1
|
Yao H, Wu R, Du D, Ai F, Yang F, Li Y, Qi S. Flavonoids from Polypodium hastatum as neuroprotective agents attenuate cerebral ischemia/reperfusion injury in vitro and in vivo via activating Nrf2. Redox Rep 2025; 30:2440204. [PMID: 39702961 DOI: 10.1080/13510002.2024.2440204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes. Activating Nrf2 gives a therapeutic approach to ischemic stroke. METHODS Herein we explored flavonoids identified from Polypodium hastatum as Nrf2 activators and their protective effects on PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R) as well as middle cerebral artery occlusion (MCAO) mice. RESULTS The results showed among these flavonoids, AAKR significantly improved the survival of PC12 cells induced by OGD/R and activated Nrf2 in a Keap1-dependent manner. Further investigations have disclosed AAKR attenuated oxidative stress, mitochondrial dysfunction and following apoptosis resulting from OGD/R. Meanwhile, activation of Nrf2 by AAKR was involved in the protective effects. Finally, it was found that AAKR could protect MCAO mice brains against ischemia/reperfusion injury via activating Nrf2. DISCUSSION This investigation could provide lead compounds for the discovery of novel Nrf2 activators targeting ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Huankai Yao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ruiqing Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dan Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Fengwei Ai
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Suhua Qi
- School of Medical Technology & Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
2
|
Steinert RE, Rehman A, Sadabad MS, Milanese A, Wittwer-Schegg J, Burton JP, Spooren A. Microbial micronutrient sharing, gut redox balance and keystone taxa as a basis for a new perspective to solutions targeting health from the gut. Gut Microbes 2025; 17:2477816. [PMID: 40090884 PMCID: PMC11913388 DOI: 10.1080/19490976.2025.2477816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025] Open
Abstract
In health, the gut microbiome functions as a stable ecosystem maintaining overall balance and ensuring its own survival against environmental stressors through complex microbial interaction. This balance and protection from stressors is maintained through interactions both within the bacterial ecosystem as well as with its host. As a consequence, the gut microbiome plays a critical role in various physiological processes including maintaining the structure and function of the gut barrier, educating the gut immune system, and modulating the gut motor, digestive/absorptive, as well as neuroendocrine system all of which are crucial for human health and disease pathogenesis. Pre- and probiotics, widely available and clinically established, offer various health benefits primarily by beneficially modulating the gut microbiome. However, their clinical outcomes can vary significantly due to differences in host physiology, diets, individual microbiome compositions, and other environmental factors. This perspective paper highlights emerging scientific insights into the importance of microbial micronutrient sharing, gut redox balance, keystone species, and the gut barrier in maintaining a diverse and functional microbial ecosystem, and their relevance to human health. We propose a novel approach that targets microbial ecosystems and keystone taxa performance by supplying microbial micronutrients in the form of colon-delivered vitamins, and precision prebiotics [e.g. human milk oligosaccharides (HMOs) or synthetic glycans] as components of precisely tailored ingredient combinations to optimize human health. Such a strategy may effectively support and stabilize microbial ecosystems, providing a more robust and consistent approach across various individuals and environmental conditions, thus, overcoming the limitations of current single biotic solutions.
Collapse
Affiliation(s)
- Robert E. Steinert
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Ateequr Rehman
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
| | | | - Alessio Milanese
- Data Science, Science & Research, Dsm-Firmenich, Delft, Netherlands
| | | | - Jeremy P. Burton
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada
| | - Anneleen Spooren
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
| |
Collapse
|
3
|
Fang J, Wang Y, Jiang Y, Li T, Qiu X. Advances in total antioxidant capacity detection based on nanozyme. Talanta 2025; 292:127941. [PMID: 40088770 DOI: 10.1016/j.talanta.2025.127941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Nanozymes, a class of nanomaterials mimicking natural enzymatic functions, have gained significant attention due to their exceptional biocatalytic properties and wide-ranging applications in biosensing. The total antioxidant capacity (TAC) can serve as a crucial parameter for assessing food quality, guiding dietary choices, and monitoring health conditions. In recent years, various nanomaterials with peroxidase (POD)-like and oxidase (OXD)-like activity have been widely used for TAC determination. This review discusses the enzyme-mimicking catalytic activities of nanozymes related to TAC determination, the construction principles of nanozyme-based TAC sensors and systematically classifies the application of nanozyme sensors in TAC determination. Furthermore, the potential opportunities and challenges in the development of nanozyme-based sensors are evaluated, aiming to provide valuable insights for researchers in related fields.
Collapse
Affiliation(s)
- Jiaoyuan Fang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yihan Jiang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Tian Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xiangjun Qiu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
4
|
Ryu DS, Lee H, Eo SJ, Kim JW, Kim Y, Kang S, Noh JH, Lee S, Park JH, Na K, Kim DH. Photo-responsive self-expanding catheter with photosensitizer-integrated silicone-covered membrane for minimally invasive local therapy in malignant esophageal cancer. Biomaterials 2025; 320:123265. [PMID: 40121828 DOI: 10.1016/j.biomaterials.2025.123265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Photodynamic therapy (PDT) using photosensitizer (PS)-integrated covered self-expandable metallic stents (SEMS) is proposed a new therapeutic approach for the treatment of palliative malignancies; however, the currently hydrophobic PS reduces the photoreactive effect, which leads to aggregation with low water solubility. In here, an aluminum (III)-phthalocyanine chloride tetrasulfonic acid (Al-PcS4)-integrated silicone-covered self-expanding catheter was successfully fabricated to perform localized PDT. The ratio of MeOH and Al-PcS4 concentrations was optimized to achieve PS coating uniformity. The photodynamic activity of the Al-PcS4-integrated silicone membrane was evaluated through laser exposure on membrane-layered tumor cell lines, tumor xenograft-bearing mice. PDT with the Al-PcS4-integrated membrane successfully generated sufficient cytotoxic singlet oxygen, inducing cell death in the esophageal cancer cell lines. PDT-treated tumor xenograft-bearing mice undergo apoptotic cell death and showed significant tumor regression. Localized PDT using an Al-PcS4-integrated silicone-covered self-expanding catheter was technically successful in the rabbit esophagus without severe complications. Based on the endoscopy, esophagography, histology, and immunohistochemistry, our study verified that localized PDT using the Al-PcS4-integrated silicone-covered self-expanding catheter was effective and safe to evenly induce tissue damage. Al-PcS4-integrated silicone-covered self-expanding catheter has substantial potential for the minimally invasive local therapy in malignant esophageal cancer.
Collapse
Affiliation(s)
- Dae Sung Ryu
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyeonseung Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Seung Jin Eo
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji Won Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yuri Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seokin Kang
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, 170, Juhwa-ro, Ilsanseo-gu, Goyang, Gyeonggi-do, 10380, Republic of Korea
| | - Jin Hee Noh
- Department of Internal Medicine, University of Hallym College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, 14068, Republic of Korea
| | - Sanghee Lee
- Department of Radiology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| | - Do Hoon Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
5
|
Jeong GH, Lee H, Cho JY, Rho JR, Chung BY, Park S, Bai HW. Isoquinocycline B induces G0/G1 cell cycle arrest and apoptosis in MDA-MB-231 cancer cells. Bioorg Med Chem Lett 2025; 124:130244. [PMID: 40254075 DOI: 10.1016/j.bmcl.2025.130244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths, with therapeutic resistance and limited treatment options posing significant challenges. This study investigated the anticancer properties of isoquinocycline B (IQCB), an anthraquinone derivative obtained from a freshwater sponge microbiome Micromonospora sp. MS-62 (FBCC-B8445), against the MDA-MB-231 human breast cancer cell line. IQCB showed the greatest activity against cytotoxicity with an IC50 values of 9.2 ± 1.0 μM. IQCB treatment led to G0/G1 cell cycle arrest and apoptosis through mitochondrial pathways by suppressing cyclin D1/CDK4 expression, enhancing p27 levels, and reducing phosphorylated Akt levels. Furthermore, IQCB induced oxidative stress by promoting excessive reactive oxygen species (ROS) production, thereby activating JNK and p38-MAPK signaling while simultaneously inhibiting ERK phosphorylation. Apoptotic markers such as PARP cleavage and caspase-3 activation confirmed that mitochondrial-mediated apoptosis was a key mechanism of action. These results highlight the potential of IQCB as a therapeutic candidate for breast cancer and underscore the need for further research to explore its efficacy and mechanisms.
Collapse
Affiliation(s)
- Gyeong Han Jeong
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
| | - Hanui Lee
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
| | - Ja Young Cho
- Prokaryote Research Division, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, Republic of Korea
| | - Jung-Rae Rho
- Department of Oceanography, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Byung Yeoup Chung
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
| | - Sanghwa Park
- Bio-resources Bank Division, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, Republic of Korea.
| | - Hyoung-Woo Bai
- Research division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Yin X, Li S, Wang J, Wang M, Yang J. Research progress of active compounds from traditional Chinese medicine in the treatment of stroke. Eur J Med Chem 2025; 291:117599. [PMID: 40188582 DOI: 10.1016/j.ejmech.2025.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Stroke is a serious cerebrovascular disease that is categorized into two types: ischemic and hemorrhagic. The pathological mechanisms of ischemic stroke are complex and diverse, encompassing processes such as neuroinflammation and apoptosis. The pathological processes of hemorrhagic stroke primarily involve the disruption of the blood-brain barrier and cerebral edema. Western medical treatment methods show certain effectiveness during the acute phase of stroke, but they are limited by a narrow therapeutic window and secondary injuries. Traditional Chinese medicine (TCM) has a long history and unique advantages in treating stroke. Studies confirm that active compounds derived from TCM exert multi-pathway, multi-target effects, significantly improving therapeutic outcomes and reducing adverse reactions. However, due to the complexity of the components in TCM, research on monomeric components still faces challenges. This article reviews the relevant research progress published in domestic and international journals over the past twenty years regarding the mechanisms of action of monomeric components of TCM in the treatment of stroke, aiming to provide insights and references for the clinical application of TCM in stroke treatment and further new drug development.
Collapse
Affiliation(s)
- Xinyi Yin
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Junwei Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| |
Collapse
|
7
|
Achouri H, Derguini A, Idres T, Selamoglu Z, Hamadi NB, Jalouli M, Elfalleh W, Bendif H, Badraoui R, Boufahja F, Dellali M. Impact of climate change on the toxicity of bisphenol A in Mytilus galloprovincialis and assessment of phycoremediation using Nannochloropsis salina via a multi-biomarker strategy and modeling. MARINE POLLUTION BULLETIN 2025; 216:118010. [PMID: 40253969 DOI: 10.1016/j.marpolbul.2025.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
In the current study, the mussels Mytilus galloprovincialis, exposed to four varying temperatures (17, 20, 23, and 26 °C), were contaminated with 50 μg/L of bisphenol A both with and without Nannochloropsis salina. The toxicity evaluation is determined by quantifying various biomarkers related to oxidative stress, neurotoxicity, and cellular damage. The key findings indicate that the toxicity of bisphenol A is heightened by rising temperature. The impact of bisphenol A is most evident at 26 °C, leading to excessive production of reactive oxygen species, depletion of non-enzymatic antioxidants, and activation of antioxidant enzymes (catalase and glutathione-S-transferase). The rise in malondialdehyde levels confirms lipid peroxidation caused by bisphenol A and intensified by thermal stress. These findings have been supported by strong molecular interactions between bisphenol A and lectin mytilec apo-form and proximal thread matrix protein 1 from M. galloprovincialis following the computational modeling assay. The incorporation of N. salina as a food additive helped, firstly, to mitigate the stress effects and, secondly, resulted in a noticeable enhancement of oxidative balance and filtration ability, along with decreased lipid peroxidation.
