1
|
Li X, Liu S, Wang S, Ai X, Wei L. 1-Deoxynojirimycin affects high glucose-induced pancreatic beta-cell dysfunction through regulating CEBPA expression and AMPK pathway. Biochem Cell Biol 2025; 103:1-12. [PMID: 39546764 DOI: 10.1139/bcb-2024-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
This study aims to explore the role of 1-deoxynojirimycin (DNJ) in high glucose-induced β-cells and to further explore the molecular mechanism of DNJ effect on β-cells through network pharmacology. In the study, high glucose treatment of mouse INS-1 cells inhibited cell proliferation and insulin secretion, decreased the expression of Bcl-2 protein and Ins1 and Ins2 genes, promoted apoptosis, and increased cleaved caspase-3 and cleaved caspase-9 expression levels as well as intracellular reactive oxygen species production. DNJ treatment significantly restored the dysfunction of INS-1 cells induced by high glucose, and DNJ showed no toxicity to normal INS-1 cells. Silencing CEBPA promoted, while overexpression of CEBPA relieved the dysfunction of pancreatic β-cells induced by high glucose. DNJ treatment partially restored the pancreatic β-cell dysfunction caused by silencing CEBPA. In conclusion, DNJ can inhibit high glucose-induced pancreatic β-cell dysfunction by promoting the expression of CEBPA.
Collapse
Affiliation(s)
- Xiaoying Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biology and Food Engineering, Huaihua University, Huaihua 418000, Hunan, China
| | - Shenggui Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biology and Food Engineering, Huaihua University, Huaihua 418000, Hunan, China
| | - Siqi Wang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Xinghui Ai
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Lin Wei
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biology and Food Engineering, Huaihua University, Huaihua 418000, Hunan, China
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| |
Collapse
|
2
|
Romero-Carmona CE, Chávez-Corona JI, Lima E, Cortés H, Quintanar-Guerrero D, Bernad-Bernad MJ, Ramos-Martínez I, Peña-Corona SI, Sharifi-Rad J, Leyva-Gómez G. Nanoparticle and microparticle-based systems for enhanced oral insulin delivery: A systematic review and meta-analysis. J Nanobiotechnology 2024; 22:802. [PMID: 39734205 DOI: 10.1186/s12951-024-03045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Diabetes mellitus (DM) prevalence is rising worldwide. Current therapies comprising subcutaneous insulin injections can cause adverse effects such as lipodystrophy, local reactions like redness and swelling, fluid retention, and allergic reactions. Nanoparticle carriers for oral insulin are groundbreaking compared to existing methods because they are non-invasive treatments, showing operational convenience, controlled release profile, and ability to simulate the physiological delivery route into the bloodstream. These systems improve patient adherence and have demonstrated the potential to lower blood glucose levels in DM. We present a systematic review and meta-analysis aimed at compiling relevant data to pave the way for developing innovative nano- and microparticles for the oral delivery of insulin. Our analysis of 85 articles revealed that the diminution of glucose levels is not proportional to the administered insulin dosage, which ranged from 1 to 120 International Units (IU). The meta-analysis data indicated that 25 IU of encapsulated porcine insulin did not produce a statistically significant outcome (p = 0.93). In contrast, a dosage of 30 IU was efficacious in eliciting an optimal hypoglycemic effect compared to excipient controls. Parameters such as a high degree of encapsulation (~ 90%), particle size (200-400 nm), and polydispersity index (0.086-0.3) are all associated with lower blood glucose levels. These parameters were also significant in the linear regression analysis. Among the excipients employed, chitosan emerged as a prevalent excipient in formulations due to its biocompatible and biodegradable properties and its ability to establish stable polymeric matrices. Even though oral insulin administration is a promising therapeutic method, it cannot guarantee preclinical safety and therapeutic efficacy yet in regulating glucose levels in diabetic conditions.
