1
|
Wang Z, Ma T, Bai G, Fang Q, Ou B, Chen M, Xu P, Tian M, Xu A, Ma Y. Adipose Tissue-Derived Extracellular Vesicles Loaded with miR-141-3p Regulate Obesity-Induced Insulin Resistance by Targeting Glycogen Synthesis and Gluconeogenesis. Int J Nanomedicine 2025; 20:5709-5726. [PMID: 40343195 PMCID: PMC12059219 DOI: 10.2147/ijn.s511842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Purpose Insulin resistance, a hallmark feature of type 2 diabetes and cardiovascular diseases, is critically influenced by liver-adipose tissue crosstalk, offering a novel therapeutic strategy for its management. Emerging evidence indicates that extracellular vesicles (EVs) secreted from adipose tissue serve as essential carriers of miRNA-mediated interorgan communication. This study aimed to investigate the regulatory effects of adipose tissue-derived EVs on obesity-induced hepatic insulin resistance and to elucidate the underlying molecular mechanisms by which EV-mediated signaling contributes to metabolic dysfunction. Methods EVs with miR-141-3p knockout or overexpression were constructed and administered to both in vitro cell models and in vivo mouse models to investigate the regulatory role and underlying mechanisms of miR-141-3p-mediated adipose tissue-derived EVs in obesity-induced hepatic insulin resistance. Results miR-141-3p is significantly upregulated in adipose tissue-derived EVs from high-fat diet (HFD)-fed mice, as well as in other obesity-related conditions. Furthermore, the knockdown of miR-141-3p in EVs from chow diet (CD-EVs) counteracted the effect in improving obesity-induced hepatic insulin resistance, whereas the overexpression of miR-141-3p in HFD-EVs improved hepatic insulin resistance. Mechanistically, EVs-derived miR-141-3p directly targets PTEN to promote PI3K/AKT signaling, thereby mediating hepatic glucose homeostasis through the regulation of hepatic gluconeogenesis and glycogen synthesis. Conclusion In summary, our results highlight the emerging role of miR-141-3p in mediating adipose tissue-derived EVs to alleviate obesity-induced hepatic insulin resistance, providing potential therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Zixian Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Tianyu Ma
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Ge Bai
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Qianchen Fang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Biqian Ou
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Meng Chen
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Pei Xu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Meng Tian
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Anding Xu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Yi Ma
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
2
|
Sen A, Thakur S, Rawat P, Jaswal K, Dehury B, Mondal P. Hepatic ChREBP reciprocally modulates systemic insulin sensitivity in NAFLD. J Biol Chem 2025:108556. [PMID: 40311678 DOI: 10.1016/j.jbc.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
The relation between hepatic ChREBP level and insulin sensitivity remains equivocal. Our study, however, provides compelling evidence that ChREBP depletion can significantly enhance insulin sensitivity in high-fat and sucrose-fed (HFSD)mice. We have identified that transcriptional induction of hepatic PTEN is driven by ChREBP. Mechanistically, two critical stimuli are elicited in the hepatic ChREBP knockdown condition. The PTEN level is reduced for one stimulus, thereby promoting hepatic insulin sensitivity. The second stimulus, where reduced hepatic PTEN leads to the enhanced release of FGF21, spreads systemic insulin sensitivity. These findings identify hepatic ChREBP as a critical modulator of systemic insulin signaling and suggest that ChREBP downregulation may lead to protection against insulin resistance. Building on this, our molecular dynamics simulation analysis has led to the discovery of a small molecule, Quercetin, that sequesters ChREBP in the cytosol. We report that Quercetin treatment can sequester ChREBP in the cytosol and abrogate HFSD-mediated ChREBP nuclear translocation, thereby mimicking the insulin-sensitizing abilities of the hepatic ChREBP knockdown condition. These findings have significant therapeutic implications, suggesting that liver-selective downregulation of ChREBP could protect against systemic insulin resistance that frequently develops early in the pathogenesis of NAFLD and T2DM.
Collapse
Affiliation(s)
- Aniket Sen
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Shilpa Thakur
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Priya Rawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Kajal Jaswal
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Prosenjit Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India.
| |
Collapse
|
3
|
Shnayder NA, Pekarets NA, Pekarets NI, Dmitrenko DV, Grechkina VV, Petrova MM, Al-Zamil M, Nasyrova RF. MicroRNAs as Epigenetic Biomarkers of Pathogenetic Mechanisms of the Metabolic Syndrome Induced by Antiseizure Medications: Systematic Review. J Clin Med 2025; 14:2432. [PMID: 40217882 PMCID: PMC11989458 DOI: 10.3390/jcm14072432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Antiseizure medication (ASM) induced metabolic syndrome (AIMetS) is a common adverse drug reaction (ADR) of pharmacotherapy for epilepsy and psychiatric disorders. However, the sensitivity and specificity of blood biomarkers may be insufficient due to the influence of combined pathology, concomitant diseases, and the peculiarities of the metabolism of ASMs in patients with epilepsy. Methods: The presented results of experimental and clinical studies of microRNAs (miRs) as epigenetic biomarkers of MetS and AIMetS, which were entered into the different databases, were analyzed for the last decade (2014-2024). Results: A systematic review demonstrated that miRs can act as promising epigenetic biomarkers of key AIMetS domains. However, the results of the review demonstrated the variable role of various miRs and their paralogs in the pathogenesis of AIMetS. Therefore, as part of this study, an miRs signature was proposed that allows us to assess the risk of developing and the severity of AIMetS as low risk, medium risk, and high risk. Conclusions: The mechanisms of development and biomarkers of AIMetS are an actual problem of epileptology, which is still far from being resolved. The development of panels (signatures) of epigenetic biomarkers of this widespread ADR may help to increase the safety of pharmacotherapy of epilepsy. However, to increase the sensitivity and specificity of circulating miRs in the blood as biomarkers of AIMetS, it is necessary to conduct "bridge" studies in order to replicate the results of preclinical and clinical studies into real clinical practice.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Nikolai A. Pekarets
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
| | - Natalia I. Pekarets
- Department of Psychiatry and Clinical Psychology, Irkutsk State Medical University, 1 Krasny Vosstaniya St., 664003 Irkutsk, Russia;
| | - Diana V. Dmitrenko
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
- Department of Psychiatry, General and Clinical Psychology, Tula State University, 92 Lenin Ave., 300012 Tula, Russia
| |
Collapse
|
4
|
Thabet EH, Khalil NA, Essawy MM, Harby SA, Solaiman AA, El Gazaerly HM, Khalifa YH. MiRNA-21-loaded chitosan nanoparticles ameliorate pancreatic apoptosis and oxidative stress in diabetic rats. Life Sci 2025; 366-367:123471. [PMID: 39956187 DOI: 10.1016/j.lfs.2025.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Accelerated Pancreatic β-cell apoptosis and oxidative stress are the mainstays of type-1 diabetes. MicroRNA-21's (miRNA-21) role in regulating pancreatic β-cell function remains indefinable. MATERIAL AND METHODS Five groups of rats were used in this study (healthy controls (Ia), controls that received only chitosan (CS) nanoparticles (NPs)(Ib), streptozotocin (STZ)-induced diabetics rats (II),STZ-induced diabetic rats that received only CS-NPs(III), and STZ-induced diabetic rats treated with mi-RNA-21-CS-NPs(IV). Sera were collected for measurement of fasting blood glucose levels (FBG), insulin, oxidative stress, and intraperitoneal glucose intolerance tests. Pancreatic tissue was collected after sacrifice partly for histological examination and for oxidative stress assessment and evaluation of PTEN/ AKT using qRT-PCR. KEY FINDINGS We showed over-expression of cleaved-caspase-3 indicating accelerated apoptosis in the β-cell of STZ-induced diabetic rats. Apoptosis was significantly ameliorated by miRNA-21-CS. MiRNA-21-CS-NPs faithfully restored serum fasting insulin, and FBG, and reduced serum and pancreatic oxidative stress markers while enhancing the total antioxidant capacity. Histological examination revealed that miRNA-21 restored healthy β-cell architecture, decreased cleaved-caspase-3, and increased insulin secretion. Transmission electron microscopy revealed increased mitochondrial circularity that significantly correlated with an exaggerated oxidative stress profile as shown by high serum and pancreatic malondialdehyde (MDA), low glutathione peroxidase, and total antioxidant capacity in STZ-induced diabetes. This oxidative profile was reversed using miRNA-21-CS-NPs. Mi-RNA-21 therapy downregulated PTEN but increased AKT and pAKT expression. Altogether, we show that miRNA-21 restored normal islet β-cell structure and insulin secretion through PTEN inhibition. SIGNIFICANCE miRNA-21- CS-NPs are promising targeted therapeutics that may effectively decrease the global burden of diabetes.