Collapse
Affiliation(s)
- Haifa Achouri
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Assia Derguini
- Microbial Ecology Laboratory, FSNV, Abderrahmane MIRA University, 06017 Bejaïa, Algeria.
| | - Takfarinas Idres
- Laboratory for Livestock Animal Production and Health Research, Rabie Bouchama National Veterinary School of Algiers, Issad ABBAS Street, BP 161 Oued Semar, Algiers, Algeria.
| | - Zeliha Selamoglu
- Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey.
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Box 5701, Riyadh 11432, Saudi Arabia.
| | - Maroua Jalouli
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Walid Elfalleh
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Hamdi Bendif
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Riadh Badraoui
- Department of Biology, University of Ha'il, Ha'il 45851, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Mohamed Dellali
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|
8
|
Syed AM, Karius AK, Ma J, Wang PY, Hwang PM. Mitochondrial Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Physiology (Bethesda) 2025; 40:0. [PMID: 39960432 DOI: 10.1152/physiol.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating multisystem disorder of unclear etiology that affects many individuals worldwide. One of its hallmark symptoms is prolonged fatigue following exertion, a feature also observed in long COVID, suggesting an underlying dysfunction in energy production in both conditions. Here, mitochondrial dysfunction and its potential pathogenetic role in these disorders are reviewed.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Alexander K Karius
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Jin Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
10
|
da Silva Rangel R, Tamiosso RT, da Silva RS, da Silva de Oliveira LS, Biscarra Bortolotto Paz MF, De Paula Martins TT, Mazaro A, de Moraes Chitolina AB, Maurente MM, de Andrade CM, Ortiz JL, Vieira IM, da Veiga ML, Baldissera MD. Rutin attenuates oxidative damage-induced renal injury in rats experimentally infected with Cryptococcus neoformans by improving antioxidant capacity and reducing fungal burden. Microb Pathog 2025; 204:107540. [PMID: 40187580 DOI: 10.1016/j.micpath.2025.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Oxidative stress plays a pivotal role in the pathophysiology of infectious diseases, contributing to pathogenesis and the appearance of clinical symptoms. However, the involvement of oxidative stress in renal cryptococcosis remains unknown, as do the potential protective effects of rutin. Cryptococcus neoformans is considered the main agent of cryptococcosis, a systemic life-threatening opportunistic fungal disease that affects internal organs. In 2022, the World Health Organization classified it as a critical-priority group on its Fungal Priority Pathogens List. Rutin, a flavonoid with potent antioxidant and antifungal properties, has been proposed as a protective agent. Thus, this study aimed to evaluate whether 50 mg rutin/kg body weight prevents or reduces C. neoformans var. Grubii-induced renal oxidative stress. Renal fungal burden was significantly lower in rats that were treated with rutin and experimentally infected with C. neoformans, compared to those treated with saline solution and experimentally infected. Renal reactive oxygen species (ROS) and protein carbonylation levels were significantly higher in experimentally infected rats compared to uninfected controls, whereas catalase (CAT) and glutathione S-transferase (GST) activities were significantly lower. Treatment with rutin prevented the increase in renal ROS levels and the inhibition of CAT activity elicited by C. neoformans var. Grubii. However, no significant differences were observed in lipid damage or superoxide dismutase activity. This study is the first to demonstrate that C. neoformans var. Grubii infection induces renal oxidative damage in rats by promoting oxidative stress, increasing ROS levels, and impairing antioxidant defenses. Rutin treatment restored redox status in experimental rats through mechanisms involving oxidative stress. The protective effects of rutin against C. neoformans-induced kidney damage may result from its combined ability to scavenge ROS, inhibit protein damage, and enhance the antioxidant system.
Collapse
Affiliation(s)
| | - Raquel Tusi Tamiosso
- Laboratory of Mycological Diseases, Universidade Franciscana (UFN), Santa Maria, RS, Brazil
| | - Rúbia Schallenberger da Silva
- Veterinary Clinical Analysis Laboratory (LACVET), Centro de Ciências Rurais (CCR), Hospital Veterinário Universitário (HVU), Universidade Federal de Santa Maria (UFSM), Brazil
| | | | | | | | - Alice Mazaro
- Laboratory of Mycological Diseases, Universidade Franciscana (UFN), Santa Maria, RS, Brazil
| | | | | | - Cinthia Melazzo de Andrade
- Veterinary Clinical Analysis Laboratory (LACVET), Centro de Ciências Rurais (CCR), Hospital Veterinário Universitário (HVU), Universidade Federal de Santa Maria (UFSM), Brazil
| | - Jandora Lima Ortiz
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Marcelo Leite da Veiga
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Matheus Dellaméa Baldissera
- Laboratory of Mycological Diseases, Universidade Franciscana (UFN), Santa Maria, RS, Brazil; Laboratory of Bioprospecting and Experimental Biology, Universidade Franciscana (UFN), Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Guo Y, Qin W, Hou Y, Zhu W, Zhao H, Zhang X, Jiao K. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Rubus L: A review. Food Chem 2025; 478:143711. [PMID: 40058259 DOI: 10.1016/j.foodchem.2025.143711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/15/2025] [Accepted: 03/01/2025] [Indexed: 04/06/2025]
Abstract
Rubus L. is widely distributed throughout the world as a medicinal and food plant with rich values. There is increasing evidence that Rubus L. polysaccharides are important and representative active macromolecules with abundant in vitro and in vivo bioactivities, such as: antioxidant, immunomodulatory, hypoglycemic, anti-inflammatory, anti-tumor, anti-fatigue and so on. Despite significant advancements in research, a comprehensive and systematic review of Rubus L. polysaccharides has been absent. In this paper, we innovatively provide an in-depth overview of the extraction and purification methods, structural characterization, biological activities, possible molecular mechanisms, toxicity and applications of Rubus L. polysaccharides for the first time. In addition, the existing literature was quantitatively analyzed by bibliometrics. The paper also focuses on the challenges and future perspectives of the existing studies with a view to providing new insights and directions for the future development of Rubus L. polysaccharides.
Collapse
Affiliation(s)
- Yihan Guo
- Northwest University School of Medicine, No.229, Taibai North Road, Xi'an 710068, Shaanxi, China
| | - Wenpin Qin
- The Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an 710038, Shaanxi, China
| | - Yuxuan Hou
- The Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an 710038, Shaanxi, China
| | - Weiwei Zhu
- Northwest University School of Medicine, No.229, Taibai North Road, Xi'an 710068, Shaanxi, China
| | - Haoyan Zhao
- The Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an 710038, Shaanxi, China
| | - Xiaokang Zhang
- The Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an 710038, Shaanxi, China; Shaanxi University of Chinese Medicine, No.1, Shiji Avenue, Xianyang 712046, Shaanxi, China
| | - Kai Jiao
- The Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
12
|
Xi J, Liu Y, Zhang L, Zhang B, Zhao J, Fang J. Redox dyshomeostasis-driven prodrug strategy for enhancing camptothecin-based chemotherapy: Selenization of SN38 as a case study. Bioorg Chem 2025; 160:108468. [PMID: 40245475 DOI: 10.1016/j.bioorg.2025.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Harnessing the modulation of redox homeostasis represents a promising anticancer strategy. Here, we design and evaluate Se-SN38, a prodrug of the camptothecin (CPT) derivative 7-ethyl-10-hydroxycamptothecin (SN38) with a cyclic five-membered diselenide moiety for redox-triggered activation. We demonstrate that Se-SN38 exhibits superior cytotoxicity in various cancer cell lines over the parent drug SN38 or the control prodrug S-SN38, a sulfur analogue of Se-SN38. This increased potency is attributed to the efficient release of SN38 and induction of oxidative stress, as demonstrated by a significant rise in reactive oxygen species production, along with a marked depletion of cellular total thiols and a decreased GSH/GSSG ratio. Furthermore, Se-SN38 treatment leads to inhibition of thioredoxin reductase activity, disruption of mitochondrial membrane potential, and induction of DNA damage, culminating in apoptosis. These findings suggest that Se-SN38 represents a promising strategy to enhance the therapeutic efficacy of CPT derivatives by exploiting the unique redox-active properties of cyclic five-membered diselenide to induce oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Junmin Xi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| | - Linjie Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
13
|
Cai Y, Shen A, Liu H, Liu C, Xu W, Jia R. Toxic effects and transcriptome analysis of the early life stages of Larimichthys crocea exposed to the bloom-forming dinoflagellate Alexandrium tamarense. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107140. [PMID: 40252594 DOI: 10.1016/j.marenvres.2025.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025]
Abstract
This study investigated the effects of the bloom-forming dinoflagellate Alexandrium tamarense and its potentially associated paralytic shellfish toxins on the early life stages of Larimichthys crocea (large yellow croaker) by integrating physiological effects with transcriptomic analysis to explore the molecular mechanisms underlying these harmful impacts. The results showed that 48-h acute exposure to A. tamarense culture and cell-free filtrate significantly reduced the heart rate in embryos and increased mortality rates in both embryos and larvae. Transcriptome sequencing of the filtrate-exposed group identified 130 differentially expressed genes in the embryo group and 884 in the juvenile group. Further analysis revealed that algal exposure triggered the activation of innate immunity in embryos, as evidenced by the significant upregulation of immune-related cytokines such as CCL20, IL11, and ILRA10. These genes were enriched in the cytokine-cytokine receptor interaction pathway and may induce immune responses through their respective downstream pathways. Additionally, the downregulation of the RNA polymerase and ribosome pathways suggests that protein synthesis was affected during the embryo stress response induced by A. tamarense. In juveniles, genes related to cardiac function, particularly those associated with myocardial contraction and calcium ion regulation, were downregulated after exposure to algal filtrate, further suggesting that A. tamarense, possibly through paralytic shellfish toxins, inhibits the heart function of L. crocea. The findings of this study elucidate the toxicological mechanisms of A. tamarense on the early life stages of L. crocea, providing scientific evidence for the impact of harmful algal blooms on marine life health and offering valuable insights for management strategies in aquaculture.
Collapse
Affiliation(s)
- Yongqi Cai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Anglu Shen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Chongfeng Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wantu Xu
- Xiangshan Gangwan Marine Breeding Co., Ltd, Ningbo, China
| | - Rui Jia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
14
|
Givian A, Azizan A, Jamshidi A, Mahmoudi M, Farhadi E. Iron metabolism in rheumatic diseases. J Transl Autoimmun 2025; 10:100267. [PMID: 39867458 PMCID: PMC11763848 DOI: 10.1016/j.jtauto.2025.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Iron is a crucial element for living organism in terms of oxygen transport, hematopoiesis, enzymatic activity, mitochondrial respiratory chain function and also immune system function. The human being has evolved a mechanism to regulate body iron. In some rheumatic diseases such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE), systemic sclerosis (SSc), ankylosing spondylitis (AS), and gout, this balanced iron regulation is impaired. Altered iron homeostasis can contribute to disease progression through ROS production, fibrosis, inflammation, abnormal bone homeostasis, NETosis and cell senescence. In this review, we have focused on the iron metabolism in rheumatic disease and its role in disease progression.