Collapse
Affiliation(s)
- Carlos E Romero-Carmona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Juan I Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, 54714, Cuautitlán Izcalli, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), 14389, Ciudad de Mexico, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, 54714, Cuautitlán Izcalli, Mexico
| | - María J Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Iván Ramos-Martínez
- Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.
| |
Collapse
|
3
|
Cossette ML, Stewart DT, Shafer ABA. Comparative Genomics of the World's Smallest Mammals Reveals Links to Echolocation, Metabolism, and Body Size Plasticity. Genome Biol Evol 2024; 16:evae225. [PMID: 39431406 PMCID: PMC11544316 DOI: 10.1093/gbe/evae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Originating 30 million years ago, shrews (Soricidae) have diversified into around 400 species worldwide. Shrews display a wide array of adaptations, with some species having developed distinctive traits such as echolocation, underwater diving, and venomous saliva. Accordingly, these tiny insectivores are ideal to study the genomic mechanisms of evolution and adaptation. We conducted a comparative genomic analysis of four shrew species and 16 other mammals to identify genomic variations unique to shrews. Using two existing shrew genomes and two de novo assemblies for the maritime (Sorex maritimensis) and smoky (Sorex fumeus) shrews, we identified mutations in conserved regions of the genomes, also known as accelerated regions, gene families that underwent significant expansion, and positively selected genes. Our analyses unveiled shrew-specific genomic variants in genes associated with the nervous, metabolic, and auditory systems, which can be linked to unique traits in shrews. Notably, genes suggested to be under convergent evolution in echolocating mammals exhibited accelerated regions in shrews, and pathways linked to putative body size plasticity were detected. These findings provide insight into the evolutionary mechanisms shaping shrew species, shedding light on their adaptation and divergence over time.
Collapse
Affiliation(s)
- Marie-Laurence Cossette
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aaron B A Shafer
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Forensic Science, Trent University, Peterborough, ON, Canada
| |
Collapse
|
4
|
Maloney A, Kanaley JA. Short Sleep Duration Disrupts Glucose Metabolism: Can Exercise Turn Back the Clock? Exerc Sport Sci Rev 2024; 52:77-86. [PMID: 38608214 PMCID: PMC11168896 DOI: 10.1249/jes.0000000000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Short sleep duration is prevalent in modern society and may be contributing to type 2 diabetes prevalence. This review will explore the effects of sleep restriction on glycemic control, the mechanisms causing insulin resistance, and whether exercise can offset changes in glycemic control. Chronic sleep restriction may also contribute to a decrease in physical activity leading to further health complications.
Collapse
Affiliation(s)
- Alan Maloney
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | | |
Collapse
|
5
|
Hieronimus B, Medici V, Lee V, Nunez MV, Sigala DM, Bremer AA, Cox CL, Keim NL, Schwarz JM, Pacini G, Tura A, Havel PJ, Stanhope KL. Effects of Consuming Beverages Sweetened with Fructose, Glucose, High-Fructose Corn Syrup, Sucrose, or Aspartame on OGTT-Derived Indices of Insulin Sensitivity in Young Adults. Nutrients 2024; 16:151. [PMID: 38201980 PMCID: PMC10780640 DOI: 10.3390/nu16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Clinical results on the effects of excess sugar consumption on insulin sensitivity are conflicting, possibly due to differences in sugar type and the insulin sensitivity index (ISI) assessed. Therefore, we compared the effects of consuming four different sugars on insulin sensitivity indices derived from oral glucose tolerance tests (OGTT). (2) Methods: Young adults consumed fructose-, glucose-, high-fructose corn syrup (HFCS)-, sucrose-, or aspartame-sweetened beverages (SB) for 2 weeks. Participants underwent OGTT before and at the end of the intervention. Fasting glucose and insulin, Homeostatic Model Assessment-Insulin Resistance (HOMA-IR), glucose and insulin area under the curve, Surrogate Hepatic Insulin Resistance Index, Matsuda ISI, Predicted M ISI, and Stumvoll Index were assessed. Outcomes were analyzed to determine: (1) effects of the five SB; (2) effects of the proportions of fructose and glucose in all SB. (3) Results: Fructose-SB and the fructose component in mixed sugars negatively affected outcomes that assess hepatic insulin sensitivity, while glucose did not. The effects of glucose-SB and the glucose component in mixed sugar on muscle insulin sensitivity were more negative than those of fructose. (4) Conclusion: the effects of consuming sugar-SB on insulin sensitivity varied depending on type of sugar and ISI index because outcomes assessing hepatic insulin sensitivity were negatively affected by fructose, and outcomes assessing muscle insulin sensitivity were more negatively affected by glucose.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, University of California, Davis, CA 95616, USA
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
| | | | - Desiree M. Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Andrew A. Bremer
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95616, USA
| | - Chad L. Cox
- Department of Chemistry and Department of Family and Consumer Sciences, California State University, Sacramento, CA 95819, USA
| | - Nancy L. Keim
- United States Department of Agriculture, Western Human Nutrition Research Center, Davis, CA 95819, USA
| | - Jean-Marc Schwarz
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
- Department of Medicine, Division of Endocrinology, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Giovanni Pacini
- Department of Medicine, Division of Endocrinology, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
| | - Andrea Tura
- Department of Medicine, Division of Endocrinology, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (B.H.)
