1
|
Jin X, Lu Y, Fan Z. Exploring NamiRNA networks and time-series gene expression in osteogenic differentiation of adipose-derived stem cells. Ann Med 2025; 57:2478323. [PMID: 40100054 PMCID: PMC11921168 DOI: 10.1080/07853890.2025.2478323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are a type of stem cell found in adipose tissue with the capacity to differentiate into multiple lineages, including osteoblasts. The differentiation of ADSCs into osteoblasts underlies osteogenic and pathological cellular basis in osteoporosis, bone damage and repair. METHODS Focused on ADSCs osteogenic differentiation, we conducted mRNA, microRNA expression and bioinformatics analysis, including gene differential expression, time series-based trend analysis, functional enrichment, and generates potential nuclear activating miRNAs (NamiRNA) regulatory network. The screened mRNAs in NamiRNA regulatory network were validated with correlation analysis. RESULTS The NamiRNA Regulatory Network reveals 4 mRNAs (C12orf61, MIR31HG, NFE2L1, and PCYOX1L) significantly downregulated in differentiated group and may be associated with ADSCs stemness. Furthermore, the significantly upregulated 10 genes (ACTA2, TAGLN, LY6E, IFITM3, NGFRAP1, TCEAL4, ATP5C1, CAV1, RPSA, and KDELR3) were significantly enriched in osteogenic-related pathways, and negatively correlated with ADSCs cell stemness in vitro. CONCLUSION These findings uncover potential genes related to ADSCs osteogenic differentiation, and provide theoretical basis for underlying ADSCs osteogenic differentiation and related diseases.
Collapse
Affiliation(s)
- Xin Jin
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihong Fan
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Siu WS, Ma H, Leung PC. Review on Current Advancements in Facilitation of Burn Wound Healing. Bioengineering (Basel) 2025; 12:428. [PMID: 40281787 PMCID: PMC12024970 DOI: 10.3390/bioengineering12040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Burns are common injuries, but their treatment remains challenging due to the complex nature of the wound healing process. Burn wounds are classified into different categories based on their size and depth. Treatment modalities vary significantly across these categories, primarily focusing on the inflammation, proliferation, and remodeling phases of burn wound healing. This review summarizes current research on various approaches to enhance burn wound recovery, including advancements in wound dressings, the use of platelet-rich plasma, stem cells, their soluble factors primarily in the form of secretomes or extracellular vesicles, and nano-technologies. Additionally, advancements in modernized traditional medicine are discussed to give a new aspect for burn wound healing. This review also summarizes the barriers in translating bench research to clinical practice in burn wound treatment methods. For an effective translation, researchers and industrial partners should work more closely, while regulatory bodies should streamline the approval procedure.
Collapse
Affiliation(s)
- Wing Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (P.C.L.)
| | | | | |
Collapse
|
3
|
Storti G, Foti R, Foti R, Palmesano M, Patacchiola M, Incognito D, Cervelli G, Longo B, Scioli MG, Fiorelli E, Terriaca S, Lisa A, Kim BS, Orlandi A, Cervelli V. A Comprehensive Exploration of the Biological Effects of Adipose-Derived Stem Cells in the Treatment of Systemic Sclerosis. Cells 2025; 14:458. [PMID: 40136706 PMCID: PMC11941144 DOI: 10.3390/cells14060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vasculopathy and tissue fibrosis affecting the skin and internal organs. Genetic and environmental factors influence susceptibility, severity, and onset. Current treatments are limited and not always effective, leading researchers to investigate new approaches, such as the use of adipose-derived mesenchymal stem cells (ADSCs) through fat grafting. This review seeks to understand how ADSCs may impact the development and progression of SSc, with a particular focus on how these cells could alter immune responses and reduce fibrosis. ADSCs have been found to affect various immune cells, including T cells, B cells, macrophages, and dendritic cells, by releasing cytokines, chemokines, and growth factors. These interactions generally suppress inflammation and promote a regulatory immune environment. Additionally, ADSCs can influence the extracellular matrix, helping to prevent fibrosis through signaling molecules like exosomes. ADSCs show promise as a treatment for SSc due to their ability to modulate the immune system and reduce fibrosis. Early clinical studies are encouraging, but more research is needed to fully understand how they work and to develop effective treatment protocols.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| | - Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| | - Roberta Foti
- Division of Rheumatology, A.O.U. “Policlinico-San Marco”, 95123 Catania, Italy;
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
- PhD Program in Applied Medical Surgical Sciences, Department of Surgical Sciences, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy;
| | - Martina Patacchiola
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| | - Dalila Incognito
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy;
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Benedetto Longo
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Andrea Lisa
- PhD Program in Applied Medical Surgical Sciences, Department of Surgical Sciences, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy;
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| |
Collapse
|
4
|
Wu Z, Wang Z, Chen T, Wang D, Zhou F, Zhang G, Wei S, Wu Y. Dermal white adipose tissue: A new modulator in wound healing and regeneration. Regen Ther 2025; 28:115-125. [PMID: 39717110 PMCID: PMC11665542 DOI: 10.1016/j.reth.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Dermal white adipose tissue (dWAT), distinguished by its origin from cells within the dermis and independence from subcutaneous fat tissue, has garnered significant attention for its non-metabolic functions. Characterized by strong communication with other components of the skin, dWAT mediates the proliferation and recruitment of various cell types by releasing adipogenic and inflammatory factors. Here, we focus on the modulatory role of dWAT at different stages during wound healing, highlighting its ability to mediate the adipocyte-to-myofibroblast transition which plays a pivotal role in the physiology and pathology processes of skin fibrosis, scarring, and aging. This review highlights the regulatory potential of dWAT in modulating wound healing processes and presents it as a target for developing therapeutic strategies aimed at reducing scarring and enhancing regenerative outcomes in skin-related disorders.
Collapse
Affiliation(s)
- Zhongyu Wu
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Zhanqi Wang
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Tao Chen
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Dongyang Wang
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Feng Zhou
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shan Wei
- Huizhou Health Sciences Polytechnic, Huizhou 516025, Guangdong, PR China
| | - Yingying Wu
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| |
Collapse
|
5
|
Danilla S, Babaitis R, di Diego J. Abdominal Wall Muscle Amplification, A Short Update After 8 Years of Follow-up. Aesthetic Plast Surg 2025; 49:1579-1580. [PMID: 38305925 DOI: 10.1007/s00266-024-03852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Affiliation(s)
- Stefan Danilla
- Clínica Aurea, Juan XXIII 6130, Piso 4, Vitacura, Santiago, Chile.
| | - Ricardo Babaitis
- Clínica Aurea, Juan XXIII 6130, Piso 4, Vitacura, Santiago, Chile
| | - Juan di Diego
- Clínica Aurea, Juan XXIII 6130, Piso 4, Vitacura, Santiago, Chile
| |
Collapse
|
6
|
Wang W, Liu Y, Zhou ZH, Pang K, Wang JK, Huan PF, Lu JR, Zhu T, Zhu ZB, Han CH. Effects of human umbilical cord-derived mesenchymal stem cell therapy for cavernous nerve injury-induced erectile dysfunction in the rat model. Asian J Androl 2025:00129336-990000000-00287. [PMID: 40017050 DOI: 10.4103/aja2024115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/02/2024] [Indexed: 03/01/2025] Open
Abstract
Stem cell treatment may enhance erectile dysfunction (ED) in individuals with cavernous nerve injury (CNI). Nevertheless, no investigations have directly ascertained the implications of varying amounts of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on ED. We compare the efficacy of three various doses of HUC-MSCs as a therapeutic strategy for ED. Sprague-Dawley rats (total = 175) were randomly allocated into five groups. A total of 35 rats underwent sham surgery and 140 rats endured bilateral CNI and were treated with vehicles or doses of HUC-MSCs (1 × 106 cells, 5 × 106 cells, and 1 × 107 cells in 0.1 ml, respectively). Penile tissues were harvested for histological analysis on 1 day, 3 days, 7 days, 14 days, 28 days, 60 days, and 90 days postsurgery. It was found that varying dosages of HUC-MSCs enhanced the erectile function of rats with bilateral CNI and ED. Moreover, there was no significant disparity in the effectiveness of various dosages of HUC-MSCs. However, the expression of endothelial markers (rat endothelial cell antigen-1 [RECA-1] and endothelial nitric oxide synthase [eNOS]), smooth muscle markers (alpha smooth muscle actin [α-SMA] and desmin), and neural markers (neurofilament [RECA-1] and neurogenic nitric oxide synthase [nNOS]) increased significantly with prolonged treatment time. Masson's staining demonstrated an increased in the smooth muscle cell (SMC)/collagen ratio. Significant changes were detected in the microstructures of various types of cells. In vivo imaging system (IVIS) analysis showed that at the 1st day, the HUC-MSCs implanted moved to the site of damage. Additionally, the oxidative stress levels were dramatically reduced in the penises of rats administered with HUC-MSCs.
Collapse
Affiliation(s)
- Wei Wang
- School of Medicine, Southeast University, Nanjing 210000, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221000, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou 221000, China
| | - Zi-Hao Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221000, China
| | - Jing-Kai Wang
- School of Medicine, Jiangsu University, Zhenjiang 212000, China
| | - Peng-Fei Huan
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221000, China
| | - Jing-Ru Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Tao Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou 221000, China
| | - Zuo-Bin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou 221000, China
| | - Cong-Hui Han
- School of Medicine, Southeast University, Nanjing 210000, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221000, China
| |
Collapse
|
7
|
Mohan SP, Priya SP, Tawfig N, Padmanabhan V, Babiker R, Palaniappan A, Prabhu S, Chaitanya NCSK, Rahman MM, Islam MS. The Potential Role of Adipose-Derived Stem Cells in Regeneration of Peripheral Nerves. Neurol Int 2025; 17:23. [PMID: 39997654 PMCID: PMC11858299 DOI: 10.3390/neurolint17020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Peripheral nerve injuries are common complications in surgical and dental practices, often resulting in functional deficiencies and reduced quality of life. Current treatment choices, such as autografts, have limitations, including donor site morbidity and suboptimal outcomes. Adipose-derived stem cells (ADSCs) have shown assuring regenerative potential due to their accessibility, ease of harvesting and propagation, and multipotent properties. This review investigates the therapeutic potential of ADSCs in peripheral nerve regeneration, focusing on their use in bioengineered nerve conduits and supportive microenvironments. The analysis is constructed on published case reports, organized reviews, and clinical trials from Phase I to Phase III that investigate ADSCs in managing nerve injuries, emphasizing both peripheral and orofacial applications. The findings highlight the advantages of ADSCs in promoting nerve regeneration, including their secretion of angiogenic and neurotrophic factors, support for cellular persistence, and supplementing scaffold-based tissue repair. The regenerative capabilities of ADSCs in peripheral nerve injuries offer a novel approach to augmenting nerve repair and functional recovery. The accessibility of adipose tissue and the minimally invasive nature of ADSC harvesting further encourage its prospective application as an autologous cell source in regenerative medicine. Future research is needed to ascertain standardized protocols and optimize clinical outcomes, paving the way for ADSCs to become a mainstay in nerve regeneration.
