1
|
Zhao G, Yang L, Ge Y, Qiu Z, Tang D, Fang Y, Ban Q, Yang CS, Zhang J. Tea drinking effectively improves symptoms of diabetes and prevents hepatorenal damage in mice. Food Res Int 2025; 211:116502. [PMID: 40356150 DOI: 10.1016/j.foodres.2025.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025]
Abstract
Since type 2 diabetic patients often develop resistance to metformin as the progresses of diabetes, and almost all type 1 diabetic patients need receive insulin injection for hyperglycemia control. It is important to explore novel strategies with different mechanisms for diabetes management. Glucose-induced osmotic diuresis, known as polyuria, is the first clinical symptom in severe type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). Drinking green tea or black tea effectively mitigates diabetic symptoms including polyuria, polydipsia, polyphagia and hyperglycemia in db/db mice via regulating renal aquaporin 2 and urine transporter A1 (UT-A1), in favor renal water reabsorption. This unique mechanism of action of tea could be useful for the treatment of diabetes in humans. In this study, we found that drinking Large-leaf yellow tea (LYT) for 5 weeks effectively ameliorated polyuria, polydipsia, polyphagia, hyperglycemia and excessive body weight gain, as well as upregulated renal water reabsorption associated proteins, including protein kinase C-alpha (PKC-α), membrane PKC-α and glycosylated UT-A1 in db/db mice. Four-days experiment were also confirmed the rapidly response of these proteins in favor renal water reabsorption and the amelioration of diabetic symptoms by LYT. We also found that green tea drinking effectively mitigated symptoms of diabetes in a mouse model for T1DM via upregulating these proteins. Moreover, green tea drinking prevented hepatorenal damage caused by hyperglycemia as suggested by the reduced levels of aspartate aminotransferase and creatinine in serum and the enhanced antioxidant defense system in liver and kidney. These results suggest the possible application of tea or tea constitutes in the clinical treatment of severe T2DM and T1DM, and the kidney is the target organ.
Collapse
Affiliation(s)
- Guangshan Zhao
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, PR China; Innovative Research Team (in Science and Technology) in University of Henan Province, College of Food Science & Technology, Henan Agricultural University, Zhengzhou, Henan, PR China
| | - Lumin Yang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Yueting Ge
- Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan, PR China
| | - Zhengyang Qiu
- Innovative Research Team (in Science and Technology) in University of Henan Province, College of Food Science & Technology, Henan Agricultural University, Zhengzhou, Henan, PR China
| | - Dong Tang
- Food Laboratory of Zhongyuan, Luohe, Henan, PR China
| | - Yuying Fang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Qiuyan Ban
- Department of Tea Science, College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, PR China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, PR China.
| | - Jinsong Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, PR China; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, PR China.
| |
Collapse
|
2
|
Sarabi M, Torshizian A, Khorasani ZM, Firoozi A, Majd HM, Khoshhal N, Saeidi N, AkbariRad M. Impact of Probiotics Administration on the VEGF, Adiponectin, and Glycolipid Metabolism, in Prediabetic Patients: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Food Sci Nutr 2025; 13:e70146. [PMID: 40321607 PMCID: PMC12045928 DOI: 10.1002/fsn3.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
It is debated that probiotics can improve glycolipid metabolism and slow the progression of prediabetes to diabetes mellitus. This study aimed to evaluate the effect of probiotics on lipid profile, glucose homeostasis, serum level of resistin, adiponectin, and vascular endothelial growth factor (VEGF) in prediabetic patients. This double-blind, randomized, placebo-controlled clinical trial was conducted on prediabetic patients in the Endocrinology clinic of Ghaem Hospital. Patients were randomly divided into two groups: the probiotics group was prescribed a daily 500-mg capsule of probiotics (109 colony-forming units), while the other received a placebo capsule with the same appearance. After 3 months, the effect of probiotic administration on laboratory parameters indicative of glycolipid metabolism, resistin, adiponectin, VEGF, body mass index (BMI), and blood pressure was compared between groups. This study was registered in the Iranian Registry of Clinical Trials (IRCT 20190801044405 N2). Fifty-two patients were included in the final analysis, with 26 patients in each group. The mean age of patients was 43.75 ± 8.45. At the beginning, both groups were similar in all demographic characteristics and measured serum levels of investigated biomarkers (p > 0.05 for all parameters). Both groups exhibited significant changes in BMI and fasting blood sugar (FBS). However, regarding FBS, the magnitude of change was significantly greater in patients treated with probiotics (p = 0.022). Our findings also revealed a significant increase in HDL (p = 0.001), adiponectin (p < 0.001), and VEGF (p = 0.024) serum levels and a significant decrease in HbA1c (p = 0.034), LDL (p = 0.002), TG (p < 0.001), and total cholesterol (p = 0.001) exclusively in the probiotics group. Probiotic supplementation efficiently improved glycolipid metabolism, adiponectin, and VEGF serum levels.
Collapse
Affiliation(s)
- Mehrdad Sarabi
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Ashkan Torshizian
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Zahra Mazloum Khorasani
- Department of Endocrinology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Hassan Mehrad Majd
- Molecular Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Nastaran Khoshhal
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Nikoo Saeidi
- Student Research CommitteeIslamic Azad UniversityMashhadIran
| | - Mina AkbariRad
- Department of Internal Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Adly AAM, Ismail EAR, Abd-Elgawad MM, Salah NY. Probiotic Supplementation Improves Glucose Homeostasis and Modulates Interleukin (IL)-21 and IL-22 Levels in Pediatric Patients with Type 1 Diabetes: A Randomized Placebo-Controlled Trial. Metabolites 2025; 15:288. [PMID: 40422866 DOI: 10.3390/metabo15050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Probiotics alter gut microbiota and have beneficial effects on immune homeostasis. The role of probiotics in diabetes has been shown in some studies. Interleukin (IL)-21 and IL-22 have been implicated in the pathogenesis of type 1 diabetes mellitus (T1DM). Objectives: This study aimed to assess the effect of oral supplementation with probiotics on glycemic control and IL-21 and IL-22 levels in pediatric patients with T1DM. Methods: This randomized controlled trial was registered in ClinicalTrials (NCT04579341) and included 70 children and adolescents with T1DM. They were randomly assigned into two groups to receive either an oral probiotic tablet containing 0.5 mg Lactobacillus acidophilus once daily or a matching placebo. Both groups were followed up for 6 months with assessment of fasting blood glucose (FBG), lipids, hemoglobin A1c (HbA1c), and IL-21 and IL-22 levels. Results: Baseline clinical characteristics and laboratory parameters were similar between both groups (p > 0.05). After six months, probiotic supplementation for the intervention group resulted in significant decreases in FBG, HbA1c, total cholesterol, and IL-21 levels, while IL-22 was increased compared with baseline levels (p < 0.001) and compared with the placebo group (p < 0.001). No adverse reactions were reported. Baseline IL-21 was positively correlated to FBG, HbA1c, and total cholesterol while there were negative correlations between these variables and IL-22 levels. Conclusions: Probiotic supplementation improved glucose homeostasis and glycemic control, possibly through their immunomodulatory effects on cytokines IL-21 and IL-22. Thus, probiotics could be a safe adjuvant therapy to intensive insulin in pediatric patients with T1DM.
Collapse
Affiliation(s)
| | | | | | - Nouran Yousef Salah
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| |
Collapse
|
4
|
Jiang Y, Yang J, Wei M, Shou J, Shen S, Yu Z, Zhang Z, Cai J, Lyu Y, Yang D, Han Y, Zhu J, Liu Z, Ma D, Xing GG, Li M. Probiotics alleviate painful diabetic neuropathy by modulating the microbiota-gut-nerve axis in rats. J Neuroinflammation 2025; 22:30. [PMID: 39894793 PMCID: PMC11789326 DOI: 10.1186/s12974-025-03352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Painful diabetic neuropathy (PDN) is one of the most common complications of diabetes. Recent studies suggested that gut microbiota dysbiosis contributes to the development of PDN, but underlying mechanisms remain elusive. In this study, we found decreased probiotics generating bacteria such as Lactobacillus and Bifidobacterium strains in the PDN rats. Supplementation with multiple probiotics for 12 weeks alleviated pain, reversed nerve fiber lesions, and restored neuronal hyperexcitability. Probiotics administration effectively attenuated intestinal barrier impairment, reduced serum lipopolysaccharide and proinflammatory cytokines, and mitigated disruptions in the blood-nerve barrier. Furthermore, probiotics treatment inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway and reduced proinflammatory cytokines in the sciatic nerve of the PDN rats. Together, our findings suggest that gut microbiota dysbiosis participates in PDN pathogenesis, and probiotics offer therapeutic potential via modulating the microbiota-gut-nerve axis.
Collapse
Affiliation(s)
- Ye Jiang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Min Wei
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jiayin Shou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Shixiong Shen
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhuoying Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zixian Zhang
- Neuroscience Research Institute, Peking University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, China
| | - Yanhan Lyu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jinpiao Zhu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhigang Liu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Daqing Ma
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, China.
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Yarahmadi M, Javid AZ, Bazyar H, Yousefimanesh HA, Nejatian T, Gravand E, Haghighizade MH. The effects of synbiotic supplementation along with non-surgical periodontal therapy in improving the metabolic status and inflammatory markers in type 2 diabetes mellitus patients with periodontal disease: A double-blind randomized clinical trial. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:430. [PMID: 39811858 PMCID: PMC11731246 DOI: 10.4103/jehp.jehp_1382_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 01/16/2025]
Abstract
BACKGROUND Diabetes mellitus and periodontitis are two common chronic diseases with bidirectional relationship. Considering the role of oxidative stress in the pathogenesis of these two diseases, the use of nutritional supplements with antioxidant properties can be useful. The purpose of this study was to determine the effectiveness of daily synbiotic supplement in the management of patients with type 2 diabetes mellitus (T2DM) and periodontal disease (PD) under non-surgical periodontal therapy (NSPT). MATERIALS AND METHODS In this randomized double-blind placebo controlled clinical trial, 50 patients suffering from T2DM and periodontal disease were recruited and randomly assigned to two groups: intervention group (n = 25), where one capsule of multi-species probiotic plus 100 mg fructo-oligosaccharide supplement (500 mg in each capsule) every day is given, and control group (n = 25), which received one placebo capsule containing 500 mg wheat flour for 8 weeks. At the beginning and end of the study, the serum levels of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), the lipid profile including total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) and inflammatory markers such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and high-sensitivity C-reactive protein (hs-CRP) were measured. All subjects received NSPT including oral health education, scaling, and root planning at the beginning of study. One month after the intervention, the second NSPT was performed. The paired-sample test was used to identify within-group differences. The independent sample t-test (crude model) and the analysis of covariance or ANCOVA (adjusted model) were used to compare the results between the two groups. RESULTS Synbiotic supplement with NSPT significantly decreased serum levels of FBG, HbA1c, TNF-α, and IL-6 compared with the baseline values (all P < 0.05). Furthermore, LDL-C levels significantly decreased compared with the baseline value in both groups (all P < 0.05). Also, the mean changes of IL-6 were significantly lower in the intervention group compared with the control group after the adjustment of confounding factors (P = 0.01). CONCLUSIONS Synbiotic supplementation with NSPT may be beneficial in improving glycemic control and inflammation and decreasing LDL-C in patients with T2DM and PD.