Collapse
Affiliation(s)
- Eman H Thabet
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, 21500 Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| | - Nehal A Khalil
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, 21500 Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, 21500 Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Sahar A Harby
- Department of Clinical Pharmacology, Faculty of Medicine, University of Alexandria, 21500 Alexandria, Egypt
| | - Amany A Solaiman
- Department of Histology and Cell Biology, Faculty of Medicine, University of Alexandria, 21500 Alexandria, Egypt
| | - Hanaa M El Gazaerly
- Department of Oral Pathology, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Yassmin H Khalifa
- Department of Histology and Cell Biology, Faculty of Medicine, University of Alexandria, 21500 Alexandria, Egypt
| |
Collapse
|
5
|
Ding Z, Shao G, Li M. Targeting autophagy in premature ovarian failure: Therapeutic strategies from molecular pathways to clinical applications. Life Sci 2025; 366-367:123473. [PMID: 39971127 DOI: 10.1016/j.lfs.2025.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Premature ovarian failure (POF) is a condition where the ovaries lose their function before the age of 40, leading to significant impacts on reproductive health and overall well-being. Current treatment options are limited and often ineffective at restoring ovarian function. This review explores the role of autophagy- a cellular process that helps maintain homeostasis by recycling damaged components-in the development and potential treatment of POF. Autophagy is crucial for the survival of follicle cells and can be disrupted by various stressors associated with POF, such as oxidative damage and mitochondrial dysfunction. We review several key molecular pathways involved in autophagy, including the PI3K/AKT/mTOR, PINK1-Parkin, JAK2/STAT3, MAPK and AMPK/FOXO3a pathways, which have been implicated in POF. Each pathway offers unique insights into how autophagy can be modulated to counteract POF-related damage. Additionally, we discuss emerging therapeutic strategies that target these pathways, including chemical compounds, peptides, hormones, RNA therapy, extracellular vesicles and traditional Chinese medicine. These approaches aim to restore autophagic balance, promote follicle survival and improve ovarian function. By targeting autophagy, new treatments may offer hope for better management and potential reversal of POF, thus improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Ziwen Ding
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingyang Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
6
|
Mukherjee R, Pancholi P, Sharma M, Solomon H, Timaul MN, Thant C, McGriskin R, Hayatt O, Markov V, D'Allara J, Bekker S, Candelier J, Carrasco SE, de Stanchina E, Vanaja K, Rosen N. Diet induced insulin resistance is due to induction of PTEN expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645201. [PMID: 40196497 PMCID: PMC11974787 DOI: 10.1101/2025.03.25.645201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Insulin resistance is a condition associated with obesity, type 2 diabetes(T2D), hyperinsulinemia, hyperglycemia and defined by reduced sensitivity to insulin signaling. Molecular causes and early signaling events underlying insulin resistance are not well understood. Here we show that insulin activation of PI3K/AKT/mTOR signaling in insulin target tissues, causes mTORC1 induction of PTEN translation, a negative regulator of PI3K signaling. We hypothesized that insulin resistance is due to insulin dependent induction of PTEN that prevents further increases in PI3K signaling. In a diet induced animal model of obesity and insulin resistance, we show that PTEN levels are increased in fat, muscle, and liver. Hyperinsulinemia and PTEN induction are followed by hyperglycemia, severe glucose intolerance, and hepatic steatosis. In response to chronic hyperinsulinemia, PTEN remains increased, while AKT activity is induced transiently before settling down to a PTEN-high and AKT-low state in the tissues, predicted by computational modeling of the PTEN-AKT feedback loop. Treatment with PTEN and mTORC1 inhibitors prevent and reverse the effect of PTEN induction, rescue insulin resistance and increase PI3K/AKT signaling. Thus, we show that PTEN induction by increased insulin levels elevates feedback inhibition of the pathway causing insulin resistance, its associated phenotypes, and is a potential therapeutic target.
Collapse
|
7
|
Volkov VV, Perry CC, Chelli R. Binding Zinc and Oxo-Vanadium Insulin-Mimetic Complexes to Phosphatase Enzymes: Structure, Electronics and Implications. Molecules 2025; 30:1469. [PMID: 40286074 PMCID: PMC11990500 DOI: 10.3390/molecules30071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
We explore the structural and electronic properties of representative insulin-mimetic oxovanadium and zinc complexes as computed in vacuum, in water clusters and upon binding to PTEN and PTP1B phosphatases. Albeit diverse, the enzymes' active sites represent evolutionary variant choices of the same type of biochemistry. Though different in respect to covalency and the orbital nature of bonding, theory predicts comparable ionic radii, bond lengths and square pyramidal coordination for the considered vanadyl and zinc systems when in an aqueous environment. Employing docking, DFT and quantum mechanics/molecular mechanics methods, we address possible polar interactions in the protein environments and compute infrared/Raman modes and optical electronic properties, which may be suitable for the structural analysis of the specific chemical moieties in binding studies. Accounting for how protein embedding may alter the electronic states of metal centres, we discuss artificial intelligence-assisted protein field engineering to assist biomedical and quantum information applications.
Collapse
Affiliation(s)
- Victor V. Volkov
- Independent Researcher, Bereozovaya 2a, Konstantinovo 140207, Moscow Region, Russia
| | - Carole C. Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Riccardo Chelli
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Bhingardeve S, Sagvekar P, Desai S, Mangoli V, Jagtap R, Mukherjee S. The regulatory interplay between miRNA and DNA methylation orchestrates vital ovarian functions and associated traits in PCOS. Gene 2025; 940:149165. [PMID: 39681146 DOI: 10.1016/j.gene.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the leading cause of amenorrhea and anovulatory infertility in women of reproductive age. Both gene polymorphisms and tissue-specific epigenetic alterations, which determine gene transcription and translation dynamics in disease-states, strongly influence PCOS development. Particularly, promoter-proximal DNA methylation and microRNA expression changes show strong associations with follicular defects, suggesting post-transcriptional dysregulation of localized gene networks. Our recent methylome study and other studies, posit DNA methylation as a regulator of microRNA expression in PCOS. Here, we identified microRNAs, potentially regulated by DNA methylation, and investigated whether their altered expression influences target gene expression in the PCOS ovary. Using granulosa cell samples of women with PCOS and age-BMI matched controls, we evaluated the transcript levels of 14 microRNAs participating in different ovarian processes and assessed their CpG-DNA methylation levels. For 9 of these microRNAs, which revealed differential methylation consistent with their gene hypomethylation or hypermethylation profiles, we evaluated the expression of their predicted, proteincoding target transcripts. Our data indicated that microRNA hypermethylation and decreased transcription of miR-10b-5p, miR-127-3p, miR-5189, miR-410-3p and miR23a-3p were consistent with the upregulation of PTEN, MMP13, OLR1, TET3 and APAF1 in PCOS. Conversely, microRNA hypomethylation and increased expression of miR-140-5p, miR-182-3p, miR-200b-5p and miR-3687 were consistent with downregulation of FZD6, LRP6, ZEB1 and LDLR. However, these observations need robust validations in larger study cohorts complemented with functional and mechanistic studies. Overall, our study indicates that altered microRNA expression as a consequence of DNA methylation changes, may contribute to metabolic and reproductive dysfunction in PCOS.
