mediated changes in adipose tissues may help alleviate BAT dysfunction in cachexia and promote WAT browning, enhancing metabolic stress resistance.
Collapse
Affiliation(s)
- Yinghua Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yaqian Mao
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
12
|
Valero-Muñoz M, Saw EL, Cooper H, Pimentel DR, Sam F. White Adipose Tissue in Obesity-Associated HFpEF: Insights From Mice and Humans. JACC Basic Transl Sci 2025:S2452-302X(25)00110-X. [PMID: 40338771 DOI: 10.1016/j.jacbts.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 05/10/2025]
Abstract
Obesity and hypertension are prevalent comorbidities in heart failure with preserved ejection fraction (HFpEF). Increased adiposity is implicated in its pathophysiology. We investigated changes in white adipose tissue (WAT) in obesity-associated HFpEF utilizing patient samples and a murine model of obesity-associated HFpEF. WAT analysis revealed "browning", characterized by smaller adipocytes and increased UCP1 expression, alongside fibrosis and reduced vascular markers during acute HF decompensation. During chronic, stable HFpEF, "browning" markers declined. There is a dynamic process in WAT, where acute HF exacerbations trigger transient "browning", fibrosis, and vascular deterioration, which partially reverse but fibrosis persists. WAT dysfunction worsens during acute HF, highlighting a potential therapeutic target for obesity-related HFpEF.
Collapse
Affiliation(s)
- María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Hannah Cooper
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - David R Pimentel
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Li Z, Song Y, Li Z, Liu S, Yi S, Zhang Z, Yu T, Li Y. Role of Protein Lysine Acetylation in the Pathogenesis and Treatment of Obesity and Metabolic Syndrome. Curr Obes Rep 2025; 14:24. [PMID: 40075037 PMCID: PMC11903573 DOI: 10.1007/s13679-025-00615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE OF REVIEW This review aimed to highlight the known role of histone deacetylases (HDACs) and lysine acetyltransferases (KATs) in individuals with obesity, better understand the role of HDACs and KATs enzymes in obesity and related metabolic disorders. RECENT FINDINGS Numerous cellular activities, including DNA replication, DNA repair, cell cycle regulation, RNA splicing, signal transmission, metabolic function, protein stability, transportation, and transcriptional regulation, are influenced by lysine acetylation. Protein lysine acetylation serves several purposes, which not only contribute to the development of metabolic disorders linked to obesity but also hold promise for therapeutic approaches. The current study demonstrates that HDACs and KATs control lysine acetylation. This review details the advancements made in the study of obesity, related metabolic diseases, and protein lysine acetylation. It contributes to our understanding of the function and mechanism of protein lysine acetylation in obesity and MS and offers a fresh method for treating these diseases.
Collapse
Affiliation(s)
- Zhaopeng Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Zhao Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Shuguang Liu
- Gastrointestinal Surgery Department, Dongda Hospital, Shanxian County, Shunshi East Road, Shanxian County, Heze City, Shandong Province, People's Republic of China
| | - Song Yi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Zhuoli Zhang
- Radiology & BME University of California, Irvine Sprague Hall 222 839 Health Sciences Rd Irvine, Irvine, CA, 92617, USA
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
14
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2025; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
15
|
Kielbowski K, Bratborska AW, Bakinowska E, Pawlik A. Sirtuins as therapeutic targets in diabetes. Expert Opin Ther Targets 2025; 29:117-135. [PMID: 40116767 DOI: 10.1080/14728222.2025.2482563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Sirtuins (SIRTs) are NAD+-dependent deacetylases that mediate post-translational modifications of proteins. Seven members of the SIRT family have been identified in mammals. Importantly, SIRTs interact with numerous metabolic and inflammatory pathways. Thus, researchers have investigated their role in metabolic and inflammatory disorders. AREAS COVERED In this review, we comprehensively discuss the involvement of SIRTs in the processes of pancreatic β-cell dysfunction, glucose tolerance, insulin secretion, lipid metabolism, and adipocyte functions. In addition, we describe the current evidence regarding modulation of the expression and activity of SIRTs in diabetes, diabetic complications, and obesity. EXPERT OPINION The development of specific SIRT activators and inhibitors that exhibit high selectivity toward specific SIRT isoforms remains a major challenge. This involves the need to elucidate the physiological pathways involving SIRTs, as well as their important role in the development of metabolic disorders. Molecular modeling techniques will be helpful to develop new compounds that modulate the activity of SIRTs, which may contribute to the preparation of new drugs that selectively target specific SIRTs. SIRTs hold promise as potential targets in metabolic disease, but there is much to learn about specific modulators and the final answers will await clinical trials.
Collapse
Affiliation(s)
- Kajetan Kielbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
16
|
Park JY, Ha ES, Lee J, Brun PJ, Kim Y, Chung SS, Hwang D, Lee SA, Park KS. The brown fat-specific overexpression of RBP4 improves thermoregulation and systemic metabolism by activating the canonical adrenergic signaling pathway. Exp Mol Med 2025; 57:554-566. [PMID: 40025173 PMCID: PMC11958748 DOI: 10.1038/s12276-025-01411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 03/04/2025] Open
Abstract
Retinol-binding protein 4 (RBP4), the sole specific carrier for retinol (vitamin A) in circulation, is highly expressed in liver and adipose tissues. Previous studies have demonstrated that RBP4 plays a role in cold-mediated adipose tissue browning and thermogenesis. However, the role of RBP4 in brown adipose tissue and its metabolic significance remain unclear. Here we generated and studied transgenic mice that express human RBP4 (hRBP4), specifically in brown adipocytes (UCP1-RBP4 mice), to better understand these uncertainties. When fed a chow diet, these mice presented significantly lower body weights and fat mass than their littermate controls. The UCP1-RBP4 mice also showed significant improvements in glucose clearance, enhanced energy expenditure and increased thermogenesis in response to a cold challenge. This was associated with increased lipolysis and fatty acid oxidation in brown adipose tissue, which was attributed to the activation of canonical adrenergic signaling pathways. In addition, high-performance liquid chromatography analysis revealed that plasma RBP4 and retinol levels were elevated in the UCP1-RBP4 mice, whereas their hepatic retinol levels decreased in parallel with a chow diet. Steady-state brown fat levels of total retinol were significantly elevated in the UCP1-RBP4 mice, suggesting that their retinol uptake was increased in RBP4-expressing brown adipocytes when fed a chow diet. These findings reveal a critical role for RBP4 in canonical adrenergic signaling that promotes lipid mobilization and oxidation in brown adipocytes, where the harnessed energy is dissipated as heat by adaptive thermogenesis.