| |
Collapse
|
6
|
Clemente-Suárez VJ, Mielgo-Ayuso J, Martín-Rodríguez A, Ramos-Campo DJ, Redondo-Flórez L, Tornero-Aguilera JF. The Burden of Carbohydrates in Health and Disease. Nutrients 2022; 14:3809. [PMID: 36145184 PMCID: PMC9505863 DOI: 10.3390/nu14183809] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Foods high in carbohydrates are an important part of a healthy diet, since they provide the body with glucose to support bodily functions and physical activity. However, the abusive consumption of refined, simple, and low-quality carbohydrates has a direct implication on the physical and mental pathophysiology. Then, carbohydrate consumption is postulated as a crucial factor in the development of the main Western diseases of the 21st century. We conducted this narrative critical review using MedLine (Pubmed), Cochrane (Wiley), Embase, and CinAhl databases with the MeSH-compliant keywords: carbohydrates and evolution, development, phylogenetic, GUT, microbiota, stress, metabolic health, consumption behaviors, metabolic disease, cardiovascular disease, mental disease, anxiety, depression, cancer, chronic kidney failure, allergies, and asthma in order to analyze the impact of carbohydrates on health. Evidence suggests that carbohydrates, especially fiber, are beneficial for the well-being and growth of gut microorganisms and consequently for the host in this symbiotic relationship, producing microbial alterations a negative effect on mental health and different organic systems. In addition, evidence suggests a negative impact of simple carbohydrates and refined carbohydrates on mood categories, including alertness and tiredness, reinforcing a vicious circle. Regarding physical health, sugar intake can affect the development and prognosis of metabolic disease, as an uncontrolled intake of refined carbohydrates puts individuals at risk of developing metabolic syndrome and subsequently developing metabolic disease.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | | | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28670 Madrid, Spain
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo, s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| |
Collapse
|
7
|
Sigala DM, Hieronimus B, Medici V, Lee V, Nunez MV, Bremer AA, Cox CL, Price CA, Benyam Y, Chaudhari AJ, Abdelhafez Y, McGahan JP, Goran MI, Sirlin CB, Pacini G, Tura A, Keim NL, Havel PJ, Stanhope KL. Consuming Sucrose- or HFCS-sweetened Beverages Increases Hepatic Lipid and Decreases Insulin Sensitivity in Adults. J Clin Endocrinol Metab 2021; 106:3248-3264. [PMID: 34265055 PMCID: PMC8530743 DOI: 10.1210/clinem/dgab508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/30/2022]
Abstract
CONTEXT Studies in rodents and humans suggest that high-fructose corn syrup (HFCS)-sweetened diets promote greater metabolic dysfunction than sucrose-sweetened diets. OBJECTIVE To compare the effects of consuming sucrose-sweetened beverage (SB), HFCS-SB, or a control beverage sweetened with aspartame on metabolic outcomes in humans. METHODS A parallel, double-blinded, NIH-funded study. Experimental procedures were conducted during 3.5 days of inpatient residence with controlled feeding at a research clinic before (baseline) and after a 12-day outpatient intervention period. Seventy-five adults (18-40 years) were assigned to beverage groups matched for sex, body mass index (18-35 kg/m2), and fasting triglyceride, lipoprotein and insulin concentrations. The intervention was 3 servings/day of sucrose- or HFCS-SB providing 25% of energy requirement or aspartame-SB, consumed for 16 days. Main outcome measures were %hepatic lipid, Matsuda insulin sensitivity index (ISI), and Predicted M ISI. RESULTS Sucrose-SB increased %hepatic lipid (absolute change: 0.6 ± 0.2%) compared with aspartame-SB (-0.2 ± 0.2%, P < 0.05) and compared with baseline (P < 0.001). HFCS-SB increased %hepatic lipid compared with baseline (0.4 ± 0.2%, P < 0.05). Compared with aspartame-SB, Matsuda ISI decreased after consumption of HFCS- (P < 0.01) and sucrose-SB (P < 0.01), and Predicted M ISI decreased after consumption of HFCS-SB (P < 0.05). Sucrose- and HFCS-SB increased plasma concentrations of lipids, lipoproteins, and uric acid compared with aspartame-SB. No outcomes were differentially affected by sucrose- compared with HFCS-SB. Beverage group effects remained significant when analyses were adjusted for changes in body weight. CONCLUSION Consumption of both sucrose- and HFCS-SB induced detrimental changes in hepatic lipid, insulin sensitivity, and circulating lipids, lipoproteins and uric acid in 2 weeks.