Collapse
Affiliation(s)
- Sunil P. Mohan
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode 673323, Kerala, India
- Centre for Stem Cells and Regenerative Medicine, Malabar Medical College, Kozhikode 673315, Kerala, India
| | - Sivan P. Priya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Nada Tawfig
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Vivek Padmanabhan
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Rasha Babiker
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 11172, United Arab Emirates;
| | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab., Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India;
| | - Nallan CSK Chaitanya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Muhammed Mustahsen Rahman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Md Sofiqul Islam
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| |
Collapse
|
8
|
Min K, Jung M, Tae G. Enhanced secretion of growth factors from ADSCs using an enzymatic antioxidant hydrogel in inflammatory environments and its therapeutic effect. J Control Release 2025; 377:301-314. [PMID: 39571654 DOI: 10.1016/j.jconrel.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
A catalytic ROS-scavenging hydrogel (HGel) was developed to enhance the growth factor secretion and the therapeutic efficacy of human adipose-derived stem cells (hADSCs) in inflammatory environments. The HGel is composed of heparin and hyaluronic acid, further functionalized with hemin to endow superoxide dismutase and catalase activities. The functionalization of hemin enables the HGel to effectively scavenge ROS (superoxide and H2O2), thereby protecting encapsulated hADSCs from oxidative stress and maintaining their metabolic activities. As a result, the HGel enhanced growth factor secretion of hADSCs in inflammatory conditions compared to non-functionalized, bare heparin/hyaluronic acid hydrogel (Gel). The therapeutic efficacy of the hADSC-encapsulated HGel (C/HGel) was evaluated in a diabetic wound model. The C/HGel significantly accelerated wound closure, reduced ROS levels, mitigated inflammation, and promoted angiogenesis compared to the hADSC-encapsulated Gel (C/Gel) as well as the HGel itself. The HGel has the potential to be utilized as an excellent cell carrier for stem cell therapy in various inflammatory diseases. Overall, this study demonstrated a strategy of enhancing growth factor secretion from stem cells using catalytic antioxidant hydrogels for superior regenerative effects in cell therapy.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myeongseok Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Bugajska-Liedtke M, Fatyga N, Brzozowski A, Bajek A, Maj M. Anaesthetics reduce the viability of adipose-derived stem cells. Adipocyte 2024; 13:2351870. [PMID: 38779963 PMCID: PMC11123512 DOI: 10.1080/21623945.2024.2351870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are characterized by their low immunogenicity and unique immunosuppressive properties, providing many opportunities for autologous transplantation in regenerative medicine and plastic surgery. These methods are characterized by low rejection rates and intense stimulation of tissue regeneration. However, procedures during which fat tissue is harvested occur under local anaesthesia. To better understand the effects and mechanisms of anaesthetic compounds in cosmetic and therapeutic procedures, the present study used a mixture of these compounds (0.1% epinephrine, 8.4% sodium bicarbonate, and 4% articaine) and examined their impact on a human adipose-derived stem cell line. The results showed anesthetics' negative, dose-dependent effect on cell viability and proliferation, especially during the first 24 h of incubation. After extending the exposure to 48 and 72 h of incubation, cells adapted to new culture conditions. In contrast, no significant changes were observed in immunophenotype, cell cycle progression, and apoptosis. The results obtained from this study provide information on the effect of the selected mixture of anaesthetics on the characteristics and function of ASC52telo cells. The undesirable changes in the metabolic activity of cells suggest the need to search for new drugs to harvest cells with unaltered properties and higher efficacy in aesthetic medicine treatments.
Collapse
Affiliation(s)
- Maria Bugajska-Liedtke
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Nadia Fatyga
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Aleksander Brzozowski
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Anna Bajek
- Department of Oncology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Małgorzata Maj
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
10
|
Cheng XC, Tong WZ, Rui W, Feng Z, Shuai H, Zhe W. Single-cell sequencing technology in skin wound healing. BURNS & TRAUMA 2024; 12:tkae043. [PMID: 39445224 PMCID: PMC11497848 DOI: 10.1093/burnst/tkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 10/25/2024]
Abstract
Skin wound healing is a complicated biological process that mainly occurs in response to injury, burns, or diabetic ulcers. It can also be triggered by other conditions such as dermatitis and melanoma-induced skin cancer. Delayed healing or non-healing after skin injury presents an important clinical issue; therefore, further explorations into the occurrence and development of wound healing at the cellular and molecular levels are necessary. Single-cell sequencing (SCS) is used to sequence and analyze the genetic messages of a single cell. Furthermore, SCS can accurately detect cell expression and gene sequences. The use of SCS technology has resulted in the emergence of new concepts pertaining to wound healing, making it an important tool for studying the relevant mechanisms and developing treatment strategies. This article discusses the application value of SCS technology, the effects of the latest research on skin wound healing, and the value of SCS technology in clinical applications. Using SCS to determine potential biomarkers for wound repair will serve to accelerate wound healing, reduce scar formation, optimize drug delivery, and facilitate personalized treatments.
Collapse
Affiliation(s)
- Xu Cheng Cheng
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zi Tong
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Rui
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Zhao Feng
- Department of Stem Cells and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang 110013, China
| | - Hou Shuai
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zhe
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| |
Collapse
|
11
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
12
|
Gładyś A, Mazurski A, Czekaj P. Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7806. [PMID: 39063048 PMCID: PMC11277008 DOI: 10.3390/ijms25147806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the most prevalent of primary liver cancers and stands as the third leading cause of cancer-related deaths. Early-stage HCC can be effectively managed with available treatment modalities ranging from invasive techniques, such as liver resection and thermoablation, to systemic therapies primarily employing tyrosine kinase inhibitors. Unfortunately, these interventions take a significant toll on the body, either through physical trauma or the adverse effects of pharmacotherapy. Consequently, there is an understandable drive to develop novel HCC therapies. Adipose-derived stem cells (ADSCs) are a promising therapeutic tool. Their facile extraction process, coupled with the distinctive immunomodulatory capabilities of their secretome, make them an intriguing subject for investigation in both oncology and regenerative medicine. The factors they produce are both enzymes affecting the extracellular matrix (specifically, metalloproteinases and their inhibitors) as well as cytokines and growth factors affecting cell proliferation and invasiveness. So far, the interactions observed with various cancer cell types have not led to clear conclusions. The evidence shows both inhibitory and stimulatory effects on tumor growth. Notably, these effects appear to be dependent on the tumor type, prompting speculation regarding their potential inhibitory impact on HCC. This review briefly synthesizes findings from preclinical and clinical studies examining the effects of ADSCs on cancers, with a specific focus on HCC, and emphasizes the need for further research.
Collapse
Affiliation(s)
- Aleksandra Gładyś
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Adam Mazurski
- Students Scientific Society, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| |
Collapse
|
13
|
Guillaumes S, Hidalgo NJ, Bachero I, Pena R, Nogueira ST, Ardid J, Pera M. Efficacy of injection of autologous adipose tissue in the treatment of patients with complex and recurrent fistula-in-ano of cryptoglandular origin. Tech Coloproctol 2024; 28:81. [PMID: 38980511 PMCID: PMC11233338 DOI: 10.1007/s10151-024-02963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Adipose tissue injections, a rich source of mesenchymal stem cells, have been successfully used to promote anal fistula healing. This study aimed to investigate the efficacy of adipose tissue injection in treating patients with complex and recurrent fistulas of cryptoglandular origin. METHODS We conducted a prospective, single-center, open-label, non-randomized, interventional clinical trial from January 2020 to December 2022. We enrolled nine patients, who were evaluated after at least 12 months of follow-up. All patients had seton removal, fistula tract excision or curettage, and a mucosal flap if possible or, alternatively, an internal opening suture. We used a commercially available system to collect and process adipose tissue prior to injection. This system allowed the collection, microfragmentation, and filtration of tissue. RESULTS Selected cases included six men and three women with a median age of 42 (range 31-55) years. All patients had an extended disease course period, ranging from 3 to 13 (mean 6.6) years, and a history of multiple previous surgeries, including two to eight interventions (a mean of 4.4 per case). All fistulas were high transsphincteric, four cases horseshoe and two cases with secondary suprasphincteric or peri-elevator tract fistulas. Six cases (66%) achieved complete fistula healing at a mean follow-up of 18 (range 12-36) months. Three cases (33.3%) experienced reduced secretion and decreased anal discomfort. CONCLUSIONS In patients with complex and recurrent fistulas, such as the ones described, many from palliative treatments with setons, the adjuvant injection of adipose tissue might help achieve complete healing or improvement in a significant percentage of cases. CLINICALTRIALS The study protocol was prospectively registered on ClinicalTrials.gov (NCT04750499).
Collapse
Affiliation(s)
| | - N J Hidalgo
- Hospital Clinic de Barcelona, Barcelona, Spain.
| | - I Bachero
- Hospital Clinic de Barcelona, Barcelona, Spain
| | - R Pena
- Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - J Ardid
- Hospital Clinic de Barcelona, Barcelona, Spain
| | - M Pera
- Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Jacobs T, Mahoney C, Mohammed S, Ziccardi V. Evaluating Stromal Vascular Fraction As a Treatment for Peripheral Nerve Regeneration: A Scoping Review. J Oral Maxillofac Surg 2024; 82:771-781. [PMID: 38621666 DOI: 10.1016/j.joms.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE This study aims to investigate the potential of stromal vascular fraction (SVF) for peripheral nerve regeneration. METHODS A scoping review of Scopus and PubMed databases was conducted. Inclusion criteria were human or animal studies exploring the use of SVF for peripheral nerve regeneration. Studies were categorized by assessed outcomes: pain assessment, neural integrity, muscle recovery, and functional recovery. Level of evidence and study quality were assessed. RESULTS Nine studies met the inclusion criteria. SVF injection in humans with trigeminal neuropathic pain reduced pain scores from 7.5 ± 1.58 to 4.3 ± 3.28. SVF injection improved sensation in humans with leprosy neuropathy. Repairing transected rat sciatic nerves with SVF-coated nerve autografts improved wet muscle weight ratios (0.65 ± 0.11 vs 0.55 ± 0.06) and sciatic functional index (SFI) scores (-68.2 ± 9.2 vs -72.5 ± 8.9). Repairing transected rat sciatic nerves with SVF-coated conduits increased the ratio of gastrocnemius muscle weights (RGMW) (7-10% improvement), myelinated fibers (1,605 ± 806.2 vs 543.6 ± 478.66), and myelin thickness (5-20% increase). Repairing transected rat facial nerves with SVF-coated conduits improved whisker motion (9.22° ± 0.65° vs 1.90° ± 0.84°) and myelin thickness (0.57 μm ± 0.17 vs 0.45 μm ± 0.14 μm). Repairing transected rat sciatic nerves with SVF-coated nerve allografts improved RGMW (85 vs 50%), SFI scores (-20 to -10 vs -40 to -30), and Basso, Beatie, and Bresnahan locomotor scores (18 vs 15). All metrics mentioned above were statistically significant. The human studies were level 4 evidence due to being case series, while animal studies were the lowest level of evidence. CONCLUSION Despite initial promising results, the low-level evidence from the included studies warrants further investigation.