Collapse
Affiliation(s)
- Mohsen Yarahmadi
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Zare Javid
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Bazyar
- Department of Public Health, Sirjan School of Medical Sciences, Sirjan, Iran
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Hojat Allah Yousefimanesh
- Department of Periodontology, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Touraj Nejatian
- Prosthodontics and ORE, Eastman Dental Institute, Faculty of Medical Sciences, University College London, United Kingdom
| | - Ehsan Gravand
- Department of Periodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
6
|
Enache RM, Profir M, Roşu OA, Creţoiu SM, Gaspar BS. The Role of Gut Microbiota in the Onset and Progression of Obesity and Associated Comorbidities. Int J Mol Sci 2024; 25:12321. [PMID: 39596385 PMCID: PMC11595101 DOI: 10.3390/ijms252212321] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity, a global public health problem, is constantly increasing, so the concerns in preventing and combating it are increasingly focused on the intestinal microbiota. It was found that the microbiota is different in lean people compared to obese individuals, but the exact mechanisms by which energy homeostasis is influenced are still incompletely known. Numerous studies show the involvement of certain bacterial species in promoting obesity and associated diseases such as diabetes, hypertension, cancer, etc. Our aim is to summarize the main findings regarding the influence of several factors such as lifestyle changes, including diet and bariatric surgery, on the diversity of the gut microbiota in obese individuals. The second purpose of this paper is to investigate the potential effect of various microbiota modulation techniques on ameliorating obesity and its comorbidities. A literature search was conducted using the PubMed database, identifying articles published between 2019 and 2024. Most studies identified suggest that obesity is generally associated with alterations of the gut microbiome such as decreased microbial diversity, an increased Firmicutes-to-Bacteroidetes ratio, and increased SCFAs levels. Our findings also indicate that gut microbiota modulation techniques could represent a novel strategy in treating obesity and related metabolic diseases. Although some mechanisms (e.g., inflammation or hormonal regulation) are already considered a powerful connection between gut microbiota and obesity development, further research is needed to enhance the knowledge on this particular topic.
Collapse
Affiliation(s)
- Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
7
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Narang A, Rashid M, Thakur S, Jain SK, Kaur A, Kaur S. Acute Pre- and Post-administration of Lactiplantibacillus plantarum 2034 and Its Secretory Metabolites Ameliorates Hyperglycaemia, Hyperlipidaemia, and Oxidative Stress in Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10343-y. [PMID: 39150651 DOI: 10.1007/s12602-024-10343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The global prevalence rate of diabetes in 2021 was 6.1% making diabetes one of the top 10 causes of death. Prolonged use of antidiabetic medications is associated with various side effects; therefore, alternative treatment strategies for diabetes need exploration. The antidiabetic properties of Lactiplantibacillus plantarum 2034 was explored both in in vitro and in vivo studies. Secretory metabolites of probiotic L. plantarum 2034 exhibited alpha-glucosidase, alpha-amylase, and lipase inhibitory activities, in vitro. Further, the antidiabetic efficacy of 2034 was evaluated in streptozotocin-nicotinamide-induced diabetic rats. In the therapeutic model, oral administration of L. plantarum resulted in normalization of body weight, fasting blood glucose, total cholesterol (TC), and liver enzymes, and significant (p < 0.05) reduction in insulin and triglyceride (TG) levels. Histological evaluation of pancreas, liver, and kidney showed restoration of normal architecture in probiotic-treated group. Similarly, in a preventive + therapeutic model, 14 days of pre-administration of 2034 in pre, pre + post, and cell-free supernatant resulted in significant reduction in glucose, TG, TC, and liver biochemistry of diabetic rats as compared to untreated diabetic rats. An oral glucose tolerance test showed that the glucose levels normalized within 90 min in all the treated groups. Further, the oxidative stress parameters were also studied that showed that in all the treated groups, the concentration of antioxidant enzymes significantly (p < 0.05) increased as compared to diabetic untreated rats. Thus, administration of L. plantarum 2034 and its metabolites successfully ameliorated hyperglycaemia and hypercholesterolemia in both the models probably due to inhibition of gut enzymes and by increasing the concentration of liver antioxidant enzymes.
Collapse
Affiliation(s)
- Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
9
|
Lee HY, Lee J, Lim H, Kim HY, Koo YS, Lim JS, Yoon Y. Lactobacillus gasseri BNR17 Ameliorates Dexamethasone-Induced Muscle Loss in BALB/c Mice and C2C12 Myotubes. J Med Food 2024; 27:385-395. [PMID: 38574296 DOI: 10.1089/jmf.2023.k.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.
Collapse
Affiliation(s)
- Hyeon-Yeong Lee
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jongkyu Lee
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyemi Lim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hye-Young Kim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yeon-Su Koo
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ji-Su Lim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yoosik Yoon
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
10
|
Stegman N, Steiling M, Sedano C, Jackson B, Putonti C. Draft genome sequences of five Lactobacillus gasseri strains isolated from voided urine samples. Microbiol Resour Announc 2024; 13:e0111923. [PMID: 38132564 PMCID: PMC10868221 DOI: 10.1128/mra.01119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Lactobacillus gasseri is a member of the gut, oral, and female urogenital microbiota. Here, we present the draft genome assemblies of L. gasseri UMB1549, UMB1579, UMB1644, UMB3348, and UMB5890, which were isolated from voided urine samples from females with Type 2 diabetes.
Collapse
Affiliation(s)
- Natalie Stegman
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Maria Steiling
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Cerena Sedano
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Briana Jackson
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Qu Q, He P, Zhang Y, Yang S, Zeng P. The Intervention of Probiotics on Type 2 Diabetes Mellitus in Animal Models. Mol Nutr Food Res 2024; 68:e2200815. [PMID: 37967330 DOI: 10.1002/mnfr.202200815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/18/2023] [Indexed: 11/17/2023]
Abstract
Type 2 diabetes accounts for more than 90% of diabetes patients with the incidence and prevalence continuously rising globally. As a prospective therapy strategy for type 2 diabetes, probiotics have shown beneficial effects both in animal experiments and human clinical trials. This review summarizes the commonly used animal models in probiotic intervention research and presents the evidence and mechanism of diabetes intervention with probiotics in these animal models. Probiotics can help maintain glucose homeostasis, improve lipid metabolism, promote the production of short-chain fatty acids, and reduce inflammatory reactions in animal models. However, the clinical translation of benefits from probiotics is still challenged by intrinsic differences between experimental animal models and humans, and the application of humanized non-rodent diabetic animal models may contribute to the clinical translation of probiotics in the future.
Collapse
Affiliation(s)
- Qianyu Qu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| | - Penggang He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| | - Yuqi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| |
Collapse
|
12
|
Song H, Xue H, Zhang Z, Wang J, Li A, Zhang J, Luo P, Zhan M, Zhou X, Chen L, Fang Y. Amelioration of Type 2 Diabetes Using Four Strains of Lactobacillus Probiotics: Effects on Gut Microbiota Reconstitution-Mediated Regulation of Glucose Homeostasis, Inflammation, and Oxidative Stress in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20801-20814. [PMID: 37991826 DOI: 10.1021/acs.jafc.3c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This study aims to explore the preventive effects and underlying mechanisms of Lactobacillus fermentum CKCC1858 (CKCC1), L. fermentum CKCC1369 (CKCC2), Lactobacillus plantarum CKCC1312 (CKCC3), and Lactobacillus gasseri CKCC1913 (CKCC4) on high-fat diet combined with streptozotocin (HFD/STZ)-stimulated type 2 diabetes (T2D) in mice. Generally, the results indicated that most of the four probiotics reduced weight loss and liver and pancreas damage, significantly (p < 0.05) improved glucose metabolism by regulating glucagon-like peptide-1 (GLP-1), fasting glucose and insulin levels, and increasing expression of glucose transporters. Probiotics improved hyperlipemia, inflammation, and oxidative stress by reducing the secretion of blood lipids and proinflammatory cytokines, increasing antioxidant enzymes. Metagenomic results revealed that probiotics restored gut microbiota via enhancing (reducing) the relative abundance of beneficial bacteria (harmful bacteria) and altered specific metabolic pathways in T2D mice. CKCC1, CKCC3, and CKCC4 showed excellent effects compared to CKCC2. These results indicated that probiotics potentially prevented T2D, which is strain-specific.
Collapse
Affiliation(s)
- Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Pengfei Luo
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Xiaoli Zhou
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Park C, Ji SY, Hwangbo H, Shin SY, Kim MY, Lee K, Kim DH, Cho BR, Lee H, Choi YH, You HJ. Enhancement of Immune Functions by Limosilactobacillus reuteri KBL346: In Vitro and In Vivo Studies. Int J Mol Sci 2023; 25:141. [PMID: 38203313 PMCID: PMC10779160 DOI: 10.3390/ijms25010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Lactobacilli have been widely used as probiotics because of their benefits for intestinal health and physiological functions. Among a variety of Lactobacillus genera, Limosilactobacillus reuteri has been studied for its ability to exert anti-inflammatory functions and its role in controlling metabolic disorders, as well as the production of the antimicrobial compound reuterin. However, the effects and mechanisms of L. reuteri on enhancing immune responses in the immunosuppressed states have been relatively understudied. In this study, we isolated an immunomodulatory strain, namely, L. reuteri KBL346 (KBL346), from a fecal sample of a 3-month-old infant in Korea. We evaluated the immunostimulatory activity and hematopoietic function of KBL346 in macrophages and cyclophosphamide (CPA)-induced immunosuppressed mice. KBL346 increased the phagocytic activity against Candida albicans MYA-4788 in macrophages, and as biomarkers for this, increased secretions of nitric oxide (NO) and prostaglandin E2 (PGE2) were confirmed. Also, the secretions of innate cytokines (TNF-α, IL-1β, and IL-6) were increased. In CPA-induced immunosuppressed mice, KBL346 at a dosage of 1010 CFU/kg protected against spleen injury and suppressed levels of immune-associated parameters, including NK cell activity, T and B lymphocyte proliferation, CD4+ and CD8+ T cell abundance, cytokines, and immunoglobulins in vivo. The effects were comparable or superior to those in the Korean red ginseng positive control group. Furthermore, the safety assessment of KBL346 as a probiotic was conducted by evaluating its antibiotic resistance, hemolytic activity, cytotoxicity, and metabolic characteristics. This study demonstrated the efficacy and safety of KBL346, which could potentially be used as a supplement to enhance the immune system.