Collapse
Affiliation(s)
- Desiree M Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Bettina Hieronimus
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA 95616, USA
- Institute for Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Marinelle V Nunez
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Andrew A Bremer
- Department of Pediatrics, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Chad L Cox
- Department of Chemistry and Department of Family and Consumer Sciences, California State University, Sacramento, Sacramento, CA 95819, USA
| | - Candice A Price
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Yanet Benyam
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Abhijit J Chaudhari
- Department of Radiology School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Yasser Abdelhafez
- Department of Radiology School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - John P McGahan
- Department of Radiology School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Michael I Goran
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giovanni Pacini
- Metabolic Unit, Institute of Neuroscience, National Research Council (CNR), 35127 Padova, Italy
| | - Andrea Tura
- Metabolic Unit, Institute of Neuroscience, National Research Council (CNR), 35127 Padova, Italy
| | - Nancy L Keim
- United States Department of Agriculture, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA 95616, USA
- Basic Sciences, Touro University of California, Vallejo, CA 94592, USA
| |
Collapse
|
8
|
Unluhizarci K, Karaca Z, Kelestimur F. Role of insulin and insulin resistance in androgen excess disorders. World J Diabetes 2021; 12:616-629. [PMID: 33995849 PMCID: PMC8107978 DOI: 10.4239/wjd.v12.i5.616] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin has complex effects on cell growth, metabolism and differentiation, and these effects are mediated by a cell-surface bound receptor and eventually a cascade of intracellular signaling events. Among the several metabolic and growth-promoting effects of insulin, insulin resistance is defined as an attenuated effect of insulin on glucose metabolism, primarily the limited export of blood glucose into skeletal muscle and adipose tissue. On the other hand, not all the signaling pathways and insulin-responsive tissues are equally affected, and some effects other than the metabolic actions of insulin are overexpressed. Ovaries and the adrenal glands are two examples of tissues remaining sensitive to insulin actions where insulin may contribute to increased androgen secretion. Polycystic ovary syndrome (PCOS) is the most common form of androgen excess disorder (AED), and its pathogenesis is closely associated with insulin resistance. Patients with idiopathic hirsutism also exhibit insulin resistance, albeit lower than patients with PCOS. Although it is not as evident as in PCOS, patients with congenital adrenal hyperplasia may have insulin resistance, which may be further exacerbated with glucocorticoid overtreatment and obesity. Among patients with severe insulin resistance syndromes, irrespective of the type of disease, hyperinsulinemia promotes ovarian androgen synthesis independently of gonadotropins. It is highly debated in whom and how insulin resistance should be diagnosed and treated among patients with AEDs, including PCOS. It is not suitable to administer an insulin sensitizer relying on only some mathematical models used for estimating insulin resistance. Instead, the treatment decision should be based on the constellation of the signs, symptoms and presence of obesity; acanthosis nigricans; and some laboratory abnormalities such as impaired glucose tolerance and impaired fasting glucose.
Collapse
Affiliation(s)
- Kursad Unluhizarci
- Department of Endocrinology, Erciyes University Medical School, Kayseri, 38039, Turkey
| | - Zuleyha Karaca
- Department of Endocrinology, Erciyes University Medical School, Kayseri, 38039, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Yeditepe University Medical School, Istanbul, 34755, Turkey
| |
Collapse
|
9
|
Vittal A, Shapses M, Sharma B, Sharma D, Sun Q, Sampson M, Lee W, Ben Yakov G, Rotman Y. Lipoprotein Insulin Resistance Index Reflects Liver Fat Content in Patients With Nonalcoholic Fatty Liver Disease. Hepatol Commun 2021; 5:589-597. [PMID: 33860117 PMCID: PMC8034570 DOI: 10.1002/hep4.1658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
The recently developed lipoprotein insulin resistance index (LP-IR) incorporates lipoprotein particle numbers and sizes and is considered to reflect both hepatic and peripheral IR. As tissue IR is a strong component of nonalcoholic fatty liver disease (NAFLD) pathogenesis, we aimed to assess the degree by which LP-IR associates with hepatic fat content. This was a single-center retrospective analysis of patients with NAFLD. LP-IR, the homeostasis model assessment of insulin resistance (HOMA-IR), and adipose tissue IR (Adipo-IR) were measured simultaneously. Liver fat content was estimated by FibroScan controlled attenuated parameter. Associations were assessed using Spearman's correlation and multivariate linear regression. The study included 61 patients. LP-IR was correlated with HOMA-IR (ρ = 0.30; P = 0.02), typically thought to reflect hepatic IR, but not with Adipo-IR (ρ = 0.15; P = 0.25). Liver fat content was significantly associated with Adipo-IR (ρ = 0.48; P < 0.001), LP-IR (ρ = 0.35; P = 0.005), and to a lesser degree with HOMA-IR (ρ = 0.25; P = 0.051). The association of liver fat with LP-IR was limited to patients without diabetes (ρ = 0.60; P < 0.0001), whereas no association was seen in those with diabetes. In a multivariate model, Adipo-IR, LP-IR, and diabetes were independently associated with liver fat and together explained 35% of the variability in liver fat. Conclusion: LP-IR is a reasonable measure of IR in non-diabetic patients with NAFLD and is associated with hepatic fat content. Although adipose tissue is the major contributor to liver fat, the additional contribution of nonadipose tissues can be easily estimated using LP-IR.
Collapse
Affiliation(s)
- Anusha Vittal
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Mark Shapses
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Bashar Sharma
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA.,Department of MedicineState University of New York Upstate Medical UniversitySyracuseNYUSA
| | - Disha Sharma
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Qian Sun
- Department of Laboratory MedicineNational Institutes of Health Clinical CenterNational Institutes of HealthBethesdaMDUSA
| | - Maureen Sampson
- Department of Laboratory MedicineNational Institutes of Health Clinical CenterNational Institutes of HealthBethesdaMDUSA
| | - Wilson Lee
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA.,Department of MedicineMedstar Baltimore ProgramBaltimoreMDUSA
| | - Gil Ben Yakov
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Yaron Rotman
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
10
|
Nguyen PTM, Ngo QV, Nguyen MTH, Quach LT, Pyne SG. Hypoglycemic activity of the ethyl acetate extract from Smilax glabra Roxb in mice: Biochemical and histopathological studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1558-1564. [PMID: 33489029 PMCID: PMC7811822 DOI: 10.22038/ijbms.2020.46658.10763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives This research was carried out to investigate the hypoglycemic activity of the ethyl acetate (EtOAc) extract from the roots of Smilax glabra Roxb, which strongly exhibit inhibitory activity against α-glucosidase and α-amylase on in vivo type 2 diabetic model. Materials and Methods Column chromatography combined with crystallization was used to isolate the active fraction and compounds. Chemical structures of the compounds were determined based on the analysis of the spectroscopic data and comparison with the literature data. The α-glucosidase inhibitory activity (AGI) and the α-amylase inhibitory activity (AAI) were determined quantitatively spectrophotometrically using p-nitrophenyl α-D-glucopyranoside and soluble starch as substrates, respectively. The hypoglycemic activity was examined by evaluating its effects on glucose and insulin levels, insulin resistance, and histopathology of the pancreatic islets and livers in diabetic induced mice administrated with nicotinamide-streptozotocin. Results The EtOAc extract and the bioactive compounds astilbin and 5-O-caffeoylshikimic acid in the extract were isolated and confirmed in structures, AGI, and AAI. The treatment at the doses of 500 and 1000 µg/kg of body weight reduced blood glucose levels down to the physiological level of the physical controls in the diabetic mice after two weeks (P<0.05). Moreover, the treatment improved insulin sensitivity. Histopathology analysis showed recovering effects in the size of the pancreatic islets and no damaging effects on the liver after treatment compared with the control group. Conclusion Our data suggest that the EtOAc extract possesses hypoglycemic activity and has an antidiabetic potential for therapeutic applications.
Collapse
Affiliation(s)
- Phuong Thi Mai Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Van Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Minh Thi Hong Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Lien Thi Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
11
|
Farooq T, Rehman K, Hameed A, Akash MSH. Stem Cell Therapy and Type 1 Diabetes Mellitus: Treatment Strategies and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:95-107. [PMID: 29896720 DOI: 10.1007/5584_2018_195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is classified as an autoimmune disease which progressively results in the depletion of insulin-secreting β-cells. Consequently, the insulin secretion stops leading to hyperglycemic situations within the body. Under severe conditions, it also causes multi-organ diabetes-associated dysfunctionalities notably hypercoagulability, neuropathy, nephropathy, retinopathy, and sometimes organ failures. The prevalence of this disease has been noticed about 3% that has highlighted the serious concerns for healthcare professionals around the globe. For the treatment of this disease, the cell therapy is considered as an important therapeutic approach for the replacement of damaged β-cells. However, the development of autoantibodies unfortunately reduces their effectiveness with the passage of time and finally with the recurrence of diabetes mellitus. The development of new techniques for extraction and transplantation of islets failed to support this approach due to the issues related to major surgery and lifelong dependence on immunosuppression. For T1DM, such cells are supposed to produce, store, and supply insulin to maintain glucose homeostasis. The urgent need of much-anticipated substitute for insulin-secreting β-cells directed the researchers to focus on stem cells (SCs) to produce insulin-secreting β-cells. For being more specific and targeted therapeutic approaches, SC-based strategies opened up the new horizons to cure T1DM. This cell-based therapy aimed to produce functional insulin-secreting β-cells to cure diabetes on forever basis. The intrinsic regenerative potential along with immunomodulatory abilities of SCs highlights the therapeutic potential of SC-based strategies. In this article, we have comprehensively highlighted the role of SCs to treat diabetes mellitus.
Collapse
Affiliation(s)
- Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan.
| | - Arruje Hameed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
12
|
Borck PC, Batista TM, Vettorazzi JF, Soares GM, Lubaczeuski C, Guan D, Boschero AC, Vieira E, Lazar MA, Carneiro EM. Nighttime light exposure enhances Rev-erbα-targeting microRNAs and contributes to hepatic steatosis. Metabolism 2018; 85:250-258. [PMID: 29751019 PMCID: PMC6145802 DOI: 10.1016/j.metabol.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The exposure to artificial light at night (ALAN) disrupts the biological rhythms and has been associated with the development of metabolic syndrome. MicroRNAs (miRNAs) display a critical role in fine-tuning the circadian system and energy metabolism. In this study, we aimed to assess whether altered miRNAs expression in the liver underlies metabolic disorders caused by disrupted biological rhythms. RESULTS We found that C3H/HePas mice exposed to ALAN developed obesity, and hepatic steatosis, which was paralleled by decreased expression of Rev-erbα and up-regulation of its lipogenic targets ACL and FAS in liver. Furthermore, the expression of Rev-erbα-targeting miRNAs, miR-140-5p, 185-5p, 326-5p and 328-5p were increased in this group. Consistently, overexpression of these miRNAs in primary hepatocytes reduced Rev-erbα expression at the mRNA and protein levels. Importantly, overexpression of Rev-erbα-targeting miRNAs increased mRNA levels of Acly and Fasn. CONCLUSION Thus, altered miRNAs profile is an important mechanism underlying the disruption of the peripheral clock caused by exposure to ALAN, which could lead to hepatic steatosis.
Collapse
Affiliation(s)
- Patricia C Borck
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil.