Collapse
Affiliation(s)
- Tyler Jacobs
- Resident, Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ.
| | | | - Saad Mohammed
- B.A. Candidate, New Jersey Institute of Technology, Newark, NJ
| | - Vincent Ziccardi
- Professor, Chair, and Associate Dean for Hospital Affairs, Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ
| |
Collapse
|
15
|
Cruciani S, Coradduzza D, Balzano F, Garroni G, Azara E, Pala R, Delitala AP, Madonia M, Tedde A, Capobianco G, Petrillo M, Angelucci C, Carru C, Ventura C, Maioli M. Modulation of adipose-derived stem cell behavior by prostate pathology-associated plasma: insights from in vitro exposure. Sci Rep 2024; 14:14765. [PMID: 38926454 PMCID: PMC11208502 DOI: 10.1038/s41598-024-64625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are promising in regenerative medicine. Their proliferation, survival and activation are influenced by specific signals within their microenvironment, also known as niche. The stem cell niche is regulated by complex interactions between multiple cell types. When transplanted in a specific area, ADSCs can secrete several immunomodulatory factors. At the same time, a tumor microenvironment can influence stem cell behavior, modulating proliferation and their ability to differentiate into a specific phenotype. Whitin this context, we exposed ADSCs to plasma samples derived from human patients diagnosed with prostate cancer (PC), or precancerous lesions (PL), or benign prostatic hyperplasia (BPH) for 4, 7 or 10 days. We then analyzed the expression of main stemness-related markers and cell-cycle regulators. We also measured cytokine production and polyamine secretion in culture medium and evaluated cell morphology and collagen production by confocal microscopy. The results obtained from this study show significant changes in the morphology of ADSCs exposed to plasma samples, especially in the presence of prostate cancer plasma, suggesting important implications in the use of ADSCs for the development of new treatments and application in regenerative medicine.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, 07100, Sassari, Italy
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Alessandro P Delitala
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Massimo Madonia
- Department of Clinical and Experimental Medicine, Urologic Clinic, University of Sassari, Sassari, Italy
| | - Alessandro Tedde
- Department of Clinical and Experimental Medicine, Urologic Clinic, University of Sassari, Sassari, Italy
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Marco Petrillo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Cecilia Angelucci
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
- Medical Oncology Unit, University Hospital (AOU) of Sassari, 07100, Sassari, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, Istituto Nazionale Biostrutture E Biosistemi (INBB)-Eldor Lab, Via Corticella 183, 40128, Bologna, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy.
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy.
| |
Collapse
|
16
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
17
|
Tseng SL, Kang L, Li ZJ, Wang LQ, Li ZM, Li TH, Xiang JY, Huang JZ, Yu NZ, Long X. Adipose-derived stem cells in diabetic foot care: Bridging clinical trials and practical application. World J Diabetes 2024; 15:1162-1177. [PMID: 38983804 PMCID: PMC11229965 DOI: 10.4239/wjd.v15.i6.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a critical medical challenge, significantly im-pairing the quality of life of patients. Adipose-derived stem cells (ADSCs) have been identified as a promising therapeutic approach for improving wound healing in DFUs. Despite extensive exploration of the mechanical aspects of ADSC therapy against DFU, its clinical applications remain elusive. In this review, we aimed to bridge this gap by evaluating the use and advancements of ADSCs in the clinical management of DFUs. The review begins with a discussion of the classification and clinical management of diabetic foot conditions. It then discusses the current landscape of clinical trials, focusing on their geographic distribution, reported efficacy, safety profiles, treatment timing, administration techniques, and dosing considerations. Finally, the review discusses the preclinical strategies to enhance ADSC efficacy. This review shows that many trials exhibit biases in study design, unclear inclusion criteria, and intervention protocols. In conclusion, this review underscores the potential of ADSCs in DFU treatment and emphasizes the critical need for further research and refinement of therapeutic approaches, with a focus on improving the quality of future clinical trials to enhance treatment outcomes and advance the field of diabetic wound care.
Collapse
Affiliation(s)
- Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Beijing, Beijing 100021, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
18
|
Yu G, Ding J, Yang N, Ge L, Chen N, Zhang X, Wang Q, Liu X, Zhang X, Jiang X, Geng Y, Zhang C, Pan J, Wang X, Gao W, Li Z, Zhang H, Ni W, Xiao J, Zhou K, Yang L. Evaluating the pro-survival potential of apoptotic bodies derived from 2D- and 3D- cultured adipose stem cells in ischaemic flaps. J Nanobiotechnology 2024; 22:333. [PMID: 38877492 PMCID: PMC11177420 DOI: 10.1186/s12951-024-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024] Open
Abstract
In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.
Collapse
Affiliation(s)
- Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lu Ge
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nuo Chen
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuzi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuchen Wang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xian Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuanlong Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiaoqiong Jiang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenxi Zhang
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Jiadong Pan
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
19
|
Prakash O, Ali SS, Yaseen M, Sudhy IK, Venkateshwar PK, Kishore YR. Utility of Fat Grafting in Chronic Wounds. Indian J Plast Surg 2024; 57:201-207. [PMID: 39139688 PMCID: PMC11319018 DOI: 10.1055/s-0044-1787174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Introduction The history of wounds dates back to the evolution of mankind. Throughout the centuries, management modalities of wounds have undergone drastic changes. With the advent of technology, we have multiple options for wound care, but none of them can be called the gold standard of wound care. Autologous fat grafting (AFG) is one of the most routinely performed procedures in aesthetic surgery. Fat grafting has shown beneficial effects in the healing of wounds. The regenerative potential of autologous fat is contributed by the adipose-derived stem cells present within the stromal vascular fraction, which are capable of differentiating into multiple cell types. This study aims to analyze the usefulness of AFG in cutaneous wound healing. Materials and Methods This prospective, study was conducted in our institute between April 2021 and May 2023. Eighteen patients with nonhealing wounds were included in the study. For assessing wound healing all the patients were first managed with conventional dressing for 2 weeks before surgery. After routine preoperative workup, the procedure was performed under local anesthesia in most cases. Fat was harvested from the lower abdomen and after emulsification, was injected into the edge and floor of the ulcer. The dressing was changed on the third postoperative day and the outcome was assessed. Results Eighteen patients (M:F ratio 8:1), with a mean age of 35.61 ± 12. 64 years (range 10-65 years), were included in this study. The most common etiology was trauma (44%), others being postop infection (17%), veno-lymphatic ulcer (17%), burns (11%), insect bite (5%), and trophic ulcer (5%). Majority of the wounds (95%) healed without the need for any extra intervention. The mean period taken for complete wound healing was 5.05 weeks. Conclusion Complete wound healing was achieved in majority of the patients without any complications. We recommend the usage of AFG for nonhealing wounds, as the procedure is relatively simple and can be performed after basic training. Larger-scale randomized controlled trials should be conducted to prove their efficacy in the management of complicated wounds.
Collapse
Affiliation(s)
- Om Prakash
- Department of Plastic Surgery, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sheikh Sarfraz Ali
- Department of Plastic Surgery, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Yaseen
- Department of Plastic Surgery, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Indrajith K. Sudhy
- Department of Plastic Surgery, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Pavan K. Venkateshwar
- Department of Plastic Surgery, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Y. Ranga Kishore
- Department of Plastic Surgery, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
20
|
Berry CE, Abbas DB, Lintel HA, Churukian AA, Griffin M, Guo JL, Cotterell AC, Parker JBL, Downer MA, Longaker MT, Wan DC. Adipose-Derived Stromal Cell-Based Therapies for Radiation-Induced Fibrosis. Adv Wound Care (New Rochelle) 2024; 13:235-252. [PMID: 36345216 PMCID: PMC11304913 DOI: 10.1089/wound.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Significance: Half of all cancer patients receive radiation therapy as a component of their treatment regimen, and the most common resulting complication is radiation-induced fibrosis (RIF) of the skin and soft tissue. This thickening of the dermis paired with decreased vascularity results in functional limitations and esthetic concerns and poses unique challenges when considering surgical exploration or reconstruction. Existing therapeutic options for RIF of the skin are limited both in scope and efficacy. Cell-based therapies have emerged as a promising means of utilizing regenerative cell populations to improve both functional and esthetic outcomes, and even as prophylaxis for RIF. Recent Advances: As one of the leading areas of cell-based therapy research, adipose-derived stromal cells (ADSCs) demonstrate significant therapeutic potential in the treatment of RIF. The introduction of the ADSC-augmented fat graft has shown clinical utility. Recent research dedicated to characterizing specific ADSC subpopulations points toward further granularity in understanding of the mechanisms driving the well-established clinical outcomes seen with fat grafting therapy. Critical Issues: Various animal models of RIF demonstrated improved clinical outcomes following treatment with cell-based therapies, but the cellular and molecular basis underlying these effects remains poorly understood. Future Directions: Recent literature has focused on improving the efficacy of cell-based therapies, most notably through (1) augmentation of fat grafts with platelet-rich plasma and (2) the modification of expressed RNA through epitranscriptomics. For the latter, new and promising gene targets continue to be identified which have the potential to reverse the effects of fibrosis by increasing angiogenesis, decreasing inflammation, and promoting adipogenesis.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hendrik A. Lintel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew A. Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jason L. Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Asha C. Cotterell
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer B. Laufey Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Mauricio A. Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Zhang L, Li X, Gao H, Li P. The Role of Circular RNA Variants Generated from the NFIX Gene in Different Diseases. Mol Pharm 2024; 21:1027-1037. [PMID: 38315004 DOI: 10.1021/acs.molpharmaceut.3c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Circular RNAs (circRNAs) have been identified as important regulators in different developmental processes and disease pathogenesis. The loop structure of circRNAs makes them very stable in different conditions and microenvironments. circRNAs can affect microRNA (miRNA) and RNA binding protein (RBP) activity, encode functional proteins and regulate gene transcription. Recently, two circNFIX variants derived from the same gene, the Nuclear Factor I X (NFIX) gene, were determined as participants in the pathological processes of various diseases such as heart diseases and cancers. Both circNFIX variants are exonic circular RNAs and mainly function by sponging miRNAs. In this review, we summarize the current knowledge on circRNAs, elucidate the origins and properties of two circNFIX variants, explore the roles of two circNFIX variants in different diseases, and present clinical perspectives.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| |
Collapse
|
22
|
Marangi GF, Mirra C, Gratteri M, Cogliandro A, Salzillo R, Segreto F, Federico G, Romano FD, Rossi C, Persichetti P. Switching from Galenic to Advanced Dressings or Vacuum Assisted Closure Therapy Can Improve Quality of Life of Patients with Chronic Non-Responsive Pressure Skin Ulcers: Preliminary Data with Italian Translation of WOUND-Q. Adv Wound Care (New Rochelle) 2024; 13:131-139. [PMID: 37551983 DOI: 10.1089/wound.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Objective: A few studies have focused on the quality of life (QoL) of patients with chronic non-responsive pressure skin ulcers. The aim of this study was to assess how correct treatment (advanced wound care [AWC] dressings alone or vacuum assisted closure [VAC] therapy alone) changes the QoL of these patients. Approach: One hundred six patients with chronic non-responsive pressure skin ulcers, who had previously used galenic dressings, applied without proper therapeutic indication, were included in this study. We administered the WOUND-Q, at time 0 and after 1 month of appropriate therapy, to assess patient-reported outcome measures. Group 1 consisted of 30 patients treated with advanced dressings, Group 2: 22 patients treated with VAC therapy, and Group 3: 30 patients continuing conventional galenic dressings (Control group). Statistical analysis allowed us to analyze QoL changes over time and to compare WOUND-Q Group 1 and 2 deltas with those of Group 3. The study followed the STROBE statement. Results and Innovation: In all the scales evaluated (Assessment, Drainage, Smell, Life impact, Psychological, Social, Sleep and Dressing), there were significant improvements in mean values for Groups 1 and 2. Kruskal-Wallis tests with Dunn's multiple-comparisons tests and Brown-Forsythe and Welch Analysis of Variance tests demonstrated significant differences between deltas of Group 1 and Group 2 compared with those of Group 3 for most scales analyzed. Conclusions: Administration of the WOUND-Q demonstrated that the application of advanced dressings alone or VAC therapy alone positively affects the QoL of patients with chronic nonresponsive pressure wounds, in comparison with galenic dressings alone. The WOUND-Q has been shown to be a valid tool in studying changes in QoL of these patients.