Collapse
Affiliation(s)
- Chanseop Park
- KoBioLabs Inc., Seoul 08826, Republic of Korea (K.L.); (B.-R.C.)
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea (D.H.K.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea (D.H.K.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Seung-yeon Shin
- KoBioLabs Inc., Seoul 08826, Republic of Korea (K.L.); (B.-R.C.)
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea (D.H.K.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Kiuk Lee
- KoBioLabs Inc., Seoul 08826, Republic of Korea (K.L.); (B.-R.C.)
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea (D.H.K.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Bo-Ram Cho
- KoBioLabs Inc., Seoul 08826, Republic of Korea (K.L.); (B.-R.C.)
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea (D.H.K.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hyun Ju You
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Al-Ishaq RK, Samuel SM, Büsselberg D. The Influence of Gut Microbial Species on Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098118. [PMID: 37175825 PMCID: PMC10179351 DOI: 10.3390/ijms24098118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with an alarming incidence rate and a considerable burden on the patient's life and health care providers. An increase in blood glucose level and insulin resistance characterizes it. Internal and external factors such as urbanization, obesity, and genetic mutations could increase the risk of DM. Microbes in the gut influence overall health through immunity and nutrition. Recently, more studies have been conducted to evaluate and estimate the role of the gut microbiome in diabetes development, progression, and management. This review summarizes the current knowledge addressing three main bacterial species: Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus and their influence on diabetes and its underlying molecular mechanisms. Most studies illustrate that using those bacterial species positively reduces blood glucose levels and activates inflammatory markers. Additionally, we reported the relationship between those bacterial species and metformin, one of the commonly used antidiabetic drugs. Overall, more research is needed to understand the influence of the gut microbiome on the development of diabetes. Furthermore, more efforts are required to standardize the model used, concentration ranges, and interpretation tools to advance the field further.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
16
|
Atazadegan MA, Heidari-Beni M, Entezari MH, Sharifianjazi F, Kelishadi R. Effects of synbiotic supplementation on anthropometric indices and body composition in overweight or obese children and adolescents: a randomized, double-blind, placebo-controlled clinical trial. World J Pediatr 2023; 19:356-365. [PMID: 36484872 PMCID: PMC9734986 DOI: 10.1007/s12519-022-00664-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recently, beneficial effects of probiotics and/or prebiotics on cardio-metabolic risk factors in adults have been shown. However, existing evidence has not been fully established for pediatric age groups. This study aimed to assess the effect of synbiotic on anthropometric indices and body composition in overweight or obese children and adolescents. METHODS This randomized double-blind, placebo-controlled trial was conducted among 60 participants aged 8-18 years with a body mass index (BMI) equal to or higher than the 85th percentile. Participants were randomly divided into two groups that received either a synbiotic capsule containing 6 × 109 colony forming units (CFU) Lactobacillus coagulans SC-208, 6 × 109 CFU Lactobacillus indicus HU36 and fructooligosaccharide as a prebiotic (n = 30) or a placebo (n = 30) twice a day for eight weeks. Anthropometric indices and body composition were measured at baseline and after the intervention. RESULTS The mean (standard deviation, SD) age was 11.07 (2.00) years and 11.23 (2.37) years for the placebo and synbiotic groups, respectively (P = 0.770). The waist-height ratio (WHtR) decreased significantly at the end of the intervention in comparison with baseline in the synbiotic group (0.54 ± 0.05 vs. 0.55 ± 0.05, P = 0.05). No significant changes were demonstrated in other anthropometric indices or body composition between groups. CONCLUSIONS Synbiotic supplementation might be associated with a reduction in WHtR. There were no significant changes in other anthropometric indices or body composition.
Collapse
Affiliation(s)
- Mohammad Amin Atazadegan
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Hassan Entezari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Lin X, Bakyrbay S, Liu L, Tang X, Liu Y. Microbiota Succession and Chemical Composition Involved in Lactic Acid Bacteria-Fermented Pickles. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Pickles are a type of traditional fermented vegetables in China. To ascertain the effect of different lactic acid bacteria on pickles, the chemical composition characteristics, flavor substances, and bacterial diversity of the pickles fermented by natural bacteria, Lactobacillus plantarum R5, Lactobacillus pentosus R8, and L. plantarum R5 plus L. pentosus R8 were investigated in this study. The results showed that Lactobacillus enhanced the decrease in pH, increase in total acid content, degradation of nitrite, and production of organic acid (lactic acid and malic acid) of fermented pickles. A total of 80 flavors were detected in the pickles fermented for 14 days, and esters in pickles fermented by Lactobacillus were more plentiful. Firmicutes emerged as the predominant microbial phyla. Amongst these, the commonly encountered microorganisms were Lactobacillus, unclassified Enterobacteriaceae, Pantoea, and Weissella. The multivariate statistical analysis further showed that Lactobacillus had a strong negative correlation with pH and a strong positive correlation with malic acid and lactic acid, and the microorganisms in pickles could acclimate to the changing fermentation environment. The insights gained from this study may be of assistance to us in obtaining new insights into the microbiota succession and chemical compounds involved in the pickles fermented by Lactobacillus.
Collapse
|
18
|
Widodo W, Kusumaningrum HRP, Wihadmadyatami H, Wicaksana AL. Milk Fermented with Pediococcus acidilactici Strain BE Improves High Blood Glucose Levels and Pancreatic Beta-Cell Function in Diabetic Rats. Food Sci Anim Resour 2023; 43:170-183. [PMID: 36789203 PMCID: PMC9890364 DOI: 10.5851/kosfa.2022.e69] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
This study evaluated the effects of milk fermented with Pediococcus acidilactici strain BE and Pediococcus pentosaceus strain M103 on diabetes in rats (Rattus norvegicus). The bacteria were separately used as starter cultures for milk fermentation, and the products were then fed to diabetic rats for 15 days. Blood glucose levels, immunohistochemical and histological indicators, lipid profiles, and total lactic acid bacterium counts were evaluated before and after treatment. The administration of milk fermented with P. acidilactici strain BE reduced blood glucose levels from 410.27±51.60 to 304.07±9.88 mg/dL (p<0.05), similar to the effects of metformin (from 382.30±13.39 mg/dL to 253.33±40.66 mg/dL, p<0.05). Increased insulin production was observed in diabetic rats fed milk fermented with P. acidilactici strain BE concomitant with an increased number and percentage area of immunoreactive beta-cells. The structure of insulin-producing beta-cells was improved in diabetic rats fed milk fermented with P. acidilactici strain BE or metformin (insulin receptor substrate scores of 5.33±0.94 and 3.5±0.5, respectively). This suggests that the administration of milk fermented with P. acidilactici BE potentially reduces blood glucose levels and improves pancreatic beta-cell function in diabetic rats.
Collapse
Affiliation(s)
- Widodo Widodo
- Faculty of Animal Science, Universitas
Gadjah Mada, Yogyakarta 55281, Indonesia,Corresponding author: Widodo
Widodo, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281,
Indonesia, Tel: +62-274-6491963, E-mail:
| | | | - Hevi Wihadmadyatami
- Faculty of Veterinary Medicine,
Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Anggi Lukman Wicaksana
- Faculty of Medicine, Public Health, and
Nursing, Universitas Gadjah Mada, Yogyakarta 55281,
Indonesia,School of Nursing, College of Nursing,
Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
19
|
Saifi S, Swaminathan A, Devi P, Chattopadhyay P, Gupta S, Garg A, Saxena S, Parveen S, Pandey R. A Tour-d’Horizon of microbiota therapeutics for metabolic disorders. MICROBIOME THERAPEUTICS 2023:231-253. [DOI: 10.1016/b978-0-323-99336-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Guo X, Wang C, Zhang R, Hao X, Lv L, Ni Y, Fan X, Zhang W, Jiao Y, Song W, Dong Q, Qi Y, Song M, Qin X. Scrophulariae Radix-Atractylodes sinensis pair and metformin inhibit inflammation by modulating gut microbiota of high-fat diet/streptozotocin-induced diabetes in rats. Front Microbiol 2022; 13:900021. [PMID: 36532503 PMCID: PMC9748418 DOI: 10.3389/fmicb.2022.900021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/14/2022] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Type 2 mellitus (T2DM), a chronic metabolic disorder, causes severe impairment of patients' quality of life and has attracted global attention. Many studies have suggested the importance of the gut microbiota in the occurrence of T2DM. The Scrophulariae Radix and Atractylodes sinensis (XC) pair, recommended in traditional Chinese medicine (TCM), have been used for treating diabetes for many years. However, research on the role of the XC pair in modulating gut microbial communities is lacking, but it is important to elucidate the underlying mechanism. METHODS In this study, we detected bacterial communities by high-throughput 16S rRNA gene sequencing. RESULTS The results showed that XC + MET reduced postprandial hyperglycemia and inflammatory response in diabetic rats more effectively than metformin (MET) alone. The XC + MET treatment reshaped the intestinal microbial composition of diabetic rats. XC can help MET regulate carbohydrate, amino acid, and lipid metabolism, particularly the insulin signaling pathway. DISCUSSION This research would help elucidate potential mechanisms and the treatment methods.
Collapse
Affiliation(s)
- Xiaoxia Guo
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Chong Wang
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Ranran Zhang
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xuliang Hao
- Traditional Chinese Medicine Preparation Center, Affiliated Hospital of Shanxi University of Chinese Medicine, Taiyuan, Shanxi, China
| | - Lei Lv
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Yan Ni
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xiaohong Fan
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Weiliang Zhang
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Yunhong Jiao
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Wei Song
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Qi Dong
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Yuqi Qi
- Department of Metabolism, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Meiqing Song
- Clinical Pharmacological Research Laboratory, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Yang SY, Yoon KS. Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt. Foods 2022; 11:foods11233799. [PMID: 36496607 PMCID: PMC9740215 DOI: 10.3390/foods11233799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Greek yogurt is a strained yogurt with a high protein content that brings nutritional benefits. To enhance the functional benefits of Greek yogurt, Greek yogurt was prepared with various combinations of probiotic lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus gasseri BNR17, and Lactobacillus plantarum HY7714). Effects of probiotic LAB on quality, sensory, and microbiological characteristics of Greek yogurt were then compared. Among samples, Greek yogurt fermented by S. thermophilus and L. bulgaricus showed the highest changes of pH and titratable acidity during 21 d of storage at 4 °C. Greek yogurt fermented with L. plantarum HY7714 had a higher viscosity than other samples. Greek yogurt fermented with S. thermophilus, L. bulgaricus, L. gasseri BNR17, and L. plantarum HY7714 showed superior physicochemical properties and received the highest preference score from sensory evaluation among samples. Overall, the population of enterohaemorrhagic Escherichia coli (EHEC) was more effectively reduced in Greek yogurt fermented with probiotic LAB than in commercial Greek yogurt during storage at 4, 10, and 25 °C. Thus, the addition of L. gasseri BNR17 and L. plantarum HY7714 as starter cultures could enhance the microbial safety of Greek yogurt and sensory acceptance by consumers.