Collapse
Affiliation(s)
- Jong Yoen Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Eun Sun Ha
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jimin Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Pierre-Jacques Brun
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeri Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sung Soo Chung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Bioinformatics Institute, Bio-MAX, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ah Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- ProGen Co. Ltd., 07789, Seoul, Republic of Korea.
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Du X, Yu W, Chen F, Jin X, Xue L, Zhang Y, Wu Q, Tong H. HDAC inhibitors and IBD: Charting new approaches in disease management. Int Immunopharmacol 2025; 148:114193. [PMID: 39892171 DOI: 10.1016/j.intimp.2025.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Inflammatory bowel disease (IBD) represents a group of chronic inflammatory disorders of the gastrointestinal tract. Despite substantial advances in our understanding of IBD pathogenesis, the currently available therapeutic options remain limited in their efficacy and often come with significant side effects. Therefore, there is an urgent need to explore novel approaches for the management of IBD. One promising avenue of investigation revolves around the use of histone deacetylase (HDAC) inhibitors, which have garnered considerable attention for their potential in modulating gene expression and curbing inflammatory responses. This review emphasizes the pressing need for innovative drugs in the treatment of IBD, and drawing from a wealth of preclinical studies and clinical trials, we underscore the multifaceted roles and the therapeutic effects of HDAC inhibitors in IBD models and patients. This review aims to contribute significantly to the understanding of HDAC inhibitors' importance and prospects in the management of IBD, ultimately paving the way for improved therapeutic strategies in this challenging clinical landscape.
Collapse
Affiliation(s)
- Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Fangyu Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
18
|
Li M, Ma N, Luo S, Lu Y, Yan X, Li Y, Li X, Li Z, Wu Z, Wei Z, Wang W, Fan H, Jiang Y, Xiong Y, Wang Y. Single-nucleus transcriptomes reveal the underlying mechanisms of dynamic whitening in thermogenic adipose tissue in goats. J Anim Sci Biotechnol 2025; 16:23. [PMID: 39923114 PMCID: PMC11807308 DOI: 10.1186/s40104-025-01157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Thermogenic adipose tissue, both beige and brown, experiences whitening as animals are exposed to warmth and age, but the potential mechanisms are not fully understood. In this study, we employed single-nucleus RNA-seq to construct a cell atlas during whitening progression and identified the characteristics of thermogenic adipocytes. RESULTS Our histological studies and bulk transcriptome gene expression analysis confirmed that both perirenal and omental adipose tissues (pAT and oAT) exhibited progressive whitening in goats. Compared to the classic brown adipocytes in mice, goat thermogenic adipocytes were more closely related in gene expression patterns to human beige adipocytes, which was also confirmed by adipocyte type- and lineage-specific marker expression analysis. Furthermore, trajectory analysis revealed beige- and white-like adipocytes deriving from a common origin, coexisting and undergoing the transdifferentiation. In addition, differences in gene expression profiles and cell communication patterns (e.g., FGF and CALCR signaling) between oAT and pAT suggested a lower thermogenic capacity of oAT than that of pAT. CONCLUSIONS We constructed a cell atlas of goat pAT and oAT and descripted the characteristics of thermogenic adipocytes during whitening progression. Altogether, our results make a significant contribution to the molecular and cellular mechanisms behind the whitening of thermogenic adipocytes, and providing new insights into obesity prevention in humans and cold adaptation in animals.
Collapse
Affiliation(s)
- Manman Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Nange Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shujie Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yuyi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xixi Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuohui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenyu Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huimei Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China.
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
19
|
Yu J, Gu X, Guo Y, Gao M, Cheng S, Meng M, Cui X, Zhang Z, Guo W, Yan D, Sheng M, Zhai L, Ji J, Ma X, Li Y, Cao Y, Wu X, Zhao J, Hu Y, Tan M, Lu Y, Xu L, Liu B, Hu C, Ma X. E3 ligase FBXW7 suppresses brown fat expansion and browning of white fat. EMBO Rep 2025; 26:748-767. [PMID: 39747664 PMCID: PMC11811183 DOI: 10.1038/s44319-024-00337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Thermogenic fat, including brown and beige fat, dissipates heat via thermogenesis and enhances energy expenditure. Thus, its activation represents a therapeutic strategy to combat obesity. Here, we demonstrate that levels of F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin protein ligase, negatively correlate with thermogenic fat functionality. FBXW7 overexpression in fat suppresses energy expenditure and thermogenesis, thus aggravates obesity and metabolic dysfunctions in mice. Conversely, FBXW7 depletion in fat leads to brown fat expansion and browning of white fat, and protects mice from diet induced obesity, hepatic steatosis, and hyperlipidemia. Mechanistically, FBXW7 binds to S6K1 and promotes its ubiquitination and proteasomal degradation, which in turn impacts glycolysis and brown preadipocyte proliferation via lactate. Besides, the beneficial metabolic effects of FBXW7 depletion in fat are attenuated by fat-specific knockdown of S6K1 in vivo. In summary, we provide evidence that adipose FBXW7 acts as a major regulator for thermogenic fat biology and energy homeostasis and serves as potential therapeutic target for obesity and metabolic diseases.
Collapse
Grants
- 32325024,82300979,32222024,32271224,32071148,22225702,82000802 MOST | National Natural Science Foundation of China (NSFC)
- 2023YFA1800400,2019YFA09004500 MOST | National Key Research and Development Program of China (NKPs)
- 22ZR1421200,21140904300 Science and Technology Commission of Shanghai Municipality (STCSM)
- CSTB2022NSCQ-JQX0033 Natural Science Foundation of Chongqing, China
- 2021C03069 Key Research and Development Project of Zhejiang Province, China
- LY20H070003 Zhejiang Provincial Natural Science Foundation of China
- SHSMU-ZDCX20212700 Innovation research team of high-level local universities in Shanghai
- 2022ZZ01002 Shanghai Research Center for Endocrine and Metabolic Diseases
- 2023M741184 China Postdoctoral Science Foundation(China Postdoctoral Foundation Project)
Collapse
Affiliation(s)
- Jian Yu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yingying Guo
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shimiao Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dandan Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiejie Zhao
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Lu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Institute for Aging, East China Normal University, Shanghai, 200241, China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Cheng Hu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China.
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China.
| | - Xinran Ma
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China.