Collapse
Affiliation(s)
- Aliakbar Givian
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Amin Azizan
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Martiniakova M, Kovacova V, Biro R, Mondockova V, Sarocka A, Penzes N, Folwarczna J, Omelka R. Relationships among osteoporosis, redox homeostasis, and alcohol addiction: Importance of the brain-bone axis. Biomed Pharmacother 2025; 187:118063. [PMID: 40253828 DOI: 10.1016/j.biopha.2025.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Overabundance of reactive oxygen species (oxidative distress) leads to redox homeostasis disturbance and is associated with many pathological conditions. Accumulating evidence suggests that oxidative distress may contribute to osteoporosis. This review thoroughly outlines the relationships among osteoporosis, redox homeostasis, and alcohol addiction, since these relations are not sufficiently known and subsequently summarized. The brain-bone axis plays a crucial role in alcohol-induced damage to the nervous and skeletal systems. Alterations in the nervous system can lead to osteoporosis because the central nervous system is involved in bone remodeling through various neural pathways. Conversely, as an endocrine organ, bone secretes a number of bone-derived factors (osteokines), which can influence brain function and behavior. As a result, osteoporosis is more common in individuals with neurological disorders, and sudden neurological events can rapidly increase the risk of osteoporosis. Excessive alcohol consumption is linked to many neurological complications, as well as osteoporosis, which are manifested by disrupted redox homeostasis, inflammation, neurodegeneration, inhibition of neurogenesis, decreased bone mineral density, impaired bone microarchitecture, altered mineral homeostasis, raising fracture risk, hormonal dysregulation, and altered gut microbiota composition. Compared to men, alcohol dependence has more negative consequences for women, including an increased risk of liver, cardiovascular, metabolic, mental disorders, and breast cancer. Abstinence has been demonstrated to improve bone and brain health in alcohol addiction. The discovery of the brain-bone axis may lead to the development of new therapeutic approaches for alcohol and other substance addictions. Further research is needed in this direction, as many questions remain unanswered.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| |
Collapse
|
16
|
Li J, Li A, Luo K, Yang H, Jiang S, Huang P. Insights into CdTe quantum dots induced hepatotoxicity: Regulation of cytochromes P450 isoenzymes function in liver microsomes from in vivo and in vitro studies. Arch Biochem Biophys 2025; 768:110369. [PMID: 40044020 DOI: 10.1016/j.abb.2025.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/09/2025]
Abstract
The widespread use of QDs raises health and environmental concerns, and the ROS induced oxidative stress is reported as the main mechanism of QDs toxicity. Cytochrome P450 (CYP450) superfamily, the primary enzyme system for metabolizing external compounds in the liver, also generates reactive oxygen species (ROS), making it crucial for detoxification and ROS production. Therefore, we investigated whether QDs could cause liver tissue damage by affecting the activity of CYP450 isoenzymes (CYP1A2, CYP2E1, CYP2D2, and CYP3A1) in liver microsomes, thereby altering ROS generation. This mechanism has not been previously reported. Our experiments indicate that CdTe QDs exhibit a dose/time-dependent relationship with the enzymatic activities of CYP1A2 and CYP2E1, which are closely related to ROS generation. However, an inconsistency was observed between the data for CYP2E1 activity in vivo and in vitro due to the complexity of in vivo regulatory factors. More importantly, in vitro experiments have shown that CdTe QDs can significantly promote the enzymatic activity of CYP1A2. Therefore, we speculate that CdTe QDs may induce ROS generation by enhancing CYP450 enzyme activities. In addition, molecular docking experiments were conducted to illustrate the impact of CdTe QDs on the structure of CYP1A2, leading to functional change (i.e., enzyme activity). These findings suggest a novel mechanism by which CdTe QDs regulate CYP450 activities in liver microsomes, particularly CYP1A2. This may represent a crucial pathway through which CdTe QDs induce excessive ROS generation, leading to oxidative stress and liver damage.
Collapse
Affiliation(s)
- Jiayi Li
- School of Public Health, Capital Medical University, Beijing, 100069, China; Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Ao Li
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Kui Luo
- Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Hong Yang
- Yanjing Medical College, Capital Medical University, Beijing, 101300, China.
| | - Shuqin Jiang
- School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Peili Huang
- School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
17
|
Davinelli S, Medoro A, Siracusano M, Savino R, Saso L, Scapagnini G, Mazzone L. Oxidative stress response and NRF2 signaling pathway in autism spectrum disorder. Redox Biol 2025; 83:103661. [PMID: 40324316 PMCID: PMC12099462 DOI: 10.1016/j.redox.2025.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025] Open
Abstract
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by impairments in social communication and restricted/repetitive behavioral patterns, has increased significantly over the past few decades. The etiology of ASD involves a highly complex interplay of genetic, neurobiological, and environmental factors, contributing to significant heterogeneity in its clinical phenotype. In the evolving landscape of ASD research, increasing evidence suggests that oxidative stress, resulting from both intrinsic and extrinsic factors, may be a crucial pathophysiological driver in ASD, influencing neurodevelopmental processes that underlie behavioral abnormalities. Elevated levels of oxidative stress biomarkers, including lipid peroxides, protein oxidation products, and DNA damage markers, alongside deficient antioxidant enzyme activity, have been consistently linked to ASD. This may be attributed to dysregulated activity of nuclear factor erythroid 2-related factor 2 (NRF2), a pivotal transcription factor that maintains cellular redox homeostasis by orchestrating the expression of genes involved in antioxidant defenses. Here, we summarize the converging evidence that redox imbalance in ASD may result from NRF2 dysregulation, leading to reduced expression of its target genes. We also highlight the most promising antioxidant compounds under investigation, which may restore NRF2 activity and ameliorate ASD behavioral symptoms.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Martina Siracusano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Rosa Savino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Luigi Mazzone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Child Neurology and Psychiatry Unit, Department of Wellbeing of Mental and Neurological, Dental and Sensory Organ Health, Policlinico Tor Vergata Hospital, Rome, Italy
| |
Collapse
|
18
|
Zhang XH, Sun QJ, Zhao LC, Chen L, Li W. Traditional Chinese medicine in chronic rhinosinusitis: Mechanisms and postoperative recovery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156658. [PMID: 40138776 DOI: 10.1016/j.phymed.2025.156658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is inflammation of the sinuses and nasal passages that lasts for >3 months. Its pathogenesis is complex, treatment is difficult, and it has multiple effects on patients. Although surgical treatment can effectively relieve the symptoms, the recurrence rate is high, and there are postoperative complications such as infection. At present, nasal spray hormone, antibiotics and other western drugs are used in clinical treatment, but there are drug dependence and toxic side effects. However, traditional Chinese medicine (TCM) has made remarkable progress in the treatment and promotion of postoperative recovery, guided by its unique TCM theory, and has little toxic and side effects, providing more treatment options for patients. PURPOSE The review aims to elucidate the mechanism of CRS from the aspects of traditional medicine and modern medicine, and evaluate the influence of TCM compound, components of TCM, TCM nasal irrigation, TCM fumigation and other auxiliary treatment methods on CRS, providing a new perspective for the application of TCM in CRS. METHODS We conducted the literature retrieval with PubMed, Web of Science, Google Scholar and CNKI databases in a systematic manner (up to July 2024). The keywords included "sinusitis", "chronic rhinosinusitis", "nasal polyps", "herbal medicine", "medicinal plants", "traditional Chinese medicine", "oxidative stress", "pathogenic microbial", "anatomic structure" and so on. The obtained literatures were comprehensively sorted out. For image creation, Figdraw 2.0 was methodically employed. RESULTS The pathogenesis of CRS involves various interaction mechanisms such as bacterial biofilm formation, oxidative stress injury and impaired ciliary mucosa clearance. It is worth noting that TCM exerts therapeutic effects by targeting the above-mentioned pathological processes. Clinical studies have confirmed that TCM comprehensive therapy can significantly improve sinus symptom score, accelerate postoperative mucosal epithelialization, and promote postoperative rehabilitation of CRS. We also discussed the toxic side effects and clinical applications of related drugs. CONCLUSION In TCM, CRS is classified under the diagnostic category of Bi Yuan. Its pathogenesis is attributed to exogenous invasion of the six climatic pathogens (Liu Yin: wind, cold, summer heat, dampness, dryness, and fire), spleen-stomach qi deficiency, internal damp-heat accumulation, and qi-blood stasis. Guided by TCM principles, therapeutic strategies are individualized through syndrome differentiation, which tailors interventions to the patient's unique clinical manifestations. Therapeutic modalities include oral herbal formulations (e.g., decoctions or granules), acupuncture, and acupoint application. These approaches aim to restore physiological balance by harmonizing yin and yang, resolving meridian obstructions, and enhancing lung qi circulation to alleviate nasal congestion and improve ventilation.
Collapse
Affiliation(s)
- Xi-He Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qing-Jia Sun
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Li-Chun Zhao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine. Guiyang 550025, China
| | - Long Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
19
|
Wyckelsma VL, Murgia M, Kamandulis S, Gastaldello S, Brazaitis M, Snieckus A, Eimantas N, Pääsuke M, Edman S, Apro W, Andersson DC, Westerblad H, Venckunas T. Antioxidant supplementation blunts the proteome response to 3 weeks of sprint interval training preferentially in human type 2 muscle fibres. J Physiol 2025. [PMID: 40433923 DOI: 10.1113/jp288638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Sprint interval training (SIT) is a time-efficient type of endurance training that involves large type 2 muscle fibre recruitment. Effective antioxidant supplementation may mitigate positive training adaptations by limiting the oxidant challenge. Our aim was to test whether SIT affects type 2 more than type 1 muscle fibres, and whether the muscular training response is mitigated by antioxidant treatment. Young men performed three weekly SIT sessions (4-6 × 30 s all-out cycling) for 3 weeks while treated with antioxidants (vitamin C, 1 g day-1; vitamin E, 235 mg day-1) or placebo. Vastus lateralis biopsies were taken to measure (i) activation of genes for reactive oxygen/nitrogen species (ROS) sensors and inflammatory mediators with quantitative RT-PCR and (ii) fibre type-specific proteome adaptations using MS-based proteomics. Vitamin treatment decreased the upregulation of genes for ROS sensors and inflammatory regulators during the first SIT session. The 3 weeks of SIT caused generally larger proteome adaptations in type 2 than in type 1 fibres, and this included larger increases in abundance of proteins involved in mitochondrial energy production. Vitamin treatment blunted the SIT-induced proteome adaptations, whereas it did not affect the training-induced improvement in maximal cycling performance. In conclusion, (i) the large type 2 fibre recruitment and resulting proteome adaptations are instrumental to the effectiveness of SIT and (ii) antioxidant supplementation counteracts positive muscular adaptations to SIT, which would blunt any improvement in submaximal endurance performance, whereas it does not affect the improvement in maximal cycling performance, where O2 delivery to muscle would be limiting. KEY POINTS: Sprint interval training (SIT) is a time-efficient type of endurance training that involves large recruitment of fast-twitch muscle fibres. Treatment with antioxidants may mitigate the positive effects of endurance training. Fibre type-specific proteomics performed on muscle biopsies obtained from young men before and after 3 weeks of SIT showed larger training effects in fast- than in slow-twitch fibres. Antioxidant treatment in the form of vitamin C and E pills counteracted the positive muscular adaptations to the 3 weeks of SIT. These results increase our understanding of why SIT is an effective endurance training regime and provide further evidence against the common belief that antioxidant supplements are beneficial in a physical exercise context.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Audrius Snieckus
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Mati Pääsuke
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Sebastian Edman
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - William Apro
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Cardiology Unit, Theme for Heart, Vascular and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
20
|
Hewitt RJ, Pearmain L, Lyka E, Dickens J. Epithelial damage and ageing: the perfect storm. Thorax 2025:thorax-2024-222060. [PMID: 40425299 DOI: 10.1136/thorax-2024-222060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/14/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease of lung parenchymal scarring that is triggered by repeated microinjury to a vulnerable alveolar epithelium. It is increasingly recognised that cellular ageing, whether physiological or accelerated due to telomere dysfunction, renders the epithelium less able to cope with injury and triggers changes in epithelial behaviour that ultimately lead to the development of disease. AIMS This review aims to highlight how, with increasing age, the alveolar epithelium becomes vulnerable to exogenous insults. We discuss the downstream consequences of alveolar epithelial dysfunction on epithelial phenotype, alveolar repair and pro-pathogenic interactions with other alveolar niche-resident cell types which drive IPF pathogenesis. NARRATIVE We highlight how a wide array of cellular mechanisms that maintain cellular homeostasis become dysfunctional with ageing. Waning replicative capacity, genomic stability, mitochondrial function, proteostasis and metabolic function all contribute to a phenotype of vulnerability to 'second hits'. We discuss how in IPF the alveolar epithelium becomes dysfunctional, highlighting changes in repair capacity and fundamental cellular phenotype and how interactions between abnormal epithelium and other alveolar niche-resident cell types perpetuate disease. CONCLUSIONS The ageing epithelium is a vulnerable epithelium which, with the cumulative effects of environmental exposures, fundamentally changes its behaviour towards stalled differentiation, failed repair and profibrotic signalling. Further dissection of aberrant epithelial behaviour, and its impact on other alveolar cell types, will allow identification of novel therapeutic targets aimed at earlier pathogenic events.