Collapse
Affiliation(s)
- So-Young Yang
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ki-Sun Yoon
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
22
|
Yao B, Pan B, Tian T, Su X, Zhang S, Li H, Li W, Wang Y, Lv S, Zhang Z. Baihu renshen decoction ameliorates type 2 diabetes mellitus in rats through affecting gut microbiota enhancing gut permeability and inhibiting TLR4/NF-κB-mediated inflammatory response. Front Cell Infect Microbiol 2022; 12:1051962. [PMID: 36439213 PMCID: PMC9691847 DOI: 10.3389/fcimb.2022.1051962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 10/24/2023] Open
Abstract
Baihu Rensheng decoction (BHRS) can effectively improve insulin resistance (IR) and decrease blood glucose in diabetic patients. However, its specific mechanism of action remains unclear. In this study, a type 2 diabetes mellitus (T2DM) rat model was established using a high-fat diet combined with streptozotocin (STZ) injection and treated with BHRS. Firstly, the therapeutic and anti-inflammatory effects of BHRS on T2DM were evaluated. Secondly, the effects of BHRS on gut permeability were evaluated and western blot was used to detect the changes of TLR4/NF-κB pathway-related protein expressions in liver. Finally, 16S rRNA sequencing was used to detect alteration of gut microbiota diversity and abundance in rats after BHRS treatment. Our results showed that BHRS could alleviate the hyperglycemia, hyperlipidemia, IR, and pathological changes of liver, pancreas, and kidney in T2DM rats. BHRS could also decrease the levels of pro-inflammatory cytokines and inhibit the oxidative stress. Immunohistochemistry showed BHRS could increase the expression tight junction-related proteins (ZO-1 and occludin) in colon. Besides, the level of LPS in serum was decreased after BHRS treatment. Western blot results showed that the protein expression of TLR4, MyD88 and the phosphorylation IκB, and NF-κBp65 were lowered after BHRS treatment. 16S rRNA sequencing showed that BHRS treatment altered the diversity of gut microbiotra and decreases the Firmicutes/Bacteroidetes (F to B) ratio at the phylum level. At the genus level, BHRS could increase the relative abundances of Lactobacillus, Blautia, and Anaerostipes and decrease the relative abundances of Allobaculum, Candidatus Saccharimonas, and Ruminococcus. In conclusion, our study revealed the various ameliorative effects of BHRS on T2DM, including improving the liver and kidney functions and alleviating the hyperglycemia, hyperlipidemia, pathological changes, oxidative stress and inflammatory response. The mechanisms of BHRS on T2DM are likely linked to the repair of gut barrier and the inhibition of TLR4/NF-κB-mediated inflammatory response and the improvement in the dysbiosis of gut microbiota.
Collapse
Affiliation(s)
- Bin Yao
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Baochao Pan
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Tian Tian
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiuhai Su
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Shufang Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Hanzhou Li
- Graduate School, Chengde Medical University, Chengde, China
| | - Wendong Li
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Yuansong Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Shuquan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zhaiyi Zhang
- College of Integrated Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Li Y, Wu Y, Wu L, Qin L, Liu T. The effects of probiotic administration on patients with prediabetes: a meta-analysis and systematic review. J Transl Med 2022; 20:498. [PMID: 36324119 PMCID: PMC9632036 DOI: 10.1186/s12967-022-03695-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in the prediabetic population by meta-analysis, namely, fasting blood glucose (FBG), glycated haemoglobin A1c (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and the mechanisms of action are summarized from the existing studies. METHODS Seven databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed, CNKI, and Wanfang Med) were searched until March 2022. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model to observe the efficacy of probiotic supplementation on the included indicators. RESULTS Seven publications with a total of 460 patients were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HbA1c (WMD, -0.07; 95% CI -0.11, -0.03; P = 0.001), QUICKI (WMD, 0.01; 95% CI 0.00, 0.02; P = 0.04), TC (SMD, -0.28; 95% CI -0.53, -0.22; P = 0.03), TG (SMD, -0.26; 95% CI -0.52, -0.01; P = 0.04), and LDL-C (WMD, -8.94; 95% CI -14.91, -2.97; P = 0.003) compared to levels in the placebo group. The effects on FBG (WMD, -0.53; 95% CI -2.31, 1.25; P = 0.56), HOMA-IR (WMD, -0.21; 95% CI -0.45, 0.04; P = 0.10), and HDL-C (WMD, 2.05; 95% CI -0.28, 4.38; P = 0.08) were not different from those of the placebo group. CONCLUSION The present study clearly indicated that probiotics may fulfil an important role in the regulation of HbA1c, QUICKI, TC, TG and LDL-C in patients with prediabetes. In addition, based on existing studies, we concluded that probiotics may regulate blood glucose homeostasis in a variety of ways. TRIAL REGISTRATION This meta-analysis has been registered at PROSPERO with ID: CRD42022321995.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
24
|
Letchumanan G, Abdullah N, Marlini M, Baharom N, Lawley B, Omar MR, Mohideen FBS, Addnan FH, Nur Fariha MM, Ismail Z, Pathmanathan SG. Gut Microbiota Composition in Prediabetes and Newly Diagnosed Type 2 Diabetes: A Systematic Review of Observational Studies. Front Cell Infect Microbiol 2022; 12:943427. [PMID: 36046745 PMCID: PMC9422273 DOI: 10.3389/fcimb.2022.943427] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Evidence of gut microbiota involvement in regulating glucose metabolism and type 2 diabetes mellitus (T2DM) progression is accumulating. The understanding of microbial dysbiosis and specific alterations of gut microbiota composition that occur during the early stages of glucose intolerance, unperturbed by anti-diabetic medications, is especially essential. Hence, this systematic review was conducted to summarise the existing evidence related to microbiota composition and diversity in individuals with prediabetes (preDM) and individuals newly diagnosed with T2DM (newDM) in comparison to individuals with normal glucose tolerance (nonDM). A systematic search of the PubMed, MEDLINE and CINAHL databases were conducted from inception to February 2021 supplemented with manual searches of the list of references. The primary keywords of “type 2 diabetes”, “prediabetes”, “newly-diagnosed” and “gut microbiota” were used. Observational studies that conducted analysis of the gut microbiota of respondents with preDM and newDM were included. The quality of the studies was assessed using the modified Newcastle-Ottawa scale by independent reviewers. A total of 18 studies (5,489 participants) were included. Low gut microbial diversity was generally observed in preDM and newDM when compared to nonDM. Differences in gut microbiota composition between the disease groups and nonDM were inconsistent across the included studies. Four out of the 18 studies found increased abundance of phylum Firmicutes along with decreased abundance of Bacteroidetes in newDM. At the genus/species levels, decreased abundance of Faecalibacterium prausnitzii, Roseburia, Dialister, Flavonifractor, Alistipes, Haemophilus and Akkermansia muciniphila and increased abundance of Lactobacillus, Streptococcus, Escherichia, Veillonella and Collinsella were observed in the disease groups in at least two studies. Lactobacillus was also found to positively correlate with fasting plasma glucose (FPG), HbA1c and/or homeostatic assessment of insulin resistance (HOMA-IR) in four studies. This renders a need for further investigations on the species/strain-specific role of endogenously present Lactobacillus in glucose regulation mechanism and T2DM disease progression. Differences in dietary intake caused significant variation in specific bacterial abundances. More studies are needed to establish more consistent associations, between clinical biomarkers or dietary intake and specific gut bacterial composition in prediabetes and early T2DM.
Collapse
Affiliation(s)
- Geetha Letchumanan
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Natasya Abdullah
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Muhamad Marlini
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Nizam Baharom
- Public Health Unit, Department of Primary Health Care, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Blair Lawley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mohd Rahman Omar
- Medical-based Department, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Fathima Begum Syed Mohideen
- Family Medicine Unit, Department of Primary Health Care, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Faizul Helmi Addnan
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Mohd Manzor Nur Fariha
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Zarini Ismail
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Siva Gowri Pathmanathan
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
- *Correspondence: Siva Gowri Pathmanathan,
| |
Collapse
|
25
|
Sharma BR, Jaiswal S, Ravindra PV. Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomed Pharmacother 2022; 152:113148. [PMID: 35665671 DOI: 10.1016/j.biopha.2022.113148] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia and insulin resistance. Gut microbiota (GM) are specific groups of microbes colonized in the gastrointestinal (GI) tract. They profoundly influence health, disease protection, and associated with metabolic activities, and play a vital role in the production of functional metabolites from dietary substances. Dysbiosis of GM has been linked to the onset of T2DM and can be altered to attain eubiosis by intervention with various nutritional bioactive compounds such as polyphenols, prebiotics, and probiotics. This review presents an overview of the evidence and underlying mechanisms by which bioactive compounds modulate the GM for the prevention and management of T2DM.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), KRS Road, Opp. Rail Museum, Mysuru 570020, India
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - P V Ravindra
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), KRS Road, Opp. Rail Museum, Mysuru 570020, India.
| |
Collapse
|
26
|
Ermolenko E, Simanenkova A, Voropaeva L, Lavrenova N, Kotyleva M, Minasian S, Chernikova A, Timkina N, Gladyshev N, Dmitriev A, Suvorov A, Galagudza M, Karonova T. Metformin Influence on the Intestinal Microbiota and Organism of Rats with Metabolic Syndrome. Int J Mol Sci 2022; 23:6837. [PMID: 35743280 PMCID: PMC9224185 DOI: 10.3390/ijms23126837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Metformin is a first-line drug for DM2 treatment and prevention, but its complex effect on impaired glucose tolerance (IGT), including its influence on myocardial resistance to ischemia-reperfusion injury, is not completely studied. We aimed to evaluate the influence of metformin on the intestinal microbiota (IM), metabolism, and functional and morphological characteristics of myocardium in rats with IGT. IGT was modelled in SPF Wistar rats with a high-fat diet and streptozotocin and nicotinamide injection. Rats were divided into three groups: IGT (without treatment), IGT MET (metformin therapy), and CRL (without IGT induction and treatment). IGT group was characterized by: higher body weight, increased serum glucose and total cholesterol levels, atherogenic coefficient, impairment in the functional parameters of the isolated heart during perfusion, and larger myocardium infarction (MI) size in comparison with the CRL group. IM of IGT rats differed from that of CRL: an increase of Bacteroides, Acinetobacter, Akkermansia, Roseburia, and a decrease of Lactobacillus genera representation. Metformin therapy led to the diminishing of metabolic syndrome (MS) symptoms, which correlated with IM restoration, especially with the growth of Akkermansia spp. and decline of Roseburia populations and their influence on other members of IM. The obtained results allow us to consider from a new point of view the expediency of probiotic A. muciniphila use for MS treatment.