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Institute for Aging, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
20
|
Qian A, Xiao G, Li Z, Mu Y, Liu X, Tian X, Yang J, Zhao AZ, Li F. Therapeutic evaluation of glycoprotein hormone β5/α2 in reducing obesity and metabolic dysfunctions in genetically obese ob/ob mice. Biochem Pharmacol 2025; 232:116710. [PMID: 39667623 DOI: 10.1016/j.bcp.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
The escalating obesity epidemic poses serious public health challenges, requiring the development of effective therapeutic strategies. In this study, we aimed to determine if recombinant glycoprotein hormone β5 (GPHB5) protein, particularly in the hybrid form with glycoprotein hormone α2 (GPHA2) (recombinant corticotroph-derived glycoprotein hormone, rCGH), can alleviate obesity in the genetically obese mice, ob/ob. Six-week-old male ob/ob mice were intraperitoneally injected for four weeks with rCGH (10 mg/kg) treatment. Body weight, fat mass and lean mass as well as energy expenditure were evaluated. Blood samples were collected to assess circulating concentrations of triiodothyronine (T3) and thyroxine (T4). Glucose and insulin tolerance tests were also conducted. rCGH significantly decreased body weight and fat mass, stimulated energy expenditure without alterations in food consumption, induced lipolysis and browning of white adipose tissue (WAT) by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway. The treatment with the recombinant protein also led to marked reduction in hepatic steatosis, improved glucose tolerance and insulin sensitivity, and reduced triglycerides (TG), and total cholesterol (T-CHO) levels in ob/ob mice. In conclusion, rCGH attenuated obesity and alleviated metabolic syndromes in ob/ob mice, and it may represent a promising polypeptide-based drug candidate in treating obesity and obesity-related complications without interfering energy intake.
Collapse
Affiliation(s)
- Aijun Qian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Gengmiao Xiao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China
| | - Zhuang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Xiaohong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Xue Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Jianqin Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Allan Z Zhao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China.
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
21
|
Kim SH, Park WY, Song G, Park JY, Jung SJ, Ahn KS, Um JY. 4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156353. [PMID: 39799892 DOI: 10.1016/j.phymed.2024.156353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics. PURPOSE In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries. METHODS We examined the mechanism underlying the browning properties of 4-HA focusing on UCP1-dependent non-shivering thermogenesis in 3T3-L1 white adipocytes, high-fat diet (HFD)-induced obese male C57BL/6J mice, and cold-exposed male C57BL/6J mice. RESULTS 4-HA treatment elevates browning markers such as UCP1, T-Box transcription factor 1, and PR domain containing 16, mitochondrial function factors like oxidative phosphorylation complex as well as mitochondrial dynamic-related factors like phosphorylated dynamin-related protein 1 (p-DRP1), DRP1, and mitofusin 1 in 3T3-L1 white adipocytes, which were also confirmed in inguinal white adipose tissue (iWAT) of HFD-induced obese mice. Mdivi-1 blocked the increased DRP1-mediated mitochondrial fission by 4-HA, and even the browning effect of 4-HA was abolished. Furthermore, 4-HA increased AMP-activated protein kinase (AMPK) in both the 3T3-L1 white adipocytes and iWAT of HFD-induced obese mice. Inhibition of AMPK with Compound C also blocked the 4-HA-induced mitochondrial fission and browning effect. CONCLUSIONS 4-HA induces the browning of white adipocytes into beige adipocytes by regulating the DRP1-mediated mitochondrial dynamics through AMPK. These findings suggest that 4-HA could serve as a therapeutic candidate for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sang Hee Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea
| | - Gahee Song
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea
| | - Ja Yeon Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - Se Jin Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea.
| |
Collapse
|
22
|
Shimizu H, Miyamoto J, Hisa K, Ohue-Kitano R, Takada H, Yamano M, Nishida A, Sasahara D, Masujima Y, Watanabe K, Nishikawa S, Takahashi S, Ikeda T, Nakajima Y, Yoshida N, Matsuzaki C, Kageyama T, Hayashi I, Matsuki A, Akashi R, Kitahama S, Ueyama M, Murakami T, Inuki S, Irie J, Satoh-Asahara N, Toju H, Mori H, Nakaoka S, Yamashita T, Toyoda A, Yamamoto K, Ohno H, Katayama T, Itoh H, Kimura I. Sucrose-preferring gut microbes prevent host obesity by producing exopolysaccharides. Nat Commun 2025; 16:1145. [PMID: 39880823 PMCID: PMC11779931 DOI: 10.1038/s41467-025-56470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S. salivarius may prevent host obesity caused by excess sucrose intake via the exopolysaccharide (EPS) -short-chain fatty acid (SCFA) -carbohydrate metabolic axis in male mice. Healthy human donor-derived S. salivarius produced high EPS levels from sucrose but not from other sugars. S. salivarius abundance was significantly decreased in human donors with obesity compared with that in healthy donors, and the EPS-SCFA bacterial carbohydrate metabolic process was attenuated. Our findings reveal an important mechanism by which host-commensal interactions in glycometabolism affect energy regulation, suggesting an approach for preventing lifestyle-related diseases via prebiotics and probiotics by targeting bacteria and EPS metabolites.
Collapse
Affiliation(s)
- Hidenori Shimizu
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Noster Inc., Kamiueno, Muko-shi, Kyoto, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Keiko Hisa
- Noster Inc., Kamiueno, Muko-shi, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiromi Takada
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mayu Yamano
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akari Nishida
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Daiki Sasahara
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Noster Inc., Kamiueno, Muko-shi, Kyoto, Japan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Keita Watanabe
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shota Nishikawa
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Sakura Takahashi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takako Ikeda
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuya Nakajima
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Naofumi Yoshida
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-shi, Ishikawa, Japan
| | - Takuya Kageyama
- Center for Ecological Research, Kyoto University, Otsu-shi, Shiga, Japan
| | - Ibuki Hayashi
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akari Matsuki
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo-shi, Hokkaido, Japan
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Ryo Akashi
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Seiichi Kitahama
- Department of Metabolic and Bariatric Surgery, Center for Obesity, Diabetes and Endocrinology, Chibune General Hospital, Osaka-shi, Osaka, Japan
| | - Masako Ueyama
- Sleep Apnea Syndrome Treatment Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose-shi, Tokyo, Japan
| | - Takumi Murakami
- Advanced Genomics Center, National Institute of Genetics, Yata, Mishima-shi, Shizuoka, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo, Japan
| | - Shinsuke Inuki
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Junichiro Irie
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto, Japan
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Yata, Mishima-shi, Shizuoka, Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Tomoya Yamashita
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe-shi, Hyogo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Yata, Mishima-shi, Shizuoka, Japan
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, Wakayama-shi, Wakayama, Japan
| | - Hiroaki Ohno
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| | - Takane Katayama
- Laboratory of Molecular Biology and Bioresponse, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Itoh
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
- Department of Moonshot Research and Development Program, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
23
|
Theodorakopoulou A, Pylarinou I, Anastasiou IA, Tentolouris N. The Putative Antidiabetic Effect of Hypericum perforatum on Diabetes Mellitus. Int J Mol Sci 2025; 26:354. [PMID: 39796209 PMCID: PMC11719930 DOI: 10.3390/ijms26010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetes mellitus (DM), a global disease that significantly impacts public health, has become increasingly common over time. In this review, we aim to determine the potential benefits of St. John's Wort (SJW) as an adjunct therapy for DM. We gathered information from studies conducted in vitro, in vivo, and in humans. In vitro studies investigated the concentrations of SJW extracts capable of inhibiting certain enzymes or factors involved in the inflammatory pathway, such as the β-signal transducer and activator of transcription 1, nuclear factor κB, methylglyoxal, and oxidative stress (OS). The extract was found to have positive effects on OS and anti-inflammatory properties in DM, suggesting it could serve as a protective agent against diabetic vascular complications, cell damage, and apoptosis. According to in vivo research, the essential components of the extract can stimulate thermogenesis in adipose tissue, inhibit several key inflammatory signaling pathways, and delay the early death of pancreatic β cells, all of which contribute to combating obesity. The extract may also help treat prediabetes and significantly reduce neuropathic pain. Human studies have also confirmed some of these results. However, some of the plant's side effects need further investigation through clinical research before it can be used to treat DM.