Collapse
Affiliation(s)
- Richard J Hewitt
- King's Centre for Lung Health, King's College London, London, UK
| | - Laurence Pearmain
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- ILD Unit, North West Lung Centre, Wythenshawe Hospital, Manchester Foundation Trust, Manchester, UK
| | - Elisavet Lyka
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jennifer Dickens
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Institiute for Medical Research, University of Cambridge, Cambridge, UK
- Royal Papworth NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
21
|
Mannering AM, Burritt DJ, Komyakova V, Ferrari MCO, Vamvounis G, Gulizia AM, Staples A, McCormick MI, Allan BJM. Microplastic consumption elevates fish oxidative stress but does not affect predator-driven mortality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179644. [PMID: 40409023 DOI: 10.1016/j.scitotenv.2025.179644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025]
Abstract
The ubiquity and abundance of plastic debris is one of the most significant challenges facing marine environments. Recent research has demonstrated that microplastics are consumed by marine organisms from a wide variety of trophic levels. However, little is known about the sub-lethal effects of microplastic exposure on the health of coral reef fishes or their impacts on predator-prey interactions. To examine this, we exposed juvenile Ambon damselfish (Pomacentrus amboinensis) to one of two types of polystyrene plastic particles (virgin, or with the plasticizer di(2-ethylhexyl) phthalate - DEHP), and a control (no plastic). After 2 days (6 exposures), the initiation of antioxidant metabolism and oxidative defence was quantified. We also exposed the treated juvenile fish to a piscivorous fish (Pseudochromis fuscus) in mesocosms over a 22-h period to investigate whether microplastic exposure affected prey survival. Biomarkers associated with oxidative damage and antioxidant metabolism indicated that microplastic exposure had a negative effect on the health of P. amboinensis. Additionally, P. amboinensis exposed to DEHP microplastics showed the greatest levels of oxidative stress and damage, however the magnitude of this was dependent on the number of ingested particles. Interestingly, survival of P. amboinensis did not differ among plastic treatments during mesocosm survival trials. These results highlight that while studies may not find immediate lethal consequences to plastic ingestion, there may be more subtle sub-lethal costs that may have ecologically important consequences at later life stages, through energetic impacts on growth and energy allocation.
Collapse
Affiliation(s)
- Amelia M Mannering
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin 9054, New Zealand
| | - Valeriya Komyakova
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Alexandra M Gulizia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Adam Staples
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Mark I McCormick
- Coastal Marine Field Station, School of Science, University of Waikato, Tauranga, New Zealand
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
22
|
Park K, Youn I, Suh JM, Choi MH, Bae DW, Park SB, Kwack MH, Cha SS, Jang DS, Sung YK, Bae YS, Seo EK. A Natural Inhibitor, 1' S-1'-Acetoxychavicol Acetate, Against Testosterone-Induced Alopecia via NADPH Oxidase Regulation. Molecules 2025; 30:2246. [PMID: 40430418 PMCID: PMC12114461 DOI: 10.3390/molecules30102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Androgenetic alopecia is associated with testosterone-mediated anagen-to-catagen transition and matrix keratinocyte apoptosis in hair follicle cells. Activation of Nox isozymes is involved in testosterone-mediated keratinocyte apoptosis, leading to androgenetic alopecia. This indicates that Nox isozymes can serve as therapeutic targets for androgenetic alopecia. The isolated compounds from natural products were screened to evaluate their ROS-inhibition efficacy and it was found that 1'S-1'-acetoxychavicol acetate (ACA, 26), a natural compound isolated from Alpinia galanga (L.) Willd. (Zingiberaceae), exhibits inhibitory activity on Nox isozymes. Nox inhibition by ACA suppressed testosterone-dependent H2O2 generation and cell death in keratinocytes. Incubation with ACA in human hair follicle organ culture mitigated testosterone-dependent suppression of hair growth. We validated that ACA regulates androgenetic alopecia in a mouse model. Local application of ACA on the dorsal skin in an androgenetic alopecia model of C57BL/6 mice significantly suppressed testosterone-induced hair loss in a dose-dependent manner. Moreover, hair follicle length in ACA-treated mice was enhanced compared to that in control mice. These findings provide a molecular mechanism in which ACA inhibits Nox activity in hair follicle cells, indicating its potential as an effective treatment of AGA.
Collapse
Affiliation(s)
- Kkotnara Park
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Isoo Youn
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jung Min Suh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Min Hye Choi
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Da-Woon Bae
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo-Bong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dae Sik Jang
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
23
|
Zhou Q, Yang X, Jiang D, Fang D. Catalase-assisted peroxide quenching for electrochemical measurement of reactive oxygen intermediates in single living cells. Analyst 2025. [PMID: 40384380 DOI: 10.1039/d5an00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
A catalase-assisted peroxide quenching strategy is established by the injection of catalase, which consumes intracellular hydrogen peroxide generated from oxygen stress, into a living cell using a nanopipette. Accordingly, the amounts of reactive oxygen intermediates (ROIs) are quantified at the single cell level.
Collapse
Affiliation(s)
- Qian Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China.
| | - Xinhui Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China.
| | - Dechen Jiang
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China.
| |
Collapse
|
24
|
Chen D, Guo Z, Yao L, Sun Y, Dian Y, Zhao D, Ke Y, Zeng F, Zhang C, Deng G, Li L. Targeting oxidative stress-mediated regulated cell death as a vulnerability in cancer. Redox Biol 2025; 84:103686. [PMID: 40424719 DOI: 10.1016/j.redox.2025.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Reactive oxygen species (ROS), regulators of cellular behaviors ranging from signaling to cell death, have complex production and control mechanisms to maintain a dynamic redox balance under physiological conditions. Redox imbalance is frequently observed in tumor cells, where ROS within tolerable limits promote oncogenic transformation, while excessive ROS induce a range of regulated cell death (RCD). As such, targeting ROS-mediated regulated cell death as a vulnerability in cancer. However, the precise regulatory networks governing ROS-mediated cancer cell death and their therapeutic applications remain inadequately characterized. In this Review, we first provide a comprehensive overview of the mechanisms underlying ROS production and control within cells, highlighting their dynamic balance. Next, we discuss the paradoxical nature of the redox system in tumor cells, where ROS can promote tumor growth or suppress it, depending on the context. We also systematically explored the role of ROS in tumor signaling pathways and revealed the complex ROS-mediated cross-linking networks in cancer cells. Following this, we focus on the intricate regulation of ROS in RCD and its current applications in cancer therapy. We further summarize the potential of ROS-induced RCD-based therapies, particularly those mediated by drugs targeting specific redox balance mechanisms. Finally, we address the measurement of ROS and oxidative damage in research, discussing existing challenges and future prospects of targeting ROS-mediated RCD in cancer therapy. We hope this review will offer promise for the clinical application of targeting oxidative stress-mediated regulated cell death in cancer therapy.
Collapse
Affiliation(s)
- Danyao Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhe Ke
- The First Affliated Hospital of Shihezi University, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China.
| | - Linfeng Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
25
|
Mattos R, Fioretto MN, Dos Santos SAA, Ribeiro IT, Emílio-Silva MT, Portela LMF, Lima CAH, Seiva FRF, Justulin LA. Maternal malnutrition induces inflammatory pathways and oxidative stress in the dorsolateral prostate of male offspring rats. Biogerontology 2025; 26:109. [PMID: 40381043 DOI: 10.1007/s10522-025-10251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Maternal conditions during pregnancy can influence the long-term health of offspring. In particular, maternal malnutrition (MM), such as protein restriction, affects the development of several organs, including the male reproductive system. This study examined how a low-protein maternal diet impacts the structure and function of the dorsolateral prostate (DLP) in aging male rats. Male offspring were divided into two groups: A control group (CTR), whose mothers received a normal protein diet (17%) during pregnancy and lactation, and a low-protein group (GLLP), whose mothers received a low-protein diet (6%) during the same period. At 540 days of age, the offspring were euthanized, and the DLPs were collected for analysis. The GLLP group showed significant structural changes in the DLP, including increased epithelial and reduced stromal compartments. These rats also had lower levels of probasin (a prostate-specific protein), along with a higher number of mast cells, CD68 + macrophages, and IL-10 protein expression, indicating inflammation. Antioxidant balance was disrupted: Glutathione (GSH) levels increased, while catalase (CAT) and superoxide dismutase (SOD) decreased. The expression of SIRT1, a protein linked to aging and oxidative stress control, was reduced. In silico analysis using human prostate cancer data (PRAD-TCGA) revealed that biological pathways related to oxidative stress, immune response, and tissue remodeling were disrupted in both the rat model and human prostate cancer. In summary, maternal protein restriction leads to long-term changes in the dorsolateral prostate of aging male offspring, including inflammation, oxidative stress, and tissue remodeling. The reduced expression of SIRT1 may play a key role in these effects.
Collapse
Affiliation(s)
- Renato Mattos
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | | | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Maycon Tavares Emílio-Silva
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Clélia Akiko Hiruma Lima
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | | | - Luis A Justulin
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil.