Collapse
Affiliation(s)
- Elena Ermolenko
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Anna Simanenkova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Lyubov Voropaeva
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Nadezhda Lavrenova
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Maryna Kotyleva
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Sarkis Minasian
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Alena Chernikova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Natalya Timkina
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Nikita Gladyshev
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Alexander Dmitriev
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Alexander Suvorov
- Federal State Budgetary Institution “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (L.V.); (N.L.); (M.K.); (N.G.); (A.D.); or (A.S.)
| | - Michael Galagudza
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| | - Tatiana Karonova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.S.); (S.M.); (A.C.); (N.T.); (M.G.); (T.K.)
| |
Collapse
|
27
|
Yang J, Dong C, Ren F, Xie Y, Liu H, Zhang H, Jin J. Lactobacillus paracasei M11-4 isolated from fermented rice demonstrates good antioxidant properties in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3107-3118. [PMID: 34786708 DOI: 10.1002/jsfa.11652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Probiotics are defined as microorganisms that can exert health benefits for the host. Among the recognized probiotics, Lactobacillus paracasei are one of the most frequently used probiotics in humans. The L. paracasei strain M11-4, isolated from fermented rice (which could ferment soymilk within a short curd time) and fermented soymilk presented high viability, acceptable flavor, and antioxidant activity, which revealed that the strain maybe have a potential antioxidant value. Therefore, it is necessary to further explore the antioxidant activity of L. paracasei strain M11-4. RESULTS The radical scavenging activities, lipid peroxidation inhibition, and reducing power of L. paracasei M11-4 were the highest in the fermentation culture without cells, whereas the activities of other antioxidant enzymes of L. paracasei M11-4 were high in the cell-free extract and bacterial suspension. Moreover, L. paracasei M11-4 exerted its antioxidant effect by upregulating the gene expression of its antioxidant enzymes - the thioredoxin and glutathione systems - when hydrogen peroxide existed. Supplementation of rats with L. paracasei M11-4 effectively alleviated d-galactose-induced oxidative damage in the liver and serum and prevented d-galactose-induced changes to intestinal microbiota. Supplementation with L. paracasei M11-4 also reduced the elevated expression of thioredoxin and glutathione system genes induced by d-galactose. CONCLUSION L. paracasei M11-4 has good antioxidant properties both in vitro and in vivo, and its antioxidant mechanism was studied at the molecular level. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianjun Yang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Chenyang Dong
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| |
Collapse
|
28
|
Singh V, Park YJ, Lee G, Unno T, Shin JH. Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit Rev Food Sci Nutr 2022; 63:9961-9976. [PMID: 35635755 DOI: 10.1080/10408398.2022.2076651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes (T2D) and T2D-associated comorbidities, such as obesity, are serious universally prevalent health issues among post-menopausal women. Menopause is an unavoidable condition characterized by the depletion of estrogen, a gonadotropic hormone responsible for secondary sexual characteristics in women. In addition to sexual dimorphism, estrogen also participates in glucose-lipid homeostasis, and estrogen depletion is associated with insulin resistance in the female body. Estrogen level in the gut also regulates the microbiota composition, and even conjugated estrogen is actively metabolized by the estrobolome to maintain insulin levels. Moreover, post-menopausal gut microbiota is different from the pre-menopausal gut microbiota, as it is less diverse and lacks the mucolytic Akkermansia and short-chain fatty acid (SCFA) producers such as Faecalibacterium and Roseburia. Through various metabolites (SCFAs, secondary bile acid, and serotonin), the gut microbiota plays a significant role in regulating glucose homeostasis, oxidative stress, and T2D-associated pro-inflammatory cytokines (IL-1, IL-6). While gut dysbiosis is common among post-menopausal women, dietary interventions such as probiotics, prebiotics, and synbiotics can ease post-menopausal gut dysbiosis. The objective of this review is to understand the relationship between post-menopausal gut dysbiosis and T2D-associated factors. Additionally, the study also provided dietary recommendations to avoid T2D progression among post-menopausal women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Tatsuya Unno
- Department of Biotechnology, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
29
|
Qiu J, Zhou C, Xiang S, Dong J, Zhu Q, Yin J, Lu X, Xiao Z. Association Between Trajectory Patterns of Body Mass Index Change Up to 10 Months and Early Gut Microbiota in Preterm Infants. Front Microbiol 2022; 13:828275. [PMID: 35572657 PMCID: PMC9093742 DOI: 10.3389/fmicb.2022.828275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Recent research suggests that gut microbiota plays an important role in the occurrence and development of excessive weight and obesity, and the early-life gut microbiota may be correlated with weight gain and later growth. However, the association between neonatal gut microbiota, particularly in preterm infants, and excessive weight and obesity remains unclear. To evaluate the relationship between gut microbiota and body mass index (BMI) growth trajectories in preterm infants, we examined microbial composition by performing 16S rDNA gene sequencing on the fecal samples from 75 preterm infants within 3 months after birth who were hospitalized in the neonatal intensive care unit of Hunan Children’s Hospital from August 1, 2018 to October 31, 2019. Then, we collected their physical growth information during 0–10 months. Latent growth mixture models were used to estimate growth trajectories of infantile BMI, and the relationship between the gut microbiota and the BMI growth trajectories was analyzed. The results demonstrated that there were 63,305 and 61 operational taxonomic units in the higher BMI group (n = 18), the lower BMI group (n = 51), and the BMI catch-up group (n = 6), respectively. There were significant differences in the abundance of the gut microbiota, but no significant differences in the diversity of it between the lower and the higher BMI group. The BMI growth trajectories could not be clearly distinguished because principal component analysis showed that gut microbiota composition among these three groups was similar. The three groups were dominated by Firmicutes and Proteobacteria in gut microbiota composition, and the abundance of Lactobacillus in the higher BMI group was significantly different from the lower BMI group. Further intervention experiments and dynamic monitoring are needed to determine the causal relationship between gut microbiota differences and the BMI change.
Collapse
Affiliation(s)
- Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Changci Zhou
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Jie Dong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Qifeng Zhu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jieyun Yin
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiulan Lu
- Department of Intensive Care Unit, Hunan Children's Hospital, Changsha, China
| | - Zhenghui Xiao
- Department of Intensive Care Unit, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
30
|
Lee S, Park HO, Yoo W. Anti-Melanogenic and Antioxidant Effects of Cell-Free Supernatant from Lactobacillus gasseri BNR17. Microorganisms 2022; 10:microorganisms10040788. [PMID: 35456838 PMCID: PMC9027439 DOI: 10.3390/microorganisms10040788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, there has been considerable interest in the use of cell-free supernatant of probiotics culture for nutritional and functional applications. In this study, we investigated the effect of the cell-free supernatant from Lactobacillus gasseri BNR17 (CFS) on anti-melanogenesis and reducing oxidative stress in B16-F10 murine melanoma cells and HaCaT human keratinocytes. Treatment with CFS significantly inhibited the production of extracellular and intracellular melanin without cytotoxicity during melanogenesis induced by the α-MSH in B16-F10 cells. The CFS dramatically reduced tyrosinase activity and the melanogenesis-related gene expression. Further, it showed antioxidative effects in a dose-dependent manner in DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assays and significantly increased the mRNA levels of HO-1 and CAT in HaCaT cells. Furthermore, the CFS increased HO-1 and anti-oxidative-related gene expression during H2O2-induced oxidative stress in HaCaT cells. Together, this study suggests that the CFS reduces hyperpigmentation and inhibits oxidative stress, and thus can be used as a potential skincare product in the future.
Collapse
Affiliation(s)
- Sol Lee
- AceBiome Inc., Seoul 06164, Korea; (S.L.); (H.-O.P.)
- R&D Center, AceBiome Inc., Daejeon 34013, Korea
| | - Han-Oh Park
- AceBiome Inc., Seoul 06164, Korea; (S.L.); (H.-O.P.)
- R&D Center, AceBiome Inc., Daejeon 34013, Korea
- siRNAgen Therapeutics, Daejeon 34302, Korea
- Bioneer Corporation, Daejeon 34302, Korea
| | - Wonbeak Yoo
- AceBiome Inc., Seoul 06164, Korea; (S.L.); (H.-O.P.)
- R&D Center, AceBiome Inc., Daejeon 34013, Korea
- Correspondence: ; Tel.: +82-42-335-6020
| |
Collapse
|
31
|
Craciun CI, Neag MA, Catinean A, Mitre AO, Rusu A, Bala C, Roman G, Buzoianu AD, Muntean DM, Craciun AE. The Relationships between Gut Microbiota and Diabetes Mellitus, and Treatments for Diabetes Mellitus. Biomedicines 2022; 10:308. [PMID: 35203519 PMCID: PMC8869176 DOI: 10.3390/biomedicines10020308] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is considered to be a global epidemic. The combination of genetic susceptibility and an unhealthy lifestyle is considered to be the main trigger of this metabolic disorder. Recently, there has been increased interest in the roles of gut microbiota as a new potential contributor to this epidemic. Research, in recent years, has contributed to an in-depth characterization of the human microbiome and its associations with various diseases, including metabolic diseases and diabetes mellitus. It is known that diet can change the composition of gut microbiota, but it is unclear how this, in turn, may influence metabolism. The main objective of this review is to evaluate the pathogenetic association between microbiota and diabetes and to explore any new therapeutic agents, including nutraceuticals that may modulate the microbiota. We also look at several mechanisms involved in this process. There is a clear, bidirectional relationship between microbiota and diabetes. Current treatments for diabetes influence microbiota in various ways, some beneficial, but others with still unclear effects. Microbiota-aimed treatments have seen no real-world significant effects on the progression of diabetes and its complications, with more studies needed in order to find a really beneficial agent.