Collapse
Affiliation(s)
- Aikaterini Theodorakopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece (I.P.); (I.A.A.)
| | - Ioanna Pylarinou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece (I.P.); (I.A.A.)
| | - Ioanna A. Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece (I.P.); (I.A.A.)
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece (I.P.); (I.A.A.)
| |
Collapse
|
24
|
Kang YE, Lee JH. Single-Cell Landscape and a Macrophage Subset Enhancing Brown Adipocyte Function in Diabetes (Diabetes Metab J 2024;48:885-900). Diabetes Metab J 2025; 49:160-161. [PMID: 39828978 PMCID: PMC11788549 DOI: 10.4093/dmj.2024.0739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Affiliation(s)
- Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
25
|
Jiang M, Li Z, Qin X, Chen L, Zhu G. Regulatory Role of Flavonoid Baicalin from Scutellaria baicalensis on AMPK: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:771-801. [PMID: 40374371 DOI: 10.1142/s0192415x25500296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitous sensor of cellular energy and nutrient status in eukaryotic cells. It serves an essential function in the modulation of energy balance and metabolism homeostasis through its regulation of carbohydrate metabolism, lipid metabolism and protein metabolism. The dysregulation of AMPK is closely related to a series of systemic diseases, affecting multiple organs and tissues. Baicalin is a natural compound derived from the dry raw root of Scutellaria baicalensis, and it has been found to exhibit several potential pharmacological actions. These include hepatoprotective effects, anti-inflammation effects and anti-tumor effects. These biological activities are related to the regulatory effect of baicalin on the host metabolism, which is closely associated with AMPK modulation. In this review, we provide an overview of the regulatory effect of baicalin on AMPK and its upstream and downstream signaling pathways. The pharmacological properties and underlying mechanism of baicalin for regulating AMPK were summarized with regards to four aspects: regulatory effect of baicalin on AMPK in lipid metabolism and glucose metabolism, regulatory effect of baicalin on AMPK in its pharmacological effect of anti-tumor and anti-inflammation. As a natural compound, baicalin has the potential for the management of certain AMPK-related diseases.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan, Wuhan, China
| | - Xu Qin
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
26
|
Chang L, Meng F, Jiao B, Zhou T, Su R, Zhu C, Wu Y, Ling Y, Wang S, Wu K, Zhang D, Cao J. Integrated analysis of omics reveals the role of scapular fat in thermogenesis adaptation in sunite sheep. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101292. [PMID: 39018792 DOI: 10.1016/j.cbd.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Inhabiting some of the world's most inhospitable climatic regions, the Sunite Mongolian sheep generates average temperatures as low as 4.3 °C and a minimum temperature of -38.8 °C; in these environments, they make essential cold adaptations. In this regard, scapular fat tissues from Mongolian sheep were collected both in winter and summer for transcriptomic and proteomic analyses to identify genes related to adaptive thermogenesis. In the transcriptome analysis, 588 differentially expressed genes were identified to participate in smooth muscle activity and fat metabolism, as well as in nutrient regulation. There were 343 upregulated and 245 downregulated genes. GO and KEGG pathway analyses on these genes revealed their participation in regulating smooth muscle activity, metabolism of fats, and nutrients. Proteomic analysis showed the differential expression of 925 proteins: among them, there are 432 up- and 493 down-expressed proteins. These proteins are mainly involved in oxidative phosphorylation, respiratory chain complex assembly, and ATP production by electron transport. Furthermore, using both sets at a more detailed level of analysis revealed over-representation in gene ontology categories related to hormone signaling, metabolism of lipids, the pentose phosphate pathway, the TCA cycle, and especially the process of oxidative phosphorylation. The identified essential genes and proteins were further validated by quantitative real-time polymerase chain reaction and Western blotting, respectively; key metabolic network constriction was constructed. The present study emphasized the critical role of lipid turnover in scapular fat for thermogenic adaptation in Sunite sheep.