Collapse
Affiliation(s)
- Snehal Bhingardeve
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India
| | - Pooja Sagvekar
- Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | | | | | | | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India.
| |
Collapse
|
9
|
Nisha, Thapliyal D, Gohil B, Modak AS, Singh NT, Mukherjee C, Ahuja S, Sahu BS, Singh MD. Downregulation of Pten Improves Huntington's Disease Phenotype by Reducing Htt Aggregates and Cell Death. Mol Neurobiol 2025:10.1007/s12035-025-04816-6. [PMID: 40042729 DOI: 10.1007/s12035-025-04816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/26/2025] [Indexed: 03/18/2025]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder that stems from the expansion of CAG repeats within the coding region of Huntingtin (HTT) gene. Currently, there exists no effective therapeutic intervention that can prevent the progression of the disease. Our study aims to identify a novel genetic modifier with therapeutic potential. We employ transgenic flies containing HTT.ex1.Q93 and mRFP-HTT.588.Q138 constructs, which encode mutant pathogenic Huntingtin (Htt) proteins featuring 93 and 138 polyglutamine (Q) repeats respectively. The resultant mutant proteins cause the loss of photoreceptor neurons in the eye and a progressive loss of neuronal tissues in the brain and motor neurons in Drosophila. Several findings have demonstrated the association of HD with growth factor signaling defects. Phosphatase and tensin homolog (Pten) have been implicated in the negative regulation of the Insulin signaling/receptor tyrosine signaling pathway which regulates the growth and survival of cells. In the present study, we downregulated Pten and found a significant improvement in morphological phenotypes in the eye, brain, and motor neurons. These findings were further correlated with the enhancement of the functional vision and climbing ability of the flies. We also found the reduction in both Htt aggregate and caspase levels which are involved in the apoptotic pathway. In alignment with the genetic modulation of Pten, we elucidated the protective role of Pten inhibition through the utilization of VO-OHpic. VO-OHpic improved the climbing ability of flies and reduced the poly(Q) aggregates and apoptosis levels. A similar reduction in Htt aggregates was observed in the mouse neuronal inducible HD cell line model. Our study illustrates that Pten inhibition is a potential therapeutic approach for HD.
Collapse
Affiliation(s)
- Nisha
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Deepti Thapliyal
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Bhavya Gohil
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Aninda Sundar Modak
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - N Tarundas Singh
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | | | - Sanchi Ahuja
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | | | | |
Collapse
|
10
|
Zheng GJ, Fang ZE, Zhou BY, Zuo L, Chen X, Liu ML, Yu L, Jing CX, Hao G. DNA methylation in the association between pesticide exposures and type 2 diabetes. World J Diabetes 2025; 16:99200. [PMID: 39959275 PMCID: PMC11718482 DOI: 10.4239/wjd.v16.i2.99200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Numerous epidemiological studies have found that pesticide exposure is associated with the incidence of type 2 diabetes (T2D); however, the underlying mechanisms remain unknown. DNA methylation may play a role in this process. AIM To identify the genes associated with pesticide exposure and T2D by reviewing the current literature. METHODS We systematically searched PubMed and Embase for relevant studies that examined the association between pesticide exposure and DNA methylation, and studies on DNA methylation and T2D through January 15, 2024. RESULTS We identified six genes (Alu, CABLES1, CDH1, PDX1, PTEN, PTPRN2) related to pesticide exposure and T2D. We also suggested future research directions to better define the role of DNA methylation in the association between pesticide exposure and T2D. CONCLUSION DNA methylation of specific genes may play a vital role in the association between pesticide exposure and T2D.
Collapse
Affiliation(s)
- Guang-Jun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zheng-Er Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Bi-Ying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ming-Liang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chun-Xia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Guang Hao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
11
|
Alrashidi BK, Abd-Elmoneam AA, Ghareeb AZ, Ghareeb DA. Efficacy of red algae and artichoke extracts in disrupting antioxidant/PI3K/RBP-4 pathway in high-fat diet-induced metabolic disorders in rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:126. [DOI: 10.1186/s43088-024-00586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Insulin resistance (IR) leads to various metabolic abnormalities, including diabetes mellitus, obesity, nonalcoholic steatohepatitis, and neurodegenerative disorders. Natural products rich in nontoxic phytochemicals are cost-effective and widely used to manage insulin resistance, reducing drug interactions. Artichoke stems and red algae contain several phytochemical compounds that exert antioxidant and anti-inflammatory effects.
Aim
This study aims to explore and compare the preventive and therapeutic effects of red algae and artichoke stem extracts against high-fat diet-induced insulin resistance and then compare their impacts with those of the reference drug metformin, which is commonly used for treating type 2 diabetes.
Methods
The animals were fed a high-fat diet for eight weeks to induce insulin resistance. The plants were then treated orally with 100 mg/kg body weight red algae, artichoke extracts, or metformin per day for 14 days. The protective rat groups received the extracts at the same dose for 14 days before being fed the high-fat diet for eight weeks. Commercial kits and standardized methods were used to measure blood diabetic profiles (glucose, insulin, lipid profile, fructosamine, and retinol-binding protein-4 (RBP-4)) and liver oxidative stress parameters, nuclear factor-κβ (NF-κβ), peroxisome proliferator-activated receptor gamma (PPAR-γ), phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K), retinol-binding protein-4 (RBP-4), and phosphatase and tensin homolog (PTEN).
Results
Our results showed that both extracts inhibited NF-κB and PTEN while enhancing PI3K, RPB-4, and PPAR-γ due to their potent antioxidant properties. They also increased insulin sensitivity, as reflected by reduced blood glucose and lipid profile levels and normalized fructosamine and RBP-4. Additionally, these extracts prevent oxidative stress-induced hepatic and nephric cell dysfunction, as confirmed by improved blood, liver, and kidney parameters.
Conclusion
Therefore, both extracts could be good antioxidant treatments for oxidative stress-related insulin resistance because they restore the balance of the PI3K/PPAR-γ/RBP-4 pathway. This pathway increases glucose uptake, stops gluconeogenesis, speeds up lipid metabolism, and stops the inflammation pathway.
