1
|
Shi Y, Duan H, Liu J, Shi X, Zhao M, Zhang Y. Risk analysis and mediation analysis of stress hyperglycemia ratio and all-cause mortality in patients with acute kidney injury. Diabetol Metab Syndr 2025; 17:112. [PMID: 40176163 PMCID: PMC11963474 DOI: 10.1186/s13098-025-01675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Stress hyperglycemia ratio (SHR) has been associated with increased mortality from various cerebrovascular events and a higher incidence of acute kidney injury (AKI) in certain patient populations. However, the relationship between SHR and the mortality risk in patients with AKI has not been fully elucidated. Our study sought to comprehensively investigate the association and potential mediating effects between SHR and 28-day and 90-day mortality in patients with AKI. METHODS 3703 patients with AKI were included in this study. Feature importance variables were screened by a random forest algorithm, and the independent association of SHR with mortality risk was determined by Kaplan ‒ Meier survival analysis with Cox regression analysis. Restricted cubic spline (RCS) was conducted to assess the non-linear relationship between SHR and mortality risk. Mediation analysis was deployed to investigate the indirect effect of SHR on respiratory failure (RF) -mediated mortality risk. RESULTS Among the patients with AKI included in this study, the 28-day mortality was 13.6% and the 90-day mortality was 18.7%. Fully adjusted Cox regression demonstrated that SHR was an independent risk factor for 28-day mortality (HR, 1.77 [95% CI 1.38-2.27], P < 0.001) and 90-day mortality (HR, 1.69 [95% CI 1.36-2.11], P < 0.001) in patients with AKI. RCS analysis revealed a linear relationship between SHR and outcome events. Additionally, the effect of SHR on 28-day and 90-day mortality risk were mediated by an increased RF risk in 6.62% and 6.54%, respectively. CONCLUSION High SHR is an independent risk factor for 28-day and 90-day mortality in patients with AKI, and its effect is partly mediated by an increased risk of RF.
Collapse
Affiliation(s)
- Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hangyu Duan
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jing Liu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiujie Shi
- Deparment of Nephrology, The First Hospital of Tsinghua University, Beijing, 100016, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
2
|
Qu W, Lan Y, Cheng Z, Yuan H, Zhan H, Lan X, Liao Z, Wang G, Chen M. Oxybaphus himalaicus alleviates diabetic kidney disease by suppressing the lipid metabolism and inflammation via PPARα signaling. Fitoterapia 2025; 182:106474. [PMID: 40081424 DOI: 10.1016/j.fitote.2025.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Diabetic kidney disease (DKD) is a common complication in patients with diabetes, and glycolipid metabolism disorders are an important cause of DKD. The root of Oxybaphus himalaicus (Edgew.) Heimerl is a traditional Tibetan medicine commonly used to treat kidney-related diseases. Nevertheless, contemporary pharmacological investigations into O. himalaicus, especially those associated with the treatment of renal disorders, remain scarce. The objective of this research was to explore the pharmaceutical impacts and mechanisms of action of O. himalaicus in the treatment of DKD. The active fraction and potential pharmacological effects of O. himalaicus were determined through network pharmacology. Then, in vivo and in vitro efficacy and mechanism studies were conducted through streptozotocin-induced DKD mice and high glucose-induced HK-2 cells. Network pharmacology research speculated the ethyl acetate (EA) fraction as the main active component of O. himalaicus for treating DKD. In vivo and in vitro experiments showed that EA reduces renal lipotoxicity by upregulating PPARα pathway proteins, enhancing fatty acid oxidation (FAO), and downregulating inflammatory factors such as TNF-α and IL-6. Molecular docking studies revealed that the active components of EA with a high affinity for PPARα are mainly rotenoid compounds. EA mitigates DKD through the activation of PPARα, which serves to augment FAO, abate lipid accumulation, and impede the expression of inflammatory factors. Among these, rotenoids may be the main active components that exert pharmacological effects.
Collapse
Affiliation(s)
- Weijian Qu
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science, Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yi Lan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science, Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhuoqing Cheng
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science, Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Han Yuan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science, Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Honghong Zhan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science, Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant R&D Center, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Zhihua Liao
- School of Life Sciences, Integrative Science, Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, TAAHC-SWU Medicinal Plant Joint R&D Centre, Southwest University, Chongqing 400715, China
| | - Guowei Wang
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science, Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Min Chen
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science, Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Tian X, Zhou M, Zhang J, Huang X, Jiang D, Liu J, Zhang Q, Chen D, Hu Q. Mechanism of LncRNA-MiRNA in Renal Intrinsic Cells of Diabetic Kidney Disease and Potential Therapeutic Direction. DNA Cell Biol 2025. [PMID: 40117185 DOI: 10.1089/dna.2025.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The occurrence of diabetic kidney disease (DKD), a critical microvascular issue in diabetes, is progressively on the rise. In recent years, long noncoding RNAs (lncRNAs) have garnered considerable attention as a novel and critical layer of biological regulation. Our knowledge regarding the roles and underlying mechanisms of lncRNAs in various diseases, including DKD, continues to evolve. Similarly, microRNAs (miRNAs), which are small noncoding RNAs, have been recognized as crucial contributors to cellular processes and disease pathogenesis. Emerging studies have highlighted the complex interactions between lncRNAs and miRNAs, particularly in the context of DKD, underscoring their importance in complex human diseases. Renal intrinsic cell damage is an important cause of inducing DKD. Persistent high glucose stimulation leads to remodeling of renal intrinsic cells and a cascade of pathological changes. This article aims to review recent literature on the lncRNAs-mediated regulation of miRNAs affecting renal intrinsic cells in DKD and to propose novel molecular-level therapeutic strategies for DKD. Through in-depth investigation of this dynamic molecular interaction, we can gain a profound understanding of the potential mechanisms underlying diabetic nephropathy, potentially identifying new targets for therapeutic intervention and paving the way for personalized and effective treatments.
Collapse
Affiliation(s)
- Xiyue Tian
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Min Zhou
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Jingbo Zhang
- School of Public Health, Southwest Medical University, Sichuan, China
| | - Xinchun Huang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Dongyang Jiang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Jian Liu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Qiong Zhang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Dingguo Chen
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Qiongdan Hu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| |
Collapse
|
4
|
Xu L, Shen T, Li Y, Wu X. The Role of M 6A Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications. Clin Rev Allergy Immunol 2025; 68:29. [PMID: 40085180 DOI: 10.1007/s12016-025-09041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
N6-methyladenosine (m6A), a prevalent and essential RNA modification, serves a key function in driving autoimmune disease pathogenesis. By modulating immune cell development, activation, migration, and polarization, as well as inflammatory pathways, m6A is crucial in forming innate defenses and adaptive immunity. This article provides a comprehensive overview of m6A modification features and reveals how its dysregulation affects the intensity and persistence of immune responses, disrupts immune tolerance, exacerbates tissue damage, and promotes the development of autoimmunity. Specific examples include its contributions to systemic autoimmune disorders like lupus and rheumatoid arthritis, as well as conditions that targeting specific organs like multiple sclerosis and type 1 diabetes. Furthermore, this review explores the therapeutic promise of target m6A-related enzymes ("writers," "erasers," and "readers") and summarizes recent advances in intervention strategies. By focusing on the mechanistic and therapeutic implications of m6A modification, this review sheds light on its role as a promising tool for both diagnosis and treatment in autoimmune disorders, laying the foundation for advancements in customized medicine.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Yu B, Wang L, Mao Y, Hu X, Lu Y, He J, Yuan X, Zhang M, Chen Z. Research progress on small extracellular vesicles in diabetic nephropathy. Front Cell Dev Biol 2025; 13:1535249. [PMID: 40109365 PMCID: PMC11920185 DOI: 10.3389/fcell.2025.1535249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Virtually all cell types are capable of secreting small extracellular vesicles (sEV), which can be internalized by recipient cells, thereby serving as vehicles for intercellular communication. The cargoes of these vesicles, such as microRNAs, circular RNAs, proteins, and lipids, play significant roles in both normal cellular functions and the pathogenesis of various diseases. Diabetic Nephropathy (DN), a complication arising from diabetes, is expected to contribute to a 54% increase in the global diabetic population between 2015 and 2030, leading to substantial economic burdens on individuals and healthcare systems. sEVs, as promising biomarkers, demonstrate diverse mechanistic responses in different types of Diabetic Kidney Disease (DKD). They also hold advantages in the early prediction of renal damage. This article reviews the functional mechanisms of sEVs in DKD and their potential as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Bingqing Yu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yiping Mao
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinyi Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yukang Lu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiahui He
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoying Yuan
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Man Zhang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- College of Medical Technology, Gannan Medical University, Ganzhou, Jiangxi, China
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Li T, Chen H, Guo Y, Huang M, Liu P, Aikemu A, Mohammadtursun N, Pan X, Yang X. Nuciferine Restores Autophagy via the PI3K-AKT-mTOR Pathway to Alleviate Renal Fibrosis in Diabetic Kidney Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5223-5235. [PMID: 39989251 DOI: 10.1021/acs.jafc.4c08844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Diabetic kidney disease (DKD) is one of the complications of diabetes mellitus, which triggers kidney fibrosis and eventually develops into end-stage renal disease. Nuciferine (NF) is one of the most important functional components in lotus leaves (LL), but its role and mechanism for the treatment of DKD are unclear. A high-fat-diet (HFD)-induced DKD model in KK-AY mice was established in this study. NF treatment significantly improved blood glucose and blood biochemical indices in DKD mice. Furthermore, NF reduced the levels of mALB, UCRE, Scr, and BUN in mice urine. Further, the extent of renal lesions in the mice in this study was at stage IV according to the Mogensen staging method. NF treatment was effective in ameliorating renal injury during this period. Concurrently, the protein levels of FN, N-cadherin, TGFβ, p-Smad3, p-PI3K, p-AKT, p-mTOR, and p62 were decreased. In contrast, the level of expression of Beclin-1 was increased. In the high glucose-exposed HK-2 cell model, the expression of p-PI3K, p-AKT, and p-mTOR was all downregulated, and autophagy proteins were increased after NF intervention. In addition, HK-2 cells were treated with high glucose in combination with Wortmannin and 3-MA, respectively. The results demonstrated that NF inhibited the expression of TGFβ and p-Smad3 by regulating autophagy through the PI3K-AKT-mTOR pathway, thereby ameliorating renal fibrosis at stage IV in mice. Therefore, LL can be used as a dietary component for the prevention of renal fibrosis in DKD patients.
Collapse
Affiliation(s)
- Tongqing Li
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, 182 min-Zu Road, Wuhan 430074, China
| | - Huijian Chen
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, 182 min-Zu Road, Wuhan 430074, China
| | - Yan Guo
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, 182 min-Zu Road, Wuhan 430074, China
| | - Mi Huang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, 182 min-Zu Road, Wuhan 430074, China
| | - Pengxin Liu
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, 182 min-Zu Road, Wuhan 430074, China
| | - Ainiwaer Aikemu
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan 848000, China
| | - Nabijan Mohammadtursun
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan 848000, China
| | - Xin Pan
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, 182 min-Zu Road, Wuhan 430074, China
| | - Xinzhou Yang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, 182 min-Zu Road, Wuhan 430074, China
| |
Collapse
|
7
|
Chen M, Zhou Y, Yang J, Yuan H. Network pharmacology and molecular docking technology-based predictive study and potential targets analysis of icariin for the treatment of diabetic nephropathy. Biochem Biophys Res Commun 2025; 751:151434. [PMID: 39923458 DOI: 10.1016/j.bbrc.2025.151434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE Epimedium glycoside is a flavonoid compound in Epimedium, which has been found to alleviate various chronic diseases. The effect and mechanism of icariin on the treatment of diabetes nephropathy still need to be clarified. In this study, we conducted network pharmacology and molecular docking analysis to reveal the mechanism of icariin treating DKD, and then validated its efficacy using a cell model. METHOD The structure and targets of icariin were screened using Traditional Chinese Medicine Systems Pharmacology (TCMSP), and their targets were annotated. Retrieve DKD targets from OMIM, GeneCards, and TTD databases. We constructed a protein-protein interaction (PPI) network using the STRING platform and visualized the results using Cytoscape 3.9.1 software. We also conducted GO and KEGG enrichment analysis on icariin and then performed molecular docking between icariin and key targets. Finally, we established a cell model of DKD to evaluate the efficacy of icariin in treating DKD. RESULT A total of 77 icariin targets were associated with DKD. The GO and KEGG enrichment results showed that the therapeutic effect of icariin on DKD was significantly correlated with inflammatory response, cell apoptosis, epithelial-mesenchymal transition, and PI3K/AKT signaling pathway. The molecular docking results indicate that icariin has a high affinity for key targets EGER, AKT1, and IGF1. Cell experiments showed that icariin inhibited high glucose-induced EMT, fibrosis-related proteins, levels of inflammatory factors TGF-β1, IL-6, and TNF-α, as well as phosphorylation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in renal tubular epithelial cells. In addition, icariin inhibited the increase in EGER and AKT1 mRNA levels caused by high glucose and alleviated the decrease in IGF1 mRNA levels. CONCLUSION Epimedium glycoside may protect DKD by targeting EGER, AKT1, and IGF1 to inhibit PI3K/AKT signaling, but the specific mechanism needs further exploration.