Collapse
Affiliation(s)
- Longwei Chang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Fanhua Meng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| | - Boran Jiao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Tong Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Rina Su
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Chunxiao Zhu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Yi Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Yu Ling
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Shenyuan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Kaifeng Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| |
Collapse
|
27
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen M. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024; 79:3310-3325. [PMID: 39206504 PMCID: PMC11657049 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Ganesh N. Pandian
- Institute for Integrated Cell‐Material Science (WPI‐iCeMS)Kyoto UniversityKyotoJapan
| | - Jürg Hafner
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Georg Stingl
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Marie‐Charlotte Brüggen
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
| |
Collapse
|
28
|
Jeon YG, Kim SW, Kim JB. Decoding temporal thermogenesis: coregulator selectivity and transcriptional control in brown and beige adipocytes. Adipocyte 2024; 13:2391511. [PMID: 39155481 PMCID: PMC11340756 DOI: 10.1080/21623945.2024.2391511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
In mammals, brown adipose tissue (BAT) and beige adipocytes in white adipose tissue (WAT) play pivotal roles in maintaining body temperature and energy metabolism. In mice, BAT quickly stimulates thermogenesis by activating brown adipocytes upon cold exposure. In the presence of chronic cold stimuli, beige adipocytes are recruited in inguinal WAT to support heat generation. Accumulated evidence has shown that thermogenic execution of brown and beige adipocytes is regulated in a fat depot-specific manner. Recently, we have demonstrated that ubiquitin ligase ring finger protein 20 (RNF20) regulates brown and beige adipocyte thermogenesis through fat-depot-specific modulation. In BAT, RNF20 regulates transcription factor GA-binding protein alpha (GABPα), whereas in inguinal WAT, RNF20 potentiates transcriptional activity of peroxisome proliferator-activated receptor-gamma (PPARγ) through the degradation of nuclear corepressor 1 (NCoR1). This study proposes the molecular mechanisms by which co-regulator(s) selectively and temporally control transcription factors to coordinate adipose thermogenesis in a fat-depot-specific manner. In this Commentary, we provide molecular features of brown and beige adipocyte thermogenesis and discuss the underlying mechanisms of distinct thermogenic processes in two fat depots.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sun Won Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
29
|
Misawa Y, Takahashi Y, Sasaki T, Sato R, Yamauchi Y. Transcriptome analysis reveals selectively high expression of beige adipocyte marker genes in mouse perinephric fat. Biosci Biotechnol Biochem 2024; 88:1449-1452. [PMID: 39401989 DOI: 10.1093/bbb/zbae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 01/03/2025]
Abstract
To reveal the differences in the properties of visceral adipose tissue in healthy unstimulated mice, we performed transcriptome analysis using RNA sequencing. Among visceral adipose tissues, perinephric adipose tissue was found to exclusively express beige adipocyte markers while expressing white adipocyte markers. These results imply potential specific roles of perinephric adipose tissue in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yoshinori Misawa
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Sasaki
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Huang L, Zhu L, Zhao Z, Jiang S. Hyperactive browning and hypermetabolism: potentially dangerous element in critical illness. Front Endocrinol (Lausanne) 2024; 15:1484524. [PMID: 39640882 PMCID: PMC11617193 DOI: 10.3389/fendo.2024.1484524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Brown/beige adipose tissue has attracted much attention in previous studies because it can improve metabolism and combat obesity through non-shivering thermogenesis. However, recent studies have also indicated that especially in critical illness, overactivated brown adipose tissue or extensive browning of white adipose tissue may bring damage to individuals mainly by exacerbating hypermetabolism. In this review, the phenomenon of fat browning in critical illness will be discussed, along with the potential harm, possible regulatory mechanism and corresponding clinical treatment options of the induction of fat browning. The current research on fat browning in critical illness will offer more comprehensive understanding of its biological characteristics, and inspire researchers to develop new complementary treatments for the hypermetabolic state that occurs in critically ill patients.
Collapse
Affiliation(s)
- Lu Huang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lili Zhu
- Department of Plastic and Reconstructive Surgery, Taizhou Enze Hospital, Taizhou, China
| | - Zhenxiong Zhao
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Shenglu Jiang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
31
|
Arianti R, Vinnai BÁ, Alrifai R, Karadsheh G, Al-Khafaji YQ, Póliska S, Győry F, Fésüs L, Kristóf E. Upregulation of inhibitor of DNA binding 1 and 3 is important for efficient thermogenic response in human adipocytes. Sci Rep 2024; 14:28272. [PMID: 39550428 PMCID: PMC11569133 DOI: 10.1038/s41598-024-79634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Brown and beige adipocytes can be activated by β-adrenergic agonist via cAMP-dependent signaling. Performing RNA-sequencing analysis in human cervical area-derived adipocytes, we found that dibutyryl-cAMP, which can mimic in vivo stimulation of browning and thermogenesis, enhanced the expression of browning and batokine genes and upregulated several signaling pathway genes linked to thermogenesis. We observed that the expression of inhibitor of DNA binding and cell differentiation (ID) 1 and particularly ID3 was strongly induced by the adrenergic stimulation. The degradation of ID1 and ID3 elicited by the ID antagonist AGX51 during thermogenic activation prevented the induction of proton leak respiration that reflects thermogenesis and abrogated cAMP analogue-stimulated upregulation of thermogenic genes and mitochondrial complex I, II, and IV subunits, independently of the proximal cAMP-PKA signaling pathway. The presented data suggests that ID proteins contribute to efficient thermogenic response of adipocytes during adrenergic stimulation.
Collapse
Affiliation(s)
- Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang, 33134, Indonesia
| | - Boglárka Ágnes Vinnai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Rahaf Alrifai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyath Karadsheh
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Yousif Qais Al-Khafaji
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
32
|
Benvie AM, Berry DC. Reversing Pdgfrβ signaling restores metabolically active beige adipocytes by alleviating ILC2 suppression in aged and obese mice. Mol Metab 2024; 89:102028. [PMID: 39278546 PMCID: PMC11458544 DOI: 10.1016/j.molmet.2024.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. METHODS We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. RESULTS Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. CONCLUSIONS This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA.
| |
Collapse
|
33
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
34
|
Wang T, Sharma AK, Wu C, Maushart CI, Ghosh A, Yang W, Stefanicka P, Kovanicova Z, Ukropec J, Zhang J, Arnold M, Klug M, De Bock K, Schneider U, Popescu C, Zheng B, Ding L, Long F, Dewal RS, Moser C, Sun W, Dong H, Takes M, Suelberg D, Mameghani A, Nocito A, Zech CJ, Chirindel A, Wild D, Burger IA, Schön MR, Dietrich A, Gao M, Heine M, Sun Y, Vargas-Castillo A, Søberg S, Scheele C, Balaz M, Blüher M, Betz MJ, Spiegelman BM, Wolfrum C. Single-nucleus transcriptomics identifies separate classes of UCP1 and futile cycle adipocytes. Cell Metab 2024; 36:2130-2145.e7. [PMID: 39084216 DOI: 10.1016/j.cmet.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Adipose tissue can recruit catabolic adipocytes that utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-adipocytes and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-adipocyte subpopulation is highly metabolically active and utilizes FCs to dissipate energy, thus contributing to thermogenesis independent of Ucp1. Furthermore, FC-adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.
Collapse
Affiliation(s)
- Tongtong Wang
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Chunyan Wu
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Adhideb Ghosh
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Patrik Stefanicka
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Kovanicova
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jing Zhang
- Laboratory of Exercise and Health, Health Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Manuel Klug
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Health Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Ulrich Schneider
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Cristina Popescu
- Department of Nuclear Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Bo Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lianggong Ding
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Fen Long
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Revati Sumukh Dewal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Caroline Moser
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Wenfei Sun
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Martin Takes
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Dominique Suelberg
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Alexander Mameghani
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Antonio Nocito
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Christoph Johannes Zech
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Alin Chirindel
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Damian Wild
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland; Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Michael R Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplant and Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Min Gao
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ariana Vargas-Castillo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Susanna Søberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Miroslav Balaz
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia; Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany & Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany.
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland.