Collapse
Affiliation(s)
- Cristian-Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adriana Rusu
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Cornelia Bala
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Gabriela Roman
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Anca-Elena Craciun
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| |
Collapse
|
32
|
Trikha SRJ, Lee DM, Ecton KE, Wrigley SD, Vazquez AR, Litwin NS, Thomas KN, Wei Y, Battson ML, Johnson SA, Kuhn KA, Colgan SP, Gentile CL, Weir TL. Transplantation of an obesity-associated human gut microbiota to mice induces vascular dysfunction and glucose intolerance. Gut Microbes 2021; 13:1940791. [PMID: 34313540 PMCID: PMC8317959 DOI: 10.1080/19490976.2021.1940791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent preclinical data suggest that alterations in the gut microbiota may be an important factor linking obesity to vascular dysfunction, an early sign of cardiovascular disease. The purpose of this study was to begin translation of these preclinical data by examining whether vascular phenotypes in humans are transmissible through the gut microbiota. We hypothesized that germ-free mice colonized with gut microbiota from obese individuals would display diminished vascular function compared to germ-free mice receiving microbiota from lean individuals.We transplanted fecal material from obese and lean age-and sex-matched participants with disparate vascular function to germ-free mice. Using Principle Component Analysis, the microbiota of colonized mice separated by donor group along the first principle component, accounting for between 70-93% of the total variability in the dataset. The microbiota of mice receiving transplants from lean individuals was also characterized by increased alpha diversity, as well as increased relative abundance of potentially beneficial bacteria, including Bifidobacterium, Lactobacillus, and Bacteroides ovatis. Endothelium-dependent dilation, aortic pulse wave velocity and glucose tolerance were significantly altered in mice receiving microbiota from the obese donor relative to those receiving microbiota from the lean donor or those remaining germ-free.These data indicate that the obesity-associated human gut microbiota is sufficient to alter the vascular phenotype in germ-free mice in the absence of differences in body weight or dietary manipulation, and provide justification for future clinical trials to test the efficacy of microbiota-targeted therapies in the prevention or treatment of cardiovascular disease.
Collapse
Affiliation(s)
- S. Raj J. Trikha
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Dustin M. Lee
- Department of Nutritional Medicine, Brooke Army Medical Center, San Antonio, TX, USA
| | - Kayl E. Ecton
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Scott D. Wrigley
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Allegra R. Vazquez
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Nicole S. Litwin
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Keely N. Thomas
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Yuren Wei
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Micah L. Battson
- Department of Nutrition, Metropolitan State University, Denver, CO, USA
| | - Sarah A. Johnson
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Kristine A. Kuhn
- School of Medicine in the Division of Rheumatology and Gnotobiotic Core Director, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean P. Colgan
- School of Medicine in the Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher L. Gentile
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA,CONTACT Christopher L. Gentile 208 Gifford Bldg, 1571 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Tiffany L. Weir
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA,Tiffany L. Weir 210 Gifford Bldg, 1571 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1571, USA
| |
Collapse
|
33
|
Kim S, Choi S, Dutta M, Asubonteng JO, Polunas M, Goedken M, Gonzalez FJ, Cui JY, Gyamfi MA. Pregnane X receptor exacerbates nonalcoholic fatty liver disease accompanied by obesity- and inflammation-prone gut microbiome signature. Biochem Pharmacol 2021; 193:114698. [PMID: 34303710 PMCID: PMC9135326 DOI: 10.1016/j.bcp.2021.114698] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease due to the current epidemics of obesity and diabetes. The pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor known for trans-activating liver genes involved in drug metabolism and transport, and more recently implicated in energy metabolism. The gut microbiota can modulate the host xenobiotic biotransformation and contribute to the development of obesity. While the male sex confers a higher risk for NAFLD than women before menopause, the mechanism remains unknown. We hypothesized that the presence of PXR promotes obesity by modifying the gut-liver axis in a sex-specific manner. Male and female C57BL/6 (wild-type/WT) and PXR-knockout (PXR-KO) mice were fed control or high-fat diet (HFD) for 16-weeks. Serum parameters, liver histopathology, transcriptomic profiling, 16S-rDNA sequencing, and bile acid (BA) metabolomics were performed. PXR enhanced HFD-induced weight gain, hepatic steatosis and inflammation especially in males, accompanied by PXR-dependent up-regulation in hepatic genes involved in microbial response, inflammation, oxidative stress, and cancer; PXR-dependent increase in intestinal Firmicutes/Bacteroides ratio (hallmark of obesity) and the pro-inflammatory Lactobacillus, as well as a decrease in the anti-obese Allobaculum and the anti-inflammatory Bifidobacterum, with a PXR-dependent reduction of beneficial BAs in liver. The resistance to NAFLD in females may be explained by PXR-dependent decrease in pro-inflammatory bacteria (Ruminococcus gnavus and Peptococcaceae). In conclusion, PXR exacerbates hepatic steatosis and inflammation accompanied by obesity- and inflammation-prone gut microbiome signature, suggesting that gut microbiome may contribute to PXR-mediated exacerbation of NAFLD.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jeffrey O Asubonteng
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Marianne Polunas
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Michael Goedken
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
34
|
Xi Y, Xu PF. Diabetes and gut microbiota. World J Diabetes 2021; 12:1693-1703. [PMID: 34754371 PMCID: PMC8554376 DOI: 10.4239/wjd.v12.i10.1693] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of diabetes has increased rapidly throughout the world in recent years. Currently, approximately 463 million people are living with diabetes, and the number has tripled over the last two decades. Here, we describe the global epidemiology of diabetes in 2019 and forecast the trends to 2030 and 2045 in China, India, USA, and the globally. The gut microbiota plays a major role in metabolic diseases, especially diabetes. In this review, we describe the interaction between diabetes and gut microbiota in three aspects: probiotics, antidiabetic medication, and diet. Recent findings indicate that probiotics, antidiabetic medications, or dietary interventions treat diabetes by shifting the gut microbiome, particularly by raising beneficial bacteria and reducing harmful bacteria. We conclude that targeting the gut microbiota is becoming a novel therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peng-Fei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Lee S, Jung DH, Park M, Yeon SW, Jung SH, Yun SI, Park HO, Yoo W. The Effect of Lactobacillus gasseri BNR17 on Postmenopausal Symptoms in Ovariectomized Rats. J Microbiol Biotechnol 2021; 31:1281-1287. [PMID: 34319260 PMCID: PMC9705893 DOI: 10.4014/jmb.2105.05032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Clinical and preclinical studies have reported that Lactobacillus gasseri BNR17, a probiotic bacterial strain isolated from human breast milk, reduces body weight and white adipose tissue volume. In order to further explore the actions of L. gasseri BNR17, we investigated the anti-menopausal effects of L. gasseri BNR17 in an ovariectomized (OVX) rat model. The serum alanine aminotransferase levels of the rats in the OVX-BNR17 group were lower than those of the rats in the OVX-vehicle only (OVX-Veh) group. Upon administration of L. gasseri BNR17 after ovariectomy, calcitonin and Serotonin 2A levels increased significantly, whereas serum osteocalcin levels showed a decreasing tendency. Compared to the rats in the OVX-Veh group, those in the OVX-BNR17 group showed lower urine deoxypyridinoline levels, lower pain sensitivity, and improved vaginal cornification. Furthermore, L. gasseri BNR17 administration increased bone mineral density in the rats with OVX-induced femoral bone loss. These results suggest that L. gasseri BNR17 administration could alleviate menopausal symptoms, indicating that this bacterium could be a good functional probiotic for managing the health of older women.
Collapse
Affiliation(s)
- Sol Lee
- AceBiome Inc., Seoul 06164, Republic of Korea,R&D Center, AceBiome Inc., Daejeon 34013, Republic of Korea
| | - Dong Hoon Jung
- AceBiome Inc., Seoul 06164, Republic of Korea,R&D Center, AceBiome Inc., Daejeon 34013, Republic of Korea
| | - Miri Park
- AceBiome Inc., Seoul 06164, Republic of Korea,R&D Center, AceBiome Inc., Daejeon 34013, Republic of Korea
| | - Seung-Woo Yeon
- AceBiome Inc., Seoul 06164, Republic of Korea,R&D Center, AceBiome Inc., Daejeon 34013, Republic of Korea
| | | | - Sung-Il Yun
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Han-Oh Park
- AceBiome Inc., Seoul 06164, Republic of Korea,R&D Center, AceBiome Inc., Daejeon 34013, Republic of Korea,siRNAgen Therapeutics, Daejeon 34302, Republic of Korea,Bioneer Corporation, Daejeon 34302, Republic of Korea
| | - Wonbeak Yoo
- AceBiome Inc., Seoul 06164, Republic of Korea,R&D Center, AceBiome Inc., Daejeon 34013, Republic of Korea,Corresponding author Phone: +82-42-335-6020 Fax: +82-42-335-6022 E-mail:
| |
Collapse
|
36
|
Liang C, Zhou XH, Jiao YH, Guo MJ, Meng L, Gong PM, Lyu LZ, Niu HY, Wu YF, Chen SW, Han X, Zhang LW. Ligilactobacillus Salivarius LCK11 Prevents Obesity by Promoting PYY Secretion to Inhibit Appetite and Regulating Gut Microbiota in C57BL/6J Mice. Mol Nutr Food Res 2021; 65:e2100136. [PMID: 34272917 DOI: 10.1002/mnfr.202100136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Obesity is a common disease worldwide and there is an urgent need for strategies to preventing obesity. METHODS AND RESULTS The anti-obesity effect and mechanism of Ligilactobacillus salivarius LCK11 (LCK11) is studied using a C57BL/6J male mouse model in which obesity is induced by a high-fat diet (HFD). Results show that LCK11 can prevent HFD-induced obesity, reflected as inhibited body weight gain, abdominal and liver fat accumulation and dyslipidemia. Analysis of its mechanism shows that on the one hand, LCK11 can inhibit food intake through significantly improving the transcriptional and translational levels of peptide YY (PYY) in the rectum, in addition to the eventual serum PYY level; this is attributed to the activation of the toll-like receptor 2/nuclear factor-κB signaling pathway in enteroendocrine L cells by the peptidoglycan of LCK11. On the other hand, LCK11 supplementation effectively reduces the Firmicutes/Bacteroidetes ratio and shifts the overall structure of the HFD-disrupted gut microbiota toward that of mice fed on a low-fat diet; this also contributes to preventing obesity. CONCLUSION LCK11 shows the potential to be used as a novel probiotic for preventing obesity by both promoting PYY secretion to inhibit food intake and regulating gut microbiota.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | | | - Yue-Hua Jiao
- Drug safety evaluation center, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Mei-Jie Guo
- Department of Adolescent Medical Clinic, Harbin Children's Hospital, Harbin, 150010, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Heilongjiang University, Harbin, 150500, China
| | - Pi-Min Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Shi-Wei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
37
|
Bootorabi F, Saadat F, Falak R, Manouchehri H, Changizi R, Mohammadi H, Safavifar F, Khorramizadeh MR. Gut micobiota alteration by Lactobacillus rhamnosus reduces pro-inflammatory cytokines and glucose level in the adult model of Zebrafish. BMC Res Notes 2021; 14:302. [PMID: 34372916 PMCID: PMC8351095 DOI: 10.1186/s13104-021-05706-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is still a challenge for physicians to manage patient’s circumstances. It is assumed that alterations in the normal flora may be involved in the pathogenesis of T2DM through inducing chronic inflammation. To investigate the effect of Lactobacillus rhamnosus as a common probiotic on T2DM, we induced an experimental model of T2DM in adult male Zebrafish by gradient hyper-glucose accumulation methodology. Results In this trial 3-month old male adult Zebrafish were divided in to four groups including two control groups and T2DM induced groups with or without probiotic treatment. After 5 days of acclimation, T2DM was induced by a gradient hyper-glucose accumulation methodology. Diabetic fishes had statistically abnormal blood glucose and pro-inflammatory cytokine levels compared to control group (p = 0.0001). These results suggest that probiotic intervention decreased the blood glucose level in the T2DM-P group by decreasing pro-inflammatory cytokines responsible for signaling in T2DM therapeutic modalities. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05706-5.