| |
Collapse
|
26
|
Xiong L, Zou J, Lin K, Zhang X, Yan C, He Y, Zhang J. Fecal metabonomics combined with 16S rRNA gene sequencing to study the mechanisms of cantharidin-induced hepatotoxicity. Toxicol Lett 2025; 408:65-76. [PMID: 40254041 DOI: 10.1016/j.toxlet.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/13/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cantharidin (CTD) serves as the principal bioactive compound in traditional Chinese medicine Mylabris, commonly employed in cancer treatment. Nevertheless, the clinical application of CTD is partly restricted by hepatotoxicity, and the toxicology mechanism is not fully elucidated. This study aims to explore the potential mechanism of CTD-induced hepatoxicity by targeted metabolomics-based UPLC-QTOF-MS/MS analysis and 16S rRNA sequencing. Studies have shown that the administration of CTD could lead to elevated serum biochemical indices including ALT and AST. Notably, dilatation of the liver central vein, hepatocellular necrosis, and slight vacuoles in rats were observed after CTD intervention. Fecal metabolomics found CTD could up-regulate 10 and down-regulate 33 metabolites, and metabolic pathway enrichment found that CTD could disrupt 2 metabolic pathways, including Arginine biosynthesis metabolism and β-Alanine metabolism. 16S rRNA gene sequencing analysis showed that CTD could increase the abundance of Turicibacter and Clostridium sensu stricto 1, but decrease the amounts of Prevotella 1. Our correlation analyses showed that alterations in the gut microbiota induced by CTD in rats may have impacted changes in the associated hepatic amino acid metabolism pathway. And the mechanism of action of CTD-induced hepatotoxicity may be related to inflammation, oxidative stress, impaired glucose metabolism and reduced hepatic glycogen storage. These findings will offer novel insights for the prevention and treatment of CTD-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jialu Zou
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xiaohong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Caiying Yan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yanmei He
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
27
|
Carballo-López GI, Ojeda-González J, Martínez-García KD, Cervantes-Luevano KE, Moreno-Ulloa A, Castro-Ceseña AB. Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of Aloe vera- Moringa oleifera extracts. Mol Omics 2025; 21:185-201. [PMID: 39878065 DOI: 10.1039/d4mo00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Metabolic associated steatohepatitis characterized by lipid accumulation, inflammation and fibrosis, is a growing global health issue, contributing to severe liver-related mortality. With limited effective treatments available, there is an urgent need for novel therapeutic strategies. Moringa oleifera, rich in antioxidants, offers potential for combating steatohepatitis, but its cytotoxicity presents challenges. Aloe vera, renowned for its cytocompatibility and anti-inflammatory effects, shows promise in mitigating these risks. Using infrared spectrometry and mass spectrometry, we identified 1586 metabolites from both plants across 84 chemical classes. By encapsulating these phytochemicals in nanoparticles, we achieved increased solubility, cytocompatibility, and gene modulation to hepatic stellate cells affected by steatohepatitis. Chemoinformatic analysis revealed bioactive metabolites, including hesperetin analogs, known to inhibit TGF-β. Our results demonstrate that these nanoparticles not only improved gene expression modulation related to metabolic associated steatohepatitis, particularly TGF-β and COL1A1, but also outperformed free compounds, highlighting their potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Jhordan Ojeda-González
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Kevin D Martínez-García
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Karla E Cervantes-Luevano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Aldo Moreno-Ulloa
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT - Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
28
|
Yang X, Rong K, Fu S, Yang Y, Liu S, Zhang C, Xu K, Zhang K, Zhu Y, Hao Y, Zhao J, Fu J. Engineered Spirulina platensis for treating rheumatoid arthritis and restoring bone homeostasis. Nat Commun 2025; 16:4434. [PMID: 40360534 PMCID: PMC12075783 DOI: 10.1038/s41467-025-59579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatoid arthritis (RA) is characterized by massive intra-articular infiltration of pro-inflammatory macrophages, leading to articular immune dysfunction, severe synovitis, and ultimately joint erosion. Comprehensive remodeling of articular immune homeostasis and bone homeostasis is essential for alleviating RA. Here we report on Spirulina platensis (SP), a natural microorganism commercially farmed worldwide as a food, as an efficient regulator of both synovial inflammation and osteoclast differentiation in male RA mouse models. SP reduces excessive reactive oxygen species and downregulates pro-inflammatory cytokines in synovial macrophages. Moreover, SP reprograms pro-inflammatory M1-like macrophages to anti-inflammatory M2-like phenotype, suppressing synovitis and remodeling redox balance. Notably, SP inhibits osteoclast activation effectively and blocks the progression of bone erosion. SP is then engineered with macrophage membranes (SP@M) to enable immune evasion and RA-targeting in vivo. SP@M increases LC3-mediated autophagy as well as strengthens ubiquitin-mediated proteasomal degradation toward KEAP1, which promotes the expression and nuclear translocation of NRF2. The NRF2 further activates antioxidant enzymes to terminate macrophages-initiated pathological cascades and reestablish intra-articular immune homeostasis, conferring a bone recovery and chondroprotective effect in collagen-induced arthritis mouse models. This work shows the therapeutic activity of FDA-approved functional food of SP in suppressing synovial inflammation and osteoclast differentiation, offering an off-the-shelf strategy for RA treatment.
Collapse
Affiliation(s)
- Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Yangzi Yang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
| | - Shasha Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Zhang
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Kang Xu
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China.
| | - Jingke Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China.
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China.
| |
Collapse
|
29
|
Hong J, Xu B, Hu X, Liu C, Liu H, Tian J, Li L, Ding S, Zhou C, Lu L. Hyaluronic Acid Microneedles Loaded with Chinese Herbal Extracts as an Intradermal Delivery System for Hair Regeneration. Biomacromolecules 2025; 26:2945-2959. [PMID: 40219945 DOI: 10.1021/acs.biomac.5c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Androgenic alopecia is one of the most common chronic problems for dermatologists worldwide. Some Chinese herbal extracts have been shown to promote hair growth, but the active ingredients are difficult to enter the dermis. Therefore, delivering the active ingredients into the dermis becomes a key factor. Herein, Platycladus orientalis leaf extract (PO-ex) was obtained using ethanol as a solvent, and then hyaluronic acid methacrylate/hyaluronic acid (HAMA/HA) hydrogel was loaded with PO-ex to prepare hyaluronic acid microneedles (PO-ex MN). The double cross-linked HAMA/HA provides sufficient mechanical strength to pierce the stratum corneum and deliver PO-ex into the dermis; PO-ex can effectively improve the environment for hair follicle cell proliferation by removing reactive oxygen free radicals; in addition, the self-repair reaction caused by microneedle mechanical stimulation activates the Wnt/β-catenin pathway associated with trauma repair and promotes hair follicle growth. PO-ex MN is a potential therapeutic strategy for the treatment of androgenic alopecia.
Collapse
Affiliation(s)
- Jiaquan Hong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Bocheng Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaole Hu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Chun Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Hongsheng Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jinhuan Tian
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Lihua Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lu Lu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| |
Collapse
|
30
|
Wei K, Wan Y, Wei C, Liu W, Wu H, Leng Y, Xu M, Li Y, Chen Z, Wang J, Luo H. Ultrasound-assisted preparation of antioxidant peptides in flaxseed meal: Purification, characterization and molecular docking analysis. Food Chem 2025; 487:144724. [PMID: 40412260 DOI: 10.1016/j.foodchem.2025.144724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/26/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025]
Abstract
Flaxseed meal is recognized as a rich source of high-quality protein, and this study aims to explore its potential as a source of bioactive peptides. Hydrolysates were prepared via ultrasound-assisted enzymatic hydrolysis. Enzymatic hydrolysates from hot-pressed flaxseed meal showed higher biological activity than those from cold-pressed samples. Three antioxidant peptides, namely PFFWLHHT, HCLEFLSPRF, and ALTMPHNW, were identified and screened from the purified fractions of hot-pressed flaxseed meal using reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and in silico analysis. These peptides displayed scavenging activity against DPPH radicals (IC50 = 0.520, 1.190, and 1.036 mM) and hydroxyl radicals (IC50 = 4.909, 6.471, and 7.076 mM). Molecular docking studies indicated that three peptides could inhibit myeloperoxidase (MPO) activity by occupying the entrance of the active cavity, with their binding affinities measured at -12.2, -9.1 and - 11 kcal/mol, respectively. These findings could lay a foundation for extracting natural antioxidant peptides from flaxseed meals.
Collapse
Affiliation(s)
- Kejun Wei
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| | - Yilai Wan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| | - Changqing Wei
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China.
| | - Wenyu Liu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| | - Hongbin Wu
- Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang Uygur Autonomous Region, PR China.
| | - Yuanyuan Leng
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| | - Minghui Xu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| | - Yazhuan Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| | - Zhanglian Chen
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| | - Jing Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| | - Huixin Luo
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, PR China
| |
Collapse
|
31
|
Chatgilialoglu C. Biological Models of Oxidative Purine DNA Damage in Neurodegenerative Disorders. Antioxidants (Basel) 2025; 14:578. [PMID: 40427460 PMCID: PMC12108456 DOI: 10.3390/antiox14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Most DNA damage caused by oxidative metabolism consists of single lesions that can accumulate in tissues. This review focuses on two classes of lesions: the two 8-oxopurine (8-oxo-Pu) lesions that are repaired by the base excision repair (BER) enzyme and the four 5',8-cyclopurine (cPu) lesions that are repaired exclusively by the nucleotide excision repair (NER) enzyme. The aim is to correlate the simultaneous quantification of these two classes of lesions in the context of neurological disorders. The first half is a summary of reactive oxygen species (ROS) with particular attention to the pathways of hydroxyl radical (HO•) formation, followed by a summary of protocols for the quantification of six lesions and the biomimetic chemistry of the HO• radical with double-stranded oligonucleotides (ds-ODN) and calf thymus DNA (ct-DNA). The second half addresses two neurodegenerative diseases: xeroderma pigmentosum (XP) and Cockayne syndrome (CS). The quantitative data on the six lesions obtained from genomic and/or mitochondrial DNA extracts across several XP and CS cell lines are discussed. Oxidative stress contributes to oxidative DNA damage by resulting in the accumulation of cPu and 8-oxo-Pu in DNA. The formation of cPu is the postulated culprit inducing neurological symptoms associated with XP and CS.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Center for Advanced Technologies, Adam Mickiewicz University, 61614 Poznań, Poland; or
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| |
Collapse
|
32
|
Moazamian A, Saez F, Drevet JR, Aitken RJ, Gharagozloo P. Redox-Driven Epigenetic Modifications in Sperm: Unraveling Paternal Influences on Embryo Development and Transgenerational Health. Antioxidants (Basel) 2025; 14:570. [PMID: 40427452 PMCID: PMC12108309 DOI: 10.3390/antiox14050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Male-factor infertility accounts for nearly half of all infertility cases, and mounting evidence points to oxidative stress as a pivotal driver of sperm dysfunction, genetic instability, and epigenetic dysregulation. In particular, the oxidative DNA lesion 8-hydroxy-2'-deoxyguanosine (8-OHdG) has emerged as a central mediator at the interface of DNA damage and epigenetic regulation. We discuss how this lesion can disrupt key epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNAs, thereby influencing fertilization outcomes, embryo development, and offspring health. We propose that the interplay between oxidative DNA damage and epigenetic reprogramming is further exacerbated by aging in both the paternal and maternal germlines, creating a "perfect storm" that increases the risk of heritable (epi)mutations. The consequences of unresolved oxidative lesions can thus persist beyond fertilization, contributing to transgenerational health risks. Finally, we explore the promise and potential pitfalls of antioxidant therapy as a strategy to mitigate sperm oxidative damage. While antioxidant supplementation may hold significant therapeutic value for men with subfertility experiencing elevated oxidative stress, a careful, personalized approach is essential to avoid reductive stress and unintended epigenetic disruptions. Recognizing the dual role of oxidative stress in shaping both the genome and the epigenome underscores the need for integrating redox biology into reproductive medicine, with the aim of improving fertility treatments and safeguarding the health of future generations.
Collapse
Affiliation(s)
- Aron Moazamian
- EVALSEM, GReD Institute, CRBC, Faculté de Médecine, Université Clermont Auvergne, 28 Place Henri Dunant, 6300 Clermont-Ferrand, France; (F.S.); (J.R.D.)
- CellOxess Biotechnology, Research & Development, Ewing, NJ 08638, USA
| | - Fabrice Saez
- EVALSEM, GReD Institute, CRBC, Faculté de Médecine, Université Clermont Auvergne, 28 Place Henri Dunant, 6300 Clermont-Ferrand, France; (F.S.); (J.R.D.)
| | - Joël R. Drevet
- EVALSEM, GReD Institute, CRBC, Faculté de Médecine, Université Clermont Auvergne, 28 Place Henri Dunant, 6300 Clermont-Ferrand, France; (F.S.); (J.R.D.)
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Newcastle 2308, Australia;
| | | |
Collapse
|
33
|
Miyaki M, Komiya Y, Sumiya I, Yamaguchi R, Kuno M, Kojima C, Makino R, Suzuki T, Suzuki Y, Yokoyama I, Arihara K. Effects of Maillard Reaction Products on Skeletal Muscle Cells: An In Vitro Study Using C2C12 Myotubes. Metabolites 2025; 15:316. [PMID: 40422892 DOI: 10.3390/metabo15050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Maillard reaction products (MRPs) are known for their antioxidant properties; however, their effects on muscle cells remain unclear. This study aims to elucidate the effects of MRPs on muscle hypertrophy and atrophy in C2C12 myotubes. Methods: MRPs were prepared by heating L-lysine and D-glucose, and their antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Subsequently, mouse C2C12 myoblasts were cultured with MRPs until myotubes formed, and their diameters were measured to assess hypertrophic and atrophic changes. Akt phosphorylation was evaluated by Western blotting, and gene expression levels were analyzed via quantitative PCR. Results: The prepared MRPs exhibited high antioxidant activity in the DPPH radical scavenging assay. MRP treatment significantly increased the average myotube diameter by approximately 40% and enlarged the largest myotube diameter by up to 80%, potentially mediated by enhanced Akt phosphorylation. Under dexamethasone-induced atrophy, MRPs modestly attenuated the reduction in myotube diameter by approximately 20%, although the effect was not statistically significant, and did not significantly alter the fusion index either. Quantitative PCR analysis revealed that MRP treatment significantly reduced the mRNA expression of Nfe2l2, a key regulator of antioxidant response, whereas it had no notable effects on the expression of genes related to myoblast proliferation (Myod1), differentiation (Myog), hypertrophy (Igf1), atrophy (Foxo1 and Trim63), and oxidative stress (Cat, Gclc, and Nqo1). Conclusions: Our findings suggested that MRPs possess antioxidant activity and promote myotube hypertrophy via Akt signaling. This study highlighted the potential of MRPs as functional ingredients for promoting muscle health, though further in vivo studies are required to validate their physiological relevance.