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
35
|
Han Y, Ye S, Liu B. Roles of extracellular vesicles derived from healthy and obese adipose tissue in inter-organ crosstalk and potential clinical implication. Front Endocrinol (Lausanne) 2024; 15:1409000. [PMID: 39268243 PMCID: PMC11390393 DOI: 10.3389/fendo.2024.1409000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles containing bioactive molecules including proteins, nucleic acids and lipids that mediate intercellular and inter-organ communications, holding promise as potential therapeutics for multiple diseases. Adipose tissue (AT) serves as a dynamically distributed energy storage organ throughout the body, whose accumulation leads to obesity, a condition characterized by infiltration with abundant immune cells. Emerging evidence has illustrated that EVs secreted by AT are the novel class of adipokines that regulate the homeostasis between AT and peripheral organs. However, most of the studies focused on the investigations of EVs derived from adipocytes or adipose-derived stem cells (ADSCs), the summarization of functions in cellular and inter-organ crosstalk of EVs directly derived from adipose tissue (AT-EVs) are still limited. Here, we provide a systemic summary on the key components and functions of EVs derived from healthy adipose tissue, showing their significance on the tissue recovery and metabolic homeostasis regulation. Also, we discuss the harmful influences of EVs derived from obese adipose tissue on the distal organs. Furthermore, we elucidate the potential applications and constraints of EVs from healthy patients lipoaspirates as therapeutic agents, highlighting the potential of AT-EVs as a valuable biological material with broad prospects for future clinical use.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Life Sciences, Westlake University, Hangzhou, China
| |
Collapse
|
36
|
Zhou RN, Zhu ZW, Xu PY, Shen LX, Wang Z, Xue YY, Xiang YY, Cao Y, Yu XZ, Zhao J, Jin Y, Yan J, Yang Q, Fang PH, Shang WB. Rhein targets macrophage SIRT2 to promote adipose tissue thermogenesis in obesity in mice. Commun Biol 2024; 7:1003. [PMID: 39152196 PMCID: PMC11329635 DOI: 10.1038/s42003-024-06693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Rhein, a component derived from rhubarb, has been proven to possess anti-inflammatory properties. Here, we show that rhein mitigates obesity by promoting adipose tissue thermogenesis in diet-induced obese mice. We construct a macrophage-adipocyte co-culture system and demonstrate that rhein promotes adipocyte thermogenesis through inhibiting NLRP3 inflammasome activation in macrophages. Moreover, clues from acetylome analysis identify SIRT2 as a potential drug target of rhein. We further verify that rhein directly interacts with SIRT2 and inhibits NLRP3 inflammasome activation in a SIRT2-dependent way. Myeloid knockdown of SIRT2 abrogates adipose tissue thermogenesis and metabolic benefits in obese mice induced by rhein. Together, our findings elucidate that rhein inhibits NLRP3 inflammasome activation in macrophages by regulating SIRT2, and thus promotes white adipose tissue thermogenesis during obesity. These findings uncover the molecular mechanism underlying the anti-inflammatory and anti-obesity effects of rhein, and suggest that rhein may become a potential drug for treating obesity.
Collapse
Affiliation(s)
- Ruo-Nan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zi-Wei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ping-Yuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Xuan Shen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziwei Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying-Ying Xue
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying-Ying Xiang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi-Zhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Peng-Hua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wen-Bin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
37
|
Ding Y, Su J, Shan B, Fu X, Zheng G, Wang J, Wu L, Wang F, Chai X, Sun H, Zhang J. Brown adipose tissue-derived FGF21 mediates the cardioprotection of dexmedetomidine in myocardial ischemia/reperfusion injury. Sci Rep 2024; 14:18292. [PMID: 39112671 PMCID: PMC11306229 DOI: 10.1038/s41598-024-69356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Brown adipose tissue (BAT) plays a critical role in regulating cardiovascular homeostasis through the secretion of adipokines, such as fibroblast growth factor 21 (FGF21). Dexmedetomidine (DEX) is a selective α2-adrenergic receptor agonist with a protection against myocardial ischemia/reperfusion injury (MI/RI). It remains largely unknown whether or not BAT-derived FGF21 is involved in DEX-induced cardioprotection in the context of MI/RI. Herein, we demonstrated that DEX alleviated MI/RI and improved heart function through promoting the release of FGF21 from interscapular BAT (iBAT). Surgical iBAT depletion or supplementation with a FGF21 neutralizing antibody attenuated the beneficial effects of DEX. AMPK/PGC1α signaling-induced fibroblast growth factor 21 (FGF21) release in brown adipocytes is required for DEX-mediated cardioprotection since blockade of the AMPK/PGC1α axis weakened the salutary effects of DEX. Co-culture experiments showed that DEX-induced FGF21 from brown adipocytes increased the resistance of cardiomyocytes to hypoxia/reoxygenation (H/R) injury via modulating the Keap1/Nrf2 pathway. Our results provided robust evidence that the BAT-cardiomyocyte interaction is required for DEX cardioprotection, and revealed an endocrine role of BAT in DEX-mediating protection of hearts against MIRI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Jiabao Su
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Beiying Shan
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Xiao Fu
- Laboratory of Metabolic and Inflammatory Diseases, Wuxi School of Medicine, Jiangnan University, No.1800, Lihu Road, Wuxi, 214125, People's Republic of China
| | - Guanli Zheng
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Jiwen Wang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Lixue Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Fangming Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, People's Republic of China
| | - Xiaoying Chai
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, People's Republic of China
| | - Haijian Sun
- Laboratory of Metabolic and Inflammatory Diseases, Wuxi School of Medicine, Jiangnan University, No.1800, Lihu Road, Wuxi, 214125, People's Republic of China.
| | - Jiru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China.
| |
Collapse
|
38
|
Röszer T. MicroRNA Profile of Mouse Adipocyte-Derived Extracellular Vesicles. Cells 2024; 13:1298. [PMID: 39120327 PMCID: PMC11311276 DOI: 10.3390/cells13151298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The post-transcriptional control of gene expression is a complex and evolving field in adipocyte biology, with the premise that the delivery of microRNA (miRNA) species to the obese adipose tissue may facilitate weight loss. Cells shed extracellular vesicles (EVs) that may deliver miRNAs as intercellular messengers. However, we know little about the miRNA profile of EVs secreted by adipocytes during postnatal development. Here, we defined the miRNA cargo of EVs secreted by mouse adipocytes in two distinct phases of development: on postnatal day 6, when adipocytes are lipolytic and thermogenic, and on postnatal day 56, when adipocytes have active lipogenesis. EVs were collected from cell culture supernatants, and their miRNA profile was defined by small RNA sequencing. The most abundant miRNA of mouse adipocyte-derived EVs was mmu-miR-148a-3p. Adipocyte EVs on postnatal day 6 were hallmarked with mmu-miR-98-5p, and some miRNAs were specific to this developmental stage, such as mmu-miR-466i-5p and 12 novel miRNAs. Adipocytes on postnatal day 56 secreted mmu-miR-365-3p, and 16 miRNAs were specific to this developmental stage. The miRNA cargo of adipocyte EVs targeted gene networks of cell proliferation, insulin signaling, interferon response, thermogenesis, and lipogenesis. We provided here a database of miRNAs secreted by developing mouse adipocytes, which may be a tool for further studies on the regulation of gene networks that control mouse adipocyte development.