Collapse
Affiliation(s)
- Giovanni Francesco Marangi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Carlo Mirra
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Marco Gratteri
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Annalisa Cogliandro
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Rosa Salzillo
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Francesco Segreto
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Gaetano Federico
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Fara Desiree Romano
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Caterina Rossi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| | - Paolo Persichetti
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy
| |
Collapse
|
23
|
Barpour N, Ghorbani M, Baradaran B, Jodari-Mohammadpour Z, Nejati-Koshki K, Abdollahpour-Alitappeh M, Dabbaghi R, Gharibi T. Development of an injectable chitosan-based hydrogel containing nano-hydroxy-apatite and alendronate for MSC-based therapy. Int J Biol Macromol 2024; 261:129737. [PMID: 38286373 DOI: 10.1016/j.ijbiomac.2024.129737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/06/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND The combination of cells and biomaterials has become a powerful approach to regenerative medicine in recent years. Understanding the in-vitro interactions between cells and biomaterials is crucial for the success of regenerative medicine. AIM In this study, we developed an AD-pectin/chitosan/nano-crystalline cellulose scaffold with nano-hydroxy-apatite (n-HAP) and alendronate (ALN). The second step was to evaluate its effect on the immunomodulatory properties and biological behaviors of seeded adipose-derived mesenchymal stem cells (ADSCs) for bone tissue repair. MATERIAL AND METHOD After preparing and evaluating the characterization tests of the new combined n-HAP scaffold, we established different culture conditions to evaluate ADSC growth on this scaffold with or without ALN. The main assays were MTT assay, RT-PCR, and ELISA. RESULTS Our data regarding characterization tests (including SEM, TGA, FTIR, gelation time, swelling ratio, rheology and degradation tests) of ALN-loaded n-HAP scaffold showed the proper stability and good mechanical status of the scaffold. ADSC proliferation and viability increased in the presence of the scaffold compared with other conditions. Moreover, our data demonstrated increased gene expression and protein levels of anti-inflammatory TGF-β, HGF, and IDO cytokines in the presence of the ALN-loaded n-HAP scaffold, indicating the increased immunosuppressive activity of ADSCs in vitro. CONCLUSION This study demonstrates the promising abilities of the ALN-loaded n-HAP scaffold to increase the proliferation, viability, and immunomodulatory capacity of ADSCs, elucidating new aspects of cell-material interactions that can be used for bone tissue regeneration/repair, and paving the path of future research in developing new approaches for MSC- based therapy.
Collapse
Affiliation(s)
- Nesa Barpour
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Rozhin Dabbaghi
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Surico PL, Scarabosio A, Miotti G, Grando M, Salati C, Parodi PC, Spadea L, Zeppieri M. Unlocking the versatile potential: Adipose-derived mesenchymal stem cells in ocular surface reconstruction and oculoplastics. World J Stem Cells 2024; 16:89-101. [PMID: 38455097 PMCID: PMC10915950 DOI: 10.4252/wjsc.v16.i2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
This review comprehensively explores the versatile potential of mesenchymal stem cells (MSCs) with a specific focus on adipose-derived MSCs. Ophthalmic and oculoplastic surgery, encompassing diverse procedures for ocular and periocular enhancement, demands advanced solutions for tissue restoration, functional and aesthetic refinement, and aging. Investigating immunomodulatory, regenerative, and healing capacities of MSCs, this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside, addressing common unmet needs in the field of reconstructive and regenerative surgery.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
- Department of Ophthalmology, Campus Bio-Medico University, Rome 00128, Italy
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
25
|
Vassallo V, Di Meo C, Alessio N, La Gatta A, Ferraro GA, Nicoletti GF, Schiraldi C. Highly Concentrated Stabilized Hybrid Complexes of Hyaluronic Acid: Rheological and Biological Assessment of Compatibility with Adipose Tissue and Derived Stromal Cells towards Regenerative Medicine. Int J Mol Sci 2024; 25:2019. [PMID: 38396698 PMCID: PMC10888561 DOI: 10.3390/ijms25042019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Cells and extracts derived from adipose tissue are gaining increasing attention not only in plastic surgery and for aesthetic purposes but also in regenerative medicine. The ability of hyaluronan (HA) to support human adipose stromal cell (hASC) viability and differentiation has been investigated. However, the compatibility of adipose tissue with HA-based formulation in terms of biophysical and rheological properties has not been fully addressed, although it is a key feature for tissue integration and in vivo performance. In this study, the biophysical and biochemical properties of highly concentrated (45 mg/mL) high/low-molecular-weight HA hybrid cooperative complex were assessed with a further focus on the potential application in adipose tissue augmentation/regeneration. Specifically, HA hybrid complex rheological behavior was observed in combination with different adipose tissue ratios, and hyaluronidase-catalyzed degradation was compared to that of a high-molecular-weight HA (HHA). Moreover, the HA hybrid complex's ability to induce in vitro hASCs differentiation towards adipose phenotype was evaluated in comparison to HHA, performing Oil Red O staining and analyzing gene/protein expression of PPAR-γ, adiponectin, and leptin. Both treatments supported hASCs differentiation, with the HA hybrid complex showing better results. These outcomes may open new frontiers in regenerative medicine, supporting the injection of highly concentrated hybrid formulations in fat compartments, eventually enhancing residing staminal cell differentiation and improving cell/growth factor persistence towards tissue regeneration districts.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (N.A.); (A.L.G.)
| | - Celeste Di Meo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (N.A.); (A.L.G.)
| | - Nicola Alessio
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (N.A.); (A.L.G.)
| | - Annalisa La Gatta
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (N.A.); (A.L.G.)
| | - Giuseppe Andrea Ferraro
- Plastic Surgery Unit, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.A.F.); (G.F.N.)
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.A.F.); (G.F.N.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (N.A.); (A.L.G.)
| |
Collapse
|
26
|
Vassallo V, Di Meo C, Schiraldi C. Adult Mesenchymal Stem Cells in Presence of Glycosaminoglycans. Methods Mol Biol 2024; 2835:29-37. [PMID: 39105903 DOI: 10.1007/978-1-0716-3995-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The application of adult mesenchymal stem cells (MSCs) in the field of tissue regeneration is of increasing interest to the scientific community. In particular, scaffolds and/or hydrogel based on glycosaminoglycans (GAGs) play a pivotal role due to their ability to support the in vitro growth and differentiation of MSCs toward a specific phenotype. Here, we describe different possible approaches to develop GAGs-based biomaterials, hydrogel, and polymeric viscous solutions in order to assess/develop a suitable biomimetic environment. To sustain MSCs viability and promote their differentiation for potential therapeutic applications.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine (DMS), Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Celeste Di Meo
- Department of Experimental Medicine (DMS), Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine (DMS), Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
27
|
Ren D, Chen J, Yu M, Yi C, Hu X, Deng J, Guo S. Emerging strategies for tissue engineering in vascularized composite allotransplantation: A review. J Tissue Eng 2024; 15:20417314241254508. [PMID: 38826796 PMCID: PMC11143860 DOI: 10.1177/20417314241254508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Vascularized composite allotransplantation (VCA), which can effectively improve quality of life, is a promising therapy for repair and reconstruction after face or body trauma. However, intractable issues are associated with VCA, such as the inevitable multiple immunogenicities of different tissues that cause severe rejection, the limited protocols available for clinical application, and the shortage of donor sources. The existing regimens used to extend the survival of patients receiving VCAs and suppress rejection are generally the lifelong application of immunosuppressive drugs, which have side effects. Consequently, studies aiming at tissue engineering methods for VCA have become a topic. In this review, we summarize the emerging therapeutic strategies for tissue engineering aimed to prolong the survival time of VCA grafts, delay the rejection and promote prevascularization and tissue regeneration to provide new ideas for future research on VCA treatment.
Collapse
Affiliation(s)
- Danyang Ren
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Plastic Surgery, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueqing Hu
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Strauß S, Diemer M, Bucan V, Kuhbier JW, Asendorf T, Vogt PM, Schlottmann F. Spider silk enhanced tissue engineering of cartilage tissue: Approach of a novel bioreactor model using adipose derived stromal cells. J Appl Biomater Funct Mater 2024; 22:22808000241226656. [PMID: 38253568 DOI: 10.1177/22808000241226656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Human cartilage tissue remains a challenge for the development of therapeutic options due to its poor vascularization and reduced regenerative capacities. There are a variety of research approaches dealing with cartilage tissue engineering. In addition to different biomaterials, numerous cell populations have been investigated in bioreactor-supported experimental setups to improve cartilage tissue engineering. The concept of the present study was to investigate spider silk cocoons as scaffold seeded with adipose-derived stromal cells (ASC) in a custom-made bioreactor model using cyclic axial compression to engineer cartilage-like tissue. For chemical induction of differentiation, BMP-7 and TGF-β2 were added and changes in cell morphology and de-novo tissue formation were investigated using histological staining to verify chondrogenic differentiation. By seeding spider silk cocoons with ASC, a high colonization density and cell proliferation could be achieved. Mechanical induction of differentiation using a newly established bioreactor model led to a more roundish cell phenotype and new extracellular matrix formation, indicating a chondrogenic differentiation. The addition of BMP-7 and TGF-β2 enhanced the expression of cartilage specific markers in immunohistochemical staining. Overall, the present study can be seen as pilot study and valuable complementation to the published literature.