Collapse
Affiliation(s)
- Fatemeh Bootorabi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran
| | - Farshid Saadat
- Department of Immunology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Manouchehri
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Hasan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Safavifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
39
|
Wu LJ, Long L, Sun JY, Bu LL, Cao JL, Luo Y, Liu HJ, Wu Y, Meng X. Exploring the antioxidant effect of Lactobacillus plantarum SCS2 on mice with type 2 diabetes. J Food Biochem 2021; 45:e13781. [PMID: 34278586 DOI: 10.1111/jfbc.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the antioxidant effect of Lactobacillus plantarum SCS2 (L. plantarum SCS2). After 1 week of acclimation, 120 male KM mice were divided into normal group (NG), model group (MG), solvent control group (KG), and different test groups (TG1, TG2, TG3) (n = 20/group) randomly. In the second week, except NG mice, other mice were given 0.2 ml 50 mg/kg (body weight) streptozocin (STZ) through intraperitoneal injection for 5 days. After successful modeling, NG and MG mice were fed normally, KG mice was given 0.5 ml 0.1 mol/L phosphate buffer saline (PBS) per day, TG1, TG2, and TG3 mice were given 0.5 ml suspension, intracellular content and heat-killed intracellular content of L. plantarum SCS2 per day for 9 weeks. Body weight and blood glucose were observed and recorded during intragastric administration. Glucose tolerance levels were measured at the twelfth week, then mice were sacrificed and the serum was collected to measure insulin (INS), glycosylated hemoglobin (HbA1c), malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidant enzymes. The results showed that the reduction of weight loss in TG1 and TG2 mice was observed, which was consistent with the blood glucose. At the same time, the INS level of TG1, TG2, and TG3 mice were increased and the HbA1c levels were decreased. Otherwise, the MDA and ROS content in the serum of TG1, TG2, and TG3 mice were decreased and the level of antioxidant enzymes was increased. Interestingly, the activity and content of antioxidant enzymes in TG2 group was the highest in the three test groups. PRACTICAL APPLICATIONS: The results of this study showed that L. plantarum SCS2 could effectively reduce blood glucose, relieve weight loss, improve INS deficiency, and also improve oxidative stress by increasing the activity of antioxidant enzymes. The findings suggest that L. plantarum SCS2 could improve diabetes-related symptoms by alleviating oxidative stress. In the future, people could promote the application of lactic acid bacteria (LAB) which is found in traditional foods with the ability of improving oxidative damage in food nutrition and related fields, so as to guide residents to form good dietary habits, and effectively prevent type 2 diabetes. Meanwhile, it also can enhance the edible value of traditional foods.
Collapse
Affiliation(s)
- Li-Juan Wu
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Long
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Yi Sun
- Innovative institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Li Bu
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Lin Cao
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Luo
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Jing Liu
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wu
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Meng
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Lactobacillus plantarum Reduces Low-Grade Inflammation and Glucose Levels in a Mouse Model of Chronic Stress and Diabetes. Infect Immun 2021; 89:e0061520. [PMID: 34001561 DOI: 10.1128/iai.00615-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to examine the effects of Lactobacillus plantarum, a lactic acid bacteria strain isolated from kimchi, on the development of low-grade inflammation and type 2 diabetes mellitus (T2DM) exacerbated by chronic stress. C57BL/6 mice were fed either a high-fat diet (HFD) and randomized into an HFD group or a group that was fed an HFD and subjected to chronic cold exposure-related stress (HFDS), or mice were fed a normal diet (ND) and randomized into an ND group or a group that was fed an ND and subjected to chronic cold exposure-related stress (NDS). Lactobacillus plantarum LRCC5310 (108, 1010 CFU) and LRCC5314 (108, 1010 CFU) as well as L. gasseri BNR17 (108 CFU), as a positive control, were administered orally twice every day to all the mice for 12 weeks. The expression of Glut4 and adiponectin, main glucose transporter-related genes, was upregulated in the LRCC5310- and LRCC5314-treated groups. Levels of serum proinflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6]) and of mRNAs of proinflammatory genes (Tnf-α, Il-6, Ccl2, leptin) were elevated in HFDS mice. The expression of proinflammatory genes was downregulated in LRCC5310- and LRCC5314-treated groups; this was not the case for Tnf-α expression in HFDS mice. Levels of serum corticosterone and mRNA levels of stress-related genes (Npy, Y2r) were decreased in lactic acid bacteria (LAB)-fed groups, with only LRCC5314 downregulating Npy expression in HFDS mice. These results suggest that the LAB strains can normalize the expression of metabolic genes, inhibit inflammatory responses, and suppress stress in HFDS mice.
Collapse
|
41
|
Wang B, Wang L, Wang H, Dai H, Lu X, Lee YK, Gu Z, Zhao J, Zhang H, Chen W, Wang G. Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. J Nutr 2021; 151:1703-1716. [PMID: 33982127 DOI: 10.1093/jn/nxab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The rate of obesity is rapidly increasing and has become a health and economic burden worldwide. As recent studies have revealed that the gut microbiota is closely linked to obesity, researchers have used various approaches to modulate the gut microbiota to treat the condition. Dietary composition and energy intake strongly affect the composition and function of the gut microbiota. Intestinal microbial changes alter the composition of bile acids and fatty acids and regulate bacterial lipopolysaccharide production, all of which influence energy metabolism and immunity. Evidence also suggests that remodeling the gut microbiota through intake of probiotics, prebiotics, fermented foods, and dietary plants, as well as by fecal microbiota transplantation, are feasible methods to remediate obesity.
Collapse
Affiliation(s)
- Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haojue Wang
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Hongyan Dai
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Xianyi Lu
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| |
Collapse
|
42
|
Liang T, Xie X, Zhang J, Ding Y, Wu Q. Bacterial community and composition of different traditional fermented dairy products in China, South Africa, and Sri Lanka by high-throughput sequencing of 16S rRNA genes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Park SA, Lee GH, Hoang TH, Lee HY, Kang IY, Chung MJ, Jin JS, Chae HJ. Heat-inactivated Lactobacillus plantarum nF1 promotes intestinal health in Loperamide-induced constipation rats. PLoS One 2021; 16:e0250354. [PMID: 33872333 PMCID: PMC8055018 DOI: 10.1371/journal.pone.0250354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
Constipation is a common condition that affects individuals of all ages, and prolonged constipation needs to be prevented to avoid potential complications and reduce the additional stress on individuals with pre-medical conditions. This study aimed to evaluate the effects of heat-inactivated Lactobacillus plantarum (HLp-nF1) on loperamide-induced constipation in rats. Constipation-induced male rats were treated orally with low to high doses of HLp-nF1 and an anti-constipation medication Dulcolax for five weeks. Study has 8 groups, control group; loperamide-treated group; Dulcolax-treated group; treatment with 3.2 × 1010, 8 × 1010 and 1.6 × 1011, cells/mL HLp-nF1; Loperamide + Dulcolax treated group. HLp-nF1 treated rats showed improvements in fecal pellet number, weight, water content, intestinal transit length, and contractility compared to the constipation-induced rats. Also, an increase in the intestine mucosal layer thickness and the number of mucin-producing crypt epithelial cells were observed in HLp-nF1-treated groups. Further, the levels of inflammatory cytokines levels were significantly downregulated by treatment with HLp-nF1 and Dulcolax. Notably, the metagenomics sequencing analysis demonstrated a similar genus pattern to the pre-preparation group and control with HLp-nF1 treatment. In conclusion, the administration of >3.2 × 1010 cells/mL HLp-nF1 has a positive impact on the constipated rats overall health.
Collapse
Affiliation(s)
- Seon-Ah Park
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - The-Hiep Hoang
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
| | - Hwa-Young Lee
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
| | | | - Myong-Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan, South Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
- * E-mail:
| |
Collapse
|
44
|
Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:632335. [PMID: 33897618 PMCID: PMC8060771 DOI: 10.3389/fendo.2021.632335] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Mounting evidence suggested that the gut microbiota has a significant role in the metabolism and disease status of the host. In particular, Type 2 Diabetes (T2D), which has a complex etiology that includes obesity and chronic low-grade inflammation, is modulated by the gut microbiota and microbial metabolites. Current literature supports that unbalanced gut microbial composition (dysbiosis) is a risk factor for T2D. In this review, we critically summarize the recent findings regarding the role of gut microbiota in T2D. Beyond these associative studies, we focus on the causal relationship between microbiota and T2D established using fecal microbiota transplantation (FMT) or probiotic supplementation, and the potential underlying mechanisms such as byproducts of microbial metabolism. These microbial metabolites are small molecules that establish communication between microbiota and host cells. We critically summarize the associations between T2D and microbial metabolites such as short-chain fatty acids (SCFAs) and trimethylamine N-Oxide (TMAO). Additionally, we comment on how host genetic architecture and the epigenome influence the microbial composition and thus how the gut microbiota may explain part of the missing heritability of T2D found by GWAS analysis. We also discuss future directions in this field and how approaches such as FMT, prebiotics, and probiotics supplementation are being considered as potential therapeutics for T2D.