Collapse
Affiliation(s)
- Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
39
|
Tian J, Moon JS, Nga HT, Lee HY, Nguyen TL, Jang HJ, Setoyama D, Shong M, Lee JH, Yi HS. Brown fat-specific mitoribosomal function is crucial for preventing cold exposure-induced bone loss. Cell Mol Life Sci 2024; 81:314. [PMID: 39066814 PMCID: PMC11335241 DOI: 10.1007/s00018-024-05347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
This study examines the interplay between ambient temperature, brown adipose tissue (BAT) function, and bone metabolism, emphasizing the effects of cold exposure and BAT mitochondrial activity on bone health. Utilizing ovariectomized (OVX) mice to model primary osteoporosis and BAT-specific mitochondrial dysfunction (BKO) mice, we evaluated the impact of housing temperature on bone density, immune modulation in bone marrow, and the protective role of BAT against bone loss. Cold exposure was found to universally reduce bone mass, enhance osteoclastogenesis, and alter bone marrow T-cell populations, implicating the immune system in bone remodeling under cold stress. The thermogenic function of BAT, driven by mitochondrial oxidative phosphorylation, was crucial in protecting against bone loss. Impaired BAT function, through surgical removal or mitochondrial dysfunction, exacerbated bone loss in cold environments, highlighting BAT's metabolic role in maintaining bone health. Furthermore, cold-induced changes in BAT function led to systemic metabolic shifts, including elevated long-chain fatty acids, which influenced osteoclast differentiation and activity. These findings suggest a systemic mechanism connecting environmental temperature and BAT metabolism with bone physiology, providing new insights into the metabolic and environmental determinants of bone health. Future research could lead to novel bone disease therapies targeting these pathways.
Collapse
Affiliation(s)
- Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
40
|
Basu R, Flak JN. Hypothalamic neural circuits regulating energy expenditure. VITAMINS AND HORMONES 2024; 127:79-124. [PMID: 39864947 PMCID: PMC12007011 DOI: 10.1016/bs.vh.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization. The hypothalamus has evolved to enhance energy storage for survival in famine and scarce environments but contribute to obesity in modern contexts of caloric abundance. It acts as a master regulator of whole-body energy homeostasis, rapidly adapting to ensure energy supplies for cellular functions. Understanding hypothalamic function, pertaining to energy expenditure, is crucial for developing targeted interventions to address metabolic disorders, offering new insights into the neural control of metabolic states and potential therapeutic strategies.
Collapse
Affiliation(s)
- Rashmita Basu
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan N Flak
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
41
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
42
|
Guan J, Abudouaini H, Lin K, Yang K. Emerging insights into the role of IL-1 inhibitors and colchicine for inflammation control in type 2 diabetes. Diabetol Metab Syndr 2024; 16:140. [PMID: 38918878 PMCID: PMC11197348 DOI: 10.1186/s13098-024-01369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent chronic metabolic disorder, is closely linked to persistent low-grade inflammation, significantly contributing to its development and progression. This review provides a comprehensive examination of the inflammatory mechanisms underlying T2DM, focusing on the role of the NLRP3 inflammasome and interleukin-1β (IL-1β) in mediating inflammatory responses. We discuss the therapeutic potential of IL-1 inhibitors and colchicine, highlighting their mechanisms in inhibiting the NLRP3 inflammasome and reducing IL-1β production. Recent studies indicate that these agents could effectively mitigate inflammation, offering promising avenues for the prevention and management of T2DM. By exploring the intricate connections between metabolic disturbances and chronic inflammation, this review underscores the need for novel anti-inflammatory strategies to address T2DM and its complications.
Collapse
Affiliation(s)
- Jianbin Guan
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Haimiti Abudouaini
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Kaiyuan Lin
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Kaitan Yang
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
- Truma Rehabilitation Department, Honghui-Hospital,Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
43
|
Benvie AM, Berry DC. Reversing Pdgfrβ Signaling Restores Metabolically Active Beige Adipocytes by Alleviating ILC2 Suppression in Aged and Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599436. [PMID: 38948810 PMCID: PMC11212986 DOI: 10.1101/2024.06.17.599436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. Methods We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. Results Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. Conclusion This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| |
Collapse
|
44
|
Lee D, Benvie AM, Steiner BM, Kolba NJ, Ford JG, McCabe SM, Jiang Y, Berry DC. Smooth muscle cell-derived Cxcl12 directs macrophage accrual and sympathetic innervation to control thermogenic adipose tissue. Cell Rep 2024; 43:114169. [PMID: 38678562 PMCID: PMC11413973 DOI: 10.1016/j.celrep.2024.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Sympathetic innervation of brown adipose tissue (BAT) controls mammalian adaptative thermogenesis. However, the cellular and molecular underpinnings contributing to BAT innervation remain poorly defined. Here, we show that smooth muscle cells (SMCs) support BAT growth, lipid utilization, and thermogenic plasticity. Moreover, we find that BAT SMCs express and control the bioavailability of Cxcl12. SMC deletion of Cxcl12 fosters brown adipocyte lipid accumulation, reduces energy expenditure, and increases susceptibility to diet-induced metabolic dysfunction. Mechanistically, we find that Cxcl12 stimulates CD301+ macrophage recruitment and supports sympathetic neuronal maintenance. Administering recombinant Cxcl12 to obese mice or leptin-deficient (Ob/Ob) mice is sufficient to boost macrophage presence and drive sympathetic innervation to restore BAT morphology and thermogenic responses. Altogether, our data reveal an SMC chemokine-dependent pathway linking immunological infiltration and sympathetic innervation as a rheostat for BAT maintenance and thermogenesis.
Collapse
Affiliation(s)
- Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nikolai J Kolba
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Josie G Ford
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Sean M McCabe
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
45
|
Takahashi H, Morikawa M, Ozaki E, Numasaki M, Morimoto H, Tanaka M, Inoue H, Goto T, Kawada T, Eguchi F, Uehara M, Takahashi N. A modified system using macrophage-conditioned medium revealed that the indirect effects of anti-inflammatory food-derived compounds improve inflammation-induced suppression of UCP-1 mRNA expression in 10T1/2 adipocytes. Biosci Biotechnol Biochem 2024; 88:679-688. [PMID: 38499443 DOI: 10.1093/bbb/zbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Recently, it has been suggested that brown and beige adipocytes may ameliorate obesity because these adipocytes express uncoupling protein-1 (UCP-1), which generates heat by consuming lipid. However, obesity-induced inflammation suppresses the expression of UCP-1. To improve such conditions, food components with anti-inflammatory properties are attracting attention. In this study, we developed a modified system to evaluate only the indirect effects of anti-inflammatory food-derived compounds by optimizing the conventional experimental system using conditioned medium. We validated this new system using 6-shogaol and 6-gingerol, which have been reported to show the anti-inflammatory effects and to increase the basal expression of UCP-1 mRNA. In addition, we found that the acetone extract of Sarcodon aspratus, an edible mushroom, showed anti-inflammatory effects and rescued the inflammation-induced suppression of UCP-1 mRNA expression. These findings indicate that the system with conditioned medium is valuable for evaluation of food-derived compounds with anti-inflammatory effects on the inflammation-induced thermogenic adipocyte dysfunction.