Collapse
Affiliation(s)
- Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Maximilian Diemer
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Jörn W Kuhbier
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
- Department of Plastic, Aesthetic and Hand Surgery, Helios Klinikum Hildesheim, Hildesheim, Germany
| | - Tomke Asendorf
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Sun Y, Jo JI, Hashimoto Y. Evaluation of Osteogenic Potential for Rat Adipose-Derived Stem Cells under Xeno-Free Environment. Int J Mol Sci 2023; 24:17532. [PMID: 38139360 PMCID: PMC10744054 DOI: 10.3390/ijms242417532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a novel culture method for rat adipose-derived stem cells (rADSC) and evaluate their osteogenic potential. The rADSC cultured in xeno-free culture medium (XF-rADSCs) or conventional culture medium containing fetal bovine serum (FBS-rADSCs) were combined with micropieces of xeno-free recombinant collagen peptide to form 3-dimensional aggregates (XF-rADSC-CellSaic or FBS-rADSC-CellSaic). Both FBS-rADSC and XF-ADSC in CellSaic exhibited multilineage differentiation potential. Compared to FBS-rADSC-CellSaic, XF-rADSC-CellSaic accelerated and promoted osteogenic differentiation in vitro. When transplanted into rat mandibular congenital bone defects, the osteogenically differentiated XF-rADSC-CellSaic induced regeneration of bone tissue with a highly maturated structure compared to FBS-rADSC-CellSaic. In conclusion, XF-rADSC-CellSaic is a feasible 3-dimensional platform for efficient bone formation.
Collapse
Affiliation(s)
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.S.); (Y.H.)
| | | |
Collapse
|
30
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
31
|
Hong J, Ahn H, Moon SY, Kang HJ, Yi KW. Effect of collagen endometrial patch loaded with adipose-derived mesenchymal stem cells on endometrial regeneration in rats with a thin endometrium. Front Endocrinol (Lausanne) 2023; 14:1287789. [PMID: 38089603 PMCID: PMC10714005 DOI: 10.3389/fendo.2023.1287789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Background This study aimed to investigate the effects of a collagen endometrial patch (EM patch) loaded with adipose-derived mesenchymal stem cells (ADSCs) on endometrial regeneration in a rat model with thin endometrium. Materials and methods Thin endometrium was induced in female rats and divided into treatment groups as outlined: control, group 1(G1), local injection of ADSCs into the uterus, group 2 (G2), an EM patch without ADSCs, group 3 (G3), and an EM patch loaded with ADSCs, group 4 (G4). The rats were euthanized at either two weeks or four weeks after modeling and treatment followed by histological and biochemical analyses to examine the regenerative effects on the injured endometrium. Results Transplantation of the ADSC-loaded EM patch significantly promoted endometrial proliferation and increased the luminal epithelial area. Two weeks after treatment, the mean number of von Villebrand factor (vWF)+ or cluster of differentiation (CD) 31+-stained blood vessels was significantly higher in G4 than in G1 and G2. The mRNA and protein expression levels of TGF-β and FGF2 were significantly upregulated in G4 compared to those in the control. G4 exhibited significantly increased LIF mRNA levels and immunoreactivity compared with the other groups at both two weeks and four weeks after treatment. Cell tracking after ADSCs treatment revealed the presence of a substantial number of ADSCs grafted in the uterine tissues of G4, whereas a low number of ADSCs that were focally clustered were present in G2. Conclusion Transplantation of EM patches loaded with ADSCs resulted in the histological and biochemical restoration of an injured endometrium. The strategic integration of EM patches and ADSCs holds significant promise as an innovative therapeutic approach for effectively treating impaired endometrial conditions.
Collapse
Affiliation(s)
- Juyeon Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyojin Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Young Moon
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Hyo Jin Kang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Kyong Wook Yi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Rakhmatullina AR, Mingaleeva RN, Gafurbaeva DU, Glazunova ON, Sagdeeva AR, Bulatov ER, Rizvanov AA, Miftakhova RR. Adipose-Derived Mesenchymal Stem Cell (MSC) Immortalization by Modulation of hTERT and TP53 Expression Levels. J Pers Med 2023; 13:1621. [PMID: 38003936 PMCID: PMC10672200 DOI: 10.3390/jpm13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pivotal players in tissue repair and hold great promise as cell therapeutic agents for regenerative medicine. Additionally, they play a significant role in the development of various human diseases. Studies on MSC biology have encountered a limiting property of these cells, which includes a low number of passages and a decrease in differentiation potential during in vitro culture. Although common methods of immortalization through gene manipulations of cells are well established, the resulting MSCs vary in differentiation potential compared to primary cells and eventually undergo senescence. This study aimed to immortalize primary adipose-derived MSCs by overexpressing human telomerase reverse transcriptase (hTERT) gene combined with a knockdown of TP53. The research demonstrated that immortalized MSCs maintained a stable level of differentiation into osteogenic and chondrogenic lineages during 30 passages, while also exhibiting an increase in cell proliferation rate and differentiation potential towards the adipogenic lineage. Long-term culture of immortalized cells did not alter cell morphology and self-renewal potential. Consequently, a genetically stable line of immortalized adipose-derived MSCs (iMSCs) was established.
Collapse
Affiliation(s)
- Aigul R. Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Rimma N. Mingaleeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dina U. Gafurbaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Olesya N. Glazunova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aisylu R. Sagdeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil R. Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
33
|
Flores González EA, Babaitis R, Viaro MS, Manzaneda Cipriani RM, Duran Vega H, Ramírez Guerrero OR, Brito Toledo P, Vázquez Apodaca RA, Gracida Mancilla NI. Ultrasound-guided Fat Graft of the Obliques-Serratus Complex. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5390. [PMID: 37964919 PMCID: PMC10642907 DOI: 10.1097/gox.0000000000005390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/08/2023] [Indexed: 11/16/2023]
Abstract
Background The idea of the anterolateral thoracic musculature in men during the contour procedure is very limited, particularly in terms of surgical techniques that improve its appearance and aesthetics. Therefore, this study aimed to describe a technique of deep definition liposuction with intramuscular grafting of the serratus external oblique muscle complex. Methods A retrospective case series of a total of 11 cases of male patients aged between 29 and 60 years in the year 2022 is presented. These patients underwent body contouring surgery and subsequently underwent ultrasound-guided intramuscular fat grafting in the serratus external oblique complex. As part of the study, measurements were taken before and immediately after surgery. The data were stored in a database and analyzed with the statistical software SPSS, v23.0. Results The patients were aged between 29 and 60 years, with a mean age of 38.3 years (±8.5). All cases had a body mass index of 30. Results were matched preinfiltration and postinfiltration; These results were subjected to statistical validation using the Student t test for related samples, and statistically significant differences were obtained in all the measures tested. Conclusions The technique of fat grafting in the oblique-serratus complex allows for increasing muscle thickness. The measurements were made only immediately after the infiltration; it is important in the future to show the long-term follow-up. No adverse events occurred during the study.
Collapse
|
34
|
van Velthoven MJJ, Gudde AN, Arendsen E, Roovers J, Guler Z, Oosterwijk E, Kouwer PHJ. Growth Factor Immobilization to Synthetic Hydrogels: Bioactive bFGF-Functionalized Polyisocyanide Hydrogels. Adv Healthc Mater 2023; 12:e2301109. [PMID: 37526214 PMCID: PMC11468678 DOI: 10.1002/adhm.202301109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/22/2023] [Indexed: 08/02/2023]
Abstract
With its involvement in cell proliferation, migration and differentiation basic fibroblast growth factor (bFGF) has great potential for tissue engineering purposes. So far, however, clinical translation of soluble bFGF-based therapies is unsuccessful, because the required effective doses are often supraphysiological, which may cause adverse effects. An effective solution is growth factor immobilization, whereby bFGF retains its bioactivity at increased efficacy. Studied carriers include films, solid scaffolds, and particles, as well as natural and synthetic hydrogels. However, these synthetic hydrogels poorly resemble the characteristics of the native extracellular matrix (ECM). In this work, bFGF is covalently conjugated to the synthetic, but highly biocompatible, polyisocyanide-based hydrogel (PIC-bFGF), which closely mimics the architecture and mechanical properties of the ECM. The growth factor conjugation protocol is straightforward and readily extrapolated to other growth factors or proteins. The PIC-bFGF hydrogel shows a prolonged bioactivity up to 4 weeks although no clear effects on the ECM metabolism are observed. Beyond the future potential of the PIC-bFGF hydrogel toward various tissue engineering applications, this work underlines that simple biological conjugation procedures are a powerful strategy to induce additional bioactivity in 3D synthetic cell culture matrices.
Collapse
Affiliation(s)
- Melissa J. J. van Velthoven
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Aksel N. Gudde
- Department of Obstetrics and GynecologyAmsterdam University Medical Centerlocation AMC, Meibergdreef 9Amsterdam1105 AZThe Netherlands
- Amsterdam Reproduction and DevelopmentAmsterdam University Medical Centerlocation AMC, Meibergdreef 9Amsterdam1105 AZThe Netherlands
| | - Evert Arendsen
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Jan‐Paul Roovers
- Department of Obstetrics and GynecologyAmsterdam University Medical Centerlocation AMC, Meibergdreef 9Amsterdam1105 AZThe Netherlands
- Amsterdam Reproduction and DevelopmentAmsterdam University Medical Centerlocation AMC, Meibergdreef 9Amsterdam1105 AZThe Netherlands
| | - Zeliha Guler
- Department of Obstetrics and GynecologyAmsterdam University Medical Centerlocation AMC, Meibergdreef 9Amsterdam1105 AZThe Netherlands
- Amsterdam Reproduction and DevelopmentAmsterdam University Medical Centerlocation AMC, Meibergdreef 9Amsterdam1105 AZThe Netherlands
| | - Egbert Oosterwijk
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
35
|
Li K, Zhou P, Guo Y, Xu T, Lin S, Lin S, Ji C. Recent advances in exosomal non-coding RNA-based therapeutic approaches for photoaging. Skin Res Technol 2023; 29:e13463. [PMID: 37753673 PMCID: PMC10495620 DOI: 10.1111/srt.13463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Photoaging is a degenerative biological process that affects the quality of life. It is caused by environmental factors including ultraviolet radiation (UVR), deep skin burns, smoking, active oxygen, chemical substances, and trauma. Among them, UVR plays a vital role in the aging process. AIM With the continuous development of modern medicine, clinical researchers have investigated novel approaches to treat aging. In particular, mesenchymal stem cells (MSCs), non-coding RNAs are involved in various physiological processes have broad clinical application as they have the advantages of convenient samples, abundant sources, and avoidable ethical issues. METHODS This article reviews research progress on five types of stem cell, exosomes, non-coding RNA in the context of photoaging treatment: adipose-derived stem cell, human umbilical cord MSCs, epidermal progenitor cells, keratinocyte stem cells, and hair follicle stem cells (HFSCs). It also includes stem cell related exosomes and their non-coding RNA research. RESULTS The results have clinical guiding significance for prevention and control of the onset and development of photoaging. It is found that stem cells secrete cytokines, cell growth factors, non-coding RNA, exosomes and proteins to repair aging skin tissues and achieve skin rejuvenation. In particular, stem cell exosomes and non-coding RNA are found to have significant research potential, as they possess the benefits of their source cells without the disadvantages which include immune rejection and granuloma formation.