Collapse
Affiliation(s)
- Marina Miyaki
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Yusuke Komiya
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Itsuki Sumiya
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Rina Yamaguchi
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Moeka Kuno
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Chika Kojima
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Ryosuke Makino
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihiro Suzuki
- Laboratory of Animal Health Science, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Issei Yokoyama
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| | - Keizo Arihara
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-0021, Japan
| |
Collapse
|
34
|
Xiong Z, Liao Y, Zhang Z, Wan Z, Liang S, Guo J. Molecular Insights into Oxidative-Stress-Mediated Cardiomyopathy and Potential Therapeutic Strategies. Biomolecules 2025; 15:670. [PMID: 40427563 PMCID: PMC12108637 DOI: 10.3390/biom15050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiomyopathies comprise a heterogeneous group of cardiac disorders characterized by structural and functional abnormalities in the absence of significant coronary artery disease, hypertension, valvular disease, or congenital defects. Major subtypes include hypertrophic, dilated, arrhythmogenic, and stress-induced cardiomyopathies. Oxidative stress (OS), resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, has emerged as a key contributor to the pathogenesis of these conditions. ROS-mediated injury drives inflammation, protease activation, mitochondrial dysfunction, and cardiomyocyte damage, thereby promoting cardiac remodeling and functional decline. Although numerous studies implicate OS in cardiomyopathy progression, the precise molecular mechanisms remain incompletely defined. This review provides an updated synthesis of current findings on OS-related signaling pathways across cardiomyopathy subtypes, emphasizing emerging therapeutic targets within redox-regulatory networks. A deeper understanding of these mechanisms may guide the development of targeted antioxidant strategies to improve clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Yuanpeng Liao
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhengdong Wan
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Sijia Liang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
35
|
Chen W, Zhuang A, Liu C, He Y, Kaixin Lu, Jiang T, Zhang H, Gao R, Xue X. Mitochondrial enzyme HIBADH protects against calcium oxalate nephrolithiasis by modulating oxidative stress and apoptosis. Arch Biochem Biophys 2025; 770:110452. [PMID: 40334962 DOI: 10.1016/j.abb.2025.110452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Calcium oxalate (CaOx) nephrolithiasis, as one of the most common types of kidney stones, poses a major threat to human health. This study aimed to investigate the role of 3-hydroxyisobutyrate dehydrogenase (HIBADH) in the pathogenesis of CaOx nephrolithiasis. CaOx nephrolithiasis models were established in rats via 1 % ethylene glycol and 2 % ammonium chloride induction and in HK-2 cells using calcium oxalate monohydrate (COM, 100 μg/mL). HIBADH expression was modulated through plasmid transfection and siRNA knockdown in vitro, and AAV2/9-mediated gene transfer in vivo. Multiple parameters were assessed, including cell crystal adhesion, apoptosis, cell cycle distribution, oxidative stress markers (SOD, MDA, MitoSOX fluorescence), and mitochondrial function (ATP level, mitochondrial membrane potential), using various techniques such as crystal adhesion assay, flow cytometry, western blot, qRT-PCR, and fluorescence microscopy. Kidney tissues were analyzed through H&E, Von Kossa, and PAS staining. Results demonstrated that HIBADH expression was significantly downregulated in CaOx nephrolithiasis rats and COM-treated HK-2 cells. In vitro, HIBADH overexpression reduced cell crystal adhesion and apoptosis, promoted cell cycle progression, mitigated mitochondria-involved cellular oxidative stress, and enhanced mitochondrial function in COM-induced HK-2 cells. In vivo, AAV2/9-mediated HIBADH overexpression attenuated crystal deposits and tubular injury, reduced apoptosis, and mitigated mitochondria-involved cellular oxidative stress in kidney tissues. The mitochondria-targeted antioxidant Mito-TEMPO counteracted the effects of HIBADH silencing, highlighting the role of mitochondrial function in HIBADH's protective mechanism. This study identifies HIBADH as a critical regulator in CaOx nephrolithiasis, exerting its protective effects through modulation of mitochondrial function and mitochondria-involved cellular oxidative stress, cell crystal adhesion, and apoptosis. Our findings elucidate the link between mitochondrial metabolism and kidney stone formation, positioning HIBADH as a key protective factor and a promising candidate with therapeutic potential for CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Wenwei Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Anni Zhuang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Changyi Liu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfeng He
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Kaixin Lu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Tao Jiang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hua Zhang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Rui Gao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Xueyi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
36
|
Wang M, Chen Y, Xu B, Zhu X, Mou J, Xie J, Che Z, Zuo L, Li J, Jia H, Yu B. Recent advances in the roles of extracellular vesicles in cardiovascular diseases: pathophysiological mechanisms, biomarkers, and cell-free therapeutic strategy. Mol Med 2025; 31:169. [PMID: 40325357 PMCID: PMC12051314 DOI: 10.1186/s10020-025-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
Cardiovascular diseases (CVDs) represent a profound challenge with inflammation playing a significant role in their pathophysiology. Extracellular vesicles (EVs), which are membranous structures encapsulated by a lipid bilayer, are essential for intercellular communication by facilitating the transport of specific bioactive molecules, including microRNAs, proteins, and lipids. Emerging evidence suggests that the regulatory mechanisms governing cardiac resident cells are influenced by EVs, which function as messengers in intercellular communication and thereby contribute to the advancement of CVDs. In this review, we discuss the multifaceted biological functions of EVs and their involvement in the pathogenesis of various CVDs, encompassing myocardial infarction, ischemia-reperfusion injury, heart failure, atherosclerosis, myocarditis, cardiomyopathy, and aneurysm. Furthermore, we summarize the recent advancements in utilizing EVs as non-invasive biomarkers and in cell-free therapy based on EVs for the diagnosis and treatment of CVDs. Future research should investigate effective techniques for the isolation and purification of EVs from body fluids, while also exploring the pathways for the clinical translation of therapy based on EVs. Additionally, it is imperative to identify appropriate EV-miRNA profiles or combinations present in the circulation of patients, which could serve as biomarkers to improve the diagnostic accuracy of CVDs. By synthesizing and integrating recent research findings, this review aims to provide innovative perspectives for the pathogenesis of CVDs and potential therapeutic strategies.
Collapse
Affiliation(s)
- Mengyang Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Xinxin Zhu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Junke Mou
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Jiani Xie
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Ziao Che
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Liyang Zuo
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| |
Collapse
|
37
|
Minari TP, Pisani LP. Exploring sodium nitrate supplementation in enhancing nitric oxide bioavailability and reducing oxidative stress: implications for blood pressure and endothelial dysfunction in hypertension. Eur J Pharmacol 2025; 999:177702. [PMID: 40324575 DOI: 10.1016/j.ejphar.2025.177702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Hypertension, a chronic condition marked by elevated blood pressure, poses a significant health risk globally. This review explores the potential of sodium nitrate supplementation to enhance nitric oxide (NO) bioavailability and reduce oxidative stress in patients with hypertension. NO, known for its vasodilatory properties, plays a crucial role in maintaining endothelial function and cardiovascular health. Additionally, this study provides a comprehensive analysis of current research on the mechanisms through which sodium nitrate enhances nitric oxide (NO) levels, thereby improving endothelial function, reducing oxidative stress, and lowering blood pressure. The findings underline sodium nitrate's promising capacity to reduce dependence on conventional antihypertensive therapies, offering a cost-effective strategy for enhancing cardiovascular outcomes. Effective dosage ranges, such as 6-12 mmol/day (approximately 510-1020 mg nitrate), derived from dietary sources like leafy greens and beetroot juice, are proposed as practical solutions. Future studies are warranted to substantiate these benefits, refine dosing protocols, and establish guidelines for safe and effective clinical application. Integrating sodium nitrate into treatment frameworks could significantly advance hypertension management, improve patient quality of life, and reduce healthcare expenditures.
Collapse
Affiliation(s)
- Tatiana Palotta Minari
- Department of Bioscience, Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil.
| | | |
Collapse
|
38
|
Li T, Fang J, Wan X, Wang H, Zhang L, Wang L, Qiu X, Liang G. Fe 3O 4@Ag@Pt nanoparticles with multienzyme like activity for total antioxidant capacity assay. Food Chem 2025; 473:143064. [PMID: 39994930 DOI: 10.1016/j.foodchem.2025.143064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/29/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
A simple and reliable total antioxidant capacity (TAC) assay is essential for food safety evaluation and human health monitoring. Herein, a trimetallic nanozyme (Fe3O4@Ag@Pt) was synthesized and exhibited OXD-, POD- and SOD-like activities, which could generate a synergistic catalytic system. Fe3O4@Ag@Pt can catalyze oxygen to produce various reactive oxygen intermediates, and the endogenous product H2O2 could be captured and further dissociated efficiently into •OH, due to its strong substrate binding affinity. Since antioxidants can compete with TMB and lead to an antioxidant concentration-dependent color change, a colormetric sensing platform was constructed with a detection limit of 1.97 μM, 5.06 μM, and 8.99 μM for GSH, AA and Trolox, respectively. The proposed Fe3O4@Ag@Pt based assay was suitably employed to quantify TAC in fruit samples, beverages and cells with the aid of spike recovery and reference method validation, which hold vast promise as an analytical platform for food safety and biomedical diagnosis.
Collapse
Affiliation(s)
- Tian Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China.
| | - Jiaoyuan Fang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Xinying Wan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Han Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Liping Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Lan Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiangjun Qiu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
39
|
Alqahtani NS, Zaroog MS, Albow BMA. Dietary inflammatory potential and severe headache or migraine: a systematic review of observational studies. Nutr Neurosci 2025; 28:532-540. [PMID: 39248716 DOI: 10.1080/1028415x.2024.2391814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
OBJECTIVES We conducted the current systematic review to investigate the association between dietary inflammatory index (DII) and severe headaches or migraine among adults via synthesizing observational evidence. METHOD We conducted a systematic literature search of observational studies through PubMed, Scopus, and Web of Science databases from inception until July 2024. The PECO framework was implemented to select eligible studies as follows: Population (adults with severe headache or migraine), Exposure (individuals with the highest adherence to a pro-inflammatory diet), Comparison (individuals with the lowest adherence to a pro-inflammatory diet), Outcome (risk of developing severe headache or migraine, headaches frequency, duration, severity, and migraine-related disability). RESULTS After reviewing six studies involving 31,958 individuals, we found that following an anti-inflammatory diet is associated with a lower frequency and severity of migraine headaches. Additionally, our research revealed that individuals with migraines tend to have lower adherence to an anti-inflammatory diet when compared to people without migraines. Surprisingly, adherence to a pro-inflammatory diet was linked to a reduced risk of chronic daily headaches. CONCLUSION Present findings imply a negative link between an inflammatory diet and severe headaches or migraine. However, further well-designed longitudinal studies are needed to interpret the causality and shed light on the underlying mechanisms.
Collapse
Affiliation(s)
- Nasser S Alqahtani
- Department of Community Health, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Mohammed Suleiman Zaroog
- Department of Community Health, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | | |
Collapse
|
40
|
Ren J, Chen X, Wang HY, Yang T, Zhang KR, Lei SY, Qi LY, Feng CL, Zhou R, Zhou H, Tang W. Gentiopicroside ameliorates psoriasis-like skin lesions in mice via regulating the Keap1-Nrf2 pathway and inhibiting keratinocyte activation. Acta Pharmacol Sin 2025; 46:1361-1374. [PMID: 39779965 PMCID: PMC12032066 DOI: 10.1038/s41401-024-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Psoriasis is a chronic, systemic immune-mediated skin disease. Although many new strategies for psoriasis treatment have been developed, there is great need in clinic for treating psoriasis. Gentiopicroside (GPS), derived from Gentiana manshurica Kitagawa, has multiple pharmacological activities including anti-inflammatory, anti-oxidative and antiviral activities. In this study, we investigated the potential effects of GPS in imiquimod (IMQ)-induced psoriasis mouse model and the underlying mechanisms. The mice were sensitized on their shaved back with IMQ cream for 7 days with or without topical application of 1% or 2% GPS cream. We showed that the application of GPS cream significantly ameliorated psoriasis-like skin lesions; GPS effect was better than that of calcipotriol. GPS rectified the immune cells infiltration and keratinocytes activation in the skin lesions, and significantly inhibited TNF-α/IFN-γ stimulated human keratinocyte (HaCaT) activation in vitro. Proteomic analysis from keratinocytes with and without GPS treatment prompted that GPS regulated the Keap1-Nrf2 pathway, which was the most important pathway in regulating oxidative stress and inflammation. We demonstrated that GPS regulated the protein expression of p62 and Keap1, induced Nrf2 nuclear translocation followed by transcription of Nrf2 downstream antioxidant genes in HaCaT cells. Furthermore, the antioxidant effects of GPS were abolished in Nrf2-/- keratinocytes. Simultaneously, Nrf2-/- mice showed increased psoriasiform symptoms with a diminished protective effect in response to GPS treatment. Collectively, the study discloses that GPS inhibits keratinocyte activation and ameliorates psoriasis-like skin lesions in an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Jing Ren
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Rong Zhang
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Shu-Yue Lei
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu-Yao Qi
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Lan Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rong Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Tang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Wang X, Chen J, Hu H, Gong M, Wu M, Ye B, Hu H, Du Z, Liu A, Huang S, Jing T, Liu Z. The resveratrol attenuates reactive oxygen species mediated DNA damage in cardiac malformations caused by 4-tert-octylphenol. Toxicol Appl Pharmacol 2025; 498:117284. [PMID: 40023230 DOI: 10.1016/j.taap.2025.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
4-tert-octylphenol (4-t-OP) is an alkylphenolic environmental endocrine disruptor extensively distributed in the environment, posing potential hazards to living organisms. Research has demonstrated that 4-t-OP induces cardiac injury and abnormalities in embryonic development, which can adversely affect heart development. The excessive production of reactive oxygen species (ROS) triggered by 4-t-OP may result in DNA damage. Hence, we hypothesized that ROS-mediated DNA damage plays a crucial role in abnormal cardiac development in zebrafish embryos exposed to 4-t-OP, while resveratrol (RSV), a common antioxidant found in natural foods, may provide protection. In this study, we exposed zebrafish embryos at 2 h post-fertilization (hpf) to various doses of 4-t-OP in combination with relevant inhibitor/agonist therapies. Using microscopy, we observed morphological alterations in the cardiac structure of zebrafish embryos at 72 hpf. The underlying molecular mechanisms were assessed through immunofluorescence, DCFH-DA probe, MitoSOX™ staining, Quantitative polymerase chain reaction, and other methods. Our findings revealed that 4-t-OP caused dose-dependent cardiac defects in zebrafish embryos. The overexpression of ROS/mitochondrial ROS (mtROS) induced by 4-t-OP was significantly reduced by the addition of RSV or the ROS inhibitor N-acetyl-L-cysteine (NAC). Furthermore, the inclusion of RSV or NAC significantly mitigated cardiac deformities, cardiac apoptosis, and DNA damage. Additionally, the apoptosis inhibitor Ac-DEVD-CHO and the Wnt/β-catenin agonist CHIR99021 decreased 4-t-OP-induced cardiac abnormalities. Moreover, the naturally occurring small molecule chemical RSV provided protection against 4-t-OP-induced heart developmental injury. This study elucidates the molecular mechanisms by which 4-t-OP induces oxidative stress, DNA damage, and cardiac defects in the heart of zebrafish larvae through the ROS/Wnt/β-catenin signaling pathway. These findings present novel molecular targets for the prevention and therapy of congenital heart disease, as well as enhance our understanding of the cardiotoxic effects of 4-t-OP.
Collapse
Affiliation(s)
- Xin Wang
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Jin Chen
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Hanwen Hu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Mingxue Gong
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Mengqin Wu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Bofu Ye
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Han Hu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Zuo Du
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Anfei Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Shaoxin Huang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332005, Jiangxi, China
| | - Tao Jing
- School of Public Health, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China.
| |
Collapse
|
42
|
Lolescu BM, Furdui-Lința AV, Ilie CA, Sturza A, Zară F, Muntean DM, Blidișel A, Crețu OM. Adipose tissue as target of environmental toxicants: focus on mitochondrial dysfunction and oxidative inflammation in metabolic dysfunction-associated steatotic liver disease. Mol Cell Biochem 2025; 480:2863-2879. [PMID: 39704874 PMCID: PMC12048461 DOI: 10.1007/s11010-024-05165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Obesity, diabetes, and their cardiovascular and hepatic comorbidities are alarming public health issues of the twenty-first century, which share mitochondrial dysfunction, oxidative stress, and chronic inflammation as common pathophysiological mechanisms. An increasing body of evidence links the combined exposure to multiple environmental toxicants with the occurrence and severity of metabolic diseases. Endocrine disruptors (EDs) are ubiquitous chemicals or mixtures with persistent deleterious effects on the living organisms beyond the endocrine system impairment; in particular, those known as metabolism-disrupting chemicals (MDCs), increase the risk of the metabolic pathologies in adult organism or its progeny. Being largely lipophilic, MDCs mainly target the adipose tissue and elicit mitochondrial dysfunction by interfering with mitochondrial bioenergetics, biogenesis, dynamics and/or other functions. Plastics, when broken down into micro- and nano-plastics (MNPs), have been detected in several human tissues, including the liver. The harmful interplay between inflammatory and redox processes, which mutually interact in a positive feed-back loop, hence the term oxidative inflammation ("OxInflammation"), occurs both at systemic and organ level. In both liver and adipose tissue, oxinflammation contributes to the progression of the metabolic dysfunction-associated steatotic liver disease (MASLD). Moreover, it has been reported that individuals with MASLD may be more susceptible to the harmful effects of toxicants (mainly, those related to mitochondria) and that chronic exposure to EDs/MDCs or MNPs may play a role in the development of the disease. While liver has been systematically investigated as major target organ for ambient chemicals, surprisingly, less information is available in the literature with respect to the adipose tissue. In this narrative review, we delve into the current literature on the most studied environmental toxicants (bisphenols, polychlorinated biphenyls, phthalates, tolylfluanid and tributyltin, per-fluoroalkyl and polyfluoroalkyl substances, heavy metals and MNPs), summarize their deleterious effects on adipose tissue, and address the role of dysregulated mitochondria and oxinflammation, particularly in the setting of MASLD.
Collapse
Affiliation(s)
- Bogdan M Lolescu
- Doctoral School Medicine, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adina V Furdui-Lința
- Doctoral School Medicine, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Cosmin A Ilie
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Public Health & Sanitary Management, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adrian Sturza
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Flavia Zară
- Department II Microscopic Morphology-Chair of Histology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Pathology, Timisoara Municipal Emergency Clinical Hospital, Timișoara, Romania
| | - Danina M Muntean
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Alexandru Blidișel
- Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania.
| | - Octavian M Crețu
- Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania
| |
Collapse
|
43
|
Sardar F, Kamsani YS, Ramly F, Mohamed Noor Khan NA, Sardar R, Aminuddin AA. Cadmium Associated Preeclampsia: A Systematic Literature Review of Pregnancy and Birth Outcomes. Biol Trace Elem Res 2025; 203:2505-2516. [PMID: 39256331 DOI: 10.1007/s12011-024-04364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Preeclampsia (PE), caused by multiple factors, is one of the most serious complications of pregnancy. Cadmium (Cd) is a heavy metal environmental pollutant, reproductive toxicant, and endocrine disruptor, which can increase the risk of PE. Cd toxicity due to occupational, diet, and environmental factors has worsened the risk. Studies showed elevated Cd concentration in maternal blood and placenta of PE women. However, the implicit association between Cd associated PE is still not highlighted. We systematically reviewed Cd-associated PE and its effect on pregnancy and birth outcomes. Based on "Preferred reporting items for systematic reviews and meta-analyses (PRISMA)" guidelines, eighty-six studies were identified by PubMed, Web of Science (WOS), and Scopus databases. Publications were included until October 2023 and articles screened based on our inclusion criteria. Our study identified that the exposure of controlled and uncontrolled Cd induces PE, which negatively affects pregnancy and birth outcomes. Given the serious nature of this finding, Cd is a potential adverse agent that impacts pregnancy and future neonatal health. Further comprehensive studies covering the whole trimesters of pregnancy and neonatal developments are warranted. Data on the molecular mechanisms behind Cd-induced PE is also essential for potential preventive, diagnostic, or therapeutic targets.
Collapse
Affiliation(s)
- Fatima Sardar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Yuhaniza Shafinie Kamsani
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
- Maternofetal and Embryo (MatE) Research Group, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Fathi Ramly
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nor Ashikin Mohamed Noor Khan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Maternofetal and Embryo (MatE) Research Group, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Razia Sardar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Anisa Aishah Aminuddin
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
44
|
Wood JPM, Chidlow G, Casson RJ. Glucose protects cultured retinal cells from oxidative injury via the pentose phosphate pathway. Free Radic Biol Med 2025; 232:142-157. [PMID: 40054635 DOI: 10.1016/j.freeradbiomed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE Oxidative injury has been implicated in a range of common retinal neurodegenerative disorders. Protecting the retina from such an insult could therefore prove clinically beneficial. We sought to investigate whether glucose, acting via the pentose phosphate pathway (PPP), was able to counteract oxidative cytotoxicity to retinal cells in culture. EXPERIMENTAL Mixed retinal neuron-glial cultures were prepared from Sprague-Dawley rat neonates and used at 7 days in vitro; neuron-only and Müller glial cell-only mono-cultures were subsequently prepared from these cultures. At appropriate stages, cultures were treated with t-butyl hydroperoxide (tbH; 10 nM-1 mM) in glucose/pyruvate-free DMEM to induce oxidative stress. Some cultures were co-treated with glucose. Additional compounds were co-applied to inhibit glycolysis, PPP, cystine uptake, glutathione biosynthesis and glutathione reductase (GR). The effect of glucose on stimulation of reactive oxygen species (ROS), as well as levels of glutathione and NADPH were also investigated. RESULTS Oxidative stress resulted in cytotoxicity to both retinal neurons and glial cells. Glucose was able to abrogate the toxicity to glial cells in mono-cultures and mixed cultures, but could only provide protection to neurons in the mixed cultures when glial cells were also present. Glucose was additionally shown to prevent stimulation of ROS and oxidative stress-induced depletions of glutathione and NADPH. Inhibition of PPP, cystine uptake or GR all diminished the protective response of glucose. CONCLUSION Glucose prevented oxidative stress to retinal cells via the PPP. Neurons were not subjected to glucose-induced protection except when glial cells were present, implying the passage of a transmissible mediator or other protective action between the two cell types.
Collapse
Affiliation(s)
- John P M Wood
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA, 5000, Australia.
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA, 5000, Australia
| | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA, 5000, Australia
| |
Collapse
|
45
|
Zavvar F, Mazandarani M, Hoseinifar SH, Jafari V, Lieke T. Effects of Feed Supplementation With Fulvic Acid on the Systemic and Mucosal Protective Mechanisms of Juvenile Rainbow Trout (Oncorhynchus mykiss). J Anim Physiol Anim Nutr (Berl) 2025; 109:834-843. [PMID: 39806798 DOI: 10.1111/jpn.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important fish species raised in aquaculture, but it is susceptible to stress, infections diseases. The present study aimed to determine the effects of fulvic acid feed addition on the systemic and mucosal protective mechanisms of juvenile rainbow trout and to elucidate the underlying molecular mechanisms of changes in the gut. Rainbow trout (4.30 ± 0.6 g) diet was supplemented with different levels of fulvic acid: 0% (Control), 0.5%, 1% and 2%. At the end of 8-week feeding trial, growth parameters such as final weight gained weight (%), SGR (F1%) increased, and FCR (all levels) decreased significantly compared to the control group. We found that the activity of lysozyme, glutathione peroxidase, and catalase in the serum were significantly improved, especially after the addition of 0.5% and 1% of fulvic acid. At the same time, the immunoglobulin concentration in the skin mucus was increased with 0.5% supplementation. However, the expression of tnf-α, il-6 and gpx in the intestine was strongly upregulated after supplementation with 2%, indicating oxidative stress and inflammation with this level of fulvic acid inclusion. Furthermore, the mucus lysozyme activity was reduced at this concentration, which can increase the susceptibility to pathogen invasion. The results suggest that adding 0.5%-1% of fulvic acid to the feed of juvenile rainbow trout can help to improve their immune and antioxidative defenses and thereby support the wellbeing of fish.
Collapse
Affiliation(s)
- Fatemeh Zavvar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mazandarani
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Valiollah Jafari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Thora Lieke
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
46
|
Aparicio-Trejo OE, Hernández-Cruz EY, Reyes-Fermín LM, Ceja-Galicia ZA, Pedraza-Chaverri J. The role of redox signaling in mitochondria and endoplasmic reticulum regulation in kidney diseases. Arch Toxicol 2025; 99:1865-1891. [PMID: 40214774 DOI: 10.1007/s00204-025-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/20/2025] [Indexed: 05/18/2025]
Abstract
Kidney diseases are among the fastest worldwide growing pathologies. This growth together with their high mortality rate emphasizes the importance of generating vital information about the mechanism involved in their pathophysiology to determine possible therapeutic targets. Recently, mitochondrial damage and their implication in the reactive oxygen spices (ROS) signaling and redox homeostasis have emerged as a hub point in the pathologic mechanism involved in renal pathologies. ROS in low levels are necessary to maintain cell processes as well as the mitochondria homeostasis and its association with other organelles, especially the with the endoplasmic reticulum (ER). However, the information about how redox signaling interacts and interferes with other cellular processes and the mechanism involved has not been fully integrated. Furthermore, in higher concentrations, these ROS promotes pathologic pathways linked to renal disease progression like, mitochondrial biogenesis reduction, ER stress, calcium overload, inflammation, cell death and fibrosis. Therefore, the aim of this review is to describe the molecular mechanisms involved in the redox signaling influence on mitochondrial and ER homeostasis, focusing on lipid metabolism and ß-oxidation, mitochondrial biogenesis, inflammations, ER stress and calcium homeostasis, as well as the effects of these alteration in the genesis and development of renal disease, with emphasis in acute kidney injury (AKI) and chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico
| | | | - Laura María Reyes-Fermín
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
47
|
Hwang J, Lauinger L, Kaiser P. Distinct Stress Regulators in the CRL Family: Emerging Roles of F-Box Proteins: Cullin-RING Ligases and Stress-Sensing. Bioessays 2025; 47:e202400249. [PMID: 40091294 DOI: 10.1002/bies.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Cullin-RING ligases (CRLs) are central regulators of environmental and cellular stress responses, orchestrating diverse processes through the ubiquitination of substrate proteins. As modular complexes, CRLs employ substrate-specific adaptors to target proteins for degradation and other ubiquitin-mediated processes, enabling dynamic adaptation to environmental cues. Recent advances have highlighted the largest CRL subfamily SCF (Skp1-cullin-F-box) in environmental sensing, a role historically underappreciated for SCF ubiquitin ligases. Notably, emerging evidence suggests that the F-box domain, a 50-amino acid motif traditionally recognized for mediating protein-protein interactions, can act as a direct environmental sensor due to its ability to bind heavy metals. Despite these advances, the roles of many CRL components in environmental sensing remain poorly understood. This review provides an overview of CRLs in stress response regulation and emphasizes the emerging functions of F-box proteins in environmental adaptation.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
48
|
Lei X, Meng J, Gao T, Zhang M, Zhang Z, Xie S, Su Y, Li X. pH-responsive photothermal effect and heterojunction formation for tumor-specific pyroelectrodynamic and nanozyme-catalyzed starvation therapy. Acta Biomater 2025; 197:444-459. [PMID: 40113022 DOI: 10.1016/j.actbio.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Pyroelectrodynamic therapy (PEDT) integrates photothermal ablation and catalytic generation of reactive oxygen species (ROS), yet tumor-specific PEDT remains unexplored. Herein, pyroelectric tetragonal BaTiO3 (tBT) nanoparticles (NPs) were capped with polyaniline (PANI) via a Pickering emulsion-masking method, followed by in situ deposition of MnO2 nanodots on PANI caps to synthesize Janus tBT@PANI-MnO2 NPs. PANI emeraldine salts (PANI-ES) at pH 6.5 display strong near-infrared II (NIR-II) absorption and 4.67-fold higher photothermal conversion efficiency than that of PANI emeraldine base at pH 7.4. MnO2 nanodots exhibit self-propagating glucose oxidase (GOx), peroxidase (POD), and catalase (CAT) catalytic activities, remodeling the tumor microenvironment and enhancing PTT and PEDT efficacy. Heterojunction formation with PANI-ES generates 1.63-fold higher pyroelectric potentials compared to pristine tBT NPs. The pyroelectric field selectively alters tumor cell membrane potential and, along with the self-propelled motion by asymmetrical thermophoresis from the Janus structure, promotes cellular uptake of NPs. Tumor accumulation of NPs increases 3.2 folds with broad intratumoral distributions of NPs and ROS. Synergistic toxicities to tumor cells arise from PANI-mediated photothermal effect, ROS generation from tBT-PANI heterojunctions, and MnO2 nanozymes-catalyzed glucose depletion. Integration of PEDT, mild PTT and MnO2-catalyzed starvation therapy completely inhibits tumor growth, extends animal survival, elevated intratumoral O2 levels, and suppressed adenosine triphosphate productions. Thus, this Janus NP design represents the first attempt to develop pH-responsive heterojunctions and enables tumor-specific PTT, PEDT and nanozyme-catalyzed starvation therapy. STATEMENT OF SIGNIFICANCE: Although phototherapy achieves light localization for tumor suppression, inevitable toxicities usually occur when light penetrates healthy tissues with accumulation of photoactive agents. Extensive efforts have been dedicated to exploring tumor microenvironment-responsive drug delivery systems, aiming to enhance tumor-targeting efficiency and treatment selectivity of anticancer agents. However, to date, no efforts have been made to develop a method that can achieve tumor-specific temperature elevation and pyroelectrodynamic therapy while simultaneously minimizing exposure to normal tissues. To address these challenges, a concise strategy is proposed to generate pyroelectric heterojunctions in response to the slightly acidic tumor microenvironment, taking advantages of reversible protonation and deprotonation properties of polyaniline. The tumor-specific conversion into polyaniline emeraldine salts triggers strong NIR-II absorptions and pyroelectric effect, and the self-propagated catalytic reactions of MnO2 nanozymes reinforce photothermal, pyroelectrodynamic and starvation therapies of tumors.
Collapse
Affiliation(s)
- Xia Lei
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jie Meng
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Tianyu Gao
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Mengxue Zhang
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhanlin Zhang
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yupeng Su
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
49
|
Golenia A, Olejnik P. The Role of Oxidative Stress in Ischaemic Stroke and the Influence of Gut Microbiota. Antioxidants (Basel) 2025; 14:542. [PMID: 40427424 PMCID: PMC12108301 DOI: 10.3390/antiox14050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Ischaemic stroke is the most prevalent stroke subtype, accounting for 80-90% of all cases worldwide, and remains a leading cause of morbidity and mortality. Its pathophysiology involves complex molecular cascades, with oxidative stress playing a central role. During cerebral ischaemia, reduced blood flow deprives neurons of essential oxygen and nutrients, triggering excitotoxicity, mitochondrial dysfunction, and excessive production of reactive oxygen and nitrogen species (RONS). Not only do these species damage cellular components, but they also activate inflammatory pathways, particularly those mediated by the transcription factor nuclear factor kappa-B (NF-κB). The pro-inflammatory milieu intensifies neuronal damage, compromises blood-brain barrier integrity, and exacerbates reperfusion-induced damage. Recent findings highlight the importance of the gut microbiota in modulating stroke outcomes, primarily through metabolic and immunological interactions along the gut-brain axis. Dysbiosis, characterised by reduced microbial diversity and an imbalance between beneficial and harmful strains, has been linked to increased systemic inflammation, oxidative stress, and worse prognoses. Specific gut-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), appear to either mitigate or intensify neuronal injury. SCFAs may strengthen the blood-brain barrier and temper inflammatory responses, whereas elevated TMAO levels may increase thrombotic risk. This narrative review consolidates both experimental and clinical data demonstrating the central role of oxidative stress in ischaemic stroke pathophysiology and explores the gut microbiota's ability to modulate these damaging processes. Therapeutic strategies targeting oxidative pathways or rebalancing gut microbial composition, such as antioxidant supplementation, dietary modulation, probiotics, and faecal microbiota transplantation, present promising paradigms for stroke intervention. However, their widespread clinical implementation is hindered by a lack of large-scale, randomised trials. Future efforts should employ a multidisciplinary approach to elucidate the intricate mechanisms linking oxidative stress and gut dysbiosis to ischaemic stroke, thereby paving the way for novel, mechanism-based therapies for improved patient outcomes.
Collapse
Affiliation(s)
- Aleksandra Golenia
- Department of Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | | |
Collapse
|
50
|
Gu Q, Wang Y, Zhang H, Yang W, Meng X, Zhao M. SS-31: A promising therapeutic agent against bleomycin-induced pulmonary fibrosis in Mice. PLoS One 2025; 20:e0315473. [PMID: 40299935 PMCID: PMC12040141 DOI: 10.1371/journal.pone.0315473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/26/2025] [Indexed: 05/01/2025] Open
Abstract
OBJECTIVE The aim of this research was to investigate if the mitochondria- targeting peptide SS-31 could serve as a protective measure against bleomycin-induced pulmonary fibrosis in mice. METHOD Mice were split into four groups named CON group, SS-31 group, BLM group, and the BLM + SS-31 group. SS-31 (intraperitoneal injection, 5mg/Kg) was administered daily from the day prior to the experiment for the control and model groups. Mice were euthanized after 28 days of the experiment, following which blood, bronchoalveolar lavage fluid, and lung tissue were collected for analysis. RESULTS BLM caused a large decrease in body weight in mice. However, the intraperitoneal injection of SS-31 slowed down the body weight loss in the mice. It was observed through HE and Masson staining, immunohistochemistry, hydroxyproline detection, and fibrosis index measurement via Western blot that SS-31 could alleviate pulmonary fibrosis caused by BLM. Electron microscopy and ATP detection further suggested that SS-31 might help protect mitochondrial structure and function. It was also found that SS-31 could reduce reactive oxygen species and myeloperoxidase, thereby alleviating the reduction of antioxidant factor MPO and SOD, as well as diminishing the inflammatory factors TNF-α, IL-1 β, and IL-6. CONCLUSION The mitochondria-targeting drug SS-31 exhibited potential in mitigating bleomycin-induced pulmonary fibrosis, improving mitochondrial structural and functional damage, stabilizing the balance between oxidative and antioxidant systems, reducing inflammatory factor expression, and improving apoptosis in lung tissue.
Collapse
Affiliation(s)
- Quankuan Gu
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Yunlong Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Haichao Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Wei Yang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Xianglin Meng
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|