Collapse
Affiliation(s)
- M. Nazmul Huda
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| | - Myungsuk Kim
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| | - Brian J. Bennett
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| |
Collapse
|
45
|
Wang X, Yang J, Qiu X, Wen Q, Liu M, Zhou D, Chen Q. Probiotics, Pre-biotics and Synbiotics in the Treatment of Pre-diabetes: A Systematic Review of Randomized Controlled Trials. Front Public Health 2021; 9:645035. [PMID: 33842424 PMCID: PMC8032954 DOI: 10.3389/fpubh.2021.645035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: This study aimed to review the data from randomized controlled trials (RCTs) and identify evidence for microbiota's role and use of probiotics, pre-biotics, or synbiotics in pre-diabetes. Methods: RCTs of pro-, pre-, synbiotics for the treatment of pre-diabetes population will be summarized. We searched for EMBASE, MEDLINE, Web of Science, Cochrane Central, Clinical Trials (ClinicalTrials.gov) from inception to February 2021. Results: The gut microbiota influences host metabolic disorders via the modulation of metabolites, including short-chain fatty acids (SCFAs), the endotoxin lipopolysaccharides (LPS), bile acids (BA) and trimethylamine N-oxide (TMAO), as well as mediating the interaction between the gastrointestinal system and other organs. Due to the limited sources of studies, inconsistent outcomes between included studies. Probiotics can decrease glycated hemoglobin (HbA1c) and have the potential to improve post-load glucose levels. The supplementation of probiotics can suppress the rise of blood cholesterol, but the improvement cannot be verified. Pre-biotics are failed to show an evident improvement in glycemic control, but their use caused the changes in the composition of gut microbiota. A combination of probiotics and pre-biotics in the synbiotics supplementation is more effective than probiotics alone in glycemic control. Conclusion: In the current studies using probiotics, pre-biotics or synbiotics for the treatment of pre-diabetes, the benefits of modulating the abundance of gut microbiota were partially demonstrated. However, there is insufficient evidence to show significant benefits on glucose metabolism, lipid metabolism and body composition.
Collapse
Affiliation(s)
- Xian Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao Yang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianliang Qiu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Wen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongqi Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
Hernandez AR, Banerjee A, Carter CS, Buford TW. Angiotensin (1-7) Expressing Probiotic as a Potential Treatment for Dementia. FRONTIERS IN AGING 2021; 2:629164. [PMID: 34901930 PMCID: PMC8663799 DOI: 10.3389/fragi.2021.629164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Increasing life expectancies are unfortunately accompanied by increased prevalence of Alzheimer's disease (AD). Regrettably, there are no current therapeutic options capable of preventing or treating AD. We review here data indicating that AD is accompanied by gut dysbiosis and impaired renin angiotensin system (RAS) function. Therefore, we propose the potential utility of an intervention targeting both the gut microbiome and RAS as both are heavily involved in proper CNS function. One potential approach which our group is currently exploring is the use of genetically-modified probiotics (GMPs) to deliver therapeutic compounds. In this review, we specifically highlight the potential utility of utilizing a GMP to deliver Angiotensin (1-7), a beneficial component of the renin-angiotensin system with relevant functions in circulation as well as locally in the gut and brain.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anisha Banerjee
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christy S. Carter
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
47
|
Jaiyesimi KF, Agunbiade OS, Ajiboye BO, Afolabi OB. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. J Diabetes Metab Disord 2021; 19:1543-1556. [PMID: 33553038 DOI: 10.1007/s40200-020-00690-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Background This study sought to investigate anti-hyperglycemic potentials of free and bound phenolic-rich extracts of Andrographis paniculata (A. paniculata) leaves, commonly called "king of the bitter", a plant locally employed in folkloric alternative medicine. Method In vitro antioxidant potentials such as total phenolic and flavonoid contents were evaluated in addition to phosphomolybdenum reducing total antioxidant activity in bound and free polyphenol-rich extracts of A. paniculata. Also, following induction of diabetes through a single intraperitoneal injection of freshly prepared alloxan monohydrate (150 mg/kg body weight, b.w), diabetic rats were divided into seven (7) treatment groups with six rats each (n = 6) i.e. group 1 (normal control), 2 (diabetic untreated), 3 (5 mg/kg glibenclamide -treated control), while 4-7 were administered 50 and 100 mg/kg b.w of free and bound phenolic extracts of A. paniculata, respectively for twenty-one (21) days. Results There was a significant (p < 0.05) difference in hematological indices, hepatic biomarkers, total protein, antioxidant enzymes activities, total thiol and fasting blood glucose levels of diabetic groups administered polyphenolic-rich extracts of A. paniculata compared to diabetic untreated control. Similarly, serum insulin levels, hexokinase and glucose-6-phoshatase activities were significantly (p < 0.05) improved in phenolic-rich extracts of A. paniculata-treated diabetic groups compared to diabetic untreated control. A significant (p < 0.05) reduction was as well observed in the levels of inflammatory biomarkers such as interleukin-6 (IL-6) and tumor necrosis factor (TNFα) among extract of A. paniculata administered diabetic groups compared diabetic untreated group. Conclusions Anti-hyperglycemic activities demonstrated by polyphenolic-rich extracts of A. paniculata when compared to glibenclamide and normal control, could possibly have been occasioned by β-cell protection, restoration of glycolytic enzymes as well as mitigation of inflammatory markers via antioxidant defensive/protective properties of the extracts.
Collapse
Affiliation(s)
- Kikelomo Folake Jaiyesimi
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Oludare Shadrach Agunbiade
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Bashiru Olaitan Ajiboye
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Olakunle Bamikole Afolabi
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| |
Collapse
|
48
|
The effect of lactobacillus gaseeri THT 031301 supplementation on the body composition and inflammation in adults: pilot study. Proc Nutr Soc 2021. [DOI: 10.1017/s002966512100077x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Bock PM, Telo GH, Ramalho R, Sbaraini M, Leivas G, Martins AF, Schaan BD. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: a systematic review and meta-analysis. Diabetologia 2021; 64:26-41. [PMID: 33047170 DOI: 10.1007/s00125-020-05295-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The aim was to conduct a systematic review and meta-analysis of randomised controlled clinical trials assessing the effect of probiotic, prebiotic or synbiotic supplementation on gut microbiota and glucose control and lipid levels in individuals with diabetes. METHODS MEDLINE, EMBASE and the Cochrane Library were searched. The eligibility criteria for the studies was involvement of participants with a diagnosis of type 1 or type 2 diabetes. Metabolic outcomes (glucose control, insulinaemia, and lipid profile) of any probiotic, prebiotic or synbiotic supplementation related to modification of gut microbiota (prebiotics, probiotics and synbiotics) were analysed. We provided a narrative synthesis and meta-analysis of the findings on metabolic outcomes from the studies. Metabolic outcomes were extracted post-intervention and expressed as mean differences (MDs) and 95% CIs between treatment and comparator groups. We pooled the results using a random-effects meta-analysis. The meta-analysis was conducted using Review Manager (RevMan) software. RESULTS After the removal of duplicates and ineligible studies, 5219 studies were retained for review of titles and abstracts. The number of articles was reduced to 130 by review, for which the full-text articles were obtained and reassessed, 38 of which were included in the final meta-analysis. Overall, the use of prebiotics, probiotics or synbiotics reduced HbA1c levels, but did not reach the threshold for significance (-2.17 mmol/mol, 95% CI -4.37, 0.03; p = 0.05, [-0.20%, 95% CI -0.40 to 0.00; p = 0.05, I2 = 66%]) and had no effect on LDL-cholesterol levels (-0.05 mmol/l; 95% CI -0.14, 0.05, p = 0.35, I2 = 37%). However, their consumption decreased levels of fasting blood glucose (-0.58 mmol/l; 95% CI -0.86, -0.30; p < 0.01, I2 = 60%), total cholesterol (-0.14 mmol/l; 95% CI -0.26, -0.02, p = 0.02, I2 = 39%), triacylglycerols (-0.11 mmol/l; 95% CI -0.20, -0.02, p = 0.01, I2= 21%) and insulinaemia (-10.51 pmol/l; 95% CI -16.68,-4.33, p < 0.01, I2 = 74%), and increased HDL-cholesterol levels (0.04 mmol/l; 95% CI 0.01, 0.07, p < 0.01, I2= 24%). CONCLUSIONS/INTERPRETATION In individuals with diabetes mellitus, supplementation with probiotics, prebiotics or synbiotics improved metabolic variables, although the magnitude of this effect is low. Our results suggest that consumption of probiotics, prebiotics or synbiotics may be a potential adjuvant treatment for improving metabolic outcomes. REGISTRATION PROSPERO ID CRD42017080071. Graphical abstract.
Collapse
Affiliation(s)
- Patricia M Bock
- Department of Internal Medicine, Faculty of Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Faculdades Integradas de Taquara, Taquara, Brazil.
- National Institute of Science and Technology for Health Technology Assessment (IATS) - CNPq/Brazil, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Gabriela H Telo
- Department of Internal Medicine, Faculty of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafaela Ramalho
- Department of Microbiology, Immunology and Parasitology, Health Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Sbaraini
- Department of Internal Medicine, Faculty of Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel Leivas
- Department of Internal Medicine, Faculty of Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreza F Martins
- Department of Microbiology, Immunology and Parasitology, Health Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beatriz D Schaan
- Department of Internal Medicine, Faculty of Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Health Technology Assessment (IATS) - CNPq/Brazil, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
50
|
Park JM, Shin Y, Kim SH, Jin M, Choi JJ. Dietary Epigallocatechin-3-Gallate Alters the Gut Microbiota of Obese Diabetic db/db Mice: Lactobacillus Is a Putative Target. J Med Food 2020; 23:1033-1042. [PMID: 33054538 DOI: 10.1089/jmf.2020.4700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity results in the progression of metabolic disorders, and especially type 2 diabetes mellitus (T2DM), and the gut microbiota have been implicated in the development of T2DM. This study investigated the effect of epigallocatechin-3-gallate (EGCG) on structural changes to the gut microbiota of obese diabetic db/db mice. db/db mice were subjected to a control and EGCG (10, 50, and 100 mg/kg) diet for 8 weeks. Glucose homeostasis and the structure and composition of the gut microbiota were measured. EGCG inhibited the increases in body weight and fasting blood glucose levels. Similarly, it resulted in remarkable improvements in glucose tolerance. Based on lipid profiles, EGCG decreased serum cholesterol and low-density lipoprotein (LDL) levels, and increased the high-density lipoprotein/LDL ratio. In addition, upon fecal microbiota analysis, this compound significantly increased the Firmicutes:Bacteroidetes ratio at the phylum level and increased Lactobacillus abundance at the genus level. Especially, its administration increased abundances of the Lactobacillus gasseri, Lactobacillus intestinalis, and Lactobacillus reuteri. We also found that EGCG increased Christensenellaceae abundance and decreased Enterobacteriaceae and Proteobacteria abundance at the family level. EGCG improves glucose homeostasis in diabetic mice. Its beneficial effects on glucose homeostasis are likely associated with alterations to the gut microbiota. Furthermore, the enrichment of probiotics (Lactobacillus) might be a potential mechanism underlying the effects of EGCG on glucose homeostasis.
Collapse
Affiliation(s)
- Jong-Min Park
- College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Younmin Shin
- Laboratory of Molecular Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Mirim Jin
- College of Medicine, Gachon University, Incheon, Korea
| | - Jeong June Choi
- Laboratory of Molecular Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|