Collapse
Affiliation(s)
- Kun‐Jie Li
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Peng‐Jun Zhou
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Yan‐Ni Guo
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Tian‐Xing Xu
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Song‐Fa Lin
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Shu Lin
- Centre of Neurological and Metabolic Researchthe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
- Group of NeuroendocrinologyGarvan Institute of Medical ResearchSydneyAustralia
| | - Chao Ji
- Department of Dermatologythe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
36
|
Kress GT, Swerdlow M, Mohan N, Patel K, Shin L. Remission Strategies with Fat Grafting to Prevent Recurrence of Pedal Ulcerations and Pain: A Case Series. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5232. [PMID: 37662474 PMCID: PMC10473342 DOI: 10.1097/gox.0000000000005232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023]
Abstract
Background Foot deformities and gait abnormalities can result in locally elevated peak pedal pressures or atypical pedal biomechanics. Combined with underlying comorbidities such as neuropathy, stroke, atrophic fat padding and history of ulcerations, this can lead to recurrent ulcerations and pain. Pedal fat grafting (PFG) is a treatment modality that has been shown to reduce peak pressures and accelerate wound healing. This study aimed to investigate the utility of PFG to treat and prevent ulcerations. Methods We retrospectively analyzed medical history, demographics, wound volume at time of procedure, volume of fat injected, surgical outcomes, and presence of new wounds in 15 patients who underwent PFG at Keck Hospital between 2018 and 2023. Results Seventeen feet from 15 patients (63 ± 12 years old, body mass index 30.9 ± 3.1) received PFG with an average volume of fat injected of 10.7 mL and procedure time of 84.6 minutes. At the time of PFG, nine wounds were present on nine feet with an average wound volume of 1.6 ± 2.7 cm3. Average follow-up was 6.9 months (range 1-36 months), with no complications or recurrent ulcerations since the procedure. Conclusions PFG is a promising treatment option for reducing peak pedal pressure and preventing ulcer recurrence in patients with various conditions. Further study is warranted for long-term follow-up.
Collapse
Affiliation(s)
- Gavin Thomas Kress
- From Keck School of Medicine of the University of Southern California (USC), Los Angeles, Calif
| | - Mark Swerdlow
- From Keck School of Medicine of the University of Southern California (USC), Los Angeles, Calif
| | - Natasha Mohan
- From Keck School of Medicine of the University of Southern California (USC), Los Angeles, Calif
| | - Ketan Patel
- Department of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, Calif
- Division of Plastic Surgery, Cedars-Sinai Medical Center, Los Angeles, Calif
| | - Laura Shin
- Southwestern Academic Limb Salvage Alliance (SALSA), Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, Calif
| |
Collapse
|
37
|
Zhang Y, Li M, Wang Y, Han F, Shen K, Luo L, Li Y, Jia Y, Zhang J, Cai W, Wang K, Zhao M, Wang J, Gao X, Tian C, Guo B, Hu D. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater 2023; 26:323-336. [PMID: 36950152 PMCID: PMC10027478 DOI: 10.1016/j.bioactmat.2023.01.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 03/17/2023] Open
Abstract
Chronic diabetic wounds remain a globally recognized clinical challenge. They occur due to high concentrations of reactive oxygen species and vascular function disorders. A promising strategy for diabetic wound healing is the delivery of exosomes, comprising bioactive dressings. Metformin activates the vascular endothelial growth factor pathway, thereby improving angiogenesis in hyperglycemic states. However, multifunctional hydrogels loaded with drugs and bioactive substances synergistically promote wound repair has been rarely reported, and the mechanism of their combinatorial effect of exosome and metformin in wound healing remains unclear. Here, we engineered dual-loaded hydrogels possessing tissue adhesive, antioxidant, self-healing and electrical conductivity properties, wherein 4-armed SH-PEG cross-links with Ag+, which minimizes damage to the loaded goods and investigated their mechanism of promotion effect for wound repair. Multiwalled carbon nanotubes exhibiting good conductivity were also incorporated into the hydrogels to generate hydrogen bonds with the thiol group, creating a stable three-dimensional structure for exosome and metformin loading. The diabetic wound model of the present study suggests that the PEG/Ag/CNT-M + E hydrogel promotes wound healing by triggering cell proliferation and angiogenesis and relieving peritraumatic inflammation and vascular injury. The mechanism of the dual-loaded hydrogel involves reducing the level of reactive oxygen species by interfering with mitochondrial fission, thereby protecting F-actin homeostasis and alleviating microvascular dysfunction. Hence, we propose a drug-bioactive substance combination therapy and provide a potential mechanism for developing vascular function-associated strategies for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Meng Li
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Fei Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaowen Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Corresponding author. State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
38
|
Liu Z, Liu J, Li J, Li Y, Sun J, Deng Y, Zhou H. Substrate stiffness can affect the crosstalk between adipose derived mesenchymal stem cells and macrophages in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1133547. [PMID: 37576988 PMCID: PMC10415109 DOI: 10.3389/fbioe.2023.1133547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose: This study aimed to explore the effect of biomaterials with different stiffness on Adipose Derived Mesenchymal Stem Cells (ADSC)-macrophage crosstalk in bone tissue engineering and its role in bone repair. Methods: Biomaterials with Young's modulus of 64 and 0.2 kPa were selected, and the crosstalk between ADSCs and macrophages was investigated by means of conditioned medium treatment and cell co-culture, respectively. Polymerase chain reaction (PCR) and flow cytometry were used to evaluate the polarization of macrophages. Alkaline phosphatase (ALP) and alizarin red staining (ARS) solutions were used to evaluate the osteogenic differentiation of ADSCs. Transwell assay was used to evaluate the chemotaxis of ADSCs and macrophages. Moreover, mass spectrometry proteomics was used to analyze the secreted protein profile of ADSCs of different substrates and macrophages in different polarization states. Results: On exploring the influence of biomaterials on macrophages from ADSCs on different substrates, we found that CD163 and CD206 expression levels in macrophages were significantly higher in the 64-kPa group than in the 0.2-kPa group in conditioned medium treatment and cell co-culture. Flow cytometry showed that more cells became CD163+ or CD206+ cells in the 64-kPa group under conditioned medium treatment or cell co-culture. The Transwell assay showed that more macrophages migrated to the lower chamber in the 64-kPa group. The proteomic analysis found that ADSCs in the 64-kPa group secreted more immunomodulatory proteins, such as LBP and RBP4, to improve the repair microenvironment. On exploring the influence of biomaterials on ADSCs from macrophages in different polarization states, we found that ALP and ARS levels in ADSCs were significantly higher in the M2 group than in the other three groups (NC, M0, and M1 groups) in both conditioned medium treatment and cell co-culture. The Transwell assay showed that more ADSCs migrated to the lower chamber in the M2 group. The proteomic analysis found that M2 macrophages secreted more extracellular remodeling proteins, such as LRP1, to promote bone repair. Conclusion: In bone tissue engineering, the stiffness of repair biomaterials can affect the crosstalk between ADSCs and macrophages, thereby regulating local repair immunity and affecting bone repair.
Collapse
Affiliation(s)
- Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Liu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Deng
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Chung H, An S, Han SY, Jeon J, Cho S, Lee YC. Endoscopically injectable and self-crosslinkable hydrogel-mediated stem cell transplantation for alleviating esophageal stricture after endoscopic submucosal dissection. Bioeng Transl Med 2023; 8:e10521. [PMID: 37206239 PMCID: PMC10189443 DOI: 10.1002/btm2.10521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Esophageal stricture after extensive endoscopic submucosal dissection impairs the quality of life of patients with superficial esophageal carcinoma. Beyond the limitations of conventional treatments including endoscopic balloon dilatation and the application of oral/topical corticosteroids, several cell therapies have been recently attempted. However, such methods are still limited in clinical situations and existing setups, and the efficacies are less in some cases since the transplanted cells hardly remain at the resection site for a long time due to swallowing and peristalsis of the esophagus. Thus, a cell transplantation platform directly applicable with clinically established equipment and enabling stable retention of transplanted cells can be a promising therapeutic option for better clinical outcomes. Inspired by ascidians that rapidly self-regenerate, this study demonstrates endoscopically injectable and self-crosslinkable hyaluronate that allows both endoscopic injection in a liquid state and self-crosslinking as an in situ-forming scaffold for stem cell therapy. The pre-gel solution may compatibly be applied with endoscopic tubes and needles of small diameters, based on the improved injectability compared to the previously reported endoscopically injectable hydrogel system. The hydrogel can be formed via self-crosslinking under in vivo oxidative environment, while also exhibiting superior biocompatibility. Finally, the mixture containing adipose-derived stem cells and the hydrogel can significantly alleviate esophageal stricture after endoscopic submucosal dissection (75% of circumference, 5 cm in length) in a porcine model through paracrine effects of the stem cell in the hydrogel, which modulate regenerative processes. The stricture rates on Day 21 were 79.5% ± 2.0%, 62.8% ± 1.7%, and 37.9% ± 2.9% in the control, stem cell only, and stem cell-hydrogel groups, respectively (p < 0.05). Therefore, this endoscopically injectable hydrogel-based therapeutic cell delivery system can serve as a promising platform for cell therapies in various clinically relevant situations.
Collapse
Affiliation(s)
- Hyunsoo Chung
- Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Department of Medical Device DevelopmentSeoul National University College of MedicineSeoulRepublic of Korea
- Yonsei University Graduate School of MedicineSeoulRepublic of Korea
| | - Soohwan An
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Seung Yeop Han
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Jihoon Jeon
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Seung‐Woo Cho
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS)SeoulRepublic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute, Yonsei UniversitySeoulRepublic of Korea
| | - Yong Chan Lee
- Yonsei University Graduate School of MedicineSeoulRepublic of Korea
- Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
40
|
Noureddine S, Nie J, Schneider A, Menon V, Fliesen Z, Dhahbi J, Victoria B, Oyer J, Robles-Carrillo L, Nunes ADDC, Ashiqueali S, Janusz A, Copik A, Robbins PD, Musi N, Masternak MM. microRNA-449a reduces growth hormone-stimulated senescent cell burden through PI3K-mTOR signaling. Proc Natl Acad Sci U S A 2023; 120:e2213207120. [PMID: 36976763 PMCID: PMC10083567 DOI: 10.1073/pnas.2213207120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Cellular senescence, a hallmark of aging, has been implicated in the pathogenesis of many major age-related disorders, including neurodegeneration, atherosclerosis, and metabolic disease. Therefore, investigating novel methods to reduce or delay the accumulation of senescent cells during aging may attenuate age-related pathologies. microRNA-449a-5p (miR-449a) is a small, noncoding RNA down-regulated with age in normal mice but maintained in long-living growth hormone (GH)-deficient Ames Dwarf (df/df) mice. We found increased fibroadipogenic precursor cells, adipose-derived stem cells, and miR-449a levels in visceral adipose tissue of long-living df/df mice. Gene target analysis and our functional study with miR-449a-5p have revealed its potential as a serotherapeutic. Here, we test the hypothesis that miR-449a reduces cellular senescence by targeting senescence-associated genes induced in response to strong mitogenic signals and other damaging stimuli. We demonstrated that GH downregulates miR-449a expression and accelerates senescence while miR-449a upregulation using mimetics reduces senescence, primarily through targeted reduction of p16Ink4a, p21Cip1, and the PI3K-mTOR signaling pathway. Our results demonstrate that miR-449a is important in modulating key signaling pathways that control cellular senescence and the progression of age-related pathologies.
Collapse
Affiliation(s)
- Sarah Noureddine
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Jia Nie
- Sam and Ann Barshop Insititute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, 96010-610Pelotas, Brazil
| | - Vinal Menon
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Zoubeida Fliesen
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA92324
| | - Joseph Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA92324
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Jeremiah Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Liza Robles-Carrillo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Allancer Divino De Carvalho Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Sarah Ashiqueali
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Artur Janusz
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
- Celon Pharma Innovative Drugs Research & Development Department, Celon Pharma S.A., 05-152Kazun Nowy, Poland
| | - Alicja Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Nicolas Musi
- Sam and Ann Barshop Insititute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- San Antonio Geriatric Research Education and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX78229
- Department of Medicine, Cedars Sinai Medical Center, LA90048
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 60-355Poznan, Poland
| |
Collapse
|
41
|
Shifa ul Haq H, Ashfaq R, Mehmood A, Shahid W, Azam G, Azam M, Tasneem S, Akram SJ, Malik K, Riazuddin S. Priming with caffeic acid enhances the potential and survival ability of human adipose-derived stem cells to counteract hypoxia. Regen Ther 2023; 22:115-127. [PMID: 36751276 PMCID: PMC9883200 DOI: 10.1016/j.reth.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
The therapeutic effectiveness of stem cells after transplantation is hampered by the hypoxic milieu of chronic wounds. Prior research has established antioxidant priming as a thorough plan to improve stem cell performance. The purpose of this study was to ascertain how caffeic acid (CA) priming affected the ability of human adipose-derived stem cells (hASCs) to function under hypoxic stress. In order to study the cytoprotective properties of CA, hASCs were primed with CA in CoCl2 hypoxic conditions. Microscopy was used to assess cell morphology, while XTT, Trypan Blue, X-gal, LDH, Live Dead, scratch wound healing, and ROS assays were used to analyze viability, senescence, cell death, proliferation, and reactive oxygen species prevalence in the cells. According to our findings, CA priming enhances hASCs' ability to survive and regenerate in a hypoxic microenvironment more effectively than untreated hASCs. Our in-vitro research suggested that pre-treatment with CA of hASCs could be a unique way to enhance their therapeutic efficacy and ability to survive in hypoxic microenvironments.
Collapse
Affiliation(s)
- H.M. Shifa ul Haq
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
| | - Ramla Ashfaq
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
- Genome Editing Lab, Food Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratory Complex, Lahore, 54600, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
| | - Warda Shahid
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
| | - Ghufran Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
| | | | - Kausar Malik
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, 53700, Pakistan
- Jinnah Burn & Reconstructive Surgery Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
42
|
Role of Autologous Fat Grafting in the Conservative Treatment of Fecal Incontinence in Children. J Clin Med 2023; 12:jcm12041258. [PMID: 36835794 PMCID: PMC9964968 DOI: 10.3390/jcm12041258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Treatment of organic fecal incontinence in children, typical of anorectal malformations, is most often conservative; however, when necessary, it can be surgical. Autologous fat grafting, or lipofilling, can be used to improve fecal incontinence. We present our experience with the echo-assisted anal-lipofilling and its effects on fecal incontinence in children and on the quality of life of the entire family. Under general anesthesia, fat tissue was harvested according to the traditional technique, and processed in a closed system Lipogems® set. Injection of the processed adipose tissue was guided by trans-anal ultrasound assistance. Ultrasound and manometry were also used for follow-up. From November 2018, we performed 12 anal-lipofilling procedures in six male patients (mean age 10.7 years). Five children had a stable improvement in bowel function with Krickenbeck's scale scores going from soiling grade 3 pre-treatment in 100% of children to grade 1 post-treatment in 75% of them. No major post-operative complications developed. An increase in thickness of the sphincteric apparatus was shown at ultrasound during follow-up. The quality of life of the entire family, evaluated with a questionnaire, improved after the surgical treatment of the children. Anal-lipofilling is a safe and effective procedure to reduce organic fecal incontinence thereby benefiting both the patients and their families.
Collapse
|
43
|
Cruciani S, Delitala AP, Cossu ML, Ventura C, Maioli M. Management of Obesity and Obesity-Related Disorders: From Stem Cells and Epigenetics to Its Treatment. Int J Mol Sci 2023; 24:2310. [PMID: 36768633 PMCID: PMC9916844 DOI: 10.3390/ijms24032310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Obesity is a complex worldwide disease, characterized by an abnormal or excessive fat accumulation. The onset of this pathology is generally linked to a complex network of interactions among genetic and environmental factors, aging, lifestyle, and diets. During adipogenesis, several regulatory mechanisms and transcription factors are involved. As fat cells grow, adipose tissue becomes increasingly large and dysfunctional, losing its endocrine function, secreting pro-inflammatory cytokines, and recruiting infiltrating macrophages. This long-term low-grade systemic inflammation results in insulin resistance in peripheral tissues. In this review we describe the main mechanisms involved in adipogenesis, from a physiological condition to obesity. Current therapeutic strategies for the management of obesity and the related metabolic syndrome are also reported.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | | | - Maria Laura Cossu
- General Surgery Unit 2 “Clinica Chirurgica” Medical, Surgical and Experimental Sciences Department, University of Sassari, 07100 Sassari, Italy
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), Via di Corticella 183, 40128 Bologna, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
44
|
Wang Z, Wen S, Zhong M, Yang Z, Xiong W, Zhang K, Yang S, Li H, Guo S. Epigenetics: Novel crucial approach for osteogenesis of mesenchymal stem cells. J Tissue Eng 2023; 14:20417314231175364. [PMID: 37342486 PMCID: PMC10278427 DOI: 10.1177/20417314231175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.
Collapse
Affiliation(s)
- Zhaohua Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Meiqi Zhong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kuo Zhang
- College of Humanities and Social Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huizheng Li
- Department of Otorhinolaryngology & Head and Neck Surgery, Dalian Friendship Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
45
|
Ni R, Luo C, Ci H, Sun D, An R, Wang Z, Yang J, Li Y, Sun J. Construction of vascularized tissue-engineered breast with dual angiogenic and adipogenic micro-tissues. Mater Today Bio 2022; 18:100539. [PMID: 36686035 PMCID: PMC9850046 DOI: 10.1016/j.mtbio.2022.100539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogel-based micro-tissue engineering technique, a bottom-up approach, is promising in constructing soft tissue of large size with homogeneous spatial distribution and superior regeneration capacity compared to the top-down approach. However, most of the studies employed micro-tissues with simple mesenchymal stem cells, which could hardly meet the growth of matrix and vessels. Therefore, we recommend a dual micro-tissues assembly strategy to construct vascularized tissue-engineered breast grafts (TEBGs). Adipose micro-tissues (AMs) and vessel micro-tissues (VMs) were fabricated by seeding adipose-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs) on collagen microgels (COLs) with a uniform diameter of ∼250 μm, respectively. TEBGs were constructed by injecting the dual micro-tissues into 3D printed breast-like Thermoplastic Urethane (TPU) scaffolds, then implanted into the subcutaneous pockets on the back of nude mice. After 3 months of implantation, TEBGs based on dual micro-tissues performed larger volume of adipose tissue regeneration and neo-vessel formation compared to TEBGs based on single AMs. This study extends the application of micro-tissue engineering technique for the construction of soft grafts, and is expected to be useful for creating heterogeneous tissue constructs in the future.
Collapse
Affiliation(s)
- Ruopiao Ni
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Luo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Hai Ci
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
46
|
Meng F, Liao X, Chen H, Deng S, Wang L, Zhao M, Li H, Liu D, Gao G, Li H, Wang J. Bibliometric and visualization analysis of literature relating to diabetic erectile dysfunction. Front Endocrinol (Lausanne) 2022; 13:1091999. [PMID: 36568113 PMCID: PMC9780376 DOI: 10.3389/fendo.2022.1091999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Diabetic erectile dysfunction (DMED) refers to erectile dysfunction secondary to diabetes. Erectile dysfunction is characterized by a persistent inability to achieve and maintain an erection sufficient to permit satisfactory sexual activity. Methods Based on the Web of Science core collection database, we firstly analyzed the quantity and quality of publications in the field of DMED, secondly profiled the publishing groups in terms of country, institution, author's publication and cooperation network, and finally sorted out and summarized the hot topics of research. Results From 2001 to 2022, a total of 1,403 articles relating to this topic were published in 359 journals. They represent the global research status, potential hotspots, and future research directions. The number of DMED-related publications and citations has steadily increased over the few past decades. Academic institutions from Europe and the United States have played a leading role in DMED research. The country, institution, journal, and author with the most publications were the United States (294), INHA University (39), the Journal of Sexual Medicine (156), and Ryu, Ji-Kan (29), respectively. The most common keywords were erectile dysfunction (796), men (256), diabetes (254), diabetes mellitus (239), prevalence (180), corpus cavernosum (171), dysfunction (155), mellitus (154), nitric-oxide synthase (153), and expression (140). The main keyword-based research topics and hotspots in the DMED field were oral sildenafil, smooth muscle relaxation, nitric oxide synthase, gene therapy, metabolic syndrome, cavernous nerve injury, stem cell, and penile prosthesis. Discussion The terms oral sildenafil, smooth muscle relaxation, nitric oxide synthase, gene therapy, metabolic syndrome, cavernous nerve injury, stem cell, and penile prosthesis will be at the forefront of DMED-related research.