Collapse
Affiliation(s)
- Hisako Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Miori Morikawa
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Emi Ozaki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Minami Numasaki
- Department of Forest Science, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Fumio Eguchi
- Department of Forest Science, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
46
|
Mooli RGR, Zhu B, Khan SR, Nagati V, Michealraj KA, Jurczak MJ, Ramakrishnan SK. Epigenetically active chromatin in neonatal iWAT reveals GABPα as a potential regulator of beige adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1385811. [PMID: 38765953 PMCID: PMC11099907 DOI: 10.3389/fendo.2024.1385811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Background Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bokai Zhu
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute of University of Pittsburgh Medical Center (UPMC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Saifur R. Khan
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Centre, Pittsburgh, PA, United States
- Center for Immunometabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Veerababu Nagati
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sadeesh K. Ramakrishnan
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
47
|
Zhang Y, Zhang B, Sun X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front Immunol 2024; 15:1378202. [PMID: 38650945 PMCID: PMC11033412 DOI: 10.3389/fimmu.2024.1378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yudie Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
48
|
Yu X, Benitez G, Wei PT, Krylova SV, Song Z, Liu L, Zhang M, Xiaoli AM, Wei H, Chen F, Sidoli S, Yang F, Shinoda K, Pessin JE, Feng D. Involution of brown adipose tissue through a Syntaxin 4 dependent pyroptosis pathway. Nat Commun 2024; 15:2856. [PMID: 38565851 PMCID: PMC10987578 DOI: 10.1038/s41467-024-46944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Aging, chronic high-fat diet feeding, or housing at thermoneutrality induces brown adipose tissue (BAT) involution, a process characterized by reduction of BAT mass and function with increased lipid droplet size. Single nuclei RNA sequencing of aged mice identifies a specific brown adipocyte population of Ucp1-low cells that are pyroptotic and display a reduction in the longevity gene syntaxin 4 (Stx4a). Similar to aged brown adipocytes, Ucp1-STX4KO mice display loss of brown adipose tissue mass and thermogenic dysfunction concomitant with increased pyroptosis. Restoration of STX4 expression or suppression of pyroptosis activation protects against the decline in both mass and thermogenic activity in the aged and Ucp1-STX4KO mice. Mechanistically, STX4 deficiency reduces oxidative phosphorylation, glucose uptake, and glycolysis leading to reduced ATP levels, a known triggering signal for pyroptosis. Together, these data demonstrate an understanding of rapid brown adipocyte involution and that physiologic aging and thermogenic dysfunction result from pyroptotic signaling activation.
Collapse
Affiliation(s)
- Xiaofan Yu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gabrielle Benitez
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Peter Tszki Wei
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sofia V Krylova
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Li Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Alus M Xiaoli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Henna Wei
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Fenfen Chen
- Department of Animal Science, College of Life Science, Southwest Forestry University, Kunming, Yunnan, 650244, China
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Fajun Yang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kosaku Shinoda
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Daorong Feng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
49
|
Liang D, Li G. Pulling the trigger: Noncoding RNAs in white adipose tissue browning. Rev Endocr Metab Disord 2024; 25:399-420. [PMID: 38157150 DOI: 10.1007/s11154-023-09866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
White adipose tissue (WAT) serves as the primary site for energy storage and endocrine regulation in mammals, while brown adipose tissue (BAT) is specialized for thermogenesis and energy expenditure. The conversion of white adipocytes to brown-like fat cells, known as browning, has emerged as a promising therapeutic strategy for reversing obesity and its associated co-morbidities. Noncoding RNAs (ncRNAs) are a class of transcripts that do not encode proteins but exert regulatory functions on gene expression at various levels. Recent studies have shed light on the involvement of ncRNAs in adipose tissue development, differentiation, and function. In this review, we aim to summarize the current understanding of ncRNAs in adipose biology, with a focus on their role and intricate mechanisms in WAT browning. Also, we discuss the potential applications and challenges of ncRNA-based therapies for overweight and its metabolic disorders, so as to combat the obesity epidemic in the future.
Collapse
Affiliation(s)
- Dehuan Liang
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, 100730, People's Republic of China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| |
Collapse
|
50
|
de Sousa É, de Mendonça M, Bolin AP, de Oliveira NP, Real CC, Hu X, Huang ZP, Wang DZ, Rodrigues AC. Sex-specific regulation of miR-22 and ERα in white adipose tissue of obese dam's female offspring impairs the early postnatal development of functional beige adipocytes in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167057. [PMID: 38331111 DOI: 10.1016/j.bbadis.2024.167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
During inguinal adipose tissue (iWAT) ontogenesis, beige adipocytes spontaneously appear between postnatal 10 (P10) and P20 and their ablation impairs iWAT browning capacity in adulthood. Since maternal obesity has deleterious effects on offspring iWAT function, we aimed to investigate its effect in spontaneous iWAT browning in offspring. Female C57BL/6 J mice were fed a control or obesogenic diet six weeks before mating. Male and female offspring were euthanized at P10 and P20 or weaned at P21 and fed chow diet until P60. At P50, mice were treated with saline or CL316,243, a β3-adrenoceptor agonist, for ten days. Maternal obesity induced insulin resistance at P60, and CL316,243 treatment effectively restored insulin sensitivity in male but not female offspring. This discrepancy occurred due to female offspring severe browning impairment. During development, the spontaneous iWAT browning and sympathetic nerve branching at P20 were severely impaired in female obese dam's offspring but occurred normally in males. Additionally, maternal obesity increased miR-22 expression in the iWAT of male and female offspring during development. ERα, a target and regulator of miR-22, was concomitantly upregulated in the male's iWAT. Next, we evaluated miR-22 knockout (KO) offspring at P10 and P20. The miR-22 deficiency does not affect spontaneous iWAT browning in females and, surprisingly, anticipates iWAT browning in males. In conclusion, maternal obesity impairs functional iWAT development in the offspring in a sex-specific way that seems to be driven by miR-22 levels and ERα signaling. This impacts adult browning capacity and glucose homeostasis, especially in female offspring.
Collapse
Affiliation(s)
- Érica de Sousa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariana de Mendonça
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Nayara Preste de Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|