| | - Thiago M Batista
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Jean F Vettorazzi
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Camila Lubaczeuski
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Dongyin Guan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Elaine Vieira
- Postgraduate Program in Physical Education, Universidade Católica de Brasília - UCB, DF, Brazil
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
13
|
Birgani GA, Ahangarpour A, Khorsandi L, Moghaddam HF. Anti-diabetic effect of betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000217171] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
14
|
Seyhan AA, Nunez Lopez YO, Xie H, Yi F, Mathews C, Pasarica M, Pratley RE. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci Rep 2016; 6:31479. [PMID: 27558530 PMCID: PMC4997329 DOI: 10.1038/srep31479] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
The clinical presentation of diabetes sometimes overlaps, contributing to ambiguity in the diagnosis. Thus, circulating pancreatic islet-enriched microRNAs (miRNAs) might be useful biomarkers of β-cell injury/dysfunction that would allow more accurate subtyping of diabetes. We measured plasma levels of selected miRNAs in subjects with prediabetes (n = 12), type 2 diabetes (T2D, n = 31), latent autoimmune diabetes of adults (LADA, n = 6) and type 1 diabetes (T1D, n = 16) and compared them to levels in healthy control subjects (n = 27). The study was conducted at the Translational Research Institute for Metabolism and Diabetes (TRI-MD), Florida Hospital. MiRNAs including miR-375 (linked to β-cell injury), miR-21 (associated with islet inflammation), miR-24.1, miR-30d, miR-34a, miR-126, miR-146, and miR-148a were significantly elevated in subjects with various forms of diabetes compared to healthy controls. Levels of several miRNAs were significantly correlated with glucose responses during oral glucose tolerance testing, HbA1c, β-cell function, and insulin resistance in healthy controls, prediabetes, and T2D. These data suggest that miRNAs linked to β-cell injury and islet inflammation might be useful biomarkers to distinguish between subtypes of diabetes. This information could be used to predict progression of the disease, guide selection of optimal therapy and monitor responses to interventions, thus improving outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA.,MIT Research Affiliate, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Sanford Burnham Medical Research Institute, Orlando, FL, USA
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Hui Xie
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Clayton Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Magdalena Pasarica
- College of Medicine Hospital, University of Central Florida, Orlando, FL, USA
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA.,Sanford Burnham Medical Research Institute, Orlando, FL, USA
| |
Collapse
|
15
|
Bank S, Ghosh A, Bhattacharya S, Maiti S, Khan GA, Sinha AK. The control of hyperglycemia by a novel trypsin resistant oral insulin preparation in alloxan induced type I diabetic mice. Sci Rep 2016; 6:26789. [PMID: 27226415 PMCID: PMC4881006 DOI: 10.1038/srep26789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/03/2016] [Indexed: 11/09/2022] Open
Abstract
A trypsin resistant oral insulin preparation was made by incubating insulin for 2 h at 23 °C with previously boiled cow milk at 100 °C that was coagulated with 0.6 M acetic acid. The precipitate was resuspended in the same volume of milk. The immunoblot analysis of the suspended proteins treated with 200 ng of trypsin/ml for 3 h demonstrated that the 80.1% of the insulin in the suspension survived the proteolytic degradation compared to 0% of the hormone survived in the control. The feeding of 0.4 ml (0.08 unit of insulin) of the resuspended proteins followed by 0.2 ml of the same protein to alloxan induced diabetic mice maximally decreased the blood glucose level from 508 ± 10 mg/dl to 130 ± 10 mg/dl in 7 h with simultaneous increase of the basal plasma concentration of insulin from 3 ± 1.1 μunits/ml to 18 ± 1.5 μunits/ml. In control experiment the absence of insulin in the identical milk suspension produced no hypoglycemic effect suggesting milk was not responsible for the hypoglycemic effect of milk-insulin complex. Coming out of insulin-casein complex from the intestinal gut to the circulation was spontaneous and facilitated diffusion transportation which was found from Gibbs free energy reaction.
Collapse
Affiliation(s)
- Sarbashri Bank
- Sinha Institute of Medical Science & Technology, 288-Kendua main road, Baishnabghata, Garia, Kolkata-700084, India
- Cell & Molecular Therapeutic Lab, Dept. of Biochemistry, Vidyasagar University, Midnapur-721102, India
| | - Arjun Ghosh
- Sinha Institute of Medical Science & Technology, 288-Kendua main road, Baishnabghata, Garia, Kolkata-700084, India
| | - Suman Bhattacharya
- Sinha Institute of Medical Science & Technology, 288-Kendua main road, Baishnabghata, Garia, Kolkata-700084, India
| | - Smarajit Maiti
- Cell & Molecular Therapeutic Lab, Dept. of Biochemistry, Vidyasagar University, Midnapur-721102, India
| | - Gausal A. Khan
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi-54, India
| | - Asru K Sinha
- Sinha Institute of Medical Science & Technology, 288-Kendua main road, Baishnabghata, Garia, Kolkata-700084, India
| |
Collapse
|
16
|
Kopprasch S, Srirangan D, Bergmann S, Graessler J, Schwarz PEH, Bornstein SR. Association between systemic oxidative stress and insulin resistance/sensitivity indices - the PREDIAS study. Clin Endocrinol (Oxf) 2016; 84:48-54. [PMID: 25940301 DOI: 10.1111/cen.12811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/24/2015] [Accepted: 04/26/2015] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Systemic oxidative stress has been causally related to insulin resistance and the subsequent development of type 2 diabetes mellitus (T2D). We investigated associations between circulating oxidative stress markers and different surrogate indexes of insulin sensitivity/resistance. PATIENTS Cross-sectional data were obtained from 1183 subjects with normal glucose tolerance (NGT), 280 subjects with impaired glucose tolerance (IGT) and 69 newly detected T2D individuals entering the PREDIAS (prevention of diabetes) study. MEASUREMENTS Following oral glucose tolerance test, five different insulin sensitivity/resistance indices were estimated: homoeostasis model of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), early phase insulin release (EPIR), insulin sensitivity index (ISI) and disposition index (DI). Additionally, circulating phagocyte generation of reactive oxygen species (ROS) and plasma total antioxidant capacity (TAC) was measured. RESULTS After adjustment for five covariates, HOMA-IR was significantly increased in IGT and T2D subjects when compared to NGT subjects (P = 0·000). QUICKI (P = 0·000), ISI (P = 0·000), EPIR (0·005/0·012) and DI (P = 0·000) were significantly attenuated in IGT and T2D. The prevalence of IGT and T2D individuals increased with increasing ROS generation and TAC tertiles. Increased systemic ROS generation was paralleled by increased HOMA-IR (P < 0·001, tertile 1/T1/vs tertile 3/T3/), decreased QUICKI (P < 0·001, T1 vs T3) and decreased ISI (P < 0·05, T1 vs T3). A similar tendency for indices was observed when comparing TAC tertiles: increase in HOMA-IR, decrease in QUICKI and ISI (P < 0·001, T1 vs T3 each). EPIR and DI did not differ significantly across ROS generation and TAC tertiles. CONCLUSIONS Systemic oxidative stress is associated with elevated insulin resistance index HOMA-IR, and decreased insulin sensitivity surrogates QUICKI and ISI.
Collapse
Affiliation(s)
- Steffi Kopprasch
- Department of Internal Medicine 3, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Dheban Srirangan
- Department of Medical Informatics and Biometry, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Sybille Bergmann
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Juergen Graessler
- Department of Internal Medicine 3, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Peter E H Schwarz
- Department of Internal Medicine 3, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine 3, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
17
|
RYNDERS COREYA, WELTMAN JUDYY, MALIN STEVENK, JIANG BOYI, BRETON MARC, BARRETT EUGENEJ, WELTMAN ARTHUR. Comparing Simple Insulin Sensitivity Indices to the Oral Minimal Model Postexercise. Med Sci Sports Exerc 2016; 48:66-72. [DOI: 10.1249/mss.0000000000000728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Kowalski GM, Bruce CR. The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. Am J Physiol Endocrinol Metab 2014; 307:E859-71. [PMID: 25205823 DOI: 10.1152/ajpendo.00165.2014] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of insulin resistance and type 2 diabetes (T2D) is increasing at alarming rates. In the quest to understand the underlying causes of and to identify novel therapeutic targets to treat T2D, scientists have become increasingly reliant on the use of rodent models. Here, we provide a discussion on the regulation of rodent glucose metabolism, highlighting key differences and similarities that exist between rodents and humans. In addition, some of the issues and considerations associated with assessing glucose homeostasis and insulin action are outlined. We also discuss the role of the liver vs. skeletal muscle in regulating whole body glucose metabolism in rodents, emphasizing the importance of defective hepatic glucose metabolism in the development of impaired glucose tolerance, insulin resistance, and T2D.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
19
|
Sinha RA, Singh BK, Yen PM. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol Metab 2014; 25:538-545. [PMID: 25127738 DOI: 10.1016/j.tem.2014.07.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/21/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) has important roles in regulating hepatic lipid, cholesterol, and glucose metabolism. Recent findings suggest that clinical conditions such as non-alcoholic fatty liver disease and type 2 diabetes mellitus, which are associated with dysregulated hepatic metabolism, may involve altered intracellular TH action. In addition, TH has key roles in lipophagy in lipid metabolism, mitochondrial quality control, and the regulation of metabolic genes. In this review, we discuss recent findings regarding the functions of TH in hepatic metabolism, the relationship between TH and metabolic disorders, and the potential therapeutic use of thyromimetics to treat metabolic dysfunction in the liver.
Collapse
Affiliation(s)
- Rohit A Sinha
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169547, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169547, Singapore
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169547, Singapore; Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|