Collapse
|
12
|
Wang J, Tao R, Hu H, Gao J, Liu Y, Xia J, Lan X, Di Y. miR-320b, a Future Expected New Biomarker for Type 2 Diabetes Mellitus Induces Dysglycemia by Targeting PTEN. Int J Endocrinol 2024; 2024:5540062. [PMID: 39502509 PMCID: PMC11535181 DOI: 10.1155/2024/5540062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) has emerged as a global epidemic issue, with high rates of disability and fatality. Traditional diagnostic biomarkers are typically detected once a metabolic imbalance has already occurred, thus the development of early diagnostic biomarkers is crucial for T2DM. Metabolomics studies have identified several predictive biomarkers for T2DM, including miR-320. Our previous research found that miR-320b was significantly downregulated in T2DM patients, but the underlying mechanism remains unclear. Therefore, this study was designed to investigate the significance of miR-320b for T2DM diagnosis and to explore the involved molecular mechanism. Methods: A total of 50 patients with T2DM and 80 sex- and age-matched healthy subjects were selected. The plasma miR-320b of all participations was detected by qRT-PCR and its correlations with other biomarkers of T2DM were analyzed. Besides, the expression of miR-320b in HepG2 cells was suppressed by miRNA inhibitors. Then the glucose consumption of HepG2 cells was measured. The target gene of miR-320b was predicted by four bioinformatics tools and intersected these prediction results by Venny method. The T2DM relevant target genes were identified by the GeneCards database. To ensure disease relevance, these T2DM relevant target genes were subsequently intersected with the target genes of miR-320b. Protein-protein analysis (PPI) was used to screening the gene with the most connections in these target genes. Finally, the target gene of miR-320b specific to T2DM was confirmed directly by luciferase reporter assay. The expression of target gene in HepG2 cell culture supernatant and plasma of all participations was detected. Results: Our results showed that the expression level of miR-320b was significantly lower in T2DM patients compared to the healthy controls. It was negatively correlated with fasting plasma glucose (FPG), glycated hemoglobin (HbA1C), and homeostasis model assessment of insulin resistance (HOMA-IR), but positively with HOMA-β. The glucose consumption of HepG2 cells in the miR-320b inhibitor group was significantly lower compared to inhibitor-NC and blank control group. We predicted and confirmed that phosphatase and tensin homolog (PTEN) was the direct target gene of miR-320b using Bioinformation tools and luciferase reporter assay. Moreover, the concentration of PTEN was significantly higher in the HepG2 cell culture supernatant and plasma of T2DM patients. Conclusions: Our research demonstrated a negative correlation between miR-320b and FPG, HbA1C, and HOMA-IR, while exhibiting a positive correlation with HOMA-β. Suppressing miR-320b expression would impair glucose consumption of HepG2 cells through PI3K pathway by targeting PTEN. These results suggest that miR-320b may be a potential biomarker for diagnosing T2DM and a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Jinxingyi Wang
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Ruyu Tao
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Hanshuai Hu
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Jiejie Gao
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Yang Liu
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Jie Xia
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Xue Lan
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Yanan Di
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| |
Collapse
|
13
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
14
|
Simon-Szabó L, Lizák B, Sturm G, Somogyi A, Takács I, Németh Z. Molecular Aspects in the Development of Type 2 Diabetes and Possible Preventive and Complementary Therapies. Int J Mol Sci 2024; 25:9113. [PMID: 39201799 PMCID: PMC11354764 DOI: 10.3390/ijms25169113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The incidence of diabetes, including type 2 diabetes (T2DM), is increasing sharply worldwide. To reverse this, more effective approaches in prevention and treatment are needed. In our review, we sought to summarize normal insulin action and the pathways that primarily influence the development of T2DM. Normal insulin action involves mitogenic and metabolic pathways, as both are important in normal metabolic processes, regeneration, etc. However, through excess energy, both can be hyperactive or attenuated/inactive leading to disturbances in the cellular and systemic regulation with the consequence of cellular stress and systemic inflammation. In this review, we detailed the beneficial molecular changes caused by some important components of nutrition and by exercise, which act in the same molecular targets as the developed drugs, and can revert the damaged pathways. Moreover, these induce entire networks of regulatory mechanisms and proteins to restore unbalanced homeostasis, proving their effectiveness as preventive and complementary therapies. These are the main steps for success in prevention and treatment of developed diseases to rid the body of excess energy, both from stored fats and from overnutrition, while facilitating fat burning with adequate, regular exercise in healthy people, and together with necessary drug treatment as required in patients with insulin resistance and T2DM.
Collapse
Affiliation(s)
- Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Beáta Lizák
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary;
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Baross u., 1085 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| | - Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| |
Collapse
|
15
|
Lv Z, Ren Y, Li Y, Niu F, Li Z, Li M, Li X, Li Q, Huang D, Yu Y, Xiong Y, Qian L. RNA-binding protein GIGYF2 orchestrates hepatic insulin resistance through STAU1/PTEN-mediated disruption of the PI3K/AKT signaling cascade. Mol Med 2024; 30:124. [PMID: 39138413 PMCID: PMC11323356 DOI: 10.1186/s10020-024-00889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Fanglin Niu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710018, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Man Li
- Department of Endocrinology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Xiaofang Li
- Department of Gastroenterology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Qinhua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Deqing Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Mental Health Center, Xi'an, 710100, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| |
Collapse
|
16
|
Anthony DC, Probert F, Gorlova A, Hebert J, Radford-Smith D, Nefedova Z, Umriukhin A, Nedorubov A, Cespuglio R, Shulgin B, Lyundup A, Lesch KP, Strekalova T. Impact of Serotonin Transporter Absence on Brain Insulin Receptor Expression, Plasma Metabolome Changes, and ADHD-like Behavior in Mice fed a Western Diet. Biomolecules 2024; 14:884. [PMID: 39199273 PMCID: PMC11351952 DOI: 10.3390/biom14080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
The impaired function of the serotonin transporter (SERT) in humans has been linked to a higher risk of obesity and type 2 diabetes, especially as people age. Consuming a "Western diet" (WD), which is high in saturated fats, cholesterol, and sugars, can induce metabolic syndrome. Previous research indicated that mice carrying a targeted inactivation of the Sert gene (knockout, KO) and fed a WD display significant metabolic disturbances and behaviors reminiscent of ADHD. These abnormalities might be mediated via a dysfunction in insulin receptor (IR) signaling, which is also associated with adult ADHD. However, the impact of Sert deficiency on IR signaling and systemic metabolic changes has not been thoroughly explored. In this study, we conducted a detailed analysis of locomotor behavior in wild-type (WT) and KO mice fed a WD or control diet. We investigated changes in the blood metabolome and examined, via PCR, the expression of insulin receptor A and B isoforms and key regulators of their function in the brain. Twelve-month-old KO mice and their WT littermates were fed a WD for three weeks. Nuclear magnetic resonance spectroscopy analysis of plasma samples showed that KO mice on a WD had higher levels of lipids and lipoproteins and lower levels of glucose, lactate, alanine, valine, and isoleucine compared to other groups. SERT-KO mice on the control diet exhibited increased brain levels of both IR A and B isoforms, accompanied by a modest increase in the negative regulator ENPP. The KO mice also displayed anxiety-like behavior and reduced exploratory activity in an open field test. However, when the KO animals were fed a WD, the aberrant expression levels of IR isoforms in the KO mice and locomotor behavior were ameliorated indicating a complex interaction between genetic and dietary factors that might contribute to ADHD-like symptoms. Overall, our findings suggest that the lack of Sert leads to a unique metabolic phenotype in aged mice, characterized by dysregulated IR-related pathways. These changes are exacerbated by WD in the blood metabolome and are associated with behavioral abnormalities.
Collapse
Affiliation(s)
- Daniel C. Anthony
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK; (D.C.A.); (F.P.); (J.H.); (D.R.-S.)
| | - Fay Probert
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK; (D.C.A.); (F.P.); (J.H.); (D.R.-S.)
- Department of Chemistry, Oxford University, Oxford OX1 2JD, UK
| | - Anna Gorlova
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.G.); (R.C.); (A.L.)
| | - Jenna Hebert
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK; (D.C.A.); (F.P.); (J.H.); (D.R.-S.)
| | - Daniel Radford-Smith
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK; (D.C.A.); (F.P.); (J.H.); (D.R.-S.)
| | - Zlata Nefedova
- Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (Z.N.); (A.U.); (A.N.)
| | - Aleksei Umriukhin
- Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (Z.N.); (A.U.); (A.N.)
| | - Andrey Nedorubov
- Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (Z.N.); (A.U.); (A.N.)
| | - Raymond Cespuglio
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.G.); (R.C.); (A.L.)
| | - Boris Shulgin
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan;
| | - Aleksey Lyundup
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.G.); (R.C.); (A.L.)
- Endocrinology Research Centre, Dmitry Ulyanov Str. 19, 117036 Moscow, Russia
| | - Klaus Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany;
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK; (D.C.A.); (F.P.); (J.H.); (D.R.-S.)
| |
Collapse
|
17
|
Ali H, Malik MZ, Abu-Farha M, Abubaker J, Cherian P, Al-Khairi I, Nizam R, Jacob S, Bahbahani Y, Al Attar A, Thanaraj TA, Al-Mulla F. Dysregulated Urinary Extracellular Vesicle Small RNAs in Diabetic Nephropathy: Implications for Diagnosis and Therapy. J Endocr Soc 2024; 8:bvae114. [PMID: 38966710 PMCID: PMC11222982 DOI: 10.1210/jendso/bvae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 07/06/2024] Open
Abstract
Background Diabetic nephropathy (DN) represents a major chronic kidney disorder and a leading cause of end-stage renal disease (ESRD). Small RNAs have been showing great promise as diagnostic markers as well as drug targets. Identifying dysregulated micro RNAs (miRNAs) could help in identifying disease biomarkers and investigation of downstream interactions, shedding light on the molecular pathophysiology of DN. In this study, we analyzed small RNAs within human urinary extracellular vesicles (ECVs) from DN patients using small RNA next-generation sequencing. Method In this cross-sectional study, urine samples were collected from 88 participants who were divided into 3 groups: type 2 diabetes (T2D) with DN (T2D + DN, n = 20), T2D without DN (T2D - DN, n = 40), and healthy individuals (n = 28). The study focused on isolating urinary ECVs to extract and sequence small RNAs. Differentially expressed small RNAs were identified, and a functional enrichment analysis was conducted. Results The study revealed a distinct subset of 13 miRNAs and 10 Piwi-interacting RNAs that were significantly dysregulated in urinary ECVs of the DN group when compared to other groups. Notably, miR-151a-3p and miR-182-5p exhibited a unique expression pattern, being downregulated in the T2D - DN group, and upregulated in the T2D + DN group, thus demonstrating their effectiveness in distinguishing patients between the 2 groups. Eight driver genes were identified PTEN, SMAD2, SMAD4, VEGFA, CCND2, CDK6, LIN28B, and CHD1. Conclusion Our findings contribute valuable insights into the pathogenesis of DN, uncovering novel biomarkers and identifying potential therapeutic targets that may aid in managing and potentially decelerating the progression of the disease.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, PO Box 24923, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, PO Box 24923, Safat 13110, Kuwait
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
- Department of Translational Medicine, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Yousif Bahbahani
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, PO Box 24923, Safat 13110, Kuwait
- Medical Division, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Abdulnabi Al Attar
- Medical Division, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Medicine, Dasman Diabetes Institute (DDI), PO Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
18
|
Beaudry KM, Surdi JC, Pancevski K, Tremblay C, Devries MC. Greater glycemic control following low-load, high-repetition resistance exercise compared with moderate-intensity continuous exercise in males and females: a randomized control trial. Appl Physiol Nutr Metab 2024; 49:943-955. [PMID: 38518263 DOI: 10.1139/apnm-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Exercise has long been known for its beneficial effects on insulin sensitivity (IS) and glucose handling with both moderate-intensity continuous (MIC) exercise and resistance exercise (RE) inducing beneficial effects. In recent years, low-load, high-repetition (LLHR) RE has emerged as a strategy to increase muscle mass and strength to levels similar to traditional RE; however, the effects of LLHR RE on glucose handling has yet to be investigated. The purpose of this trial was to compare the acute effects of LLHR RE to MIC exercise on post-exercise glycemic control and insulin sensitivity in males and females. Twenty-four (n = 12/sex) participants completed acute bouts of MIC exercise (30 min at 65% V̇O₂peak) and LLHR (3 circuits, 6 exercises/circuit, 25-35 repetitions/exercise/circuit) matched for time with muscle biopsies immediately pre and post exercise and an oral glucose tolerance test (OGTT) 90 min following exercise. Blood glucose concentrations (p = 0.002, ηp 2 = 0.37), glucose AUC (p = 0.002, ηp 2 = 0.35) and max glucose concentration (p = 0.003, ηp 2 = 0.34) were lower during the post exercise OGTT following LLHR RE compared to MIC exercise. There was a main effect of trial on TBC1D1 Ser237 phosphorylation (p = 0.04, ηp 2 = 0.19) such that it was greater following MIC exercise compared to LLHR RE. Furthermore, phosphorylated ACC Ser79 increased following MIC exercise with no change following LLHR RE (p < 0.001, ηp 2 = 0.50). Phosphorylation of PTEN Ser380 was greater in males than females during LLHR RE (p = 0.01, ηp 2 = 0.27). These findings suggest that LLHR RE is a feasible exercise modality to improve post-exercise glycemic control in both males and females. Trial registration number: NCT06217679.
Collapse
Affiliation(s)
| | - Julian C Surdi
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | | | - Cory Tremblay
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | | |
Collapse
|
19
|
Rosen N, Mukherjee R, Pancholi P, Sharma M, Solomon H, Timaul M, Thant C, McGriskin R, Hayatt O, Markov V, D'Allara J, Bekker S, Candelier J, Carrasco S, de Stanchina E, Vanaja K. Diet induced insulin resistance is due to induction of PTEN expression. RESEARCH SQUARE 2024:rs.3.rs-4021885. [PMID: 38978604 PMCID: PMC11230483 DOI: 10.21203/rs.3.rs-4021885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Type 2 Diabetes (T2D) is a condition that is often associated with obesity and defined by reduced sensitivity of PI3K signaling to insulin (insulin resistance), hyperinsulinemia and hyperglycemia. Molecular causes and early signaling events underlying insulin resistance are not well understood. Insulin activation of PI3K signaling causes mTOR dependent induction of PTEN translation, a negative regulator of PI3K signaling. We speculated that insulin resistance is due to insulin dependent induction of PTEN protein that prevent further increases in PI3K signaling. Here we show that in a diet induced model of obesity and insulin resistance, PTEN levels are increased in fat, muscle and liver tissues. Onset of hyperinsulinemia and PTEN induction in tissue is followed by hyperglycemia, hepatic steatosis and severe glucose intolerance. Treatment with a PTEN phosphatase inhibitor prevents and reverses these phenotypes, whereas an mTORC1 kinase inhibitor reverses all but the hepatic steatosis. These data suggest that induction of PTEN by increasing levels of insulin elevates feedback inhibition of the pathway to a point where downstream PI3K signaling is reduced and hyperglycemia ensues. PTEN induction is thus necessary for insulin resistance and the type 2 diabetes phenotype and a potential therapeutic target.
Collapse
|
20
|
Paneru BD, Chini J, McCright SJ, DeMarco N, Miller J, Joannas LD, Henao-Mejia J, Titchenell PM, Merrick DM, Lim HW, Lazar MA, Hill DA. Myeloid-derived miR-6236 potentiates adipocyte insulin signaling and prevents hyperglycemia during obesity. Nat Commun 2024; 15:5394. [PMID: 38918428 PMCID: PMC11199588 DOI: 10.1038/s41467-024-49632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) influence obesity-associated metabolic dysfunction, but the mechanisms by which they do so are not well understood. We show that miR-6236 is a bona fide miRNA that is secreted by ATMs during obesity. Global or myeloid cell-specific deletion of miR-6236 aggravates obesity-associated adipose tissue insulin resistance, hyperglycemia, hyperinsulinemia, and hyperlipidemia. miR-6236 augments adipocyte insulin sensitivity by inhibiting translation of negative regulators of insulin signaling, including PTEN. The human genome harbors a miR-6236 homolog that is highly expressed in the serum and adipose tissue of obese people. hsa-MIR-6236 expression negatively correlates with hyperglycemia and glucose intolerance, and positively correlates with insulin sensitivity. Together, our findings establish miR-6236 as an ATM-secreted miRNA that potentiates adipocyte insulin signaling and protects against metabolic dysfunction during obesity.
Collapse
Affiliation(s)
- Bam D Paneru
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julia Chini
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sam J McCright
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicole DeMarco
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica Miller
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leonel D Joannas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul M Titchenell
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David M Merrick
- Department of Medicine, Division of Endocrinology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Endocrinology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David A Hill
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Gao J, Zou Y, Lv XY, Chen L, Hou XG. Novel insights into immune-related genes associated with type 2 diabetes mellitus-related cognitive impairment. World J Diabetes 2024; 15:735-757. [PMID: 38680704 PMCID: PMC11045412 DOI: 10.4239/wjd.v15.i4.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The cognitive impairment in type 2 diabetes mellitus (T2DM) is a multifaceted and advancing state that requires further exploration to fully comprehend. Neuroinflammation is considered to be one of the main mechanisms and the immune system has played a vital role in the progression of the disease. AIM To identify and validate the immune-related genes in the hippocampus associated with T2DM-related cognitive impairment. METHODS To identify differentially expressed genes (DEGs) between T2DM and controls, we used data from the Gene Expression Omnibus database GSE125387. To identify T2DM module genes, we used Weighted Gene Co-Expression Network Analysis. All the genes were subject to Gene Set Enrichment Analysis. Protein-protein interaction network construction and machine learning were utilized to identify three hub genes. Immune cell infiltration analysis was performed. The three hub genes were validated in GSE152539 via receiver operating characteristic curve analysis. Validation experiments including reverse transcription quantitative real-time PCR, Western blotting and immunohistochemistry were conducted both in vivo and in vitro. To identify potential drugs associated with hub genes, we used the Comparative Toxicogenomics Database (CTD). RESULTS A total of 576 DEGs were identified using GSE125387. By taking the intersection of DEGs, T2DM module genes, and immune-related genes, a total of 59 genes associated with the immune system were identified. Afterward, machine learning was utilized to identify three hub genes (H2-T24, Rac3, and Tfrc). The hub genes were associated with a variety of immune cells. The three hub genes were validated in GSE152539. Validation experiments were conducted at the mRNA and protein levels both in vivo and in vitro, consistent with the bioinformatics analysis. Additionally, 11 potential drugs associated with RAC3 and TFRC were identified based on the CTD. CONCLUSION Immune-related genes that differ in expression in the hippocampus are closely linked to microglia. We validated the expression of three hub genes both in vivo and in vitro, consistent with our bioinformatics results. We discovered 11 compounds associated with RAC3 and TFRC. These findings suggest that they are co-regulatory molecules of immunometabolism in diabetic cognitive impairment.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, Shandong Province, China
- Department of Endocrinology, Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong Province, China
| |
Collapse
|
22
|
Trinh VH, Nguyen Huu T, Sah DK, Choi JM, Yoon HJ, Park SC, Jung YS, Lee SR. Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants (Basel) 2024; 13:199. [PMID: 38397797 PMCID: PMC10886030 DOI: 10.3390/antiox13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| |
Collapse
|
23
|
Bu SY. Role of Dgat2 in Glucose Uptake and Fatty Acid Metabolism in C2C12 Skeletal Myotubes. J Microbiol Biotechnol 2023; 33:1563-1575. [PMID: 37644753 PMCID: PMC10772559 DOI: 10.4014/jmb.2307.07018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Acyl-coenzyme A (CoA):diacylglycerol acyltransferase 2 (DGAT2) catalyzes the last stage of triacylglycerol (TAG) synthesis, a process that forms ester bonds with diacylglycerols (DAG) and fatty acyl-CoA substrates. The enzymatic role of Dgat2 has been studied in various biological species. Still, the full description of how Dgat2 channels fatty acids in skeletal myocytes and the consequence thereof in glucose uptake have yet to be well established. Therefore, this study explored the mediating role of Dgat2 in glucose uptake and fatty acid partitioning under short interfering ribonucleic acid (siRNA)-mediated Dgat2 knockdown conditions. Cells transfected with Dgat2 siRNA downregulated glucose transporter type 4 (Glut4) messenger RNA (mRNA) expression and decreased the cellular uptake of [1-14C]-labeled 2-deoxyglucose up to 24.3% (p < 0.05). Suppression of Dgat2 deteriorated insulininduced Akt phosphorylation. Dgat2 siRNA reduced [1-14C]-labeled oleic acid incorporation into TAG, but increased the level of [1-14C]-labeled free fatty acids at 3 h after initial fatty acid loading. In an experiment of chasing radioisotope-labeled fatty acids, Dgat2 suppression augmented the level of cellular free fatty acids. It decreased the level of re-esterification of free fatty acids to TAG by 67.6% during the chase period, and the remaining pulses of phospholipids and cholesteryl esters were decreased by 34.5% and 61%, respectively. Incorporating labeled fatty acids into beta-oxidation products increased in Dgat2 siRNA transfected cells without gene expression involving fatty acid oxidation. These results indicate that Dgat2 has regulatory function in glucose uptake, possibly through the reaction of TAG with endogenously released or recycled fatty acids.
Collapse
Affiliation(s)
- So Young Bu
- Department of Food and Nutrition, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
24
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Hwang MS, Park J, Ham Y, Lee IH, Chun KH. Roles of Protein Post-Translational Modifications During Adipocyte Senescence. Int J Biol Sci 2023; 19:5245-5256. [PMID: 37928271 PMCID: PMC10620833 DOI: 10.7150/ijbs.86404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Adipocytes are adipose tissues that supply energy to the body through lipids. The two main types of adipocytes comprise white adipocytes (WAT) that store energy, and brown adipocytes (BAT), which generate heat by burning stored fat (thermogenesis). Emerging evidence indicates that dysregulated adipocyte senescence may disrupt metabolic homeostasis, leading to various diseases and aging. Adipocytes undergo senescence via irreversible cell-cycle arrest in response to DNA damage, oxidative stress, telomere dysfunction, or adipocyte over-expansion upon chronic lipid accumulation. The amount of detectable BAT decreases with age. Activation of cell cycle regulators and dysregulation of adipogenesis-regulating factors may constitute a molecular mechanism that accelerates adipocyte senescence. To better understand the regulation of adipocyte senescence, the effects of post-translational modifications (PTMs), is essential for clarifying the activity and stability of these proteins. PTMs are covalent enzymatic protein modifications introduced following protein biosynthesis, such as phosphorylation, acetylation, ubiquitination, or glycosylation. Determining the contribution of PTMs to adipocyte senescence may identify new therapeutic targets for the regulation of adipocyte senescence. In this review, we discuss a conceptual case in which PTMs regulate adipocyte senescence and explain the mechanisms underlying protein regulation, which may lead to the development of effective strategies to combat metabolic diseases.
Collapse
Affiliation(s)
- Min-Seon Hwang
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Institute of Genetic Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jingyeong Park
- Department of Life Science, College of Natural Science, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yunha Ham
- Department of Life Science, College of Natural Science, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - In Hye Lee
- Department of Life Science, College of Natural Science, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Institute of Genetic Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
26
|
Abdel-Megeed RM, Kadry MO. Amelioration of autophagy and inflammatory signaling pathways via α-lipoic acid, burdock and bee pollen versus lipopolysaccharide-induced insulin resistance in murine model. Heliyon 2023; 9:e15692. [PMID: 37139293 PMCID: PMC10149403 DOI: 10.1016/j.heliyon.2023.e15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Lipopolysaccharide (LPS) has previously been implicated in insulin resistance by generating an innate immune response and activating inflammatory cascades. Many studies have discovered a relationship between high levels of serum LPS and the advancement of diabetic microvascular problems, indicating that LPS may play a role in the control of critical signaling pathways connected to insulin resistance. The current study focused on signaling pathways linked to insulin resistance and explored probable mechanisms of LPS-induced insulin resistance in a murine model. It next looked at the effects of burdock, bee pollen, and -lipoic acid on LPS-induced inflammation and autoimmune defects in rats. LPS intoxication was induced via ip injection for one week in a dose of 10 mg/kg followed by α-lipoic acid, Burdock and bee pollen in an oral treatment for one month. Following that, biochemical and molecular studies were performed. The RNA expression of the regulating genes STAT5A and PTEN was measured. In addition, ATF-4 and CHOP as autophagy biomarkers were also subjected to mRNA quantification. The results demonstrated a considerable improvement in the -lipoic acid, Burdock, and bee pollen treated groups via modifying oxidative stress indicators as well as molecular ones. Furthermore, glucose concentration in serum and α-amylase were also improved upon treatment with the superiority of α-lipoic acid for modulating all estimated parameters. In conclusion: the results declared in the current study suggested that α-lipoic acid could regulate insulin resistance signaling pathways induced by LPS intoxication.
Collapse
|
27
|
Zhang X, Gu S, Shen S, Luo T, Zhao H, Liu S, Feng J, Yang M, Yi L, Fan Z, Liu Y, Han R. Identification of Circular RNA Profiles in the Liver of Diet-Induced Obese Mice and Construction of the ceRNA Network. Genes (Basel) 2023; 14:688. [PMID: 36980960 PMCID: PMC10048691 DOI: 10.3390/genes14030688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular, cerebrovascular, metabolic, and respiratory diseases, and it has become an important social health problem affecting the health of the population. Obesity is affected by both genetic and environmental factors. In this study, we constructed a diet-induced obese C57BL/6J mouse model and performed deep RNA sequencing (RNA-seq) on liner-depleted RNA extracted from the liver tissues of the mice to explore the underlying mechanisms of obesity. A total of 7469 circular RNAs (circRNAs) were detected, and 21 were differentially expressed (DE) in the high-fat diet (HFD) and low-fat diet (LFD) groups. We then constructed a comprehensive circRNA-associated competing endogenous RNA (ceRNA) network. Bioinformatic analysis indicated that DE circRNAs associated with lipid metabolic-related pathways may act as miRNA sponges to modulate target gene expression. CircRNA1709 and circRNA4842 may serve as new candidates to regulate the expression of PTEN. This study provides systematic circRNA-associated ceRNA profiling in HFD mouse liver, and the results can aid early diagnosis and the selection of treatment targets for obesity in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Shuhua Gu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Shunyi Shen
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Tao Luo
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Haiyi Zhao
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Sijia Liu
- College of Basic Medical, Hebei North University, Zhangjiakou 075000, China
| | - Jingjie Feng
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Maosheng Yang
- College of The First Clinical, Hebei North University, Zhangjiakou 075000, China
| | - Laqi Yi
- College of The First Clinical, Hebei North University, Zhangjiakou 075000, China
| | - Zhaohan Fan
- College of The First Clinical, Hebei North University, Zhangjiakou 075000, China
| | - Yu Liu
- Laboratory Animal Center, Hebei North University, Zhangjiakou 075000, China
- Hebei Key Lab of Laboratory Animal Science, Shijiazhuang 050000, China
| | - Rui Han
- Laboratory Animal Center, Hebei North University, Zhangjiakou 075000, China
| |
Collapse
|
28
|
Wu S, Mo X. Optic Nerve Regeneration in Diabetic Retinopathy: Potentials and Challenges Ahead. Int J Mol Sci 2023; 24:ijms24021447. [PMID: 36674963 PMCID: PMC9865663 DOI: 10.3390/ijms24021447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular compilation of diabetes, is the leading cause of vision loss and blindness worldwide. Recent studies indicate that retinal neuron impairment occurs before any noticeable vascular changes in DR, and retinal ganglion cell (RGC) degeneration is one of the earliest signs. Axons of RGCs have little capacity to regenerate after injury, clinically leading the visual functional defects to become irreversible. In the past two decades, tremendous progress has been achieved to enable RGC axon regeneration in animal models of optic nerve injury, which holds promise for neural repair and visual restoration in DR. This review summarizes these advances and discusses the potential and challenges for developing optic nerve regeneration strategies treating DR.
Collapse
Affiliation(s)
| | - Xiaofen Mo
- Correspondence: ; Tel.: +86-021-64377134
| |
Collapse
|
29
|
Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1149239. [PMID: 37056675 PMCID: PMC10086443 DOI: 10.3389/fendo.2023.1149239] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Insulin resistance (IR) plays a crucial role in the development and progression of metabolism-related diseases such as diabetes, hypertension, tumors, and nonalcoholic fatty liver disease, and provides the basis for a common understanding of these chronic diseases. In this study, we provide a systematic review of the causes, mechanisms, and treatments of IR. The pathogenesis of IR depends on genetics, obesity, age, disease, and drug effects. Mechanistically, any factor leading to abnormalities in the insulin signaling pathway leads to the development of IR in the host, including insulin receptor abnormalities, disturbances in the internal environment (regarding inflammation, hypoxia, lipotoxicity, and immunity), metabolic function of the liver and organelles, and other abnormalities. The available therapeutic strategies for IR are mainly exercise and dietary habit improvement, and chemotherapy based on biguanides and glucagon-like peptide-1, and traditional Chinese medicine treatments (e.g., herbs and acupuncture) can also be helpful. Based on the current understanding of IR mechanisms, there are still some vacancies to follow up and consider, and there is also a need to define more precise biomarkers for different chronic diseases and lifestyle interventions, and to explore natural or synthetic drugs targeting IR treatment. This could enable the treatment of patients with multiple combined metabolic diseases, with the aim of treating the disease holistically to reduce healthcare expenditures and to improve the quality of life of patients to some extent.
Collapse
Affiliation(s)
| | | | | | | | - Hangyu Ji
- *Correspondence: Fengmei Lian, ; Hangyu Ji,
| | | |
Collapse
|
30
|
Ma N, Liang Y, Yue L, Liu P, Xu Y, Zhu C. The identities of insulin signaling pathway are affected by overexpression of Tau and its phosphorylation form. Front Aging Neurosci 2022; 14:1057281. [PMID: 36589543 PMCID: PMC9800792 DOI: 10.3389/fnagi.2022.1057281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hyperphosphorylated Tau formed neurofibrillary tangles was one of the major neuropathological hallmarks of Alzheimer's disease (AD). Dysfunctional insulin signaling in brain is involved in AD. However, the effect of Tau pathology on brain insulin resistance remains unclear. This study explored the effects of overexpressing wild-type Tau (WTau) or Tau with pseudo-phosphorylation at AT8 residues (PTau) on the insulin signaling pathway (ISP). Methods 293T cells or SY5Y cells overexpressing WTau or PTau were treated with or without insulin. The elements in ISP or the regulators of IPS were analyzed by immunoblotting, immunofluorescent staining and co-immunoprecipitation. Akt inhibitor MK2206 was used for evaluating the insulin signaling to downstream of mTOR in Tau overexpressing cells. The effects of anti-aging drug lonafarnib on ISP in WTau or PTau cells were also analyzed with immunoblotting. Considering lonafarnib is an inhibitor of FTase, the states of Rhes, one of FTase substrate in WTau or PTau cells were analyzed by drug affinity responsive target stability (DARTS) assay and the cellular thermal shift assay (CETSA). Results WTau or PTau overexpression in cells upregulated basal activity of elements in ISP in general. However, overexpression of WTau or PTau suppressed the ISP signaling transmission responses induced by insulin simulation, appearing relative higher response of IRS-1 phosphorylation at tyrosine 612 (IRS-1 p612) in upstream IPS, but a lower phosphorylation response of downstream IPS including mTOR, and its targets 4EPB1 and S6. This dysregulation of insulin evoked signaling transmission was more obvious in PTau cells. Suppressing Akt with MK2206 could compromise the levels of p-S6 and p-mTOR in WTau or PTau cells. Moreover, the changes of phosphatases detected in WTau and PTau cells may be related to ISP dysfunction. In addition, the effects of lonafarnib on the ISP in SY5Y cells with WTau and PTau overexpression were tested, which showed that lonafarnib treatment resulted in reducing the active levels of ISP elements in PTau cells but not in WTau cells. The differential effects are probably due to Tau phosphorylation modulating lonafarnib-induced alterations in Rhes, as revealed by DARTS assay. Conclusion and discussion Overexpression of Tau or Tau with pseudo-phosphorylation at AT8 residues could cause an upregulation of the basal/tonic ISP, but a suppression of insulin induced the phasic activation of ISP. This dysfunction of ISP was more obvious in cells overexpressing pseudo-phosphorylated Tau. These results implied that the dysfunction of ISP caused by Tau overexpression might impair the physiological fluctuation of neuronal functions in AD. The different effects of lonafarnib on ISP between WTau and PTau cells, indicating that Tau phosphorylation mediates an additional effect on ISP. This study provided a potential linkage of abnormal expression and phosphorylation of Tau to the ISP dysfunction in AD.
Collapse
|
31
|
Östman JR, Pinto RC, Ebbels TMD, Thysell E, Hallmans G, Moazzami AA. Identification of prediagnostic metabolites associated with prostate cancer risk by untargeted mass spectrometry-based metabolomics: A case-control study nested in the Northern Sweden Health and Disease Study. Int J Cancer 2022; 151:2115-2127. [PMID: 35866293 PMCID: PMC9804595 DOI: 10.1002/ijc.34223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
Prostate cancer (PCa) is the most common cancer form in males in many European and American countries, but there are still open questions regarding its etiology. Untargeted metabolomics can produce an unbiased global metabolic profile, with the opportunity for uncovering new plasma metabolites prospectively associated with risk of PCa, providing insights into disease etiology. We conducted a prospective untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis using prediagnostic fasting plasma samples from 752 PCa case-control pairs nested within the Northern Sweden Health and Disease Study (NSHDS). The pairs were matched by age, BMI, and sample storage time. Discriminating features were identified by a combination of orthogonal projection to latent structures-effect projections (OPLS-EP) and Wilcoxon signed-rank tests. Their prospective associations with PCa risk were investigated by conditional logistic regression. Subgroup analyses based on stratification by disease aggressiveness and baseline age were also conducted. Various free fatty acids and phospholipids were positively associated with overall risk of PCa and in various stratification subgroups. Aromatic amino acids were positively associated with overall risk of PCa. Uric acid was positively, and glucose negatively, associated with risk of PCa in the older subgroup. This is the largest untargeted LC-MS based metabolomics study to date on plasma metabolites prospectively associated with risk of developing PCa. Different subgroups of disease aggressiveness and baseline age showed different associations with metabolites. The findings suggest that shifts in plasma concentrations of metabolites in lipid, aromatic amino acid, and glucose metabolism are associated with risk of developing PCa during the following two decades.
Collapse
Affiliation(s)
- Johnny R Östman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rui C Pinto
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,UK Dementia Research Institute, Imperial College London, London, UK
| | - Timothy M D Ebbels
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Elin Thysell
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
32
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
33
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
34
|
Cao M, Bu C, Zhang J, Ren Y, Zhou G, Chen C, Han G, Jiang SW, Wen J. Exosomal Circular RNA hsa_circ_0046060 of Umbilical Cord Mesenchymal Stromal Cell Ameliorates Glucose Metabolism and Insulin Resistance in Gestational Diabetes Mellitus via the miR-338-3p/G6PC2 Axis. Int J Endocrinol 2022; 2022:9218113. [PMID: 35726320 PMCID: PMC9206588 DOI: 10.1155/2022/9218113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Impaired glucose metabolism and insulin sensitivity have been linked to the pathogenesis of gestational diabetes mellitus (GDM). Exosomes secreted by the umbilical cord mesenchymal stromal cells (UMSCs) and circular RNAs (circRNAs) derived from exosomes have been shown to be associated with the progression of GDM-related complications. METHODS UMSCs were isolated from umbilical cords and identified through flow cytometry. Exosomes were isolated from UMSCs and were then characterized. The expression levels of RNA of hsa_circ_0046060, mmu_circ_0002819, and miR-338-3p were determined by quantitative real-time polymerase chain reaction (RT-qPCR). The intracellular glucose intake and glycogen content were measured using a High Sensitivity Glucose Assay Kit and Glycogen Assay Kit, respectively. Bioinformatics analysis and luciferase reporter assay were used to validate interactions among hsa_circ_0046060, miR-338-3p, and G6PC2. The expression of insulin receptor substrate-1 (IRS-1) and its phosphorylated form, (p-IRS-1), as well as G6PC2, was determined through western blotting. RESULTS UMSCs and exosomes were successfully isolated and identified. The upregulation of hsa_circ_0046060 decreased the intracellular glucose content in L-02 cells (43.45 vs. 16.87 pM/mg, P=0.0002), whereas shRNA-mediated downregulation reversed this effect (16.87 vs. 33.16 pM/mg, P=0.0011). Mmu_circ_0002819 in mice aggravated dysregulated glucose metabolism (49.88 vs. 21.69 pM/mg, P=0.0031) and insulin sensitivity (0.20 vs. 0.11 mg/mL, P=0.03) in GDM mice, which was abrogated by the knockdown of mmu_circ_0002819. The results of luciferase reporter assay revealed that miR-338-3p and G6PC2 were the potential targets of has_circ_0046060. Western blotting results showed that the reduced activation of IRS-1 induced by GDM (1.25 vs. 0.54, P=0.0001) could be rescued by the administration of si-circ-G-UMSC-EXOs (0.54 vs. 1.17, P=0.0001). CONCLUSION Taken together, the inhibition of hsa_circ_0046060 expression in exosomes from GDM-derived UMSCs can alleviate GDM by reversing abnormal glucose metabolism and insulin resistance in vivo and in vitro.
Collapse
Affiliation(s)
- Minkai Cao
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
- Department of Obstetrics and Gynecology, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Chaozhi Bu
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yongwei Ren
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Guanlun Zhou
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Chao Chen
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Guorong Han
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| |
Collapse
|
35
|
Downie CG, Dimos SF, Bien SA, Hu Y, Darst BF, Polfus LM, Wang Y, Wojcik GL, Tao R, Raffield LM, Armstrong ND, Polikowsky HG, Below JE, Correa A, Irvin MR, Rasmussen-Torvik LJF, Carlson CS, Phillips LS, Liu S, Pankow JS, Rich SS, Rotter JI, Buyske S, Matise TC, North KE, Avery CL, Haiman CA, Loos RJF, Kooperberg C, Graff M, Highland HM. Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE Study. Diabetologia 2022; 65:477-489. [PMID: 34951656 PMCID: PMC8810722 DOI: 10.1007/s00125-021-05635-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is a growing global public health challenge. Investigating quantitative traits, including fasting glucose, fasting insulin and HbA1c, that serve as early markers of type 2 diabetes progression may lead to a deeper understanding of the genetic aetiology of type 2 diabetes development. Previous genome-wide association studies (GWAS) have identified over 500 loci associated with type 2 diabetes, glycaemic traits and insulin-related traits. However, most of these findings were based only on populations of European ancestry. To address this research gap, we examined the genetic basis of fasting glucose, fasting insulin and HbA1c in participants of the diverse Population Architecture using Genomics and Epidemiology (PAGE) Study. METHODS We conducted a GWAS of fasting glucose (n = 52,267), fasting insulin (n = 48,395) and HbA1c (n = 23,357) in participants without diabetes from the diverse PAGE Study (23% self-reported African American, 46% Hispanic/Latino, 40% European, 4% Asian, 3% Native Hawaiian, 0.8% Native American), performing transethnic and population-specific GWAS meta-analyses, followed by fine-mapping to identify and characterise novel loci and independent secondary signals in known loci. RESULTS Four novel associations were identified (p < 5 × 10-9), including three loci associated with fasting insulin, and a novel, low-frequency African American-specific locus associated with fasting glucose. Additionally, seven secondary signals were identified, including novel independent secondary signals for fasting glucose at the known GCK locus and for fasting insulin at the known PPP1R3B locus in transethnic meta-analysis. CONCLUSIONS/INTERPRETATION Our findings provide new insights into the genetic architecture of glycaemic traits and highlight the continued importance of conducting genetic studies in diverse populations. DATA AVAILABILITY Full summary statistics from each of the population-specific and transethnic results are available at NHGRI-EBI GWAS catalog ( https://www.ebi.ac.uk/gwas/downloads/summary-statistics ).
Collapse
Affiliation(s)
- Carolina G Downie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Sofia F Dimos
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Burcu F Darst
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Linda M Polfus
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole D Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah G Polikowsky
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer E Below
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adolfo Correa
- Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura J F Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher S Carlson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Medicine, Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Simin Liu
- Department of Medicine, Division of Endocrinology, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
- Department of Epidemiology, Brown School of Public Health, Providence, RI, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, Genome Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Zhu Q, Yao Y, Xu L, Wu H, Wang W, He Y, Wang Y, Lu Y, Qi J, Ding Y, Li X, Huang J, Zhao H, Du Y, Sun K, Sun Y. Elevated SAA1 promotes the development of insulin resistance in ovarian granulosa cells in polycystic ovary syndrome. