1
|
Dou R, Zhu X, Liu X, Bao J, Jin R, Mao G, Yu H, Liu Y. Icariside II inhibits gastric cancer progression by suppressing the Wnt/β-catenin signaling pathway. Cytotechnology 2025; 77:106. [PMID: 40416998 PMCID: PMC12098252 DOI: 10.1007/s10616-025-00761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/24/2025] [Indexed: 05/27/2025] Open
Abstract
Gastric cancer is one of the common malignant tumours in clinical practice with poor prognosis and high mortality. Icariside II is a single compound extracted from the traditional Chinese medicine Epimedium brevicornu Maxim, and it is also the main active ingredient of Epimedium brevicornu Maxim that exerts pharmacological effects. Studies have shown that Icariside II has anti-tumour activity, but its mechanism of action on gastric cancer cells is unclear. This study aims to analyze the impact of Icariside II on gastric cancer cells as well as on xenograft tumor models of gastric cancer, and to examine the potential molecular regulatory pathways. GES-1, a normal gastric cell line, and gastric cancer cell lines AGS and MGC803 were cultured to investigate the cytotoxic effects of Icariside II using the methylthiazolyldiphenyl-tetrazolium (MTT). Flow cytometry (FCM) was employed to measure the impact of Icariside II on the apoptosis levels of gastric cancer cells, while western blot analysis was used to examine the expression of apoptosis-related proteins and the Wnt/β-catenin signaling pathway. Subsequently, a xenograft tumor model was established and treated with Icariside II to observe changes in tumor volume and weight in the model mice. Finally, alterations in the expression of the Wnt/β-catenin signaling pathway were assessed through immunofluorescence (IF) and immunohistochemistry (IHC). The results showed that Icariside II had faint significant toxic effect on GES-1 cells, and was able to inhibit the proliferative activity and promote apoptosis of the gastric cancer cells. Moreover, Icariside II was able to inhibit the growth of gastric cancer in nude mice subcutaneous transplantation tumor. In addition, both in vivo and in vitro results indicated that Icariside II inhibited the activation of the Wnt/β-catenin signaling pathway. Icariside II inhibited tumorigenicity of gastric cancer by suppressing the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Rongrong Dou
- Department of Pathology and Pathophysiology, Medical School of Nantong University, Nantong, 226001 China
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Xiaowei Zhu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Xinyun Liu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Jingjing Bao
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Rongrong Jin
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Guangyao Mao
- Central laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001 China
- Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
Ouyang W, Deng Z, Li Y, Chi W, Huang Z, Zhan C, Li M, Wang D, Li F, Liu Y, Ling L. Traditional Chinese medicine in cerebral infarction: Integrative strategies and future directions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156841. [PMID: 40393244 DOI: 10.1016/j.phymed.2025.156841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/09/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Cerebral infarction is a predominant cause of global disability and mortality, characterized by pathogenesis that includes vascular stenosis, thrombosis, ischemic necrosis, and neuroinflammation. Despite progress in medical science, effective treatments for cerebral infarction are still constrained, prompting the investigation of alternative therapeutic strategies. PURPOSE The objective of this review is to assess the efficacy of Traditional Chinese Medicine (TCM) as a treatment for cerebral infarction, emphasizing its mechanisms of action, effectiveness, and clinical relevance. STUDY DESIGN An extensive review of the existing literature regarding the role of TCM in the management of cerebral infarction, encompassing investigations on specific remedies, Chinese medicinal formulations, and contemporary advancements in preparation methodologies. METHODS This review analyzes diverse TCM remedies recognized for their antioxidant, anti-inflammatory, and neuroprotective properties. Furthermore, it examines the synergistic effects of Chinese medicine formulations in modulating inflammation, enhancing blood circulation, and facilitating neural repair. Contemporary technological advancements that improve the accuracy and efficacy of Chinese medicine are also taken into account. RESULTS TCM has shown considerable promise in tackling the complex aspects of cerebral infarction. Specific remedies and formulations have demonstrated potential in modulating inflammatory responses, enhancing cerebral blood flow, and promoting neural repair mechanisms. Contemporary formulations have enhanced these effects, facilitating more precise and effective treatment. CONCLUSION While TCM presents a promising multi-faceted and multi-tiered strategy for addressing cerebral infarction, obstacles such as elucidating mechanisms and achieving standardization must be addressed. Continued research and clinical trials are crucial to fully exploit the therapeutic potential of TCM in the management of cerebral infarction.
Collapse
Affiliation(s)
- Wenhao Ouyang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China
| | - Zekang Deng
- School of Clinical Medicine, Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China
| | - Wenjun Chi
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China
| | - Zhenjun Huang
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Chengyi Zhan
- School of Clinical Medicine, Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Min Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524037, China; Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, No. 1298, Xueyuan Avenue, Shenzhen, Guangdong 518000, China.
| | - Yajie Liu
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China.
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
3
|
Cao H, Feng T, Ji K, Liu X, Xu J, Chen S, Zeng J, Li Q, Lv L, Zhang X, Wang X, Zhang B. Selecting the Right C18 Stationary Phase with Parallel Array Microfluidic Column Liquid Chromatography (palmLC). Anal Chem 2025. [PMID: 40353597 DOI: 10.1021/acs.analchem.5c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Chromatographic separation plays an essential role in medicinal research, especially for complex natural products such as traditional Chinese medicine (TCM), where selecting a suitable stationary phase is of primary importance and requires significant effort. Existing stationary phase screening (SPS) methods often necessitate inflexible and expensive instrumentation or a prolonged screening period. Despite this, efforts are mostly focused on stationary phases with significantly different properties, while those with subtle differences, e.g., various C18 stationary phases, are often overlooked, which can result in remarkably different chromatographic layouts, especially in pursuing optimum selectivity of target active components in TCM analysis. Herein, we report an efficient, low-cost, and easy-to-prototype parallel array microfluidic column liquid chromatography (palmLC) platform for SPS based on batch-prepared capillary columns and a multichannel capillary microfluidic assembly. In comparison with a standard single-column system, the developed palmLC system maintained a nondegradable chromatographic performance in terms of efficiency (5110 vs 5150 plates) and resolution (2.77 vs 3.39), ensuring reliable screening results while achieving a 600% increase in screening efficiency. In the case studies of Panax notoginseng and Gastrodia elata, among the six C18 phases screened, the C18 phase with the best separation performance was successfully identified. Finally, in SPS for Polygala tenuifolia separation, along the chromatograms, different C18 phases presented individual optimum resolutions for certain medicinal components, indicating that the six-in-one-shot palmLC strategy can effectively provide a panoramic display of the medicinal material, suggesting it is a useful tool for high definition quality control and profiling in TCM analysis.
Collapse
Affiliation(s)
- Hanchen Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Tianyue Feng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Kaiming Ji
- Food and Drug Inspection Center of Tongling, Tongling 244061, China
| | - Xiaotong Liu
- Tieling Health Vocational College, Tieling 112600, China
| | - Jian Xu
- Chuzhou Inspection and Testing Institute, Chuzhou 239000, China
| | - Shiyi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Qiang Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Lin Lv
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd., Hefei 230088, China
| | | | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Shu Z, Hua R, Yan D, Lu C, Ren M, Gao H, Xu N, Li J, Zhu H, Zhang J, Zhao D, Hui C, Liao C, Ye J, Hao Q, Wang X, Li X, Liu B, Zhou X, Zhang R, Xu M, Zhou X. ISPO: An Integrated Ontology of Symptom Phenotypes for Semantic Integration of Traditional Chinese Medical Data. Methods Inf Med 2025. [PMID: 40328309 DOI: 10.1055/a-2576-1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Symptom phenotypes are crucial for diagnosing and treating various disease conditions. However, the diversity of symptom terminologies poses a significant challenge to analyzing and sharing of symptom-related medical data, particularly in the field of traditional Chinese medicine (TCM). This study aims to construct an Integrated Symptom Phenotype Ontology (ISPO) to support data mining of Chinese electronic medical records (EMRs) and real-world studies in the TCM field.We manually annotated and extracted symptom terms from 21 classical TCM textbooks and 78,696 inpatient EMRs, and integrated them with five publicly available symptom-related biomedical vocabularies. Through a human-machine collaborative approach for terminology editing and ontology development, including term screening, semantic mapping, and concept classification, we constructed a high-quality symptom ontology that integrates both TCM and Western medical terminology.ISPO provides 3,147 concepts, 23,475 terms, and 23,363 hierarchical relationships. Compared with international symptom-related ontologies such as the Symptom Ontology, ISPO offers significant improvements in the number of terms and synonymous relationships. Furthermore, evaluation across three independent curated clinical datasets demonstrated that ISPO achieved over 90% coverage of symptom terms, highlighting its strong clinical usability and completeness.ISPO represents the first clinical ontology globally dedicated to the systematic representation of symptoms. It integrates symptom terminologies from historical and contemporary sources, encompassing both TCM and Western medicine, thereby enhancing semantic interoperability across heterogeneous medical data sources and clinical decision support systems in TCM.
Collapse
Affiliation(s)
- Zixin Shu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, People's Republic of China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Rui Hua
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Dengying Yan
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Chenxia Lu
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, People's Republic of China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Meng Ren
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, People's Republic of China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Hong Gao
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Ning Xu
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jun Li
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Hui Zhu
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, People's Republic of China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Jia Zhang
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, People's Republic of China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Dan Zhao
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Chenyang Hui
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Chu Liao
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Junqiu Ye
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Qi Hao
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Xinyan Wang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Xiaodong Li
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, People's Republic of China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Baoyan Liu
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xiaji Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Runshun Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Min Xu
- Information Technology Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xuezhong Zhou
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Wang J, Niu Q, Yu Y, Liu J, Zhang S, Zong W, Tian S, Wang Z, Li B. Modular-Based Synergetic Mechanisms of Jasminoidin and Ursodeoxycholic Acid in Cerebral Ischemia Therapy. Biomedicines 2025; 13:938. [PMID: 40299522 PMCID: PMC12025273 DOI: 10.3390/biomedicines13040938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives: Jasminoidin (JA) and ursodeoxycholic acid (UA) have been shown to exert synergistic effects on cerebral ischemia (CI) therapy, but the underlying mechanisms remain to be elucidated. Objective: To elucidate the synergistic mechanisms involved in the combined use of JA and UA (JU) for CI therapy using a driver-induced modular screening (DiMS) strategy. Methods: Network proximity and topology-based approaches were used to identify synergistic modules and driver genes from an anti-ischemic microarray dataset (ArrayExpress, E-TABM-662). A middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in 30 Sprague Dawley rats, divided into sham, vehicle, JA (25 mg/mL), UA (7 mg/mL), and JU (JA:UA = 1:1) groups. After 90 minutes of ischemia, infarct volume and neurological deficit scores were evaluated. Western blotting was performed 24 h after administration to validate key protein changes. Results: Six, eleven, and four drug-responsive On_modules were identified for JA, UA, and JU, respectively. Three synergistic modules (Sy-modules, JU-Mod-7, 8, and 10) and 12 driver genes (e.g., NRF1, FN1, CUL3) were identified, mainly involving the PI3K-Akt and MAPK pathways and regulation of the actin cytoskeleton. JA and UA synergistically reduced infarct volume and neurological deficit score (2.5, p < 0.05) in MCAO/R rats. In vivo studies demonstrated that JU suppressed the expression of CUL3, FN1, and ITGA4, while it increased that of NRF1. Conclusions: JU acts synergistically on CI-reperfusion injury by regulating FN1, CUL3, ITGA4, and NRF1 and inducing the PI3K-Akt, MAPK, and actin cytoskeleton pathways. DiMS provides a new approach to uncover mechanisms of combination therapies.
Collapse
Affiliation(s)
- Jingai Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Siwei Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| |
Collapse
|
6
|
Li Y, Zhou L, Sun K, Guo R, Li Z, Wen Q, Fu G, Yang S. Integrated network pharmacology, proteomics, molecular docking, and experiments in vivo and in vitro to explore the efficacy and potential mechanism of bufalin against hepatocellular carcinoma angiogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119589. [PMID: 40057142 DOI: 10.1016/j.jep.2025.119589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/16/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufalin is a potent bioactive compound extracted from the venom of toads such as Bufo gargarizans. It has rich pharmacological effects, and its traditional applications mainly include anti-cancer, anti-inflammatory and analgesic, especially in cancer treatment, which has been a hot topic of research. Prior research has suggested that bufalin may have anti-tumor angiogenic effects. However, the efficacy and mechanism of bufalin inhibiting hepatocellular carcinoma (HCC) angiogenesis have yet to be further investigated. AIM OF THE STUDY An extensive detailed strategy via network pharmacology, proteomics, histopathological analysis, molecular docking, in vitro experiments, and in vivo magnetic resonance imaging (MRI) examinations were adopted to investigate the efficacy and mechanisms of bufalin against HCC angiogenesis. MATERIALS AND METHODS Micro-vessel density (MVD) and intravoxel incoherent motion (IVIM) perfusion-related parameters based on magnetic resonance diffusion-weighted imaging were used to identify the effect of bufalin against HCC angiogenesis. Potential bufalin and HCC targets were gathered from appropriate databases. The STRING database was used to construct the target protein interaction networks. The "clusterprofiler" package (version 4.2.2) in R was applied to conduct the target-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. Network pharmacology and proteomics were integrated to identify key targets and pathways related to bufalin against HCC angiogenesis. Molecular docking and Western Blot were utilized to validate the findings. RESULTS Analysis through IVIM and MVD showed that bufalin could inhibit HCC angiogenesis in nude mice models. A total of 159 common targets of bufalin and HCC were identified by network pharmacology. GO analysis revealed that these targets focused on multiple angiogenesis-related biological processes, including endothelial cell proliferation and migration, sprouting angiogenesis, and regulation of angiogenesis. The KEGG enrichment results suggested that bufalin could regulate multiple signaling pathways to inhibit HCC angiogenesis, including VEGF, MAPK, PI3K-Akt, mTOR, and HIF-1 signaling pathways. MAPK1, MAPK14, PRKCA, EIF4E, and APEX1 might be critical targets in regulating the above pathways. The molecular docking and Western blot analysis verified the effects of bufalin on target proteins. CONCLUSION This study demonstrated that bufalin might inhibit HCC angiogenesis by regulating multiple targets and pathways. These findings offer theoretical insights and experimental foundations for the clinical application and commercial development of bufalin in the treatment of HCC.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Lingwei Zhou
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Kang Sun
- Department of Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Ran Guo
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Zehua Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Qingqing Wen
- GE Healthcare, MR Research, Beijing, PK, People's Republic of China
| | - Guifeng Fu
- GE Healthcare, MR Research, Beijing, PK, People's Republic of China
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China.
| |
Collapse
|
7
|
Zhu J, Liu X, Gao P. Digital intelligence technology: new quality productivity for precision traditional Chinese medicine. Front Pharmacol 2025; 16:1526187. [PMID: 40264673 PMCID: PMC12012302 DOI: 10.3389/fphar.2025.1526187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Traditional Chinese medicine is a complex medical system characterized by multiple metabolites, targets, and pathways, known for its low drug resistance and significant efficacy. However, challenges persist within Traditional Chinese medicine, including difficulties in assessing the quality of Botanical drugs, reliance on experiential knowledge for disease diagnosis and treatment, and a lack of clarity regarding the pharmacological mechanisms of Traditional Chinese medicine. The advancement of digital intelligence technology is driving a shift towards precision medicine within the Traditional Chinese medicine model. This transition propels Traditional Chinese medicine into an era of precision, intelligence, and digitalization. This paper introduces standard digital intelligence technologies and explores the application of digital intelligence technologies in quality control and evaluation of Traditional Chinese medicine, studies the research status of digital intelligence technologies in assisting diagnosis, treatment and prevention of diseases, and further promotes the application and development of digital intelligence technologies in the field of Traditional Chinese medicine.
Collapse
Affiliation(s)
| | - Xiaonan Liu
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Yu Z, Li T, Zheng Z, Yang X, Guo X, Zhang X, Jiang H, Zhu L, Yang B, Wang Y, Luo J, Yang X, Tang T, Hu E. Tailoring a traditional Chinese medicine prescription for complex diseases: A novel multi-targets-directed gradient weighting strategy. J Pharm Anal 2025; 15:101199. [PMID: 40297631 PMCID: PMC12036049 DOI: 10.1016/j.jpha.2025.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 04/30/2025] Open
Abstract
Traditional Chinese medicine (TCM) exerts integrative effects on complex diseases owing to the characteristics of multiple components with multiple targets. However, the syndrome-based system of diagnosis and treatment in TCM can easily lead to bias because of varying medication preferences among physicians, which has been a major challenge in the global acceptance and application of TCM. Therefore, a standardized TCM prescription system needs to be explored to promote its clinical application. In this study, we first developed a gradient weighted disease-target-herbal ingredient-herb network to aid TCM formulation. We tested its efficacy against intracerebral hemorrhage (ICH). First, the top 100 ICH targets in the GeneCards database were screened according to their relevance scores. Then, SymMap and Traditional Chinese Medicine Systems Pharmacology (TCMSP) databases were applied to find out the target-related ingredients and ingredient-containing herbs, respectively. The relevance of the resulting ingredients and herbs to ICH was determined by adding the relevance scores of the corresponding targets. The top five ICH therapeutic herbs were combined to form a tailored TCM prescriptions. The absorbed components in the serum were detected. In a mouse model of ICH, the new prescription exerted multifaceted effects, including improved neurological function, as well as attenuated neuronal damage, cell apoptosis, vascular leakage, and neuroinflammation. These effects matched well with the core pathological changes in ICH. The multi-targets-directed gradient-weighting strategy presents a promising avenue for tailoring precise, multipronged, unbiased, and standardized TCM prescriptions for complex diseases. This study provides a paradigm for advanced achievements-driven modern innovation in TCM concepts.
Collapse
Affiliation(s)
- Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhi Zheng
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases), Nanchang, 330038, China
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330038, China
| | - Xiya Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xin Guo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- The First Affiliated Hospital, Children's Medical Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xindi Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haoying Jiang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bo Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xueping Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases), Nanchang, 330038, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases), Nanchang, 330038, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
9
|
Yuan Z, Zhao X, Zhang Y, Jiao Y, Liu Y, Gao C, Zhang J, Ma Y, Wang Z, Li T. Using Integrated Network Pharmacology and Metabolomics to Reveal the Mechanisms of the Combined Intervention of Ligustrazine and Sinomenine in CCI-Induced Neuropathic Pain Rats. Int J Mol Sci 2025; 26:2604. [PMID: 40141247 PMCID: PMC11942381 DOI: 10.3390/ijms26062604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Neuropathic pain (NP) is a type of chronic pain resulting from injury or dysfunction of the nerves or spinal cord. Previous studies have shown that the combination of ligustrazine (LGZ) and sinomenine (SIN) exerts a synergistic antinociceptive effect in peripheral and central NP models. On this basis, a comprehensive analgesic evaluation was performed in a chronic constriction injury (CCI)-induced NP model in rats. Sciatic nerve histopathological changes were observed, and 22 cytokines and chemokines levels were analyzed. We also combined network pharmacology and metabolomics to explore their molecular mechanisms. Results showed that the combination of LGZ and SIN significantly alleviated the pain-like behaviors in CCI rats in a time- and dose-dependent manner, demonstrating superior therapeutic effects compared to LGZ or SIN alone. It also improved pathological damage to sciatic nerves and regulated inflammatory cytokine levels. Network pharmacology identified shared and distinct pain-related targets for LGZ and SIN, while metabolomics revealed 54 differential metabolites in plasma, and 17 differential metabolites in CSF were associated with the combined intervention of LGZ and SIN. Finally, through an integrated analysis of the core targets and differential metabolites, tyrosine metabolism, phenylalanine metabolism, and arginine and proline metabolism were identified as potential key metabolic pathways underlying the therapeutic effects of LGZ and SIN in CCI treatment. In conclusion, our study provides evidence to support the clinical application of LGZ and SIN in the treatment of NP.
Collapse
Affiliation(s)
- Zhaoyue Yuan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Xiaoliang Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yue Jiao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Yang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Chang Gao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Jidan Zhang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Yanyan Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Zhiguo Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| |
Collapse
|
10
|
Tian XT, Zhan JP, Qiao C, Ge JL, Li DH. Rising of natural therapies: Potential and challenges of traditional Chinese medicine in the management of gastrointestinal diseases. World J Gastroenterol 2025; 31:103145. [PMID: 40061595 PMCID: PMC11886042 DOI: 10.3748/wjg.v31.i9.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
In the contemporary medical landscape, the burgeoning interest in natural therapies, particularly for managing gastrointestinal disorders, has brought traditional Chinese medicine (TCM) to the forefront. This article explains the core principles and clinical applications of TCM in treating these conditions, furthering the discourse through an examination of integrated TCM strategies, as demonstrated in the study by Zhou et al. While TCM has shown promising clinical outcomes, it encounters significant hurdles in standardization, mechanistic research, and clinical validation. Future investigations should aim to solidify the scientific underpinnings of TCM and expand its use in gastrointestinal disease management, striving for a seamless fusion of traditional and contemporary medical practices.
Collapse
Affiliation(s)
- Xiao-Tong Tian
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, Hebei Province, China
| | - Jiang-Ping Zhan
- Internal Medicine, Chengde Kangyang Hospital, Chengde 067000, Hebei Province, China
| | - Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, Hebei Province, China
| | - Jian-Li Ge
- Department of Peripheral Vascular, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Shijiazhuang 050000, Hebei Province, China
| | - De-Hui Li
- Department of Oncology II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
11
|
Tian XT, Zhan JP, Qiao C, Ge JL, Li DH. Rising of natural therapies: Potential and challenges of traditional Chinese medicine in the management of gastrointestinal diseases. World J Gastroenterol 2025; 31. [DOI: doi10.3748/wjg.v31.i9.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
In the contemporary medical landscape, the burgeoning interest in natural therapies, particularly for managing gastrointestinal disorders, has brought traditional Chinese medicine (TCM) to the forefront. This article explains the core principles and clinical applications of TCM in treating these conditions, furthering the discourse through an examination of integrated TCM strategies, as demonstrated in the study by Zhou et al . While TCM has shown promising clinical outcomes, it encounters significant hurdles in standardization, mechanistic research, and clinical validation. Future investigations should aim to solidify the scientific underpinnings of TCM and expand its use in gastrointestinal disease management, striving for a seamless fusion of traditional and contemporary medical practices.
Collapse
|
12
|
Li Y, Shen Y, Cai Y, Zhang Y, Gao J, Huang L, Si W, Zhou K, Gao S, Luo Q. Integrating transcriptomic data with a novel drug efficacy prediction model for TCM active compound discovery. Sci Rep 2025; 15:7688. [PMID: 40044718 PMCID: PMC11882833 DOI: 10.1038/s41598-024-82498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/03/2024] [Indexed: 03/09/2025] Open
Abstract
Identifying the active natural compounds remains a challenge for drug discovery, and new algorithms need to be developed to predict active ingredients from complex natural products. Here, we proposed Meta-DEP, a Meta-paths-based Drug Efficacy Prediction based on drug-protein-disease heterogeneity network, where Meta-paths contain all the shortest paths between drug targets and disease-related proteins in the network and drug efficacy is measured by a predictive score according to drug disease network proximity. Experiments show that Meta-DEP performs better than traditional network topology analysis on drug-disease interaction prediction task. Further investigations demonstrate that the key targets identified by Meta-DEP for drug efficacy are consistent with clinical pharmacological evidence. To prove that Meta-DEP can be used to discover active natural compounds, we apply it to predict the relationship between the monomeric components of traditional Chinese medicine included in the TCMSP database and diseases. Results indicate that Meta-DEP can accurately predict most of the drug-disease pairs included in the TCMSP database. In addition, biological experiments are directly used to demonstrate that Meta-DEP can mined active compound from traditional Chinese medicine with integrating disease transcriptomic data. Overall, the model developed in this study provides new impetus for driving the natural compound into innovative lead molecule. Code and data are available at https://github.com/t9lex/Meta-DEP .
Collapse
Affiliation(s)
- Yingcan Li
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
- Research Center for Neurological Disorders, School of Basic Medicine, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yu Shen
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Yezi Cai
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
- Research Center for Neurological Disorders, School of Basic Medicine, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yulin Zhang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Jiahui Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
- Research Center for Neurological Disorders, School of Basic Medicine, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Lei Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Weinuo Si
- Research Center for Neurological Disorders, School of Basic Medicine, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Kai Zhou
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| | - Qichao Luo
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China.
- Research Center for Neurological Disorders, School of Basic Medicine, Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
13
|
Ye CQ, Leng J, Jin MY, Meng YD, Zhao ZY, Meng FX, Xu X, Fan SS, Luo HB, Meng XY. SysNatMed: rational natural medicine discovery by systems genetics. Front Pharmacol 2025; 16:1496061. [PMID: 40098618 PMCID: PMC11911470 DOI: 10.3389/fphar.2025.1496061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Although acknowledged as an important complement to modern medicine, the utility of natural medicine (NM) remains under-exploited. We aimed to develop a novel data-driven approach for natural medicine discovery. Methods GWAS summary statistics of disease (Alzheimer's disease, i.e., AD, for the case study) and quantitative trait loci were collected from public sources. The ranking of disease-gene associations was established using summary-based Mendelian randomization. The comprehensive hierarchical relationships among ingredients, natural products, and target genes were compiled from the BATMAN-TCM v2.0 database. Based on the ranking of disease-gene associations and the comprehensive hierarchical relationships among ingredients, natural products, and target genes, we prioritized NM ingredients as potential candidates for AD management and examined the efficacy for AD prevention using rat AD models. Results We developed a non-trivial transparent data-driven framework for systems genetics-based NM discovery. Among the 139 prioritized candidates for AD management, we demonstrated the efficacy of Dang Gui (Angelicae Sinensis Radix, ASR) and Dang Shen (Codonopsis Pilosula, CP) for AD prevention using rat models. Mechanistically, we showed that ASR may prevent AD-related damage through protection of neural cells, as well as inhibition of microglia, angiogenesis, inflammation, and extracellular matrices. Conclusion Our method holds potential for the development of new strategies of complementary medicine for disease treatment and prevention, especially for complex conditions involving a number of genes.
Collapse
Affiliation(s)
- Chang-Qing Ye
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- Xiangyang Hospital of Traditional Chinese Medicine and Xiangyang Institute of Traditional Chinese Medicine, Xiangyang, China
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Jie Leng
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Meng-Yuan Jin
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
| | - Yuan-Dong Meng
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Zi-Yi Zhao
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Fan-Xing Meng
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Xuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Sha-Sha Fan
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Hong-Bin Luo
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Xiang-Yu Meng
- Health Science Center, Hubei Minzu University, Enshi, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China
| |
Collapse
|
14
|
Wu X, Wei J, Ran W, Liu D, Yi Y, Gong M, Liu X, Gong Q, Li H, Gao J. The Gut Microbiota-Xanthurenic Acid-Aromatic Hydrocarbon Receptor Axis Mediates the Anticolitic Effects of Trilobatin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412234. [PMID: 39836604 PMCID: PMC11904984 DOI: 10.1002/advs.202412234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Current treatments for ulcerative colitis (UC) remain limited, highlighting the need for novel therapeutic strategies. Trilobatin (TLB), a naturally derived food additive, exhibits potential anti-inflammatory properties. In this study, a dextran sulfate sodium (DSS)-induced animal model is used to investigate the effects of TLB on UC. It is found TLB significantly alleviates DSS-induced UC in mice, as evidenced by a reduction in the disease activity index, an increase in colon length, improvement in histopathological lesions. Furthermore, TLB treatment results in a decrease in proinflammatory cytokines and an increase in anti-inflammatory cytokines. TLB mitigates UC by modulating the intestinal microbiota, particularly Akkermansia, which enhances tryptophan metabolism and upregulates the production of xanthurenic acid (XANA). To confirm the role of TLB-induced microbiota changes, experiments are performed with pseudogerm-free mice and fecal transplantation. It is also identified XANA as a key metabolite that mediates TLB's protective effects. Both TLB and XANA markedly activate the aromatic hydrocarbon receptor (AhR). Administration of an AhR antagonist abrogates their protective effects, thereby confirming the involvement of AhR in the underlying mechanism. In conclusion, the study reveals a novel mechanism through which TLB alleviates UC by correcting microbiota imbalances, regulating tryptophan metabolism, enhancing XANA production, and activating AhR.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationDepartment of PharmacologyKey Laboratory of Basic Pharmacology of Guizhou Province and School of PharmacyZunyi Medical UniversityZunyi563000China
- Faculty of Functional Food and WineShenyang Pharmaceutical UniversityShenyang110016China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationDepartment of PharmacologyKey Laboratory of Basic Pharmacology of Guizhou Province and School of PharmacyZunyi Medical UniversityZunyi563000China
| | - Wang Ran
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationDepartment of PharmacologyKey Laboratory of Basic Pharmacology of Guizhou Province and School of PharmacyZunyi Medical UniversityZunyi563000China
| | - Dongjing Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationDepartment of PharmacologyKey Laboratory of Basic Pharmacology of Guizhou Province and School of PharmacyZunyi Medical UniversityZunyi563000China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationDepartment of PharmacologyKey Laboratory of Basic Pharmacology of Guizhou Province and School of PharmacyZunyi Medical UniversityZunyi563000China
| | - Miaoxian Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationDepartment of PharmacologyKey Laboratory of Basic Pharmacology of Guizhou Province and School of PharmacyZunyi Medical UniversityZunyi563000China
| | - Xin Liu
- School of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyang110016China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationDepartment of PharmacologyKey Laboratory of Basic Pharmacology of Guizhou Province and School of PharmacyZunyi Medical UniversityZunyi563000China
| | - Haibo Li
- School of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyang110016China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationDepartment of PharmacologyKey Laboratory of Basic Pharmacology of Guizhou Province and School of PharmacyZunyi Medical UniversityZunyi563000China
| |
Collapse
|
15
|
Liu Q, Chen Z, Wang B, Pan B, Zhang Z, Shen M, Zhao W, Zhang T, Li S, Liu L. Leveraging Network Target Theory for Efficient Prediction of Drug-Disease Interactions: A Transfer Learning Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409130. [PMID: 39874191 PMCID: PMC11923905 DOI: 10.1002/advs.202409130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/22/2024] [Indexed: 01/30/2025]
Abstract
Efficient virtual screening methods can expedite drug discovery and facilitate the development of innovative therapeutics. This study presents a novel transfer learning model based on network target theory, integrating deep learning techniques with diverse biological molecular networks to predict drug-disease interactions. By incorporating network techniques that leverage vast existing knowledge, the approach enables the extraction of more precise and informative drug features, resulting in the identification of 88,161 drug-disease interactions involving 7,940 drugs and 2,986 diseases. Furthermore, this model effectively addresses the challenge of balancing large-scale positive and negative samples, leading to improved performance across various evaluation metrics such as an Area under curve (AUC) of 0.9298 and an F1 score of 0.6316. Moreover, the algorithm accurately predicts drug combinations and achieves an F1 score of 0.7746 after fine-tuning. Additionally, it identifies two previously unexplored synergistic drug combinations for distinct cancer types in disease-specific biological network environments. These findings are further validated through in vitro cytotoxicity assays, demonstrating the potential of the model to enhance drug development and identify effective treatment regimens for specific diseases.
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Zizhen Chen
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
| | - Boyang Wang
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Boyu Pan
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
| | - Zhuoyu Zhang
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Miaomiao Shen
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
| | - Weibo Zhao
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Tingyu Zhang
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
| | - Shao Li
- Institute for TCM‐X, Department of AutomationTsinghua UniversityBeijing100084China
- Henan Academy of SciencesHenan450046China
| | - Liren Liu
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
| |
Collapse
|
16
|
Tian Y, Hu X, Zhang T, Li B, Fu Q, Li J. Advances in Chinese herbal medicine in modulating mitochondria to treat myocardial ischemia-reperfusion injury: a narrative review. Cardiovasc Diagn Ther 2025; 15:207-232. [PMID: 40115104 PMCID: PMC11921369 DOI: 10.21037/cdt-24-346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/28/2024] [Indexed: 03/23/2025]
Abstract
Background and Objective The urgent need to identify pathways that can mitigate myocardial ischemia-reperfusion injury (MIRI) has become a central focus in cardiovascular treatment. Chinese herbal medicine (CHM), renowned for its multi-component, multi-channel, and multi-target therapeutic properties, holds significant promise in the management of MIRI. Mitochondria, as pivotal players in MIRI, have been shown to be effectively modulated by CHM through various mechanisms. The objective of this narrative review is to underscore the critical role of mitochondria in MIRI and to provide an up-to-date overview of the latest research advancements in utilizing CHM to treat MIRI by targeting mitochondrial morphology and function. Methods The PubMed and the China National Knowledge Infrastructure (CNKI) databases were searched using keywords related to MIRI. Relevant English-language articles published from January 2019 to July 2024 were included in this narrative review. Key Content and Findings Mitochondria are intimately linked to MIRI. The mechanisms involve the regulation of mitochondrial biogenesis and energy metabolism, the functionality of the mitochondrial respiratory chain, resistance to oxidative stress-induced damage, the maintenance of mitochondrial homeostasis, the modulation of calcium ion homeostasis, the preservation of mitochondrial membrane potential, the opening of adenosine triphosphate (ATP)-sensitive potassium channels, and the effective control over the opening of the mitochondrial permeability transition pore, all of which contribute to the balance between autophagy and apoptosis in cardiomyocytes. Various effective monomers of CHM, extracts of CHM, compounds, and proprietary Chinese medicine have demonstrated promising therapeutic potential in basic research, among them, tonic and blood-activating CHMs account for the largest proportion. Conclusions The prospect of CHM targeting mitochondria for the treatment of MIRI is promising, yet it necessitates overcoming challenges such as low bioavailability and inadequate mechanistic research. By integrating traditional Chinese medicine theories with modern scientific technologies, it is imperative to delve deeper into and optimize the pharmacodynamics, pharmacokinetics, and clinical applications of these herbs.
Collapse
Affiliation(s)
- Yushi Tian
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyang Hu
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tingyu Zhang
- Acupuncture and Tuina Science, Liaoning University of Chinese Medicine, Shenyang, China
| | - Bojia Li
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Fu
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ji Li
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
17
|
Du Q, Yang J, Zhou B, Zeng W, Huang R, Zhao Y, Ren J, Qiu Y. Total saponin extracts of Pseudostellaria heterophylla ameliorates meibomian gland dysfunction through SCD1/SPT1/ceramide axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119368. [PMID: 39848415 DOI: 10.1016/j.jep.2025.119368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pseudostellaria heterophylla (Tài Zǐ Shēn, TZS) is a traditional Chinese medicine with spleen and qi benefits. Its immunomodulatory, anti-fatigue, anti-stress, and lipid metabolism regulation effects have been clinically confirmed, but its role in meibomian gland dysfunction (MGD) is still unclear. AIM OF THE STUDY This study aims to investigate the effect and mechanism of action of TZS in treating MGD. MATERIAL AND METHODS Several therapeutic agents were used to predict MGD treatment using the "Disease-Syndrome-TCM" network mechanism. We then performed a network pharmacology analysis to identify possible targets and pathways for drug treatment of the disease. It was then validated by in vitro experiments. The animal models were taken and analyzed by slit lamp and stereo microscope. HE and ORO staining analysis were then performed. Next, the expressions of key protein indicators were tested by IF, and finally the metabolism of key substances such as lipids and ceramides were detected by SRS imaging. RESULTS The "Disease-Syndrome-TCM" network mechanism was used to predict several therapeutic agents for MGD treatment including TZS et al. Network pharmacology analysis revealed that the targets of active components in the total saponins of TZS (PHS) were significantly enriched in the pathways of PPAR and AMPK. Subsequently, seven targets of PHS were identified, which were enriched in signaling pathways associated with lipid metabolism and inflammation. Furthermore, in vivo experiments showed that PHS alleviated meibomian glands (MG) obstruction and atrophy induced by A939, a SCD1 inhibitor. PHS treatment significantly increased PPAR-γ proteins in MGs, contributing to the normal differentiation of acini. Additionally, PHS treatment resulted in a reduction in the number of K10-positive cells, which partially prevented keratinization and abnormal differentiation of acinar cells. TUNEL assay results indicated that PHS mitigated apoptosis in MGs. Detailed exploration using Raman spectroscopy imaging showed that PHS could enhance the expression of SCD1 protein and the unsaturation degree of fatty acids, which in turn downregulated SPT1 protein and endogenous ceramides de novo biosynthesis. CONCLUSION This study elucidated the effects of PHS in alleviating MGD and highlighted the pharmacological mechanisms involved, specifically the upregulation of SCD1 and inhibition of de novo ceramides biosynthesis. These findings provided a research basis for advancing its clinical application in MGD treatment.
Collapse
Affiliation(s)
- Qiyue Du
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayong Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, China
| | - Bangyan Zhou
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Wenxuan Zeng
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Huang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China; Xiamen Key Laboratory of Chiral Drugs, Xiamen, China
| | - Yun Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China; Xiamen Key Laboratory of Chiral Drugs, Xiamen, China
| | - Jie Ren
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China; Xiamen Key Laboratory of Chiral Drugs, Xiamen, China.
| | - Yan Qiu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China; Xiamen Key Laboratory of Chiral Drugs, Xiamen, China.
| |
Collapse
|
18
|
Wu L, Sun Y, Yin Y, Wu Z, Liu R, Liu Y, Zhu Y, Shao M, Zhou H, Lu C, Zhang H. Lancao decoction in the treatment of alzheimer's disease via activating PI3K/AKT signaling to promote ERK involving in enhancing neuronal activities in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119017. [PMID: 39528121 DOI: 10.1016/j.jep.2024.119017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Previous study has demonstrated lancao decoction (LC), a traditional Chinese medicine (TCM) fomula and recorded in "Huangdineijing", has a therapeutic effect on cognitive impairment (early clinical manifestations of alzheimer's disease (AD), which suggests that LC may have potential therapeutic advantages for AD. Whether LC has the therapeutic effect on AD and its potential mechanisms were still further indicated. AIM OF THE STUDY In this study, we aimed to uncover the potential advantage and neuronal mechanisms of LC in the treatment of AD in APP/PS1 mice in the hippocampus. METHODS AND MATERIALS We chose APP/PS1 mice to combing with behavioral tests including morris water maze (MWM) or y-maze to determine the role of LC in the therapeutic actions of AD. Network pharmacology was used to screen potential targets and pathways involving in LC's treatments of AD. Western blot was used to detect the phosphorylated expressions of proteins in hippocampus in APP/PS1 mice in the hippocampus. Pharmacological interventions were used to elucidate the relationship between the role of LC in the treatment of AD and the pathway, as well as the upstream and downstream interactions with neuronal activities. RESULTS According to our previous LC effective dose (2.5 g/kg), the dose was also able to significantly reduce the latency to the platform, and significantly increase the number of crossing times and time spend in the target quadrant in APP/PS1 mice in MWM, which was consistent with donepezil (DON) after 14 days chronic treatments. Network pharmacology showed that PI3K/AKT and MAPK pathways were closely associated with LC's treatments of AD, and protein autophosphorylation played a role in this process. The phosphorylated expressions of PI3K and AKT were obviously reduced in APP/PS1 mice in the hippocampus, which were both reversed by LC or DON. The phosphorylated expressions of MAPK including P38, JNK and ERK were also significantly reduced in APP/PS1 mice hippocampus, but only the phosphorylated expression of ERK was reversed by LC or DON. Inhibiting the activities of PI3K/AKT pathway by LY294002 blocked LC's improvement of behavioral deficits in APP/PS1 mice, including reducing latency to platform and increasing the number of crossings time in MWM in APP/PS1 mice, which also blunted LC's up-regulated phosphorylated expressions of PI3K, AKT and ERK in the hippocampus. Moreover, suppressing the activities of ERK by PD98059 also blocked LC's improvement of AD-related behavioral deficits including decreasing latency to new arm and increasing time in new arm in y-maze test, which also inhibited LC's enhancement of synaptic proteins (PSD95 and synapsin1) in the hippocampus and the number of EGR1-positive cells in the hippocampal dentate gyrus (DG). CONCLUSIONS Take together, our study revealed that LC had the therapeutic effects on AD by activating the PI3K/AKT pathway to enhance ERK activity and further strengthened neuronal activities in the hippocampus.
Collapse
Affiliation(s)
- Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
| | - Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
| | - Yuxin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Yaping Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Mengqi Shao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Hang Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Danyang Hospital of Traditional Chinese Medicine, Zhenjiang, 212399, China
| | - Chao Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China.
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
19
|
Liu J, Pei C, Jia N, Han Y, Zhao S, Shen Z, Huang D, Chen Q, Wu Y, Shi S, Wang Y, He Y, Wang Z. Preconditioning with Ginsenoside Rg3 mitigates cardiac injury induced by high-altitude hypobaric hypoxia exposure in mice by suppressing ferroptosis through inhibition of the RhoA/ROCK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118861. [PMID: 39326813 DOI: 10.1016/j.jep.2024.118861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng has historically been utilized as a conventional herbal remedy and dietary supplement to enhance physical stamina and alleviate fatigue. The primary active component of Ginseng, Ginsenoside Rg3 (GS-Rg3), possesses diverse pharmacological properties including immune modulation and anti-inflammatory effects. Furthermore, GS-Rg3 has demonstrated efficacy in mitigating tissue and organ damage associated with metabolic disorders such as hypertension, hyperglycemia, and hyperlipidemia. Nevertheless, its potential impact on high-altitude cardiac injury (HACI) remains insufficiently explored. AIM OF THE STUDY The aim of this study was to examine the potential cardioprotective effects of Ginsenoside Rg3, and to investigate how Ginsenoside Rg3 preconditioning can enhance high-altitude cardiac injury by inhibiting the RhoA/ROCK pathway and ferroptosis in cardiac tissue. The findings of this study may contribute to the development of novel therapeutic strategies using traditional Chinese medicine for high-altitude cardiac injury, based on experimental evidence. MATERIALS AND METHODS A hypobaric hypoxia chamber was employed to simulate hypobaric hypoxia conditions equivalent to an altitude of 6000 m. Through a randomization process, groups of six male mice were assigned to receive either saline, Ginsenoside Rg3 at doses of 15 mg/kg or 30 mg/kg, or lysophosphatidic acid (LPA) at 1 mg/kg. The impact of Ginsenoside Rg3 on high altitude-induced arrhythmias was evaluated using electrocardiography. Cardiac pathology sections stained with hematoxylin and eosin were evaluated for damage, with the extent of cardiomyocyte damage observed via transmission electron microscopy. The impact of Ginsenoside Rg3 on high-altitude cardiac injury was investigated through analysis of serum biomarkers for cardiac injury (CK-MB, BNP), inflammatory cytokines (TNF, IL-6, IL-1β), reactive oxygen species (ROS) and glutathione (GSH). The expression levels of hypoxia and hypoxia-related proteins in myocardial tissues from each experimental group were assessed using Western blot analysis. Following a review of the existing literature, the traditional regulatory mechanisms of ferroptosis were examined. Immunofluorescence staining of cardiac tissues and Western blotting techniques were utilized to investigate the impact of Ginsenoside Rg3 on cardiomyocyte ferroptosis through the RhoA/ROCK signaling pathway under conditions of hypobaric hypoxia exposure. RESULTS Pre-treatment with Ginsenoside Rg3 improved high altitude-induced arrhythmias, reduced cardiomyocyte damage, decreased cardiac injury biomarkers and inflammatory cytokines, and lowered the expression of hypoxia-related proteins in myocardial tissues. Both Western blotting and immunofluorescence staining of cardiac tissues demonstrated that exposure to high-altitude hypobaric hypoxia results in elevated expression of ferroptosis and proteins related to the RhoA/ROCK pathway. Experimental validation corroborated that the role of the RhoA/ROCK signaling pathway in mediating ferroptosis. CONCLUSIONS The findings of our study suggest that preconditioning with Ginsenoside Rg3 may attenuate cardiac injury caused by high-altitude hypobaric hypoxia exposure in mice by inhibiting ferroptosis through the suppression of the RhoA/ROCK signaling pathway. These findings contribute to the current knowledge of Ginsenoside Rg3 and high-altitude cardiac injury, suggesting that Ginsenoside Rg3 shows potential as a therapeutic agent for high-altitude cardiac injury.
Collapse
Affiliation(s)
- Junling Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yue Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Sijing Zhao
- School of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, No.82 Da-xue-cheng Road, Chongqing, 401331, China.
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Qian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| |
Collapse
|
20
|
Dan L, Li X, Chen S, You X, Wang D, Wang T, Li J, Liu W, Mu J, Feng Q. Protective role of ginsenoside Rg1 in the dynamic progression of liver injury to fibrosis: a preclinical meta-analysis. Front Pharmacol 2025; 16:1512184. [PMID: 39936090 PMCID: PMC11810943 DOI: 10.3389/fphar.2025.1512184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Background The pathological progression from liver injury to fibrosis is a hallmark of liver disease, with no effective strategies to halt this transition. Ginsenoside Rg1 has demonstrated a range of hepatoprotective properties; however, systematic preclinical evidence supporting its therapeutic potential for liver injury and fibrosis remains limited. Purpose. This study evaluated the efficacy and underlying mechanisms of ginsenoside Rg1 in animal models of liver injury and fibrosis, and providing a basis for future clinical investigation. Methods A systematic review was conducted on preclinical studies published in PubMed, Web of Science, and Embase databases up to 1 August 2024, adhereing to rigorous quality standards. The methodological quality was assessed using SYRCLE's risk of bias tool. Meta-analysis and subgroup analysis were performed using Revman 5.4 software, while publication bias was evaluated through funnel plots and Egger's test in STATA 15.0 software. Additionally, a time-dose interval curve was utilized to assess the dose-response relationship and identify the effective dose of ginsenoside Rg1 for treating liver injury and fibrosis. Results Twenty-four trials involving 423 animals were included. The findings indicated that ginsenoside Rg1 significantly improved liver function markers (ALT and AST), reduced pathological indicators associated with liver injury and fibrosis, and lowered liver fibrosis-related markers (α-SMA, HYP, and PCIII). Furthermore, it exhibited beneficial effects on mechanistic indicators of inflammation, oxidative stress, and apoptosis, compared to the control group (P < 0.05). Time-dose interval analysis revealed that the effective dose range of ginsenoside Rg1 was between 4 and 800 mg/kg/d. Conclusion Rg1 at a dose of 4-800 mg/kg/d mitigates the progression of liver injury to fibrosis via anti-inflammatory, antioxidative, and anti-apoptotic pathways. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD 42024557878.
Collapse
Affiliation(s)
- Lijuan Dan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuanglan Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojie You
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Wang
- Traditional Chinese Medicine Department, 363 Hospital of Chengdu, Chengdu, China
| | - Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenping Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Mu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Zhang W, Deng S, Zhang XE, Huang C, Liu Q, Jiang G. Network-Based Identification of Key Toxic Compounds in Airborne Chemical Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1712-1723. [PMID: 39808486 DOI: 10.1021/acs.est.4c09711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome. Using cardiovascular diseases (CVDs) as a model disease, we found that toxic network modules of various compounds are closely linked to the modules of CVDs. The proximity of compound target modules to disease modules can indicate the extent of toxicity induced by the compounds. By integrating mass spectrometry-based external exposure concentrations and machine learning-predicted internal exposure concentrations, we established a comprehensive linkage connecting exposure to disease-related risk for the identification of toxic compounds. These findings were subsequently validated using exposure and disease data on the regional scale. This work provides an effective strategy for identifying key compounds within environmental exposomes and establishes a new paradigm for understanding the pathogenicity of air pollution.
Collapse
Affiliation(s)
- Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shenxi Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Xi-En Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cha Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
22
|
Liao XZ, Xie RX, Zheng SY, Fan CL, Zuo MY, Chen SX, Zhu JQ, Li J. Bioinformatics and molecular docking reveal Cryptotanshinone as the active anti-inflammation component of Qu-Shi-Xie-Zhuo decoction by inhibiting S100A8/A9-NLRP3-IL-1β signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156257. [PMID: 39631292 DOI: 10.1016/j.phymed.2024.156257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Gout is a common type of arthritis marked by monosodium urate (MSU) crystal deposition in joints, triggering an inflammatory response. Qu-Shi-Xie-Zhuo (QSXZ), a traditional Chinese medicine (TCM) formula, has been clinically used for the treatment of gouty arthritis (GA). PURPOSE The study sought to examine the impact of QSXZ on GA and to delve into the pharmacological mechanisms that underlie its effects. METHODS The chemical constituents of QSXZ were analyzed through UPLC-MS. MSU-induced acute gouty arthritis (AGA) and subcutaneous (SC) air pouch models in mice were employed to evaluate the anti-inflammatory properties of QSXZ and its primary active compound, Cryptotanshinone (CTS). To investigate the therapeutic mechanisms of QSXZ, we used MS-based network pharmacology, transcriptomic analysis, molecular docking and multiscale bioassays. RESULTS Treatment of QSXZ revealed a significant reduction of inflammatory cell infiltration and the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin -1β (IL-1β). Based on UPLC/MS/MS results, 49 components were considered the active ingredients of QSXZ. Network pharmacology analysis indicated that QSXZ regulates multiple inflammation-related pathways. Subsequent transcriptomic analysis showed that QSXZ regulates gene expression of S100A8 and S100A9. Our investigation observed an increased expression of S100A8 and S100A9 in monocytes derived from gout patients. Molecular docking and molecular dynamics simulation analysis revealed the binding pattern and interaction between QSXZ active compound CTS and S100A8/A9, and subsequent surface plasmon resonance (SPR) and cell thermal shift assay (CETSA) experiments verified the direct interaction between them. To investigate the mechanisms of action, we conducted RT-PCR, Western blotting, immunohistochemistry, flow cytometry, and measured the inflammatory response. Our findings highlight the pathogenic role of S100A8/A9 mediated TLR4-NLRP3 axis in gout and review outstanding therapeutic effects of QSXZ and its primary active compound CTS on MSU-induced experimental models. CONCLUSIONS In summary, this study substantiates the therapeutic potential of QSXZ and its primary active compound CTS, as promising alternative treatments for GA. Our findings provide valuable insight into the critical pharmacological mechanism of QSXZ in regulating inflammation, highlighting its potential therapeutic effects in GA management.
Collapse
Affiliation(s)
- Xiao-Zhong Liao
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Rui-Xia Xie
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Song-Yuan Zheng
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Cui-Ling Fan
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Meng-Yue Zuo
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shi-Xian Chen
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jun-Qing Zhu
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Juan Li
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
23
|
Tie D, He M, Li W, Xiang Z. Advances in the application of network analysis methods in traditional Chinese medicine research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156256. [PMID: 39615211 DOI: 10.1016/j.phymed.2024.156256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE This review aims at evaluating the role and potential applications of network analysis methods in the medicinal substances of traditional Chinese medicine (TCM), theories of TCM compatibility, properties of herbs, and TCM syndromes. METHODS Literature was retrieved from databases, such as CNKI, PubMed, and Web of Science, using keywords, including "network analysis," "network biology," "network pharmacology," and "network medicine." The extracted literature included the biological network construction (including ingredient-target and target-disease relations), analysis of network topology characteristics (including node degree, clustering coefficient, and path length), network modularization analysis, functional annotation and so on. These studies were categorized and organized based on their research methods, application domains, and other relevant characteristics. RESULTS Network analysis algorithms, such as network distance, random walk, matrix factorization, graph embedding, and graph neural networks, are widely applied in fields related to the properties, compatibility, and mechanisms of TCM. They effectively reflect the interactive relations within the complex systems of TCM and elucidate and clarify theories, such as the effective substances, the principles of TCM compatibility, the TCM syndromes, and the properties of TCM. CONCLUSION The network analysis method is a powerful mathematical and computational tool that reveals the structure, dynamics, and functions of complex systems by analyzing the elements and their relations. This approach has effectively promoted the modernization of TCM, providing essential theoretical and practical tools for personalized treatment and scientific research on TCM. It also offers a significant methodological framework for the modernization and internationalization of TCM.
Collapse
Affiliation(s)
- Defu Tie
- Medical School, Hangzhou City University, Hangzhou, 310015, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Mulan He
- Medical School, Hangzhou City University, Hangzhou, 310015, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zheng Xiang
- Medical School, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
24
|
Tong Y, Li X, Wan J, Zhou Q, Jiang C, Li N, Jin Z, Gu J, Li F, Li J. Integrating Ultra-High-Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry, Feature-Based Molecular Networking, and Network Medicine to Unlock Harvesting Strategies for Endangered Sinocalycanthus Chinensis. J Sep Sci 2025; 48:e70072. [PMID: 39760617 DOI: 10.1002/jssc.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Evaluating the practical utility of endangered plant species is crucial for their conservation. Nevertheless, numerous endangered plants, including Sinocalycanthus chinensis, lack historical usage data, leading to a paucity of guidance in traditional pharmacological research. This gap impedes their development and potential utilization. Ultra-high-performance liquid chromatography and Orbitrap high-resolution mass spectrometry were employed to analyze the S. chinensis leaves collected at different harvesting times. Then, the metabolites were automatically annotated by a self-built R script in conjunction with characteristic fragment ions, neutral loss filtering, and feature-based molecular networking. By integrating metabolomics with network medicine analysis, the potential usage and optimal harvest times for S. chinensis were unlocked. A total of 305 metabolites were identified, with 66.8% annotated by self-built R script. A progressive increase in metabolite disparities was observed from May to August, followed by a relatively minor distinction from August to October. Notably diverse metabolites were detected in S. chinensis harvested during different periods, implying potential variations in efficacy. Network medicine analysis indicated possible therapeutic implications of S. chinensis for lung cancer, diabetes, bladder cancer, and Alzheimer's disease. Samples collected in May and September demonstrated exceptional efficacy. Harvesting was strategically conducted during these months based on variations in sample characteristics and metabolite content, tailored to their intended applications for dietary or medicinal purposes. This study developed an efficient methodology for investigating metabolites and exploring the potential applications of S. chinensis in food and herbal medicine. Consequently, it provides technical support for the sustainable conservation of endangered plants with limited clinical application experience.
Collapse
Affiliation(s)
- Yingpeng Tong
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Jiang Wan
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Qi Zhou
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Chunxiao Jiang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Na Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Junjie Gu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Fan Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
25
|
Xian J, Xiao F, Zou J, Luo W, Han S, Liu Z, Chen Y, Zhu Q, Li M, Yu C, Saiding Q, Tao W, Kong N, Xie T. Elemene Hydrogel Modulates the Tumor Immune Microenvironment for Enhanced Treatment of Postoperative Cancer Recurrence and Metastases. J Am Chem Soc 2024; 146:35252-35263. [PMID: 39625467 DOI: 10.1021/jacs.4c12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
As a representative active ingredient of traditional Chinese medicine (TCM) and a clinically approved anticancer drug, elemene (ELE) exhibits exciting potential in the antitumor field; however, appropriate drug formulations still need to be explored for specific diseases such as postoperative cancer recurrence and metastasis. Herein, we report an ELE hydrogel with controlled drug release kinetics that can allow ELE to maintain effective concentrations at local lesion sites for extended periods to enhance the bioavailability of ELE. Concretely, dopamine-conjugated hyaluronic acid is synthesized and utilized to prepare ELE nanodrug-embedded hydrogels. In a model of postoperative breast cancer recurrence and metastasis, the ELE hydrogel demonstrates a 96% inhibition rate of recurrence; in contrast, the free ELE nanodrug shows only a 65.5% inhibition rate of recurrence. Importantly, the ELE hydrogel markedly stimulates a potent antitumor immune response in the microenvironment of cancer lesions, increasing antitumor immune cells such as CD8+ T cells, CD4+ T cells, and M1-type macrophages, as well as elevating antitumor cytokines including TNF-α, IFN-γ, and IL-6. Overall, this study not only advances the field of TCM but also highlights the transformative impact of controlled-release hydrogels in improving antitumor therapy.
Collapse
Affiliation(s)
- Jing Xian
- School of Pharmacy; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jianhua Zou
- School of Pharmacy; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wei Luo
- School of Pharmacy; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shiqi Han
- School of Pharmacy; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China
| | - Yiquan Chen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China
| | - Qianru Zhu
- School of Pharmacy; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Meng Li
- School of Pharmacy; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chuao Yu
- School of Pharmacy; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tian Xie
- School of Pharmacy; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| |
Collapse
|
26
|
Peng Q, Han J, Wu R, Wu Y, Chen F, Lai Y. Needle knife therapy combined with chinese herbal medicine in the treatment of knee osteoarthritis: a meta-analysis. Am J Transl Res 2024; 16:7238-7247. [PMID: 39822562 PMCID: PMC11733337 DOI: 10.62347/vgcj2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/09/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To systematically evaluate the effectiveness of the combined Needle Knife Therapy (NKT) and Chinese Herbal Medicine (CHM) treatment for knee osteoarthritis (KOA) and to provide clinical evidence supporting its application in managing the condition. METHODS Relevant articles were retrieved from PubMed, Medline, Embase, Wanfang, and China National Knowledge Network (CNKI) from the inception of the databases up to February 18, 2023. Randomized controlled trials (RCTs) on the efficacy of NKT combined with CHM were appraised for inclusion. The meta-analysis was conducted using RevMan 5.3 and was registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY) (202470051). RESULTS A total of 11 RCTs involving 880 patients were included. The meta-analysis showed that the combined therapy was superior to NKT alone in the treatment of KOA [relative risk (RR) = 1.09; 95% confidence interval (CI): (1.03, 1.14); P = 0.002]. The combined therapy showed a significant reduction in the Visual Analog Scale (VAS) score [RR = -0.98; 95% CI: -1.12, -0.84; P < 0.00001] and symptom scores [RR = -1.75; 95% CI: (-1.87, -1.63); P < 0.00001] compared to single NT therapy. There was no significant difference in the Traditional Chinese Medicine (TCM) syndrome scores between the two groups [RR = -0.23; 95% CI: (-0.56, 0.10); P = 0.18]. Furthermore, we observed a marked increase in lysholmy scores in the combination group than in the control group [RR = -1.04; 95% CI: (-1.31, -0.77); P < 0.00001]. CONCLUSIONS The combination of needle-knife therapy and Chinese herbal medicine exhibits promising clinical efficacy in the treatment of KOA.
Collapse
Affiliation(s)
- Qinglin Peng
- Graduate School, Guangxi University of Chinese MedicineNanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jie Han
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Ruiqi Wu
- Graduate School, Guangxi University of Chinese MedicineNanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Yukun Wu
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Feng Chen
- Graduate School, Guangxi University of Chinese MedicineNanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Yu Lai
- Graduate School, Guangxi University of Chinese MedicineNanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
27
|
Jung S, Kim K, Wang S, Han M, Lee D. NaCTR: Natural product-derived compound-based drug discovery pipeline from traditional oriental medicine by search space reduction. Comput Struct Biotechnol J 2024; 23:3869-3877. [PMID: 39554615 PMCID: PMC11564001 DOI: 10.1016/j.csbj.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
The drug discovery pipelines require enormous time and cost, albeit their infamously high risk of failures. Reducing such risk has therefore been the utmost goal in the process. Recently, natural products (NPs) in traditional oriental medicine (TOM) have come into the spotlight for their efficacy and safety supported throughout the history. Not only that, with the ever-increasing repository of various biological datasets, many data-driven in silico approaches have also been extensively studied for better efficient search and testing. However, TOM-based datasets lack information on recently prevalent diseases, while experimental datasets are prone to provide target spaces that are too large. Adequate combination of both approaches can therefore fill in each other's blanks. In this study, we introduce NaCTR, an in silico discovery pipeline that achieves such integration to suggest NPs-derived drug candidates for a given disease. First, phenotypes and disease genes for the disease are identified in literature and public databases. Secondly, a pool of potentially therapeutic NPs are identified based on both TOM-based phenotype records and compound-gene interaction datasets. Lastly, the compounds contained in the NPs are further screened for toxicity and pharmacokinetic properties. We use the Parkinson's disease as the case study to test the NaCTR pipeline. Through the pipeline, we propose glutathione and four other compounds as novel drug candidates. We further highlight the finding with literature support. As the first to effectively combine data from ancient and recent repositories, the NaCTR pipeline can be a novel pipeline that can be applied successfully to any other diseases.
Collapse
Affiliation(s)
| | | | - Seunghyun Wang
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Manyoung Han
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Zhou J, Hu J, Liu J, Zhang W. Elucidating the gastroprotective mechanisms of Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb through UHPLC-MS/MS and systems network pharmacology. Sci Rep 2024; 14:27815. [PMID: 39537788 PMCID: PMC11560922 DOI: 10.1038/s41598-024-79483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb., commonly known as BaiMaoGen (BMG), a medicinal and edible traditional Chinese medicinal (TCM) herb commonly used in health supplements, has been observed to offer protective effects against gastrointestinal disorders. However, the specific bioactive compounds and their molecular mechanisms have not been fully elucidated. This study employed ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and systematic network pharmacology to analyze and identify the key active components and their interactions with biological targets. Thirty-six main active compounds, including 3,4-dihydroxybenzoic acid and p-hydroxybenzoic acid, were identified and analyzed for their interaction with key protein targets using molecular docking and dynamic simulations. This combined approach highlighted the therapeutic pathways involved, particularly the PI3K/AKT signaling pathways, providing new insights into the molecular basis of BMG's gastroprotective effects. Our findings suggested that BMG's complex multi-target action can potentially be harnessed to develop effective treatments for gastrointestinal toxicity.
Collapse
Affiliation(s)
- Jiaxin Zhou
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jianping Hu
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiancheng Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Wenchun Zhang
- School of life science, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
29
|
Wu M, Ma T, Zhu Y, Ren H, Fu L. The evolution of Traditional Chinese Medicine as recombinant inventions. Proc Natl Acad Sci U S A 2024; 121:e2400812121. [PMID: 39508765 PMCID: PMC11572975 DOI: 10.1073/pnas.2400812121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
It has been widely recognized that technologies evolve with recombinant inventions. However, it remains unknown whether technologies developed using different approaches would exhibit different features during evolution. In particular, would technologies developed mainly based on accumulated experience in practices-formulas of traditional Chinese medicine (TCM) are typical examples of such technologies-have similar evolution features found in modern technologies? This study applied network science to explore the evolution of TCM from the perspective of recombinant inventions based on 59,063 TCM formulas documented over the last two thousand years, with each formula being a combination of components that are mostly herbs. Our results show that similar to modern technological systems, the TCM component networks maintained the core-periphery structures during evolution, and the (weighted) degrees of components followed heavy-tailed distributions. Moreover, simple tuples, which are frequently used combinations of TCM components, serve as building blocks for complex ones. A significant difference with modern technological systems is that the TCM core components were quite stable, while substitutions of core components are frequently observed in modern technological systems, leading to new technological trajectories. TCM comprises ancient knowledge and wisdom. This research provides insight into how it will be like in the future and what is important for its future.
Collapse
Affiliation(s)
- Min Wu
- Department of Management Science and Engineering, School of Business, East China University of Science and Technology, Shanghai200237, China
| | - Tieju Ma
- Department of Information, Technology and Innovation, Antai College of Economics & Management, Shanghai Jiao Tong University, Shanghai200030, China
- International Institute for Applied Systems Analysis, LaxenburgA-2361, Austria
| | - Yan Zhu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Hongtao Ren
- Department of Management Science and Engineering, School of Business, East China University of Science and Technology, Shanghai200237, China
| | - Lu Fu
- China Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing100700, China
| |
Collapse
|
30
|
Zhao Y, Wang Y, Xue Z, Weng Y, Xia C, Lou J, Jiang M. Registration and characteristics of clinical trials on traditional Chinese medicine and natural medicines for endometriosis: a comprehensive analysis. Front Med (Lausanne) 2024; 11:1432815. [PMID: 39564497 PMCID: PMC11573583 DOI: 10.3389/fmed.2024.1432815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Objective To investigate the characteristics of clinical trials on traditional Chinese medicine (TCM) or natural medicines for treating endometriosis, aiming to inform future clinical practice and the development of new effective drugs. Method The global clinical trial registration platform was searched to identify clinical trials investigating the efficacy of TCM/natural medicine in treating endometriosis. Relevant trials were selected based on stringent inclusion and exclusion criteria. Data entry was performed using Microsoft Excel, while data analysis was conducted using SPSS version 23. Results The study encompassed 57 trials, of which ClinicalTrials.gov accounted for 18, ChiCTR for 3, ICRP for 15, and ChiDTR for 21 trials. The number of registrations showed a significant positive correlation with the years. Of the 57 clinical trials, 87.7% were randomized, 63.2% were blinded, 78.9% followed a parallel intervention model, and 56.1% had a sample size below 100. Regarding trial phases, 45.6% of clinical trials did not specify a phase, while Phase 3 and Phase 4 clinical trials accounted for 17.5%. Nine clinical trials involved drugs that are already on the market, including six Chinese patent medicines: Sanjie Zhentong Capsules, Honghua Ruyi Pills, Huayu Sanjie Enema Liquid, Kuntai Capsules, Wenjing Tang, and Xuefu Zhuyu Capsules. Outside China, Iran has the highest number of registrations for natural medicine treatments for endometriosis, with curcumin being the most registered natural medicine. Conclusion The analysis reveals that clinical trials on TCM and natural remedies for endometriosis often utilize randomization; however, substantial deficiencies remain in blinding and sample size adequacy. These findings suggest that, despite growing interest in TCM and natural remedies, further methodological improvements are necessary to enhance the credibility of future studies. This research highlights the importance of rigorously designed clinical trials in verifying the safety and efficacy of these alternative therapies, which may influence future therapeutic approaches for managing endometriosis.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Drug Clinical Trials, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yike Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- School of Management, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Zhu Xue
- Department of Drug Clinical Trials, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanyuan Weng
- Department of Drug Clinical Trials, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cencan Xia
- Beijing Yanchuang Institute of Biomedical Engineering, China Association for Promotion of Health Science and Technology, Beijing, China
| | - Jingyang Lou
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Minmin Jiang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Liu Y, Jia Z, Wang Y, Song Y, Yan L, Zhang C. Exploring the mechanisms of Huangqin Qingfei Decoction on acute lung injury by LC-MS combined network pharmacology analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155979. [PMID: 39208658 DOI: 10.1016/j.phymed.2024.155979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a respiratory disease characterized by pulmonary inflammation and increased microvascular permeability, resulting in significant mortality and a lack of effective pharmacological treatment. Huangqin Qingfei Decoction (HQQFD), a Traditional Chinese Medicine (TCM) prescription known for its heat-clearing and detoxifying properties, has shown efficacy in treating ALI. However, the underlying mechanisms of HQQFD to against ALI remain to be elucidated. PURPOSE This study aims to discover the mechanisms and the principal bioactive compounds contributing to HQQFD's protective effects in the treatment of ALI. METHODS An ultra-high performance liquid chromatography-Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap HRMS) method was employed to characterize the chemical profile in HQQFD and xenobiotics (prototypes and metabolites) in rat lung tissue. Based on prototypes identified, a symptom-guided pharmacological networks of ALI were performed. Molecular docking and extensive literature reviews were conducted to validate our findings. RESULTS A total of 105 compounds were identified in HQQFD, and a total of 194 HQQFD-related xenobiotics (30 prototypes and 163 metabolites) were detected in rat lung tissue. Based on prototypes identified in rat lung, a symptom-guided pharmacological networks of ALI were constructed, AKT1, TNF, EGFR, MMP2, GSK3B, STAT3, MAPK8, IL-6, CDK2 and TP53 were finally identified as key targets. Subsequently, 11 compounds with protective and therapeutic activity were selected by molecular docking analysis, including genipin 1-gentiobioside, chrysin-6-C-α-L-arabinoside-8-C-β-d-glucoside, scutellarin, chrysin-6-C-β-d-glucoside-8-C-α-L-arabinoside, 6''-O-[(E)-p-coumaroyl] genipin-gentiobioside, apigenin 7-O-glucoside, baicalin, dihydrobaicalin, wogonoside, crocin I, crocetin. Bioinformatics and literature analysis suggested that, baicalin, wogonoside, genipin 1-gentiobioside and crocetin may be the primary active compounds of HQQFD, potentially targeting GSK3B, MAPK8, IL-6, AKT1 and TNF for HQQFD in addressing ALI. The therapeutic effects of HQQFD may be mediated through the IL-17 and PI3K-AKT signaling pathways. CONCLUSION The predominant components of HQQFD against ALI are baicalein, wogonoside, genipin 1-gentiobiosid and crocetin, with the IL-17 and PI3K-AKT pathways playing crucial roles. This study provides a foundational guide for future research and introduces innovative methods for exploring the mechanisms of other drug combinations or TCM formulas.
Collapse
Affiliation(s)
- Yanping Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhe Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
32
|
Siminea N, Czeizler E, Popescu VB, Petre I, Păun A. Connecting the dots: Computational network analysis for disease insight and drug repurposing. Curr Opin Struct Biol 2024; 88:102881. [PMID: 38991238 DOI: 10.1016/j.sbi.2024.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
Network biology is a powerful framework for studying the structure, function, and dynamics of biological systems, offering insights into the balance between health and disease states. The field is seeing rapid progress in all of its aspects: data availability, network synthesis, network analytics, and impactful applications in medicine and drug development. We review the most recent and significant results in network biomedicine, with a focus on the latest data, analytics, software resources, and applications in medicine. We also discuss what in our view are the likely directions of impactful development over the next few years.
Collapse
Affiliation(s)
- Nicoleta Siminea
- Faculty of Mathematics and Computer Science, University of Bucharest, Romania; National Institute of Research and Development for Biological Sciences, Romania
| | - Eugen Czeizler
- Faculty of Medicine, University of Helsinki, Finland; National Institute of Research and Development for Biological Sciences, Romania
| | | | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, Finland; National Institute of Research and Development for Biological Sciences, Romania.
| | - Andrei Păun
- Faculty of Mathematics and Computer Science, University of Bucharest, Romania; National Institute of Research and Development for Biological Sciences, Romania.
| |
Collapse
|
33
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
34
|
Yang YF, Yuan L, Li XY, Liu Q, Jiang WJ, Jiao TQ, Li JQ, Ye MY, Niu Y, Nan Y. Molecular mechanisms of Buqing granule for the treatment of diabetic retinopathy: Network pharmacology analysis and experimental validation. World J Diabetes 2024; 15:1942-1961. [PMID: 39280184 PMCID: PMC11372640 DOI: 10.4239/wjd.v15.i9.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Its blindness rate is high; therefore, finding a reasonable and safe treatment plan to prevent and control DR is crucial. Currently, there are abundant and diverse research results on the treatment of DR by Chinese medicine Traditional Chinese medicine compounds are potentially advantageous for DR prevention and treatment because of its safe and effective therapeutic effects. AIM To investigate the effects of Buqing granule (BQKL) on DR and its mechanism from a systemic perspective and at the molecular level by combining network pharmacology and in vivo experiments. METHODS This study collected information on the drug targets of BQKL and the therapeutic targets of DR for intersecting target gene analysis and protein-protein interactions (PPI), identified various biological pathways related to DR treatment by BQKL through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, and preliminarily validated the screened core targets by molecular docking. Furthermore, we constructed a diabetic rat model with a high-fat and high-sugar diet and intraperitoneal streptozotocin injection, and administered the appropriate drugs for 12 weeks after the model was successfully induced. Body mass and fasting blood glucose and lipid levels were measured, and pathological changes in retinal tissue were detected by hematoxylin and eosin staining. ELISA was used to detect the oxidative stress index expression in serum and retinal tissue, and immunohistochemistry, real-time quantitative reverse transcription PCR, and western blotting were used to verify the changes in the expression of core targets. RESULTS Six potential therapeutic targets of BQKL for DR treatment, including Caspase-3, c-Jun, TP53, AKT1, MAPK1, and MAPK3, were screened using PPI. Enrichment analysis indicated that the MAPK signaling pathway might be the core target pathway of BQKL in DR treatment. Molecular docking prediction indicated that BQKL stably bound to these core targets. In vivo experiments have shown that compared with those in the Control group, rats in the Model group had statistically significant (P < 0.05) severe retinal histopathological damage; elevated blood glucose, lipid, and malondialdehyde (MDA) levels; increased Caspase-3, c-Jun, and TP53 protein expression; and reduced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, ganglion cell number, AKT1, MAPK1, and MAPK3 protein expression. Compared with the Model group, BQKL group had reduced histopathological retinal damage and the expression of blood glucose and lipids, MDA level, Caspase-3, c-Jun and TP53 proteins were reduced, while the expression of SOD, GSH-Px level, the number of ganglion cells, AKT1, MAPK1, and MAPK3 proteins were elevated. These differences were statistically significant (P < 0.05). CONCLUSION BQKL can delay DR onset and progression by attenuating oxidative stress and inflammatory responses and regulating Caspase-3, c-Jun, TP53, AKT1, MAPK1, and MAPK3 proteins in the MAPK signaling pathway mediates these alterations.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiang-Yang Li
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qian Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wen-Jie Jiang
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Tai-Qiang Jiao
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Qing Li
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Meng-Yi Ye
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yang Niu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
35
|
Zhang S, Niu Q, Zong W, Song Q, Tian S, Wang J, Liu J, Zhang H, Wang Z, Li B. Endotype-driven Co-module mechanisms of danhong injection in the Co-treatment of cardiovascular and cerebrovascular diseases: A modular-based drug and disease integrated analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118287. [PMID: 38705429 DOI: 10.1016/j.jep.2024.118287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular and cerebrovascular diseases are the leading causes of death worldwide and interact closely with each other. Danhong Injection (DHI) is a widely used preparation for the co-treatment of brain and heart diseases (CTBH). However, the underlying molecular endotype mechanisms of DHI in the CTBH remain unclear. AIM OF THIS STUDY To elucidate the underlying endotype mechanisms of DHI in the CTBH. MATERIALS AND METHODS In this study, we proposed a modular-based disease and drug-integrated analysis (MDDIA) strategy for elucidating the systematic CTBH mechanisms of DHI using high-throughput transcriptome-wide sequencing datasets of DHI in the treatment of patients with stable angina pectoris (SAP) and cerebral infarction (CI). First, we identified drug-targeted modules of DHI and disease modules of SAP and CI based on the gene co-expression networks of DHI therapy and the protein-protein interaction networks of diseases. Moreover, module proximity-based topological analyses were applied to screen CTBH co-module pairs and driver genes of DHI. At the same time, the representative driver genes were validated via in vitro experiments on hypoxia/reoxygenation-related cardiomyocytes and neuronal cell lines of H9C2 and HT22. RESULTS Seven drug-targeted modules of DHI and three disease modules of SAP and CI were identified by co-expression networks. Five modes of modular relationships between the drug and disease modules were distinguished by module proximity-based topological analyses. Moreover, 13 targeted module pairs and 17 driver genes associated with DHI in the CTBH were also screened. Finally, the representative driver genes AKT1, EDN1, and RHO were validated by in vitro experiments. CONCLUSIONS This study, based on clinical sequencing data and modular topological analyses, integrated diseases and drug targets. The CTBH mechanism of DHI may involve the altered expression of certain driver genes (SRC, STAT3, EDN1, CYP1A1, RHO, RELA) through various enriched pathways, including the Wnt signaling pathway.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qi Song
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Siwei Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingai Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huamin Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
36
|
Zeng J, Jia X. Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine. ENGINEERING 2024; 40:28-50. [DOI: 10.1016/j.eng.2024.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
|
37
|
Li L, Xiao S, Dai X, Tang Z, Wang Y, Ali M, Ataya FS, Sahar I, Iqbal M, Wu Y, Li K. Multi-omics analysis and the remedial effects of Swertiamarin on hepatic injuries caused by CCl 4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116734. [PMID: 39024951 DOI: 10.1016/j.ecoenv.2024.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hepatic diseases pose a significant threat to community health, impacting the quality of life and longevity of millions worldwide. Despite revolutionary advancements in treatment, liver diseases remain a pressing issue, necessitating the development of more effective therapeutic approaches. Here, we conducted a comprehensive multi-omics analysis to investigate the underlying mechanism of Swertiamarin in alleviating hepatic injuries induced by CCl4 in mice. We divided 100 Kunming mice into five groups: RC (control), RM (CCl4), RD (15 mg/Kg Swertiamarin), RZ (30 mg/Kg Swertiamarin), and RG (60 mg/Kg Swertiamarin). Animals in groups RD, RZ, and RG received daily Swertiamarin via gavage, while those in groups RM, RD, RZ, and RG were treated with CCl4 solution intraperitoneally every four days, nine times in total. Our findings revealed that mice in the RM group exhibited slightly lower average weights compared to other groups, along with significantly higher liver weight (p<0.0001) and liver index (p<0.0001). Pathological analysis indicated liver damage characterized by cell degeneration, inflammatory cell infiltration, and hepatic fibrosis in the CCl4-induced group. In contrast, Swertiamarin supplementation mitigated these effects, reducing denatured cells, inflammatory cells, and collagenous fibers in the liver. Serum analysis showed elevated levels of TNF-α (p<0.001), IL-6 (p<0.05), ALT (p<0.001), AST (p<0.0001), MDA (p<0.001), and Hyp (p<0.001) in CCl4-induced animals, along with lower levels of T-AOC (p<0.001), GSH-px (p<0.0001), SOD (p<0.001), and CAT (p<0.01). Microbiome analysis revealed significant differences among groups, with pathogenic taxa such as Arthrinium and Aureobasidium, and probiotic Saccharomyces showing notable variations. Metabolomics analysis identified numerous differentially abundant metabolites, with Swertiamarin-treated animals exhibiting distinct profiles. Our findings highlight the potential of Swertiamarin ameliorating CCl4-induced liver toxicity through modulation of antioxidant capacity, inflammatory response, gut microbiota, and metabolites. These insights may inform the development of novel therapies for liver injury.
Collapse
Affiliation(s)
- Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Shengjia Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Xiangjie Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Zhiyi Tang
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yutong Wang
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Irna Sahar
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; College of Veterinary Medicine, Yunnan Agricultural University, No. 452, Feng Yuan Road, Panlong District, Kunming, Yunnan Province 650201, China.
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
38
|
Wang Y, Sui Y, Yao J, Jiang H, Tian Q, Tang Y, Ou Y, Tang J, Tan N. Herb-CMap: a multimodal fusion framework for deciphering the mechanisms of action in traditional Chinese medicine using Suhuang antitussive capsule as a case study. Brief Bioinform 2024; 25:bbae362. [PMID: 39073832 DOI: 10.1093/bib/bbae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/21/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Herbal medicines, particularly traditional Chinese medicines (TCMs), are a rich source of natural products with significant therapeutic potential. However, understanding their mechanisms of action is challenging due to the complexity of their multi-ingredient compositions. We introduced Herb-CMap, a multimodal fusion framework leveraging protein-protein interactions and herb-perturbed gene expression signatures. Utilizing a network-based heat diffusion algorithm, Herb-CMap creates a connectivity map linking herb perturbations to their therapeutic targets, thereby facilitating the prioritization of active ingredients. As a case study, we applied Herb-CMap to Suhuang antitussive capsule (Suhuang), a TCM formula used for treating cough variant asthma (CVA). Using in vivo rat models, our analysis established the transcriptomic signatures of Suhuang and identified its key compounds, such as quercetin and luteolin, and their target genes, including IL17A, PIK3CB, PIK3CD, AKT1, and TNF. These drug-target interactions inhibit the IL-17 signaling pathway and deactivate PI3K, AKT, and NF-κB, effectively reducing lung inflammation and alleviating CVA. The study demonstrates the efficacy of Herb-CMap in elucidating the molecular mechanisms of herbal medicines, offering valuable insights for advancing drug discovery in TCM.
Collapse
Affiliation(s)
- Yinyin Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yihang Sui
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiaqi Yao
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Hong Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Qimeng Tian
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yongyu Ou
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, No. 16 Shengmingyuan Road, Beijing 102206, PR China
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki FI-00290, Finland
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, PR China
| |
Collapse
|
39
|
Ma M, Huang M, He Y, Fang J, Li J, Li X, Liu M, Zhou M, Cui G, Fan Q. Network Medicine: A Potential Approach for Virtual Drug Screening. Pharmaceuticals (Basel) 2024; 17:899. [PMID: 39065749 PMCID: PMC11280361 DOI: 10.3390/ph17070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Traditional drug screening methods typically focus on a single protein target and exhibit limited efficiency due to the multifactorial nature of most diseases, which result from disturbances within complex networks of protein-protein interactions rather than single gene abnormalities. Addressing this limitation requires a comprehensive drug screening strategy. Network medicine is rooted in systems biology and provides a comprehensive framework for understanding disease mechanisms, prevention, and therapeutic innovations. This approach not only explores the associations between various diseases but also quantifies the relationships between disease genes and drug targets within interactome networks, thus facilitating the prediction of drug-disease relationships and enabling the screening of therapeutic drugs for specific complex diseases. An increasing body of research supports the efficiency and utility of network-based strategies in drug screening. This review highlights the transformative potential of network medicine in virtual therapeutic screening for complex diseases, offering novel insights and a robust foundation for future drug discovery endeavors.
Collapse
Affiliation(s)
- Mingxuan Ma
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Mei Huang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Yinting He
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 570000, China;
| | - Jiachao Li
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Xiaohan Li
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Mengchen Liu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Mei Zhou
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Guozhen Cui
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Qing Fan
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| |
Collapse
|
40
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
41
|
Huang N, Huang W, Wu J, Long S, Luo Y, Huang J. Possible opportunities and challenges for traditional Chinese medicine research in 2035. Front Pharmacol 2024; 15:1426300. [PMID: 38974044 PMCID: PMC11224461 DOI: 10.3389/fphar.2024.1426300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The drug development process is poised for significant transformation due to the rapid advancement of modern biological and information technologies, such as artificial intelligence (AI). As these new technologies and concepts infiltrate every stage of drug development, the efficiency and success rate of research and development are expected to improve substantially. Traditional Chinese medicine (TCM), a time-honored therapeutic system encompassing herbal medicine, acupuncture, and qigong, will also be profoundly impacted by these advancements. Over the next decade, Traditional Chinese medicine research will encounter both opportunities and challenges as it integrates with modern technologies and concepts. By 2035, TCM is anticipated to merge with modern medicine through a more contemporary and open research and development model, providing substantial support for treating a broader spectrum of diseases.
Collapse
Affiliation(s)
- Nanqu Huang
- National Drug Clinical Trial Institution, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wendi Huang
- National Drug Clinical Trial Institution, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingjing Wu
- National Drug Clinical Trial Institution, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Sheng Long
- Cloud Computing Division, Jiangsu Hoperun Software Co., Ltd., Nanjing, Jiangsu, China
| | - Yong Luo
- National Drug Clinical Trial Institution, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
42
|
Xiong Y, Bao L, Ma Y, Zhang L, Qin C, Huang L. Wen-Yi and Chinese medicine: Why we need to pay attention? Sci Bull (Beijing) 2024; 69:1617-1622. [PMID: 38704357 DOI: 10.1016/j.scib.2024.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/06/2024]
Affiliation(s)
- Yibai Xiong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yan Ma
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Changping National Laboratory (CPNL), Beijing 102206, China; National Center for Technology and Innovation of Animal Model, Beijing 100021, China.
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
43
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
44
|
Wang S, Yin N, Li Y, Ma Z, Lin W, Zhang L, Cui Y, Xia J, Geng L. Molecular mechanism of the treatment of lung adenocarcinoma by Hedyotis Diffusa: an integrative study with real-world clinical data and experimental validation. Front Pharmacol 2024; 15:1355531. [PMID: 38903989 PMCID: PMC11187350 DOI: 10.3389/fphar.2024.1355531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Background With a variety of active ingredients, Hedyotis Diffusa (H. diffusa) can treat a variety of tumors. The purpose of our study is based on real-world data and experimental level, to double demonstrate the efficacy and possible molecular mechanism of H. diffusa in the treatment of lung adenocarcinom (LUAD). Methods Phenotype-genotype and herbal-target associations were extracted from the SymMap database. Disease-gene associations were extracted from the MalaCards database. A molecular network-based correlation analysis was further conducted on the collection of genes associated with TCM and the collection of genes associated with diseases and symptoms. Then, the network separation SAB metrics were applied to evaluate the network proximity relationship between TCM and symptoms. Finally, cell apoptosis experiment, Western blot, and Real-time PCR were used for biological experimental level validation analysis. Results Included in the study were 85,437 electronic medical records (318 patients with LUAD). The proportion of prescriptions containing H. diffusa in the LUAD group was much higher than that in the non-LUAD group (p < 0.005). We counted the symptom relief of patients in the group and the group without the use of H. diffusa: except for symptoms such as fatigue, palpitations, and dizziness, the improvement rate of symptoms in the user group was higher than that in the non-use group. We selected the five most frequently occurring symptoms in the use group, namely, cough, expectoration, fatigue, chest tightness and wheezing. We combined the above five symptom genes into one group. The overlapping genes obtained were CTNNB1, STAT3, CASP8, and APC. The selection of CTNNB1 target for biological experiments showed that the proliferation rate of LUAD A549 cells in the drug intervention group was significantly lower than that in the control group, and it was concentration-dependent. H. diffusa can promote the apoptosis of A549 cells, and the apoptosis rate of the high-concentration drug group is significantly higher than that of the low-concentration drug group. The transcription and expression level of CTNNB1 gene in the drug intervention group were significantly decreased. Conclusion H. diffusa inhibits the proliferation and promotes apoptosis of LUAD A549 cells, which may be related to the fact that H. diffusa can regulate the expression of CTNNB1.
Collapse
Affiliation(s)
- Sheng Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Na Yin
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yingyue Li
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Zhaohang Ma
- School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
| | - Wei Lin
- School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
| | - Lihong Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yun Cui
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jianan Xia
- School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
| | - Liang Geng
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
45
|
Wu Z, Wang Y, Gao R, Chen J, Chen Y, Li M, Gao Y. Potential therapeutic effects of traditional Chinese medicine in acute mountain sickness: pathogenesis, mechanisms and future directions. Front Pharmacol 2024; 15:1393209. [PMID: 38895636 PMCID: PMC11183292 DOI: 10.3389/fphar.2024.1393209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background and objectives Acute mountain sickness (AMS) is a pathology with different symptoms in which the organism is not adapted to the environment that occurs under the special environment of high altitude. Its main mechanism is the organism's tissue damage caused by acute hypobaric hypoxia. Traditional Chinese medicine (TCM) theory focuses on the holistic concept. TCM has made remarkable achievements in the treatment of many mountain sicknesses. This review outlines the pathogenesis of AMS in modern and traditional medicine, the progress of animal models of AMS, and summarizes the therapeutic effects of TCM on AMS. Methods Using the keywords "traditional Chinese medicine," "herbal medicine," "acute mountain sickness," "high-altitude pulmonary edema," "high-altitude cerebral edema," "acute hypobaric hypoxia," and "high-altitude," all relevant TCM literature published up to November 2023 were collected from Scopus, Web of Science, PubMed, and China National Knowledge Infrastructure databases, and the key information was analyzed. Results We systematically summarised the effects of acute hypobaric hypoxia on the tissues of the organism, the study of the methodology for the establishment of an animal model of AMS, and retrieved 18 proprietary Chinese medicines for the clinical treatment of AMS. The therapeutic principle of medicines is mainly invigorating qi, activating blood and removing stasis. The components of botanical drugs mainly include salidroside, ginsenoside Rg1, and tetrahydrocurcumin. The mechanism of action of TCM in the treatment of AMS is mainly through the regulation of HIF-1α/NF-κB signaling pathway, inhibition of inflammatory response and oxidative stress, and enhancement of energy metabolism. Conclusion The main pathogenesis of AMS is unclear. Still, TCM formulas and components have been used to treat AMS through multifaceted interventions, such as compound danshen drip pills, Huangqi Baihe granules, salidroside, and ginsenoside Rg1. These components generally exert anti-AMS pharmacological effects by inhibiting the expression of VEGF, concentration of MDA and pro-inflammatory factors, down-regulating NF-κB/NLRP3 pathway, and promoting SOD and Na + -K + -ATPase activities, which attenuates acute hypobaric hypoxia-induced tissue injury. This review comprehensively analyses the application of TCM in AMS and makes suggestions for more in-depth studies in the future, aiming to provide some ideas and insights for subsequent studies.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Hematology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Rong Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Junru Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingfan Chen
- Department of Traditional Chinese Medicine, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
46
|
Xu W, Yang T, Zhang J, Li H, Guo M. Rhodiola rosea: a review in the context of PPPM approach. EPMA J 2024; 15:233-259. [PMID: 38841616 PMCID: PMC11147995 DOI: 10.1007/s13167-024-00367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A natural "medicine and food" plant, Rhodiola rosea (RR) is primarily made up of organic acids, phenolic compounds, sterols, glycosides, vitamins, lipids, proteins, amino acids, trace elements, and other physiologically active substances. In vitro, non-clinical and clinical studies confirmed that it exerts anti-inflammatory, antioxidant, and immune regulatory effects, balances the gut microbiota, and alleviates vascular circulatory disorders. RR can prolong life and has great application potential in preventing and treating suboptimal health, non-communicable diseases, and COVID-19. This narrative review discusses the effects of RR in preventing organ damage (such as the liver, lung, heart, brain, kidneys, intestines, and blood vessels) in non-communicable diseases from the perspective of predictive, preventive, and personalised medicine (PPPM/3PM). In conclusion, as an adaptogen, RR can provide personalised health strategies to improve the quality of life and overall health status.
Collapse
Affiliation(s)
- Wenqian Xu
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | | | - Jinyuan Zhang
- The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Heguo Li
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
47
|
Chen Q, Fan X. Potential role of the protein interactome in translating TCM theory and clinical practice into modern biomedical knowledge. Chin J Nat Med 2024; 22:385-386. [PMID: 38796212 DOI: 10.1016/s1875-5364(24)60635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Qian Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
48
|
Wang S, Lee D. Community cohesion looseness in gene networks reveals individualized drug targets and resistance. Brief Bioinform 2024; 25:bbae175. [PMID: 38622359 PMCID: PMC11018546 DOI: 10.1093/bib/bbae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Community cohesion plays a critical role in the determination of an individual's health in social science. Intriguingly, a community structure of gene networks indicates that the concept of community cohesion could be applied between the genes as well to overcome the limitations of single gene-based biomarkers for precision oncology. Here, we develop community cohesion scores which precisely quantify the community ability to retain the interactions between the genes and their cellular functions in each individualized gene network. Using breast cancer as a proof-of-concept study, we measure the community cohesion score profiles of 950 case samples and predict the individualized therapeutic targets in 2-fold. First, we prioritize them by finding druggable genes present in the community with the most and relatively decreased scores in each individual. Then, we pinpoint more individualized therapeutic targets by discovering the genes which greatly contribute to the community cohesion looseness in each individualized gene network. Compared with the previous approaches, the community cohesion scores show at least four times higher performance in predicting effective individualized chemotherapy targets based on drug sensitivity data. Furthermore, the community cohesion scores successfully discover the known breast cancer subtypes and we suggest new targeted therapy targets for triple negative breast cancer (e.g. KIT and GABRP). Lastly, we demonstrate that the community cohesion scores can predict tamoxifen responses in ER+ breast cancer and suggest potential combination therapies (e.g. NAMPT and RXRA inhibitors) to reduce endocrine therapy resistance based on individualized characteristics. Our method opens new perspectives for the biomarker development in precision oncology.
Collapse
Affiliation(s)
- Seunghyun Wang
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
49
|
Munquad S, Das AB. Uncovering the subtype-specific disease module and the development of drug response prediction models for glioma. Heliyon 2024; 10:e27190. [PMID: 38468932 PMCID: PMC10926146 DOI: 10.1016/j.heliyon.2024.e27190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
The poor prognosis of glioma patients brought attention to the need for effective therapeutic approaches for precision therapy. Here, we deployed algorithms relying on network medicine and artificial intelligence to design the framework for subtype-specific target identification and drug response prediction in glioma. We identified the driver mutations that were differentially expressed in each subtype of lower-grade glioma and glioblastoma multiforme and were linked to cancer-specific processes. Driver mutations that were differentially expressed were also subjected to subtype-specific disease module identification. The drugs from the drug bank database were retrieved to target these disease modules. However, the efficacy of anticancer drugs depends on the molecular profile of the cancer and varies among cancer patients due to intratumor heterogeneity. Hence, we developed a deep-learning-based drug response prediction framework using the experimental drug screening data. Models for 30 drugs that can target the disease module were developed, where drug response measured by IC50 was considered a response and gene expression and mutation data were considered predictor variables. The model construction consists of three steps: feature selection, data integration, and classification. We observed the consistent performance of the models in training, test, and validation datasets. Drug responses were predicted for particular cell lines derived from distinct subtypes of gliomas. We found that subtypes of gliomas respond differently to the drug, highlighting the importance of subtype-specific drug response prediction. Therefore, the development of personalized therapy by integrating network medicine and a deep learning-based approach can lead to cancer-specific treatment and improved patient care.
Collapse
Affiliation(s)
- Sana Munquad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
50
|
Sun P, Liu X, Wang Y, Shen R, Chen X, Li Z, Cui D, Wang J, Wang Q. Molecular characterization of allergic constitution based on network pharmacology and multi-omics analysis methods. Medicine (Baltimore) 2024; 103:e36892. [PMID: 38363941 PMCID: PMC10869101 DOI: 10.1097/md.0000000000036892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024] Open
Abstract
The objective of this study was to identify critical pathways associated with allergic constitution. Shared genes among allergic rhinitis (AR), asthma (AA), and atopic dermatitis (AD) were extracted from the GWAS catalog. RNA-seq data of AR, AA, and AD from gene expression omnibus (GEO) database were preprocessed and subjected to differential gene expression analysis. The differentially expressed genes (DEGs) were merged using the Robust Rank Aggregation (RRA) algorithm. Weighted gene co-expression network analysis (WGCNA) was performed to identify modules associated with allergies. Components of Guominkang (GMK) were obtained from 6 databases and activate components were identified by SwissADME website. Utilizing the SwissTarget Prediction, PharmMapper, SymMap, and HERB, the targets of GMK were predicted and subsequently validated using gene chip data from our team previous study. Differentially expressed proteins (DEPs) related to the allergic constitution were also extracted based on a previous study. Pathway enrichment analysis was performed using KOBAS-i on the GWAS, RRA, WGCNA modules, DEPs, and GMK targets. P values from multi-omics datasets were combined by meta-analysis, and Bonferroni correction was applied. The significant pathways were further validated using Gene Set Enrichment Analysis (GSEA) with intervention data of GMK. The GWAS results yielded 172 genes. Four datasets AR1, AA1, AD1, and AD2 were acquired from GSE75011, GSE125916, and GSE184237. The RRA algorithm identified 19 upregulated and 20 downregulated genes. WGCNA identified 5 significant modules, with the blue and turquoise modules displaying a moderate correlation with allergies. By performing network pharmacology analysis, we identified 127 active ingredients of GMK and predicted 618 targets. Validation using gene chip data confirmed 107 GMK targets. Single-omics pathway analysis was conducted using KOBAS-i, and 39 significant pathways were identified across multiple omics datasets. GSEA analysis using GMK intervention data identified 11 of 39 significant pathways as the final key pathways associated with the allergic constitution. Through multi-omics integrated pathway analysis, we identified 11 critical pathways of allergic constitution, including TH1 and TH2 cell differentiation, TLR cascade, and TH17 cell differentiation. Identifying these pathways suggests that the observed alterations at the pathway level may play significant roles in the molecular characteristics of the allergic constitution.
Collapse
Affiliation(s)
- Pengcheng Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rongmin Shen
- Beijing Heniantang Traditional Chinese Medicine Hospital, Beijing, China
| | - Xuemei Chen
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Diankun Cui
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|