Collapse
Affiliation(s)
- Fanchao Meng
- Urology Surgery, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxing Liao
- Urology Surgery, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Chen
- Department of Nephroendocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Deng
- Department of Andrology, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Lu Wang
- Department of Surgery, Beijing Xuanwu Traditional Chinese Medicine Hospital, Beijing, China
| | - Mengjie Zhao
- Urology Surgery, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Li
- Urology Surgery, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dong Liu
- Urology Surgery, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Guojing Gao
- Urology Surgery, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Haisong Li
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, Meng H, Xu W, Zhang L, Ma X, Peng J, Wang Y. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater 2022; 18:300-320. [PMID: 35387172 PMCID: PMC8961471 DOI: 10.1016/j.bioactmat.2022.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Compared to conventional artificial nerve guide conduits (NGCs) prepared using natural polymers or synthetic polymers, acellular nerve grafts (ACNGs) derived from natural nerves with eliminated immune components have natural bionic advantages in composition and structure that polymer materials do not have. To further optimize the repair effect of ACNGs, in this study, we used a composite technology based on supercritical carbon dioxide (scCO2) extraction to process the peripheral nerve of a large mammal, the Yorkshire pig, and obtained an innovative Acellular nerve xenografts (ANXs, namely, CD + scCO2 NG). After scCO2 extraction, the fat and DNA content in CD + scCO2 NG has been removed to the greatest extent, which can better supported cell adhesion and proliferation, inducing an extremely weak inflammatory response. Interestingly, the protein in the CD + scCO2 NG was primarily involved in signaling pathways related to axon guidance. Moreover, compared with the pure chemical decellularized nerve graft (CD NG), the DRG axons grew naturally on the CD + scCO2 NG membrane and extended long distances. In vivo studies further revealed that the regenerated nerve axons had basically crossed the CD + scCO2 NG 3 weeks after surgery. 12 weeks after surgery, CD + scCO2 NG was similar to autologous nerves in improving the quality of nerve regeneration, target muscle morphology and motor function recovery and was significantly better than hollow NGCs and CD NG. Therefore, we believe that the fully decellularized and fat-free porcine ACNGs may be the most promising “bridge” for repairing human nerve defects at this stage and for some time to come.
The native adipose tissue inside acellular nerve xenografts hinders regenerated nerve fibers. Environmentally friendly scCO2 extraction has natural advantages in reducing fat content. Natural three-dimensional nerve basement membrane tube structure guides regenerating axons.
Collapse
|
48
|
Yang Y, Li L, Yang ZJ, Zheng MX, He WF, Yin R. [Effects of low-dose photodynamic therapy on the function of human adipose mesenchymal stem cells and its mechanism]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:830-838. [PMID: 36177587 DOI: 10.3760/cma.j.cn501225-20220325-00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective: To investigate the effects of low-dose photodynamic therapy on the proliferation, regulation, and secretion functions of human adipose mesenchymal stem cells (ADSCs) and the related mechanism, so as to explore a new method for the repair of chronic wounds. Methods: The experimental research methods were adopted. From February to April 2021, 10 patients (5 males and 5 females, aged 23 to 47 years) who underwent cutaneous surgery in the Department of Dermatology of the First Affiliated Hospital of Army Medical University (the Third Military Medical University) donated postoperative waste adipose tissue. The cells were extracted from the adipose tissue and the phenotype was identified. Three batches of ADSCs were taken, with each batch of cells being divided into normal control group with conventional culture only, photosensitizer alone group with conventional culture after being treated with Hemoporfin, irradiation alone group with conventional culture after being treated with red light irradiation, and photosensitizer+irradiation group with conventional culture after being treated with Hemoporfin and red light irradiation, with sample number of 3 in each group. At culture hour of 24 after the treatment of the first and second batches of cells, the ADSC proliferation level was evaluated by 5-ethynyl-2'-deoxyuridine staining method and the migration percentage of HaCaT cells cocultured with ADSCs was detected by Transwell experiment, respectively. On culture day of 7 after the treatment of the third batch of cells, the extracellular matrix protein expression of ADSCs was detected by immunofluorescence method. The ADSCs were divided into 0 min post-photodynamic therapy group, 15 min post-photodynamic therapy group, 30 min post-photodynamic therapy group, and 60 min post-photodynamic therapy group, with 3 wells in each group. Western blotting was used to detect the protein expressions and calculate the phosphorylated mammalian target of rapamycin complex (p-mTOR)/mammalian target of rapamycin (mTOR), phosphorylated p70 ribosomal protein S6 kinase (p-p70 S6K)/p70 ribosomal protein S6 kinase (p70 S6K) ratio at the corresponding time points after photodynamic therapy. Two batches of ADSCs were taken, and each batch was divided into normal control group, photodynamic therapy alone group, and photodynamic therapy+rapamycin group, with 3 wells in each group. At culture minute of 15 after the treatment, p-mTOR/mTOR and p-p70 S6K/p70 S6K ratios of cells from the first batch were calculated and detected as before. On culture day of 7 after the treatment, extracellular matrix protein expression of cells from the second batch was detected as before. Data were statistically analyzed with one-way analysis of variance and least significant difference test. Results: After 12 d of culture, the cells were verified as ADSCs. At culture hour of 24 after the treatment, the ADSC proliferation level ((4.0±1.0)% and (4.1±0.4)%, respectively) and HaCaT cell migration percentages (1.17±0.14 and 1.13±0.12, respectively) in photosensitizer alone group and irradiation alone group were similar to those of normal control group ((3.7±0.6)% and 1.00±0.16, respectively, P>0.05), and were significantly lower than those of photosensitizer+irradiation group ((34.2±7.0)% and 2.55±0.13, respectively, P<0.01). On culture day of 7 after the treatment, compared with those in normal control group, the expression of collagen Ⅲ in ADSCs of photosensitizer alone group was significantly increased (P<0.05), and the expressions of collagen Ⅰ and collagen Ⅲ in ADSCs of irradiation alone group were significantly increased (P<0.01). Compared with those in photosensitizer alone group and irradiation alone group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photosensitizer+irradiation group were significantly increased (P<0.01). Compared with those in 0 min post-photodynamic therapy group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in 15 min post-photodynamic therapy group were significantly increased (P<0.01), the ratios of p-p70 S6K/p70 S6K of ADSCs in 30 min post-photodynamic therapy group and 60 min post-photodynamic therapy group were both significantly increased (P<0.01). At culture minute of 15 after the treatment, compared with those in normal control group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in photodynamic therapy alone group were significantly increased (P<0.05 or P<0.01). Compared with those in photodynamic therapy alone group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in photodynamic therapy+rapamycin group were significantly decreased (P<0.05). On culture day of 7 after the treatment, compared with those in normal control group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photodynamic therapy alone group were significantly increased (P<0.01). Compared with those in photodynamic therapy alone group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photodynamic therapy+rapamycin group were significantly decreased (P<0.01). Conclusions: Low-dose photodynamic therapy can promote the proliferation of ADSCs, improve the ability of ADSCs to regulate the migration of HaCaT cells, and enhance the secretion of extracellular matrix protein by rapidly activating mTOR signaling pathway.
Collapse
Affiliation(s)
- Y Yang
- Department of Dermatology, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| | - L Li
- Department of Dermatology, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| | - Z J Yang
- Department of Dermatology, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| | - M X Zheng
- Department of Dermatology, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| | - W F He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Wound Repair and Regeneration, Chongqing 400038, China
| | - R Yin
- Department of Dermatology, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
49
|
Jie X, Hu H, Nie B, Zhu L, Jiang H, Liu A. Effects of miR126 Expressing Adipose-Derived Stem Cells on Fat Graft Survival and Angiogenesis. Aesthetic Plast Surg 2022; 47:825-832. [PMID: 36075983 DOI: 10.1007/s00266-022-03077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Fat transplantation supported by supplementation with ASCs has become a reliable procedure for treating soft tissue defects. However, the unpredictable survival rates for grafted fat remains a challenge with post-transplantation ischemia causing tissue loss. MiR126, which regulates VEGF signaling, is an endothelial cell-specific miRNA known to play an essential role in angiogenesis. We hypothesized that increased miR126 expression in grafted ASCs may promote fat survival within an autologous fat transfer model. METHODS Rat adipose-derived stem cells were isolated, expanded ex vivo for three passages and then transduced with miR126. We used PCR to verify lentiviral transduction and ELISA to confirm VEGF expression. We then mixed autologous fat tissues from our rat model with transduced ASCs, augmented with a nonsense control or miR126 expression vector. These mixtures were used in the fat grafting procedure, completed via subcutaneous injection at three paravertebral points in each rat. Fat grafts were then harvested on days 4, 7, 14, and 28 post-transplant and evaluated for survival, neovascularization, and protein expression via western blot. RESULTS VEGF expression levels in ASCs, Con-ASCs, and miR126-ASCs were not significantly different. However, miR126-ASCs experienced significantly improved survival on days 7, 14, and 28 when compared with the other groups. These ASCs also presented with the greatest capillary density on days 7, 14, and 28 post-transplantation as well as increased p-ERK and p-AKT expression when compared to the other groups. CONCLUSION This data suggests that miR126 augmentation of ASCs may help to enhance the survival and angiogenic capacity of transplanted fat tissues, and that this augmentation was not dependent on VEGF but rather the activation of the ERK/AKT pathway. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xiang Jie
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Hao Hu
- Department of Plastic Surgery, School of Medicine, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai, 200120, China
| | - Bing Nie
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Hua Jiang
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Plastic Surgery, School of Medicine, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai, 200120, China.
| | - Antang Liu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85/86 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
50
|
Schlottmann F, Bucan V, Strauß S, Koop F, Vogt PM, Mett TR. Influence of Tamoxifen on Different Biological Pathways in Tumorigenesis and Transformation in Adipose-Derived Stem Cells, Mammary Cells and Mammary Carcinoma Cell Lines—An In Vitro Study. Cells 2022; 11:cells11172733. [PMID: 36078139 PMCID: PMC9454616 DOI: 10.3390/cells11172733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
Breast carcinoma is one of the most common malignant tumors in women. In cases of hormone-sensitive cells, tamoxifen as an anti-estrogenic substance is a first line medication in the adjuvant setting. The spectrum of autologous breast reconstructions ranges from fat infiltrations to complex microsurgical procedures. The influence of adipose-derived stem cells (ASC) on the tumor bed and a possibly increased recurrence rate as a result are critically discussed. In addition, there is currently no conclusive recommendation regarding tamoxifen-treated patients and autologous fat infiltrations. The aim of the present study was to investigate the effect of tamoxifen on the gene expression of a variety of genes involved in tumorigenesis, cell growth and transformation. Mammary epithelial cell line and mammary carcinoma cell lines were treated with tamoxifen in vitro as well as co-cultured with ASC. Gene expression was quantified by PCR arrays and showed increased expression in the mammary carcinoma cell lines with increasing time of treatment and concentration of tamoxifen. The data presented can be considered as an addition to the controversial discussion on the relationship between ASC and breast carcinoma cells. Further studies are needed to quantify the in vivo interaction of ASC and mammary carcinoma cells and to conclusively assess the impact of tamoxifen in reconstructive cases with fat grafting.
Collapse
|