Collapse
Affiliation(s)
- Min Chen
- Clinical Laboratories, The People's Hospital of Le Zhi, Ziyang 641500, China.
| | - Yujie Zhou
- Obstetrical Department, The People's Hospital of Le Zhi, Ziyang 641500, China.
| | - Jianglin Yang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China.
| | - Huixiong Yuan
- Department of Medical Laboratory, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise 533000, China.
| |
Collapse
|
8
|
Luty RS, Al-Zubaidy AA, Malik AS, Ridha-Salman H, Abbas AH. Protective effect of orientin on diabetic nephropathy in rat models of high-fat diet and streptozotocin-induced diabetes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03949-8. [PMID: 40035824 DOI: 10.1007/s00210-025-03949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Diabetic nephropathy (DN) represents the primary cause of chronic kidney disease (CKD) worldwide. Orientin is a natural bioactive flavonoid with profound immunomodulatory, anti-inflammatory, and antioxidative effects. This study aimed to investigate the nephroprotective effect of orientin on rat prototypes of high-fat diet (HFD) and streptozotocin (STZ)-induced DN. 75 male rats were divided into 5 groups of 15 rats each. Rats were fed a HFD for 4 weeks, injected with a single dose of STZ 30 mg/kg, and continued on HFD for 15 weeks. Orientin was administered daily at 40 mg/kg for 15 weeks. The diabetic group reported substantially greater fasting blood glucose, HbA1c, and renal function measures than normal controls, as well as notable kidney histological abnormalities such as interstitial inflammation, glomerular shrinkage, and tubular necrosis. Additionally, the diabetic group showed dramatically greater amounts of IL-1β, IL-6, TNF-α, TGF-β1, MDA, and a much lower level of GSH than the control group. However, orientin had no effect on the glycaemic parameters, but it dramatically reduced blood creatinine levels, prevented the development of histopathological irregularities, and minimized the renal concentrations of inflammatory and oxidative markers. Orientin may be a promising natural medication for improving diabetic nephropathy thanks to its robust anti-inflammatory and anti-proliferative properties.
Collapse
Affiliation(s)
- Raad Saad Luty
- Department of Dental Surgery, College of Dentistry, University of Basrah, Basrah, Iraq
- Department of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq
| | - Adeeb Ahmed Al-Zubaidy
- College of Medicine, Department of Pharmacology, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Arif Sami Malik
- College of Medicine, Department of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Hayder Ridha-Salman
- College of Pharmacy, Department of Pharmacology, Al-Mustaqbal University, Hillah, 5001, Babylon, Iraq.
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Hillah, 51001, Babylon, Iraq
| |
Collapse
|
9
|
Shi J, Liu X, Jiao Y, Tian J, An J, Zou G, Zhuo L. mTOR pathway: A key player in diabetic nephropathy progression and therapeutic targets. Genes Dis 2025; 12:101260. [PMID: 39717716 PMCID: PMC11665407 DOI: 10.1016/j.gendis.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 12/25/2024] Open
Abstract
Diabetic nephropathy is a prevalent complication of diabetes and stands as the primary contributor to end-stage renal disease. The global prevalence of diabetic nephropathy is on the rise, however, due to its intricate pathogenesis, there is currently an absence of efficacious treatments to enhance renal prognosis in affected patients. The mammalian target of rapamycin (mTOR), a serine/threonine protease, assumes a pivotal role in cellular division, survival, apoptosis delay, and angiogenesis. It is implicated in diverse signaling pathways and has been observed to partake in the progression of diabetic nephropathy by inhibiting autophagy, promoting inflammation, and increasing oxidative stress. In this academic review, we have consolidated the understanding of the pathological mechanisms associated with four distinct resident renal cell types (podocytes, glomerular mesangial cells, renal tubular epithelial cells, and glomerular endothelial cells), as well as macrophages and T lymphocytes, within a diabetic environment. Additionally, we highlight the research progress in the treatment of diabetic nephropathy with drugs and various molecules interfering with the mTOR signaling pathway, providing a theoretical reference for the treatment and prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Jingxuan Shi
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing 100029, China
| | - Xinze Liu
- Beijing University of Chinese Medicine China-Japan Friendship Clinical Medical College, Beijing 100029, China
| | - Yuanyuan Jiao
- Department of Nephrology, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China
| | - Jingwei Tian
- Department of Nephrology, Beijing Sixth Hospital, Beijing 100007, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Jiaqi An
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Clinic Medical College, Peking University, Beijing 100191, China
| | - Guming Zou
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
10
|
Abdulrahim HA, Odetayo AF, Owootori EA, Bulus JD, Jimoh FB, Gabriel EO, Odiete IF, Olayaki LA. Metformin and vitamin D combination therapy ameliorates type 2 diabetes mellitus-induced renal injury in male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3133-3146. [PMID: 39347801 DOI: 10.1007/s00210-024-03478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Diabetic kidney disease is a major microvascular diabetes mellitus (DM) complication clinically associated with a gradual renal function decline. Although metformin is a common drug for managing DM, however, monotherapy treatment with any antidiabetic drug will necessitate dosage increment since type 2 DM (T2DM) deteriorates over time due to the increasing pancreatic β-cell dysfunction and will eventually require a combination therapy approach with another antidiabetic medication. Vitamin D is a food supplement that has been proven to have antidiabetic and reno-protective activities. Hence, we explore the combination of vitamin D and metformin on T2DM-induced renal dysfunction. Thirty male Wistar rats were randomized into five (5) groups: control, diabetes untreated, diabetics treated with metformin, vitamin D, and vitamin D + metformin. Vitamin D and metformin significantly reversed DM-induced hyperglycemia, electrolyte imbalance, and dyslipidemia. Also, vitamin D and metformin reversed T2DM-induced increase in serum creatinine and urea and renal lactate, LDH, and oxido-inflammatory response. These observed alterations were accompanied by an increase in proton pump activities and modulation of Nrf2/Nf-κB and XO/UA signaling. This study revealed that vitamin D and/or metformin ameliorated T2DM-induced renal injury.
Collapse
Affiliation(s)
| | - Adeyemi Fatai Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila-Orangun, Nigeria.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang S, Wu Y, Fei B, Zhang M. Fluorescent Nanocomposite Materials with Synergistic Effects for Enhanced Fenelidone Delivery in Diabetic Nephropathy Treatment. J Fluoresc 2025:10.1007/s10895-025-04195-0. [PMID: 39985616 DOI: 10.1007/s10895-025-04195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
In this study, we designed and synthesized a novel thio-purine analog, compound 1, which exhibits significant fluorescence properties due to its extended conjugated system, heteroatom incorporation (O, S, N), and rigid three-dimensional molecular framework, enabling its use as a fluorescence probe for real-time drug tracking and release monitoring. To enhance the solubility, biocompatibility, and therapeutic efficacy of compound 1, we synthesized a copper(II)-based coordination polymer (CP1) via hydrothermal methods, featuring a three-dimensional framework formed by 1,4-ttb and auxiliary ligand 4,4'-bpdc, as confirmed by comprehensive characterization techniques. Leveraging the synergistic therapeutic effects of compound 1 and fenelidone, we developed a composite drug delivery system, mPEG-PSU@CP1@1@fenelidone, which combines an amphiphilic mPEG-PSU shell with a CP1 core co-encapsulating both drugs. Notably, the fluorescence properties of compound 1 allow for real-time monitoring of drug release, as its fluorescence is quenched when encapsulated in CP1 and restored upon release. This system optimizes controlled drug release while enhancing the synergistic effects of compound 1 and fenelidone in reducing inflammation and renal fibrosis, as demonstrated in diabetic nephropathy (DN) model mice. Overall, the composite system integrates real-time fluorescence monitoring with improved therapeutic efficacy, offering a promising strategy for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Suyu Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yanyan Wu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingru Fei
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
12
|
Zhang Y, Li M, Liu H, Fan Y, Liu HH. The application of procyanidins in diabetes and its complications: a review of preclinical studies. Front Pharmacol 2025; 16:1532246. [PMID: 39995417 PMCID: PMC11847907 DOI: 10.3389/fphar.2025.1532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus (DM) and its various complications, including diabetic nephropathy, retinopathy, neuropathy, cardiovascular disease, and ulcers, pose significant challenges to global health. This review investigates the potential of procyanidins (PCs), a natural polyphenolic compound, in preventing and managing diabetes and its complications. PCs, recognized for their strong antioxidant, anti-inflammatory, and anti-hyperglycemic properties, play a crucial role in reducing oxidative stress and enhancing endothelial function, which are essential for managing diabetic complications. This review elucidates the molecular mechanisms by which PCs improve insulin sensitivity and endothelial health, thereby providing protection against the various complications of diabetes. The comprehensive analysis underscores the promising therapeutic role of PCs in diabetes care, indicating the need for further clinical studies to confirm and leverage their potential in comprehensive diabetes management strategies.
Collapse
Affiliation(s)
- Yongchuang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengna Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Haoyuan Liu
- Rehabilitation Department, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yongfu Fan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huan Huan Liu
- International institute for Traditional Chinese Medicine, Guanzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Szeremeta A, Jura-Półtorak A, Grim A, Kuźnik-Trocha K, Olczyk P, Ivanova D, Kiselova-Kaneva Y, Olczyk K, Komosińska-Vassev K. Changes in Urinary NGAL, FN, and LN Excretion in Type 2 Diabetic Patients Following Anti-Diabetic Therapy with Metformin. J Clin Med 2025; 14:1088. [PMID: 40004620 PMCID: PMC11856773 DOI: 10.3390/jcm14041088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Excessive accumulation of glomerular extracellular matrix (ECM) is a key factor in the development and progression of diabetic nephropathy (DN). As kidney dysfunction has been reported in normoalbuminuric patients, identifying novel diagnostic and prognostic markers is essential for the prevention and treatment of DN. Methods: Urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) and ECM-related glycoproteins, i.e., fibronectin (FN) and laminin (LN), was measured in obese patients with newly diagnosed type 2 diabetes mellitus (T2DM) before and after 6 months of metformin therapy. Results: Baseline NGAL (1.27 (0.80-2.36) ng/mg Cr), FN (11.19 (5.31-21.56) ng/mg Cr) and LN (123.17 (54.56-419.28) pg/mg Cr) levels did not significantly differ between T2DM patients and controls (1.95 (1.09-2.97) ng/mg Cr, 11.94 (7.78-18.01) ng/mg Cr and 157.85 (83.75-326.40) pg/mg Cr, respectively). In multivariate regression analysis, the body mass index was identified as the only significant predictor influencing urinary NGAL and FN levels at baseline, with β = 0.249, p = 0.005 and β = 1.068, p = 0.010, respectively. Metformin treatment significantly increased urinary levels of both ECM proteins, i.e., FN (18.48 (11.64-32.46) ng/mg Cr) and LN (179.51 (106.22-414.68) pg/mg Cr), without any effect on NGAL levels (1.44 (0.81-2.72) ng/mg Cr). FN and LN were positively associated with NGAL both before (r = 0.709 and r = 0.646, both p < 0.001, respectively) and after (r = 0.594 and r = 0.479, both p < 0.001, respectively) therapy. No correlations were found between NGAL, FN, LN, and albuminuria. However, NGAL was positively correlated with the albumin/creatinine ratio (ACR) both before (r = 0.323, p < 0.05) and after (r = 0.287, p < 0.05) therapy, and negatively with estimated glomerular filtration rate (eGFR) in pre-treatment diabetics (r = -0.290, p < 0.05). FN and LN were also correlated with ACR (r = 0.384, p < 0.01 and r = 0.470, p < 0.001), although the association for LN was limited to untreated patients (r = 0.422, p < 0.01). Conclusions: Our results suggest that metformin has a beneficial effect on ECM turnover with a significant increase in urinary excretion of non-collagenous markers of glomerular injury, i.e., FN and LN. Additionally, ECM-related markers may serve as useful tools for monitoring early renal injury in obese diabetic patients.
Collapse
Affiliation(s)
- Anna Szeremeta
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (A.G.); (K.K.-T.); (K.O.); (K.K.-V.)
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (A.G.); (K.K.-T.); (K.O.); (K.K.-V.)
| | - Alicja Grim
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (A.G.); (K.K.-T.); (K.O.); (K.K.-V.)
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (A.G.); (K.K.-T.); (K.O.); (K.K.-V.)
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 10, 41-200 Sosnowiec, Poland;
| | - Diana Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria; (D.I.); (Y.K.-K.)
| | - Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria; (D.I.); (Y.K.-K.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (A.G.); (K.K.-T.); (K.O.); (K.K.-V.)
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (A.G.); (K.K.-T.); (K.O.); (K.K.-V.)
| |
Collapse
|
14
|
Wang R, Qu J, Chen M, Han T, Liu Z, Wang H. NSUN2 knockdown inhibits macrophage infiltration in diabetic nephropathy via reducing N5-methylcytosine methylation of SOCS1. Int Urol Nephrol 2025; 57:643-653. [PMID: 39382603 DOI: 10.1007/s11255-024-04214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE N5-methylcytosine (m5C) methylation is involved in various disease progression; however, its role in diabetic nephropathy (DN) has not been studied. The aim of this study was to investigate the role of NSUN2 in DN and the underlying mechanism. METHODS Streptozotocin-induced experimental mouse model was generated to analyze the role of NSUN2 in vivo, and high glucose (HG)-treated Raw264.7 cells were used to assess the effect of NSUN2 on macrophage infiltration in vitro. The regulation of NSUN2 on SOCS1 m5C methylation was evaluated using m5C methylated RNA immunoprecipitation, luciferase reporter analysis, and RNA stability determination assay. RESULTS The results indicated that NSUN2 was highly expressed in the blood and kidney of DN mice. Knockdown of NSUN2 alleviated kidney damage, reduced blood glucose and urine albumin, and suppressed macrophage infiltration in DN mice. Moreover, NSUN2 interacted with SOCS1, and silenced NSUN2 inhibited m5C levels of SOCS1 to reduce SOCS1 mRNA stability. Additionally, interference with NSUN2 suppressed macrophage migration, invasion, and infiltration by positively regulating SOCS1 expression under HG conditions. CONCLUSION In conclusion, silencing of NSUN2 inhibits macrophage infiltration by reducing m5C modification of SOCS1, and thereby attenuates renal injury. The findings suggest a novel regulatory mechanism between NSUN2-mediated m5C modification and DN.
Collapse
Affiliation(s)
- Ru Wang
- Department of Laboratory Medcine, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Jianchang Qu
- Department of Endocrinology, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Meiqiong Chen
- Department of Pathology, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Tenglong Han
- Department of Laboratory Medcine, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Zhipeng Liu
- Medical Department, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Huizhong Wang
- Department of Laboratory Medcine, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China.
| |
Collapse
|
15
|
Fang T, Liu Q, Huangfu X, Zhu H, Sun H, Chen L. New insights into the mechanism of triphenyl phosphate and its metabolite diphenyl phosphate in diabetic kidney disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117877. [PMID: 39933236 DOI: 10.1016/j.ecoenv.2025.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Diabetic kidney disease is a significant complication of diabetes mellitus, and exposure to certain chemicals may play a role in its development. Triphenyl phosphate (TPHP) is commonly used in plastics and flame retardants. This study aims to investigate the potential impact of TPHP and its metabolite diphenyl phosphate (DPHP) on diabetic kidney disease using various methods, including network toxicology, molecular docking, and cell experiments like CCK8 assay and real-time-PCR. The research examined the relationship between urinary DPHP levels and kidney function in American adults using data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to March 2020. Additionally, the study explored the targets of action for TPHP and DPHP using network toxicity analysis, conducted protein interaction analysis, and explored the functional aspects of action through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Furthermore, the study identified key proteins involved in the action and conducted experimental verification by treating cells with TPHP and DPHP. Toxicity analysis showed that TPHP could cause dose-dependent toxicity in mouse podocyte clone 5 (MPC5) and mouse mesangial cells (MES13). The study also detected mRNA expression of core targets molecularly docked with TPHP and DPHP using real-time-PCR. The results indicated statistically significant regulation of most core targets by TPHP and DPHP in MPC5, MES13, and human kidney-2 cells.
Collapse
Affiliation(s)
- Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiaoyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xinxin Huangfu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
16
|
Lin ZM, Gao HY, Shi SH, Li YT. Mizagliflozin ameliorates diabetes induced kidney injury by inhibitor inhibit inflammation and oxidative stress. World J Diabetes 2025; 16:92711. [PMID: 39817219 PMCID: PMC11718448 DOI: 10.4239/wjd.v16.i1.92711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes. AIM To explore the impact of MIZ on diabetic nephropathy (DN). METHODS Diabetic mice were created using db/db mice. They were administered either a low dose (0.5 mg/kg) or a high dose (1.0 mg/kg) of the SGLT1 inhibitor MIZ via stomach gavage for 8 weeks. Subsequently, mesangial cells (MCs) were isolated and subjected to high glucose conditions in culture to assess the effects of MIZ on DN. RESULTS The results showed that low doses of MIZ significantly reduced albuminuria to a level comparable to that achieved with high doses in db/db mice. High doses of MIZ led to a substantial increase in body weight in mice, along with decreased blood glucose levels and food intake. Moreover, the intervention with high-dose MIZ notably decreased the expression of extracellular matrix genes, such as collagen type 1 alpha 1 mRNA levels. While the expression of SGLT1 increased after exposure to high glucose, it decreased following treatment with MIZ. Furthermore, MIZ intervention was more effective in improving lactate dehydrogenase levels in MCs induced by high glucose compared to canagliflozin. MIZ also significantly elevated levels of antioxidant enzymes superoxide dismutase, catalase, and glutathione, while reducing malondialdehyde levels. CONCLUSION These findings indicate that MIZ can ameliorate DN by inhibiting SGLT1, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Zhi-Min Lin
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Han-Yuan Gao
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shu-Han Shi
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yue-Ting Li
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
17
|
Zhu H, Chen Y, Ding D, Chen H. Association between different insulin resistance indices and all-cause mortality in patients with diabetic kidney disease: a prospective cohort study. Front Endocrinol (Lausanne) 2025; 15:1427727. [PMID: 39872311 PMCID: PMC11769815 DOI: 10.3389/fendo.2024.1427727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Aim Previous research has shown a strong association between insulin resistance (IR) and both the onset and advancement of diabetic kidney disease (DKD). This research focuses on examining the relationship between IR and all-cause mortality in individuals with DKD. Methods This study utilized data obtained from the National Health and Nutrition Examination Survey (NHANES), spanning the years 2001 to 2018. Insulin resistance was assessed using reliable indicators (HOMA-IR, TyG, TyG-BMI, and METS-IR). The relationship between IR indices and survival outcomes was evaluated through weighted multivariate Cox regression, Kaplan-Meier survival analysis, and restricted cubic spline (RCS) modeling. To examine non-linear associations, the log-likelihood ratio test was employed, with piecewise regression models used to establish confidence intervals and identify threshold values. Diagnostic precision and efficacy were gauged using Receiver Operating Characteristic (ROC) curves, Area Under the Curve (AUC) evaluations, and calibration plots. Moreover, to verify the consistency of our results, stratified analyses and interaction tests were conducted across variables including age, gender, Body Mass Index (BMI), hypertension, and cardiovascular status. Results This research involved a group of 1,588 individuals diagnosed with DKD. Over a median observation period of 74 months, 630 participants passed away. Using weighted multivariate Cox regression along with restricted cubic spline modeling, we identified non-linear associations between the four insulin resistance indices and all-cause mortality. An analysis of threshold effects pinpointed essential turning points for each IR index in this research: 1.14 for HOMA-IR, 9.18 for TyG, 207.9 for TyG-BMI, and 35.85 for METS-IR. It was noted that levels below these thresholds inversely correlated with all-cause mortality. In contrast, values above these points showed a significantly positive correlation, suggesting heightened mortality risks. The accuracy of these four IR metrics as indicators of all-cause mortality was confirmed through ROC and calibration curve analyses. Conclusion In patients with DKD, an L-shaped association is noted between HOMA-IR and all-cause mortality, while TyG, TyG-BMI, and METS-IR exhibit U-shaped relationships. All four IR indices show good predictive performance.
Collapse
Affiliation(s)
| | | | - Dexin Ding
- Department of Urology, Harbin Medical University Cancer Hospital,
Harbin, China
| | - Hui Chen
- Department of Urology, Harbin Medical University Cancer Hospital,
Harbin, China
| |
Collapse
|
18
|
Lu Y, Li H, Chen M, Lin Y, Zhang X. LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice. J Transl Med 2025; 23:35. [PMID: 39789539 PMCID: PMC11716213 DOI: 10.1186/s12967-024-06056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally. METHODS The bulk RNA sequencing and single-nuclei RNA sequencing (snRNA-seq) analysis were explored to find the role of LOX in diabetic nephropathy. We then investigated the partial EMT and the possible signaling pathway of LOX, both in vivo and in vitro by LOX inhibition experiments in diabetic mice and HK-2 cells. Besides, we further assessed kidney fibrosis and renal function. RESULTS LOX expression was elevated in kidneys of diabetic mice. Additionally, snRNA-seq results indicated that LOX expression was higher in partial epithelial-mesenchymal transition proximal tubular (PemtPT) epithelial cells. Moreover, we found that increased LOX prompted partial EMT of renal tubular epithelial cells (RTECs) by modulating the transcription factor Snail both in vivo and in vitro. Remarkably, inhibition of LOX effectively mitigated the partial EMT of RTECs in diabetic mice, thereby attenuating kidney fibrosis and enhancing renal function. Additionally, we identified the TGF-β signaling pathway as an upstream regulator of LOX, and inhibiting LOX partially reversed the partial EMT program in HK-2 cells induced by the TGF-β signaling pathway. CONCLUSIONS Hyperglycemia induces partial EMT of RTECs via the TGF-β/LOX/Snail axis, thereby contributing to diabetic kidney fibrosis. Inhibiting LOX can effectively reverse the partial EMT of RTECs, diminish diabetic kidney fibrosis, and improve renal function.
Collapse
Affiliation(s)
- Yicheng Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Heyangzi Li
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mohan Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yicheng Lin
- Xiangya School of Medicine, Central South University, Changsha, 410083, China
| | - Xiaoming Zhang
- Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Zhang W, Zhang Y, Lv W, Kong Z, Wang F, Wang Y. Isoquercitrin improves diabetes nephropathy by inhibiting the sodium-glucose co-transporter-2 pathway. Biochem Biophys Res Commun 2025; 744:151142. [PMID: 39708395 DOI: 10.1016/j.bbrc.2024.151142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Diabetic nephropathy (DN) is one of the most severe kidney complications and the primary contributor to end-stage renal disease on a global scale. It exacerbates the morbidity, mortality, and financial burden for individuals with diabetes. Isoquercitrin, a natural compound found in various plants, has demonstrated potential as an antidiabetic agent. However, it remains uncertain whether isoquercitrin exerts a protective effect on DN. Therefore, the objective of this study was to explore whether isoquercitrin confers a protective effect on DN and its potential mechanism. In vivo, a mouse model of DN induced by streptozotocin was established in the study. The hypoglycemic effect of isoquercitrin was assessed by measuring fasting blood glucose levels, insulin tolerance tests, and glucose tolerance test in animals. Urinary albumin creatinine ratio, serum lipid levels, and pathological changes in renal tissues were measured to evaluate the protective effect of isoquercitrin against DN. The expression of Sodium glucose co-transporter-2(SGLT2) was analyzed using real-time quantitative PCR and immunohistochemistry. The studies suggest that isoquercitrin significantly reduces fasting blood glucose levels, enhances the body's capacity to regulate blood glucose and insulin resistance, and facilitates renal pathology and renal function. Simultaneously, it can lower blood lipids (total cholesterol and triglyceride) and improve the risk factors of DN. Meanwhile, isoquercitrin suppressed the expression of SGLT2 in renal tissues of DN mouse models. In vitro, real-time quantitative PCR and Western blot were used to detect the expression of SGLT2 in the human renal tubular epithelial (HK-2) cells. The effects of isoquercitrin on the survival rate and glucose uptake capacity of HK-2 cells were determined by Cell-Counting-Kit-8 and glucose uptake methods. The results demonstrate that isoquercitrin suppressed the up-regulation of SGLT2 mRNA and protein in high-glucose-induced HK-2 cells. Additionally, isoquercitrin inhibited glucose uptake in HK-2 cells and mitigated high-sugar-induced damage. Thus, this study has concluded that isoquercitrin exhibits hypoglycemic and renal protective effects by inhibiting the SGLT2 pathway, indicating its potential as a promising anti-DN drug deserving further clinical investigation.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Key Laboratory of Thyroid Diseases, Medical Research Cente, Qingdao, China.
| | - Yongxiang Zhang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zili Kong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Key Laboratory of Thyroid Diseases, Medical Research Cente, Qingdao, China.
| | - Fang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Key Laboratory of Thyroid Diseases, Medical Research Cente, Qingdao, China.
| |
Collapse
|
20
|
Huang M, Chang J, Liu Y, Yin J, Zeng X. Apelin/APJ increased renal blood flow through endothelial BKCa channel induced p-eNOS and ET-1 in diabetic conditions. Peptides 2025; 183:171333. [PMID: 39644975 DOI: 10.1016/j.peptides.2024.171333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Renal hemodynamics damage, an important driving mechanism of diabetic nephropathy (DN), is related to many abnormal endothelial released molecules, such as endothelial nitrogen monoxide synthase (eNOS) and endothelin-1 (ET-1), caused by glomerular endothelial cells dysfunction. Apelin, as the endogenous ligand for APJ, was reported to be associated with endothelial cell dysfunction in diabetes. Therefore, it is hypothesized that apelin/APJ increased renal perfusion in DN through regulating endothelial released molecules. Diabetic models were replicated via injecting STZ intraperitoneally (40 mg/kg/day) for 5 consecutive days. Apelin-13 was infused with micro-osmotic pump at 30 μg/kg/day for 4 weeks. The results showed that apelin increased renal blood flow by increasing phosphorylated eNOS and decreasing ET-1 in diabetic mice, which were cancelled in endothelial-specific APJ knockout mice or whole-body large conductance Ca2 +-activated K+ (BKCa) channel knockout rats. Additionally, apelin/APJ activated BKCa channel via increasing expression of BKCa subunits through PI3K/AKT/GSK-3β/Nrf2 pathway but not increasing intracellular Ca2+ concentration under high glucose conditions. In conclusion, this study revealed that apelin/APJ increased renal blood flow in early phase of DN via increasing p-eNOS and decreasing ET-1 in glomerular endothelial cells dependent on PI3K/AKT/GSK-3β/Nrf2 pathway induced expression of BKCa subunits.
Collapse
Affiliation(s)
- Mingcong Huang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Chang
- Department of Physiology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yu Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiming Yin
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| | - Xiangjun Zeng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
21
|
Dai W, Wu J, Li K, Xu Y, Wang W, Xiao W. Andrographolide: A promising therapeutic agent against organ fibrosis. Eur J Med Chem 2024; 280:116992. [PMID: 39454221 DOI: 10.1016/j.ejmech.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/07/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Fibrosis is the terminal pathology of chronic illness in many organs, marked by excessive accumulation of extracellular matrix proteins. These changes influence organ function, ultimately resulting in organ failure. Although significant progress has been achieved in comprehending the molecular pathways responsible for fibrosis in the last decades, effective and approved clinical therapies for the condition are still lacking. Andrographolide is a diterpenoid isolated and purified mainly from the aboveground parts of the Andrographis paniculata plant, which possesses good effects of purging heat, detoxifying, antibacterial and anti-inflammatory. In-depth research has gradually confirmed the anticancer, antioxidant, antiviral and other effects of Andro so that it can play a preventive and therapeutic role in various diseases. Over the past few years, an increasing number of research findings have indicated that Andro exerts antifibrotic effects in various organs by acting on transforming growth factor-β/small mother against decapentaplegic protein, mitogen-activated protein kinases, nuclear factor-E2-related factor 2, nuclear factor kappa-B and other signalling molecules to inhibit inflammation, oxidative stress, epithelial-mesenchymal transition, fibroblast activation and collagen buildup. This review presents a compilation of findings regarding the antifibrotic impact of Andro in tissue and cell models in vitro and in vivo. Emphasis is placed on the potential therapeutic benefits of Andro in diseases related to organ fibrosis. Existing studies and cutting-edge technologies on Andro pharmacokinetics, toxicity and bioavailability are briefly discussed to provide evidence for accelerating its clinical conversion and adoption.
Collapse
Affiliation(s)
- Wei Dai
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Yingying Xu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Research Institute for Biology and Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
22
|
Yi Z, Yang B, Wan F, Lu J, Liu D, Lin L, Xu Y, Cen Z, Fan M, Liu W, Lu Q, Jiang G, Zhang Y, Song E, Gao J, Ye D. Chinese medicine Linggui Zhugan formula protects against diabetic kidney disease in close association with inhibition of proteinase 3-mediated podocyte apoptosis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118650. [PMID: 39094755 DOI: 10.1016/j.jep.2024.118650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Linggui-Zhugan (LGZG) comprises four herbs and is a classic formula in traditional Chinese medicine. There is strong clinical evidence of its pleiotropic effects in the prevention of diabetes and its related complications. Although several classes of drugs are currently available for clinical management of diabetic kidney disease (DKD), tight glycemic and/or hypertension control may not prevent disease progression. This study evaluated the therapeutic effect of the ethnopharmacological agent LGZG on DKD. AIM OF THE STUDY This study aimed to investigate the effects of LGZG formula with standard quality control on experimental DKD and its related metabolic disorders in animal model. Meanwhile, the present study aimed to investigate regulatory effects of LGZG on renal proteinase 3 (PR3) to reveal mechanisms underlying renoprotective benefits of LGZG. MATERIALS AND METHODS LGZG decoction was fingerprinted by high-performance liquid chromatography for quality control. An experimental model of DKD was induced in C57 BL/6J mice by a combination of high-fat diet feeding, uninephrectomy, and intraperitoneal injection of streptozocin. The LGZG decoction was administrated by daily oral gavage. RESULTS Treatment with LGZG formula significantly attenuated DKD-like traits (including severe albuminuria, mesangial matrix expansion, and podocyte loss) and metabolic dysfunction (disordered body composition and dyslipidemia) in mice. RNA sequencing data revealed a close association of LGZG treatment with marked modulation of signaling pathways related to podocyte injury and cell apoptosis. Mechanistically, LGZG suppressed the DKD-triggered increase in renal PR3 and podocyte apoptosis. In-vitro incubation of mouse immortalized podocytes with LGZG-medicated serum attenuated PR3-mediated apoptosis. CONCLUSION Our data demonstrated that the LGZG formula protected against DKD in mice and was closely associated with its inhibitory effects on PR3-mediated podocyte apoptosis.
Collapse
Affiliation(s)
- Zixuan Yi
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bei Yang
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fangyu Wan
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Lu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongyang Liu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Lin
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhikang Cen
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqi Fan
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhan Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuying Zhang
- Department of Obstetrics, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Erfei Song
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, China; Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, 510630, Guangdong Province, China
| | - Jie Gao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Dewei Ye
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
23
|
Brdar I, Mašek T, Racetin A, Jurić M, Vukojević K, Bočina I, Filipović N. Renal expression of autophagy markers in diabetic kidney of PUFA-supplemented rats. Acta Histochem 2024; 126:152206. [PMID: 39405991 DOI: 10.1016/j.acthis.2024.152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024]
Abstract
Diabetic nephropathy is the leading cause of end-stage kidney disease, and the association between impaired autophagy and kidney structure damage in diabetes is well known. Diets enriched with polyunsaturated fatty acids (PUFAs) have been the subject of numerous studies on preventing and treating various metabolic disorders. The results of these studies suggest that n-3 PUFA may have a renoprotective effect, reducing the structural damage to the kidneys associated with DM. We hypothesized that the activation of autophagy partly mediates the potential protective effect of n-3 PUFA on diabetic kidneys. Wistar rats were randomly divided into four groups according to the type of diet: control (C) and diabetic (STZ) groups received food including 0.5 % linseed oil and 2 % sunflower oil with an n-6/n-3 ratio of 7; the STZ+N6 group received a diet with 2.5 % sunflower oil with an n-6/n-3 ratio of 60; and the STZ+N3 group received a diet containing 2.5 % fish oil with an n-6/n-3 ratio of 1, with the addition of eicosapentaenoic acid (EPA) and 19 % docosahexaenoic acid (DHA). All rats, except for those in the C group, had diabetes induced by an intraperitoneal injection of streptozotocin. We conducted histological and immunohistochemical assessments to determine the effects of different n-6/n-3 PUFA dietary ratios on the expression levels of different autophagy markers in the kidney of the rats. The results indicate significant effects of n-3 and n-6 PUFA supplementation on the expression of different autophagy markers in the renal cortex of the diabetic rats. In particular, n-6 PUFA supplementation increased LC3B expression while simultaneously decreasing Rab7 expression; meanwhile, n-3 PUFA supplementation resulted in a decreased expression of LAMP2A and Rab7. Moreover, n-3 PUFA supplementation prevented an increase in BECL1 and p62, that was observed in kidneys from diabetic and diabetic n-3 supplemented animals. These results point to the complex interactions of fatty acids and autophagy during the development of diabetic kidney disease, which should be taken into account in future therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Brdar
- Department of Internal Emergency Medicine, University Hospital of Split, Split, Croatia
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| | - Anita Racetin
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Marija Jurić
- Laboratory for Basic Research of the Vascular System, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Katarina Vukojević
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia; Laboratory for Basic Research of the Vascular System, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Ivana Bočina
- Department of Biology, University of Split Faculty of Science, Ruđera Boškovića 33, Split 21000, Croatia
| | - Natalija Filipović
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia; Laboratory for Basic Research of the Vascular System, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia.
| |
Collapse
|
24
|
Yang XY, Jiang D, Wang YZ, Duan MY, Huang YW, Wang XJ, Xiang ZM, Sheng J, Zhu QQ. Chlorogenic acid alleviates renal fibrosis by reducing lipid accumulation in diabetic kidney disease through suppressing the Notch1 and Stat3 signaling pathway. Ren Fail 2024; 46:2371988. [PMID: 38952291 PMCID: PMC11221469 DOI: 10.1080/0886022x.2024.2371988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
AIMS Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.
Collapse
Affiliation(s)
- Xiao-ying Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Die Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuan-zhu Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mei-yan Duan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ye-wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Xuan-jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Ze-min Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Qiang-qiang Zhu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
25
|
Shen S, Zhong H, Zhou X, Li G, Zhang C, Zhu Y, Yang Y. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment. PHARMACEUTICAL BIOLOGY 2024; 62:222-232. [PMID: 38357845 PMCID: PMC10877659 DOI: 10.1080/13880209.2024.2314705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD. OBJECTIVE This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation. METHODS The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment. RESULTS AND CONCLUSIONS The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.
Collapse
Affiliation(s)
- Shiyi Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Huiyun Zhong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| |
Collapse
|
26
|
Chen Q, Guo J, Han S, Wang T, Xia K, Yu B, Liu Y, Qiu T, Zhou J. The impact of donor diabetes on recipient postoperative complications, renal function, and survival rate in deceased donor kidney transplantation: a single-center analysis. Ren Fail 2024; 46:2391067. [PMID: 39177237 PMCID: PMC11346333 DOI: 10.1080/0886022x.2024.2391067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
As the global incidence of diabetes rises and diagnoses among younger patients increase, transplant centers worldwide are encountering more organ donors with diabetes. This study examined 80 donors and 160 recipients, including 30 donors with diabetes (DD) and their 60 recipients (DDR). The control group comprised 50 non-diabetic donors (ND) and 100 recipients (NDR). We analyzed clinical, biochemical, and pathological data for both diabetic and control groups, using logistic regression to identify risk factors for delayed graft function (DGF) after kidney transplantation. Results showed that pre-procurement blood urea nitrogen levels were significantly higher in DD [18.20 ± 10.63 vs. 10.86 ± 6.92, p = 0.002] compared to ND. Renal pathological damage in DD was notably more severe, likely contributing to the higher DGF incidence in DDR compared to NDR. Although DDR had poorer renal function during the first three months post-transplant, both groups showed similar renal function thereafter. No significant differences were observed in 1-year or 3-year mortality rates or graft failure rates between DDR and NDR. Notably, according to the Renal Pathology Society (RPS) grading system, kidneys from diabetic donors with a grade > IIb are associated with significantly lower postoperative survival rates. Recipient gender [OR: 5.452 (1.330-22.353), p = 0.013] and pre-transplant PRA positivity [OR: 34.879 (7.698-158.030), p < 0.001] were identified as independent predictors of DGF in DDR. In conclusion, transplant centers may consider utilizing kidneys from diabetic donors, provided they are evaluated pathologically, without adversely impacting recipient survival and graft failure rates.
Collapse
Affiliation(s)
- Qi Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
27
|
Wang D, Zhang L, Nan J, Wan S, Luo J, Li X, Chen W. High glucose elevates intracellular calcium level and induces ferroptosis in glomerular endothelial cells through the miR-223-3p/ITPR3 pathway. Mol Cell Endocrinol 2024; 594:112384. [PMID: 39426490 DOI: 10.1016/j.mce.2024.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
We investigated the link between ferroptosis and the miR-223-3p/inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) pathway in diabetic kidney disease (DKD). Blood samples from DKD patients and healthy controls were analysed for iron ions, calcium ions, and lipid peroxidation. High-glucose-induced glomerular endothelial cells were used to simulate DKD. MiR-223-3p overexpression or silencing was achieved using adenoviruses, affecting ferroptosis regulators (glutathione peroxidase 4 [GPX4], cystine/glutamate transporter (xCT), and long-chain acyl-CoA synthetase 4 [ACSL4]) and ITPR3. DKD patients showed elevated levels of iron ions, calcium ions, and lipid peroxidation. High glucose downregulated miR-223-3p, reducing xCT and GPX4 expression and increasing ACSL4 expression. MiR-223-3p was confirmed to target ITPR3 through luciferase reporter assay. MiR-223-3p overexpression reversed high-glucose-induced effects on ferroptosis markers and ITPR3 expression. In summary, high glucose levels decreased miR-223-3p expression, leading to increased calcium ion levels and ferroptosis, potentially through ITPR3 modulation. These findings provide insights into the mechanisms underlying DKD and its potential therapeutic targets.
Collapse
Affiliation(s)
- Dekai Wang
- Department of Endocrinology, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, 443002, Hubei, China; Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Lihua Zhang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China.
| | - Juanli Nan
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Shengbi Wan
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Jingmei Luo
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Xueqiong Li
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Wei Chen
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
28
|
Shulman R, Yang W, Cohen DL, Reese PP, Cohen JB. Cardiovascular and Kidney Outcomes of Non-Diabetic CKD by Albuminuria Severity: Findings From the CRIC Study. Am J Kidney Dis 2024; 84:742-750.e1. [PMID: 39032679 PMCID: PMC11585431 DOI: 10.1053/j.ajkd.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 07/23/2024]
Abstract
RATIONALE & OBJECTIVE The clinical trajectory of normoalbuminuric chronic kidney disease (CKD), particularly in the absence of diabetes, has not yet been well-studied. This study evaluated the association of kidney and cardiovascular outcomes with levels of albuminuria in a cohort of patients with nondiabetic CKD. STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS 1,463 adults with nondiabetic CKD without known glomerulonephritis and diagnosed with hypertensive nephrosclerosis or unknown cause of CKD participating in the Chronic Renal Insufficiency Cohort (CRIC) Study. EXPOSURE Albuminuria stage at study entry. OUTCOME Primary outcome: Composite kidney (halving of estimated glomerular filtration rate [eGFR], kidney transplantation, or dialysis), Secondary outcomes: (1) eGFR slope, (2) composite cardiovascular disease events (hospitalization for heart failure, myocardial infarction, stroke, or all-cause death), (3) all-cause death. ANALYTICAL APPROACH Linear mixed effects and Cox proportional hazards regression analyses. RESULTS Lower levels of albuminuria were associated with female sex and older age. For the primary outcome, compared with normoalbuminuria, those with moderate and severe albuminuria had higher rates of kidney outcomes (adjusted hazard ratio [AHR], 3.3 [95% CI, 2.4-4.6], and AHR, 8.6 [95% CI, 6.0-12.0], respectively) and cardiovascular outcomes (AHR, 1.5 [95% CI, 1.2-1.9], and AHR, 1.5 [95% CI, 1.1-2.0], respectively). Those with normoalbuminuria (<30μg/mg; n=863) had a slower decline in eGFR (-0.46mL/min/1.73m2 per year) compared with those with moderate (30-300μg/mg, n=372; 1.41mL/min/1.73m2 per year) or severe albuminuria (>300μg/mg, n=274; 2.63mL/min/1.73m2 per year). In adjusted analyses, kidney outcomes occurred, on average, sooner among those with moderate (8.6 years) and severe (7.3 years) albuminuria compared with those with normoalbuminuria (9.3 years) whereas the average times to cardiovascular outcomes were similar across albuminuria groups (8.2, 8.1, and 8.6 years, respectively). LIMITATIONS Self-report of CKD etiology without confirmatory kidney biopsies; residual confounding. CONCLUSIONS Participants with normoalbuminuric nondiabetic CKD experienced substantially slower CKD progression but only modestly lower cardiovascular risk than those with high levels of albuminuria. These findings inform the design of future studies investigating interventions among individuals with lower levels of albuminuria. PLAIN-LANGUAGE SUMMARY Diabetes and hypertension are the leading causes of chronic kidney disease (CKD). Urine albumin levels are associated with cardiovascular and kidney disease outcomes among individuals with CKD. However, previous studies of long-term clinical outcomes in CKD largely included patients with diabetes. As well, few studies have evaluated long-term outcomes across different levels of urine albumin among people without diabetes. In this study, we found individuals with nondiabetic CKD and low urine albumin had much slower decline of kidney function but only a modestly lower risk of a cardiovascular events compared with those with high levels of urine albumin. Individuals with low urine albumin were much more likely to have a cardiovascular event than progression of their kidney disease. These findings inform the design of future studies investigating treatments among individuals with lower levels of albuminuria.
Collapse
Affiliation(s)
- Rachel Shulman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Wei Yang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Debbie L Cohen
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter P Reese
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jordana B Cohen
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Zhu Y, Liu J, Wang B. Integrated approach of machine learning, Mendelian randomization and experimental validation for biomarker discovery in diabetic nephropathy. Diabetes Obes Metab 2024; 26:5646-5660. [PMID: 39370621 DOI: 10.1111/dom.15933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024]
Abstract
AIM To identify potential biomarkers and explore the mechanisms underlying diabetic nephropathy (DN) by integrating machine learning, Mendelian randomization (MR) and experimental validation. METHODS Microarray and RNA-sequencing datasets (GSE47184, GSE96804, GSE104948, GSE104954, GSE142025 and GSE175759) were obtained from the Gene Expression Omnibus database. Differential expression analysis identified the differentially expressed genes (DEGs) between patients with DN and controls. Diverse machine learning algorithms, including least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest, were used to enhance gene selection accuracy and predictive power. We integrated summary-level data from genome-wide association studies on DN with expression quantitative trait loci data to identify genes with potential causal relationships to DN. The predictive performance of the biomarker gene was validated using receiver operating characteristic (ROC) curves. Gene set enrichment and correlation analyses were conducted to investigate potential mechanisms. Finally, the biomarker gene was validated using quantitative real-time polymerase chain reaction in clinical samples from patients with DN and controls. RESULTS Based on identified 314 DEGs, seven characteristic genes with high predictive performance were identified using three integrated machine learning algorithms. MR analysis revealed 219 genes with significant causal effects on DN, ultimately identifying one co-expressed gene, carbonic anhydrase II (CA2), as a key biomarker for DN. The ROC curves demonstrated the excellent predictive performance of CA2, with area under the curve values consistently above 0.878 across all datasets. Additionally, our analysis indicated a significant association between CA2 and infiltrating immune cells in DN, providing potential mechanistic insights. This biomarker was validated using clinical samples, confirming the reliability of our findings in clinical practice. CONCLUSION By integrating machine learning, MR and experimental validation, we successfully identified and validated CA2 as a promising biomarker for DN with excellent predictive performance. The biomarker may play a role in the pathogenesis and progression of DN via immune-related pathways. These findings provide important insights into the molecular mechanisms underlying DN and may inform the development of personalized treatment strategies for this disease.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Endocrinology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Feng Q, Su C, Yang C, Wu M, Li X, Lin X, Zeng Y, He J, Wang Y, Guo L, Wen C, Cai F, Zhang J, Fan X, Guan M. RXRα/MR signaling promotes diabetic kidney disease by facilitating renal tubular epithelial cells senescence and metabolic reprogramming. Transl Res 2024; 274:101-117. [PMID: 39424127 DOI: 10.1016/j.trsl.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Cell senescence and metabolic reprogramming are significant features of diabetic kidney disease (DKD). However, the underlying mechanisms between cell senescence and metabolic reprogramming are poorly defined. Here, we report that retinoid X receptor α (RXRα), a key nuclear receptor transcription factor, regulates cell senescence and metabolic reprogramming in DKD. Through high-throughput sequencing, bioinformatic analysis and experimental validation, we confirmed the critical role of RXRα in promoting cell senescence and metabolic dysregulation in renal tubular epithelial cells (RTECs) induced by lipid overload. In vivo, in situ injection of AAV9-shRxra into the kidney reduced proteinuria, RTECs senescence and insulin resistance in DKD mice. In vitro, knockdown of RXRα markedly improved G2/M phase arrest and suppressed the expression of senescence-associated secretory phenotypes (SASPs). Protein-protein interaction (PPI) analysis and unbiased bioinformatics were employed to identify the direct interactions between RXRα and the mineralocorticoid receptor (MR), which were subsequently validated through coimmunoprecipitation. Gene network analysis revealed the collaborative regulatory role of RXRα and MR in RTECs senescence. In an accelerated aging mouse model, treatment with a MR antagonist has been shown to inhibite the RXRα/MR signaling, improve RTECs senescence, and reduce interstitial fibrosis and lipid deposition in the kidneys. These findings indicate that inhibition of RXRα/MR signaling could alleviate cell senescence during metabolic disorders. Thus, our study revealed that RXRα/MR signaling serves as a critical regulatory factor mediating the crosstalk between cell senescence and metabolic reprogramming, shedding light on a novel mechanism for targeting cell senescence and metabolic dysregulation in DKD.
Collapse
Affiliation(s)
- Qijian Feng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515; Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Chang Su
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Chuyi Yang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Minghai Wu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Xuelin Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Xiaochun Lin
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Yanmei Zeng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Jintao He
- School of Medicine, South China University of Technology, Guangzhou 510080, PR China
| | - Yuan Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Lei Guo
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Churan Wen
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Feifei Cai
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Jin Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Xinzhao Fan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. 510515.
| |
Collapse
|
31
|
Wei D, Shi J, Xu H, Guo Y, Wu X, Chen Z, Chen T, Lou H, Han E, Han G, Yan Y, Liu X, Zeng X, Fan C, Hou J, Huo W, Li L, Jing T, Wang C, Mao Z. Prospective study on the joint effect of persistent organic pollutants and glucose metabolism on chronic kidney disease: Modifying effects of lifestyle interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175694. [PMID: 39173765 DOI: 10.1016/j.scitotenv.2024.175694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
There is no evidence on the associations between persistent organic pollutants (POPs) and the incidence of chronic kidney disease (CKD) in the Chinese rural population. We aimed to investigate the individual and mixed effects of 22 POPs on the prevalence and incidence of CKD, and the joint effects of POPs and abnormal glucose metabolism as well as the modification effects of healthy lifestyle on these associations. A total of 2775 subjects, including 925 subjects with normal plasma glucose (NPG) and 925 subjects with prediabetes (PDM) and type 2 diabetes mellitus (T2DM), were enrolled from the Henan Rural Cohort Study. Logistic regression and quantile g-computation were performed to assess the individual and mixed effects of POPs on the risk of CKD. Joint effects of POPs and abnormal glucose metabolism status, as well as the modification effects of lifestyle on CKD were assessed. After 3-year follow-up, an increment of ln-o,p'-DDT was related to an elevated risk of CKD prevalence. Positive associations of p,p'-DDE and β-BHC with CKD incidence were observed (P < 0.05). In addition, participants with high levels of ∑POPs were associated elevated incidence risk of CKD (OR: 1.217, 95%CI: 1.008-1.469). One quartile increase in POPs mixture was associated with the increased incidence of CKD among T2DM patients (P < 0.05). Further, a higher risk of CKD was observed among PDM and T2DM patients with high levels of o,p'-DDT, p,p'-DDE, β-BHC, and ∑POPs than NPG subjects with low levels of pollutants. In addition, interactive effects of ∑POPs and lifestyle score on CKD incidence were found. Individual and mixed exposure to POPs increased the prevalence and incidence of CKD, and glucose metabolic status exacerbated the risk of CKD resulting from such exposures. Further, the modifying effects of lifestyle were observed, highlighting the importance of precision prevention for high-risk CKD population and healthy lifestyle intervention measures.
Collapse
Affiliation(s)
- Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Haoran Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yao Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xueyan Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhiwei Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Taimeng Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Huilin Lou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Erbao Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Guozhen Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yumeng Yan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xin Zeng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Caini Fan
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
32
|
He Y, Liu X, Wang R, Pang J, Tang Z, Zhong Q, Lin X. CD2 glycoprotein and CD44 structure and prevention of diabetes nephropathy: Central characteristics of related genes based on WGCNA and PPI. Int J Biol Macromol 2024; 279:135393. [PMID: 39245097 DOI: 10.1016/j.ijbiomac.2024.135393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus, characterized by complex pathogenesis that involves numerous molecules and signaling pathways. Among these, CD2 glycoprotein and CD44 play pivotal roles in cell adhesion, signal transduction, and inflammatory responses, potentially contributing significantly to the onset and progression of DN. This study aimed to investigate the central features of CD2 glycoprotein and CD44 in preventing diabetic nephropathy. To achieve this, kidney tissue sample data from DN patients were sourced from a public gene expression database. The roles of CD2 glycoprotein and CD44 within the PPI network were then analyzed, focusing on their interactions with other related genes. WGCNA analysis identified several significant gene modules associated with DN, including CD2 glycoprotein and CD44. PPI network analysis showed that these two proteins had a high degree of connectivity in the network, suggesting that they may be central regulatory molecules of DN. Further functional enrichment analysis revealed the potentially important role of CD2 glycoprotein and CD44 in diabetic nephropathy.
Collapse
Affiliation(s)
- Yi He
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi, Baise 533000, China
| | - Xin Liu
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi, Baise 533000, China
| | - Rong Wang
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi, Baise 533000, China
| | - Jun Pang
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi, Baise 533000, China
| | - Zhiming Tang
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi, Baise 533000, China
| | - Qiuhong Zhong
- Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi, Baise 533000, China; Department of ultrasound, The Affilated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Xu Lin
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi, Baise 533000, China.
| |
Collapse
|
33
|
Yáñez AJ, Jaramillo K, Silva P, Yáñez A M, Sandoval M, Carpio D, Aguilar M. Sodium tungstate (NaW) decreases inflammation and renal fibrosis in diabetic nephropathy. Am J Med Sci 2024; 368:518-531. [PMID: 38944202 DOI: 10.1016/j.amjms.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Diabetic Nephropathy is one of the most severe complications of Diabetes Mellitus and the main cause of end-stage kidney disease worldwide. Despite the therapies available to control blood glucose and blood pressure, many patients continue to suffer from progressive kidney damage. Chronic hyperglycemia is the main driver of changes observed in diabetes; however, it was recently discovered that inflammation and oxidative stress contribute to the development and progression of kidney damage. Therefore, it is important to search for new pharmacological therapies that stop the progression of DN. Sodium tungstate (NaW) is an effective short and long-term antidiabetic agent in both type 1 and type 2 diabetes models. METHODS In this study, the effect of NaW on proinflammatory signalling pathways, proinflammatory proteins and fibrosis in the streptozotocin (STZ)-induced type 1 diabetic rat model was analysed using histological analysis, western blotting and immunohistochemistry. RESULTS NaW treatment in diabetic rats normalize parameters such as glycemia, glucosuria, albuminuria/creatinuria, glomerular damage, and tubulointerstitial damage. NaW decreased the proinflammatory signaling pathway NF-κB, inflammatory markers (ICAM-1, MCP-1 and OPN), profibrotic pathways (TGFβ1/Smad2/3), reduced epithelial-mesenchymal transition (α -SMA), and decreased renal fibrosis (type IV collagen). CONCLUSION NaW could be an effective drug therapy for treating human diabetic nephropathy.
Collapse
Affiliation(s)
- Alejandro J Yáñez
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Universidad de Concepción, Chile; Research and Development Department, Greenvolution SpA. Puerto Varas, Chile.
| | - Karen Jaramillo
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Pamela Silva
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Mariana Yáñez A
- Facultad de Medicina y Ciencias, Campus de la Patagonia, Universidad San Sebastian, 5480000 Puerto Montt, Chile
| | - Moises Sandoval
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Daniel Carpio
- Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Marcelo Aguilar
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile.
| |
Collapse
|
34
|
Huang J, Liu Y, Shi M, Zhang X, Zhong Y, Guo S, Ma Y, Pan L, Yang F, Wang Y. Empagliflozin attenuating renal interstitial fibrosis in diabetic kidney disease by inhibiting lymphangiogenesis and lymphatic endothelial-to-mesenchymal transition via the VEGF-C/VEGFR3 pathway. Biomed Pharmacother 2024; 180:117589. [PMID: 39418962 DOI: 10.1016/j.biopha.2024.117589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
Renal interstitial fibrosis (RIF) is a significant pathological change in diabetic kidney disease (DKD) that can be induced by endothelial-to-mesenchymal transition (EndMT). Lymphangiogenesis, mediated by the vascular endothelial growth factor-C (VEGF-C)/vascular endothelial growth factor receptor-3 (VEGFR-3) pathway, plays a crucial role in the development of RIF in DKD. Although numerous studies have demonstrated the efficacy of empagliflozin in treating renal injury, its effects on lymphangiogenesis in DKD-related RIF and the underlying mechanisms remain unclear. In the present study, significant lymphangiogenesis was assessed in the renal interstitium of patients with DKD. We subsequently explored the relationship between DKD-related RIF and lymphangiogenesis in mouse models, high-glucose (HG)-stimulated renal HK-2 cell lines, and human lymphatic endothelial cells (hLECs). Additionally, we evaluated the effects of empagliflozin on these processes. The results revealed that HG induces lymphangiogenesis, which exacerbates RIF by promoting inflammatory responses. Furthermore, hLECs directly contributed to the progression of DKD-related RIF through EndMT. Further analysis revealed that tubular epithelial cells (TECs) act as effector cells for VEGF-C, with the epithelial-to-mesenchymal transition (EMT) of TECs occurring concurrently with the EndMT of lymphatic vessels. Empagliflozin inhibited RIF in DKD by suppressing the VEGF-C/VEGFR3 pathway and reducing lymphangiogenesis. In conclusion, this study elucidates the interplay between lymphangiogenesis, EndMT, and RIF in DKD and provides new insights into the mechanism by which empagliflozin treats DKD.
Collapse
Affiliation(s)
- Jiaan Huang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, No.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yan Liu
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, No.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Mengting Shi
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Acupuncture and moxibustion and Massage College of Hebei University of Chinese Medicine, No.3 Xingyuan Road, Luquan District, Shijiazhuang 050200, China
| | - Xiaoyun Zhang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China
| | - Yan Zhong
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China
| | - Shuai Guo
- The Third Hospital of Hebei Medical University, Shijiazhuang 050200, China
| | - Yun Ma
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Limin Pan
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Fan Yang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, No.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China.
| | - Yuehua Wang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, No.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China; The Second Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Dingzhou 073000, China.
| |
Collapse
|
35
|
Nongthombam GS, Ahmed SA, Saikia K, Gogoi S, Borah JC. Breaking boundaries in diabetic nephropathy treatment: design and synthesis of novel steroidal SGLT2 inhibitors. RSC Med Chem 2024; 16:d4md00645c. [PMID: 39479473 PMCID: PMC11514366 DOI: 10.1039/d4md00645c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
The activity of sodium glucose co-transporter 2 (SGLT2) has always been an important parameter influencing chronic kidney disease in type-2 diabetic patients. Herein, we have meticulously designed, synthesized, and evaluated several novel steroidal pyrimidine molecules that possess the capability to successfully bind to the SGLT2 protein and inhibit its activity, thereby remedying kidney-related ailments in diabetic patients. The lead steroidal pyrimidine compounds were selected after virtually screening from a library of probable N-heterocyclic steroidal scaffolds. A nano-catalyzed synthetic route was also explored for the synthesis of the steroidal pyrimidine analogs demonstrating an environmentally benign protocol. Extensive in vitro investigations encompassing SGLT2 screening assays and cell viability assessments were conducted on the synthesized compounds. Among the steroidal pyrimidine derivatives evaluated, compound 9a exhibited the highest SGLT2 inhibition activity and underwent further scrutiny. Western blot analysis was employed to determine the impact of 9a on inflammatory and fibrotic proteins, aiming to elucidate its mechanism of action. Additionally, in silico analyses were performed to illuminate the structural dynamics and molecular interaction mechanism of 9a. The overall investigation is crucial for advancing the development of the next generation of anti-diabetic drugs.
Collapse
Affiliation(s)
- Geetmani Singh Nongthombam
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
| | - Semim Akhtar Ahmed
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kangkon Saikia
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Jagat Chandra Borah
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati 781101 Assam India
| |
Collapse
|
36
|
Zhuang LG, Zhang R, Jin GX, Pei XY, Wang Q, Ge XX. Asiaticoside improves diabetic nephropathy by reducing inflammation, oxidative stress, and fibrosis: An in vitro and in vivo study. World J Diabetes 2024; 15:2111-2122. [PMID: 39493557 PMCID: PMC11525727 DOI: 10.4239/wjd.v15.i10.2111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes characterized by inflammation, oxidative stress, and renal fibrosis. Asiaticoside (AC) exhibits anti-inflammatory, antioxidant, and anti-fibrotic properties, suggesting potential therapeutic benefits for DN. This study aimed to investigate the protective effects of AC against DN and elucidate the underlying mechanisms involving the nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) antioxidant pathway. AIM To investigate the renoprotective effects of AC against DN and elucidate the role of the NRF2/HO-1 pathway. METHODS The effects of AC on high glucose (HG)-induced proliferation, inflammation, oxidative stress, and fibrosis were evaluated in rat glomerular mesangial cells (HBZY-1) in vitro. A streptozotocin-induced DN rat model was established to assess the in vivo impact of AC on renal injury, inflammation, oxidative stress, and fibrosis. The involvement of the NRF2/HO-1 pathway was examined using pharmacological inhibition studies in the cell model. RESULTS AC inhibited HG-induced HBZY-1 cell proliferation and significantly improved various indicators of DN in rats, including reduced body weight, and elevated blood glucose, serum creatinine, blood urea nitrogen, and 24-h urine protein. Both in vitro and in vivo studies demonstrated that AC decreased inflammation and oxidative stress by reducing interleukin (IL)-6, IL-8, tumor necrosis factor-alpha, reactive oxygen species, and malondialdehyde levels while increasing superoxide dismutase activity. Additionally, AC suppressed the expression of fibrogenic markers such as collagen I, collagen IV, and fibronectin. AC activated NRF2 expression in the nucleus and increased HO-1 and NAD(P)H dehydrogenase (Quinone) 1 protein expression in renal tissues and HG-induced HBZY-1 cells. CONCLUSION AC improves DN by reducing inflammation, oxidative stress, and fibrosis through the activation of the NRF2/HO-1 signaling pathway. These findings not only highlight AC as a promising therapeutic candidate for DN but also underscore the potential of targeting the NRF2/HO-1 pathway in developing novel treatments for other chronic kidney diseases characterized by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lan-Gen Zhuang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Rong Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Xi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Xiao-Yan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Qiong Wang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Xiao-Xu Ge
- Department of Endocrinology, Tongren Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200336, China
| |
Collapse
|
37
|
Ren J, Ma K, Lu X, Peng H, Wang J, Nasser MI, Liu C. Occurrence and role of Tph cells in various renal diseases. Mol Med 2024; 30:174. [PMID: 39390361 PMCID: PMC11468416 DOI: 10.1186/s10020-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 (CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and various renal diseases.
Collapse
Affiliation(s)
- Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital, Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
38
|
Omid N, Esfahani EN, Tabaeifard R, Montazer M, Azadbakht L. Association of dietary antioxidant indices with kidney function indicators in patients with type 2 diabetes: a cross-sectional study. Sci Rep 2024; 14:22991. [PMID: 39362901 PMCID: PMC11450216 DOI: 10.1038/s41598-024-71683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
This cross-sectional study investigated the relationship between dietary antioxidant indices and kidney function indicators in 240 outpatient adults with type 2 diabetes. Dietary intake was assessed using three 24-h dietary recalls. Dietary total antioxidant capacity (DTAC), dietary antioxidant index (DAI), and dietary antioxidant quality score (DAQS) were obtained. Indicators of kidney function, including serum creatinine, urea, blood urea nitrogen (BUN), and glomerular filtration rate (GFR), were extracted from medical records. After adjustment, the highest DAI tertile had lower serum creatinine (0.98 ± 0.27 vs 1.03 ± 0.32 mg/dL, P < 0.001), reduced urea (30.97 ± 8.75 vs 34.07 ± 14.45 mg/dL, P = 0.005), and higher GFR (85.16 ± 29.43 vs 74.16 ± 22.18 ml/min per 1·73 m2, P < 0.001) compared to the lowest tertile. The results of logistic regression analysis indicated a borderline significant inverse association of serum urea > 20 mg/dl with DTAC (odds ratio (OR):0.28; 95% CI: 0.07-1.09; Ptrend = 0.06). Multivariable linear regression analysis revealed a significant aligned correlation between DAQs and GFR (β: 0.20; P-value: 0.005) and a marginally significant direct relationship between DAI and GFR (β: 0.14; P-value: 0.06). However, no significant association was observed for DTAC with GFR (β:-0.02; P-value: 0.80). Diets with higher antioxidant capacity may be linked to improved kidney function in type 2 diabetes but our results did not support this strongly.
Collapse
Affiliation(s)
- Noushin Omid
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box: 14155/61170, Tehran, Iran
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Tabaeifard
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box: 14155/61170, Tehran, Iran
| | - Mohsen Montazer
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box: 14155/61170, Tehran, Iran
| | - Leila Azadbakht
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box: 14155/61170, Tehran, Iran.
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
39
|
Chen H, Zhang Y, Miao Y, Song H, Tang L, Liu W, Li W, Miao J, Li X. Vitamin D inhibits ferroptosis and mitigates the kidney injury of prediabetic mice by activating the Klotho/p53 signaling pathway. Apoptosis 2024; 29:1780-1792. [PMID: 38558206 DOI: 10.1007/s10495-024-01955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Diabetic nephropathy (DN) is a serious public health problem worldwide, and ferroptosis is deeply involved in the pathogenesis of DN. Prediabetes is a critical period in the prevention and control of diabetes and its complications, in which kidney injury occurs. This study aimed to explore whether ferroptosis would induce kidney injury in prediabetic mice, and whether vitamin D (VD) supplementation is capable of preventing kidney injury by inhibiting ferroptosis, while discussing the potential mechanisms. High-fat diet (HFD) fed KKAy mice and high glucose (HG) treated HK-2 cells were used as experimental subjects in the current study. Our results revealed that serious injury and ferroptosis take place in the kidney tissue of prediabetic mice; furthermore, VD intervention significantly improved the kidney structure and function in prediabetic mice and inhibited ferroptosis, showing ameliorated iron deposition, enhanced antioxidant capability, reduced reactive oxygen species (ROS) and lipid peroxidation accumulation. Meanwhile, VD up-regulated Klotho, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, and down-regulated p53, transferrin receptor 1 (TFR1) and Acyl-Coenzyme A synthetase long-chain family member 4 (ACSL4) expression. Moreover, we demonstrated that HG-induced ferroptosis is antagonized by treatment of VD and knockdown of Klotho attenuates the protective effect of VD on ferroptosis in vitro. In conclusion, ferroptosis occurs in the kidney of prediabetic mice and VD owns a protective effect on prediabetic kidney injury, possibly by via the Klotho/p53 pathway, thus inhibiting hyperglycemia-induced ferroptosis.
Collapse
Affiliation(s)
- Hao Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yujing Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yufan Miao
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hanlu Song
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lulu Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenyi Liu
- President's Office, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
40
|
Chen X, Zhang Y, Cao Z, Wang Y, Liao M, Guan Y, Zhu C, Wang W, Huang W, Li W, Xiao Y, Li Y, Yin J, Ding Y, Peng Q, Hu L. Huperzine A targets Apolipoprotein E: A potential therapeutic drug for diabetic nephropathy based on omics analysis. Pharmacol Res 2024; 208:107392. [PMID: 39233057 DOI: 10.1016/j.phrs.2024.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
AIMS Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM) without curative interventions currently. Huperzine A (Hup A), a natural alkaloid, has demonstrated significant hypoglycemic and anti-inflammatory effects. We aim to investigate the protective effects of Hup A on DN and explore the underlying mechanisms METHODS: We applied STZ induced diabetic rats as DN model and leveraged combination analysis of the transcriptome, metabolome, microbiome, and network pharmacology (NP). The total effect of Hup A on DN was detected (i.e. urine protein, renal tissue structure) and the differential genes were further verified at the level of diabetic patients, db/db mice and cells. Clinical data and small interfering RNA (siRNA)-Apoe were adopted. RESULTS Hup A alleviated kidney injury in DN rats. Transcriptomics data and Western blot indicated that the improvement in DN was primarily associated with Apoe and Apoc2. Additionally, metabolomics data demonstrated that DN-induced lipid metabolism disruption was regulated by Hup A, potentially involving sphingosine. Hup A also enriched microbial diversity and ameliorated DN-induced microbiota imbalance. Spearman's correlation analysis demonstrated significant associations among the transcriptome, metabolome, and microbiome. Apoe level was positively correlated with clinical biomarkers in DN patients. Si-Apoe also played protective role in podocytes. NP analysis also suggested that Hup A may treat DN by modulating lipid metabolism, microbial homeostasis, and apoptosis, further validating our findings. CONCLUSIONS Collectively, we provide the first evidence of the therapeutic effect of Hup A on DN, indicating that Hup A is a potential drug for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Xiangjun Chen
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310052, China; School of TCM, Hunan University of Chinese Medicine, China
| | - Ying Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yue Wang
- Hubei Normal University, Huangshi 435002, China
| | - Mengqiu Liao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yuelin Guan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Caifeng Zhu
- Department of Nephrology, Hangzhou TCM Hospital, Hangzhou, China
| | - Wenmin Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wunan Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Wei Li
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, China
| | - Yayu Li
- Department of Nephrology, Hangzhou TCM Hospital, Hangzhou, China
| | - Jiazhen Yin
- Department of Nephrology, Hangzhou TCM Hospital, Hangzhou, China
| | - Yuhan Ding
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinghua Peng
- School of TCM, Hunan University of Chinese Medicine, China
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
42
|
Li J, Zhang J, Zhao X, Tian L. MSU crystallization promotes fibroblast proliferation and renal fibrosis in diabetic nephropathy via the ROS/SHP2/TGFβ pathway. Sci Rep 2024; 14:20251. [PMID: 39215017 PMCID: PMC11364842 DOI: 10.1038/s41598-024-67324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Monosodium urate (MSU) crystallisation deposited in local tissues and organs induce inflammatory reactions, resulting in diseases such as gout. MSU has been recognized as a common and prevalent pathology in various clinical conditions. In this study, we investigated the role of MSU in the pathogenesis of diabetic kidney disease (DKD). We induced renal injury in diabetic kidney disease mice using streptozotocin (STZ) and assessed renal histopathological damage using Masson's trichrome staining and Collagen III immunofluorescence staining. We measured the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and uric acid (UA) using ELISA. Protein expression levels of NLRP3, p-NF-κB, SHP2, p-STAT3, and p-ERK1/2 were analyzed by Western blot. To further investigate the role of MSU in diabetic kidney disease, we conducted in vitro experiments. In our in vivo experiments, we found that compared to the Model group, there was a significant increase in interstitial fibrosis in the kidneys of mice after treatment with MSU, accompanied by elevated levels of MDA, SOD, and UA. Furthermore, the protein expression of NLRP3, p-NF-NB, SHP2, p-STAT3, and p-ERK1/2 was upregulated. In our subsequent studies on mouse fibroblasts (L929 cells), we discovered that high glucose, MSU, and TGF-β could promote the expression of P22, GP91, NLRP3, NF-κB, p-NF-κB, p-SHP2, p-EGFR, p-STAT3, and Collagen-III proteins. Additionally, we found that SHP2 could counteract the upregulation trend induced by MSU on the expression of p-SHP2, p-EGFR, p-STAT3, and Collagen-III proteins, and inhibitors YQ128, NAC, and Cetuximab exhibited similar effects. Furthermore, immunofluorescence results indicated that SHP2 could inhibit the expression of the fibrosis marker α-SMA in L929 cells. These findings suggest that MSU can promote renal fibroblast SHP2 expression, induce oxidative stress, activate the NLRP3/NF-κB pathway, and enhance diabetic kidney disease fibroblast proliferation through the TGFβ/STAT3/ERK1/2 signaling pathway, leading to renal fibrosis.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, China
| | - Jiwei Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Hebei University, Baoding, China
| | - Xuying Zhao
- Department of Endocrinology, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, China.
| | - Ling Tian
- Department of Nephrology, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, China.
| |
Collapse
|
43
|
Brdar I, Racetin A, Jeličić I, Vukojević K, Vučković L, Ljutić D, Saraga-Babić M, Filipović N. Expression of Autophagy Markers LC3B, LAMP2A, and GRP78 in the Human Kidney during Embryonic, Early Fetal, and Postnatal Development and Their Significance in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:9152. [PMID: 39273100 PMCID: PMC11394701 DOI: 10.3390/ijms25179152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Autophagy is the primary intracellular degradation system, and it plays an important role in many biological and pathological processes. Studies of autophagy involvement in developmental processes are important for understanding various processes. Among them are fibrosis, degenerative diseases, cancer development, and metastasis formation. Diabetic kidney disease is one of the main causes of chronic kidney disease and end-stage renal failure. The aim of this study was to investigate the immunohistochemical expression patterns of LC3B, LAMP2A, and GRP78 during different developmental stages of early-developing human kidneys and in samples from patients with type II diabetes mellitus. During the 7/8th DW, moderate expression of LC3B and LAMP2A and strong expression of GRP78 were found in the mesonephric glomeruli and tubules. In the 9/10th DW, the expression of LC3B and LAMP2A was even more pronounced in the mesonephric tubules. LC3B, LAMP2A, and GRP78 immunoreactivity was also found in the paramesonephric and mesonephric ducts and was stronger in the 9/10th DW compared with the 7/8th DW. In addition, the expression of LC3B, LAMP2A, and GRP78 also appeared in the mesenchyme surrounding the paramesonephric duct in the 9/10th DW. In the 15/16th DW, the expression of LC3B in the glomeruli was weak, that of LAMP2A was moderate, and that of GRP78 was strong. In the tubuli, the expression of LC3B was moderate, while the expression of LAMP2A and GRP78 was strong. The strongest expression of LC3B, LAMP2A, and GRP78 was observed in the renal medullary structures, including developing blood vessels. In postnatal human kidneys, the most extensive LC3B, LAMP2A, and GRP78 expression in the cortex was found in the epithelium of the proximal convoluted tubules, with weak to moderate expression in the glomeruli. The medullary expression of LC3B was weak, but the expression of LAMP2A and GRP78 was the strongest in the medullary tubular structures. Significantly lower expression of LC3B was found in the glomeruli of the diabetic patients in comparison with the nondiabetic patients, but there was no difference in the expression of LC3B in the tubule-interstitial compartment. The expression of LAMP2A was significantly higher in the tubule-interstitial compartments of the diabetic patients in comparison with the nondiabetic patients, while its expression did not differ in the glomeruli. Extensive expression of GRP78 was found in the glomeruli and the tubule-interstitial compartments, but there was no difference in the expression between the two groups of patients. These data give us new information about the expression of LC3B, LAMP2A, and GRP78 during embryonic, fetal, and early postnatal development. The spatiotemporal expression of LC3B, LAMP2A, and GRP78 indicates the important role of autophagy during the early stages of renal development. In addition, our data suggest a disturbance in autophagy processes in the glomeruli and tubuli of diabetic kidneys as an important factor in the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Ivan Brdar
- Emergency Department, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Ivo Jeličić
- Internal Medicine Department, Nephrology and Haemodialysis Division, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
- Department of Anatomy, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ljiljana Vučković
- Clinic for Pathology and Citology, Clinical Center of Montenegro, 81101 Podgorica, Montenegro
- Department of Histology and Embryology, Medical Faculty, University of Montenegro, 81101 Podgorica, Montenegro
| | - Dragan Ljutić
- Internal Medicine Department, Nephrology and Haemodialysis Division, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
44
|
Wang B, Xiong Y, Deng X, Wang Y, Gong S, Yang S, Yang B, Yang Y, Leng Y, Li W, Li W. The role of intercellular communication in diabetic nephropathy. Front Immunol 2024; 15:1423784. [PMID: 39238645 PMCID: PMC11374600 DOI: 10.3389/fimmu.2024.1423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue. Recently, studies have shown that beyond traditional communication methods, tunnel nanotubes, exosomes, filopodial tip vesicles, and the fibrogenic niche can influence pathophysiological changes in diabetic nephropathy by disrupting intercellular communication. Therefore, this paper aims to review the varied roles of intercellular communication in diabetic nephropathy, focusing on recent advances in this area.
Collapse
Affiliation(s)
- Bihan Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinqi Deng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhao Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baichuan Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical College of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Zeng X, Zhang Y, Tian L, Zheng Y, Zhang J, Wu Z. Mitigation of ROS-triggered endoplasmic reticulum stress by upregulating Nrf2 retards diabetic nephropathy. Biochem Biophys Res Commun 2024; 721:149972. [PMID: 38772213 DOI: 10.1016/j.bbrc.2024.149972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024]
Abstract
Endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of diabetic nephropathy (DN), and it is often accompanied by an increase in reactive oxygen species (ROS) production. However, the precise relationship between NFE2-related factor-2 (Nrf2), a key regulator of ROS balance, and ERS in DN remains elusive. This study aimed to investigate the impact of Nrf2 on ERS and its therapeutic potential in DN. Herein, ERS-related changes, including increased activating transcription factor-6 (ATF6), glucose-regulated protein 78 (GRP78), and transcription factor C/EBP homologous protein (CHOP) expression, were observed in the renal tissues of streptozotocin-induced DN mice and high glucose cultured human renal proximal tubular (HK-2) cells. Nrf2 knockdown increased the sensitivity of HK-2 cells to ERS under high glucose conditions, underscoring the regulatory role of Nrf2 in ERS modulation. Notably, upregulating Nrf2 in ezetimibe-treated diabetic mice restored ERS markers and ameliorated albuminuria, glomerular hypertrophy, mesangial expansion, and tubulointerstitial fibrosis. Furthermore, the inhibition of ERS in HK-2 cells by the ROS scavenger, N-acetylcysteine, highlights the interplay between ROS and ERS. This study, for the first time, elucidates that the upregulation of Nrf2 may alleviate the negative influence of ROS-mediated ERS, presenting a promising therapeutic avenue for delaying the progression of DN. These findings suggest a potential strategy for targeting Nrf2 and ERS in developing novel therapeutic interventions for DN.
Collapse
Affiliation(s)
- Xiaojiao Zeng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Ling Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021 China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021 China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China.
| |
Collapse
|
46
|
Liang L, Zeng J, Liu R, Zheng Z, Lyu D, Zhang X, Wen M, Li M, Xiao H, Sun X, Li M, Huang H. Polydatin attenuates diabetic renal inflammatory fibrosis via the inhibition of STING pathway. Biochem Pharmacol 2024; 226:116373. [PMID: 38885772 DOI: 10.1016/j.bcp.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Diabetic nephropathy (DN) is a complication of diabetes and is mainly characterized by renal fibrosis, which could be attributed to chronic kidney inflammation. Stimulator of interferon genes (STING), a linker between immunity and metabolism, could ameliorate various metabolic and inflammatory diseases. However, the regulatory role of STING in DN remains largely unexplored. In this study, knockdown of STING decreased extracellular matrix (ECM), pro-inflammatory, and fibrotic factors in high glucose (HG)-induced glomerular mesangial cells (GMCs), whereas overexpression of STING triggered the inflammatory fibrosis process, suggesting that STING was a potential target for DN. Polydatin (PD) is a glucoside of resveratrol and has been reported to ameliorate DN by inhibiting inflammatory responses. Nevertheless, whether PD improved DN via STING remains unclear. Here, transcriptomic profiling implied that the STING/NF-κB pathway might be an important target for PD. We further found that PD decreased the protein expression of STING, and subsequently suppressed the activation of downstream targets including TBK1 phosphorylation and NF-κB nuclear translocation, and eventually inhibited the production of ECM, pro-inflammatory and fibrotic factors in HG-induced GMCs. Notably, results of molecular docking, molecular dynamic simulations, surface plasmon resonance, cellular thermal shift assay and Co-immunoprecipitation assay indicated that PD directly bound to STING and restored the declined proteasome-mediated degradation of STING induced by HG. In diabetic mice, PD also inhibited the STING pathway and improved the pathological changes of renal inflammatory fibrosis. Our study elucidated the regulatory role of STING in DN, and the novel mechanism of PD treating DN via inhibiting STING expression.
Collapse
Affiliation(s)
- Liyin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Renbin Liu
- Bao'an Center Hospital of Shenzhen, Shenzhen 518100, China
| | - Zhihua Zheng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Lyu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuting Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minghui Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen 518026, China.
| | - Min Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China.
| |
Collapse
|
47
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
48
|
Wang G, Zhao J, Zhou M, Lu H, Mao F. Unveiling diabetic nephropathy: a novel diagnostic model through single-cell sequencing and co-expression analysis. Aging (Albany NY) 2024; 16:10972-10984. [PMID: 38968594 PMCID: PMC11272118 DOI: 10.18632/aging.205982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe complication of diabetes that affects the kidneys. Disulfidptosis, a newly defined type of programmed cell death, has emerged as a potential area of interest, yet its significance in DN remains unexplored. METHODS This study utilized single-cell sequencing data GSE131882 from GEO database combined with bulk transcriptome sequencing data GSE30122, GSE30528 and GSE30529 to investigate disulfidptosis in DN. Single-cell sequencing analysis was performed on samples from DN patients and healthy controls, focusing on cell heterogeneity and communication. Weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA) were employed to identify disulfidptosis-related gene sets and pathways. A diagnostic model was constructed using machine learning techniques based on identified genes, and immunocorrelation analysis was conducted to explore the relationship between key genes and immune cells. PCR validation was performed on blood samples from DN patients and healthy controls. RESULTS The study revealed significant disulfidptosis heterogeneity and cell communication differences in DN. Specific targets related to disulfidptosis were identified, providing insights into the pathogenesis of DN. The diagnostic model demonstrated high accuracy in distinguishing DN from healthy samples across multiple datasets. Immunocorrelation analysis highlighted the complex interactions between immune cells and key disulfidptosis-related genes. PCR validation supported the differential expression of model genes VEGFA, MAGI2, THSD7A and ANKRD28 in DN. CONCLUSION This research advances our understanding of DN by highlighting the role of disulfidptosis and identifying potential biomarkers for early detection and personalized treatment.
Collapse
Affiliation(s)
- Guoyi Wang
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Jinwen Zhao
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Min Zhou
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Haiyuan Lu
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Fei Mao
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| |
Collapse
|
49
|
Cheng G, Liu Y, Guo R, Wang H, Zhang W, Wang Y. Molecular mechanisms of gut microbiota in diabetic nephropathy. Diabetes Res Clin Pract 2024; 213:111726. [PMID: 38844054 DOI: 10.1016/j.diabres.2024.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Diabetic nephropathy is a common complication of diabetes and a considerable contributor to end-stage renal disease. Evidence indicates that glucose dysregulation and lipid metabolism comprise a pivotal pathogenic mechanism in diabetic nephropathy. However, current treatment outcomes are limited, as they only provide symptomatic relief without preventing disease progression. The gut microbiota is a group of microorganisms that inhabit the human intestinal tract and play a crucial role in maintaining host energy balance, metabolism, and immune activity. Patients with diabetic nephropathy exhibit altered gut microbiota, suggesting its potential involvement in the onset and progression of the disease. However, how a perturbed microbiota induces and promotes diabetic nephropathy remains unelucidated. This article summarizes the evidence of the impact of gut microbiota on the progression of diabetic nephropathy, with a particular focus on the molecular mechanisms involved, aiming to provide new insights into the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gang Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - YuLin Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Rong Guo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Huinan Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Wenjun Zhang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Yingying Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
50
|
Wang L, Su J, Liu Z, Ding S, Li Y, Hou B, Hu Y, Dong Z, Tang J, Liu H, Liu W. Identification of immune-associated biomarkers of diabetes nephropathy tubulointerstitial injury based on machine learning: a bioinformatics multi-chip integrated analysis. BioData Min 2024; 17:20. [PMID: 38951833 PMCID: PMC11218417 DOI: 10.1186/s13040-024-00369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major microvascular complication of diabetes and has become the leading cause of end-stage renal disease worldwide. A considerable number of DN patients have experienced irreversible end-stage renal disease progression due to the inability to diagnose the disease early. Therefore, reliable biomarkers that are helpful for early diagnosis and treatment are identified. The migration of immune cells to the kidney is considered to be a key step in the progression of DN-related vascular injury. Therefore, finding markers in this process may be more helpful for the early diagnosis and progression prediction of DN. METHODS The gene chip data were retrieved from the GEO database using the search term ' diabetic nephropathy '. The ' limma ' software package was used to identify differentially expressed genes (DEGs) between DN and control samples. Gene set enrichment analysis (GSEA) was performed on genes obtained from the molecular characteristic database (MSigDB. The R package 'WGCNA' was used to identify gene modules associated with tubulointerstitial injury in DN, and it was crossed with immune-related DEGs to identify target genes. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on differentially expressed genes using the 'ClusterProfiler' software package in R. Three methods, least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE) and random forest (RF), were used to select immune-related biomarkers for diagnosis. We retrieved the tubulointerstitial dataset from the Nephroseq database to construct an external validation dataset. Unsupervised clustering analysis of the expression levels of immune-related biomarkers was performed using the 'ConsensusClusterPlus 'R software package. The urine of patients who visited Dongzhimen Hospital of Beijing University of Chinese Medicine from September 2021 to March 2023 was collected, and Elisa was used to detect the mRNA expression level of immune-related biomarkers in urine. Pearson correlation analysis was used to detect the effect of immune-related biomarker expression on renal function in DN patients. RESULTS Four microarray datasets from the GEO database are included in the analysis : GSE30122, GSE47185, GSE99340 and GSE104954. These datasets included 63 DN patients and 55 healthy controls. A total of 9415 genes were detected in the data set. We found 153 differentially expressed immune-related genes, of which 112 genes were up-regulated, 41 genes were down-regulated, and 119 overlapping genes were identified. GO analysis showed that they were involved in various biological processes including leukocyte-mediated immunity. KEGG analysis showed that these target genes were mainly involved in the formation of phagosomes in Staphylococcus aureus infection. Among these 119 overlapping genes, machine learning results identified AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1 and FSTL1 as potential tubulointerstitial immune-related biomarkers. External validation suggested that the above markers showed diagnostic efficacy in distinguishing DN patients from healthy controls. Clinical studies have shown that the expression of AGR2, CX3CR1 and FSTL1 in urine samples of DN patients is negatively correlated with GFR, the expression of CX3CR1 and FSTL1 in urine samples of DN is positively correlated with serum creatinine, while the expression of DEFB1 in urine samples of DN is negatively correlated with serum creatinine. In addition, the expression of CX3CR1 in DN urine samples was positively correlated with proteinuria, while the expression of DEFB1 in DN urine samples was negatively correlated with proteinuria. Finally, according to the level of proteinuria, DN patients were divided into nephrotic proteinuria group (n = 24) and subrenal proteinuria group. There were significant differences in urinary AGR2, CCR2 and DEFB1 between the two groups by unpaired t test (P < 0.05). CONCLUSIONS Our study provides new insights into the role of immune-related biomarkers in DN tubulointerstitial injury and provides potential targets for early diagnosis and treatment of DN patients. Seven different genes ( AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1, FSTL1 ), as promising sensitive biomarkers, may affect the progression of DN by regulating immune inflammatory response. However, further comprehensive studies are needed to fully understand their exact molecular mechanisms and functional pathways in DN.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiaming Su
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjie Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Shaowei Ding
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yaotan Li
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Baoluo Hou
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Hu
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoxi Dong
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hongfang Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|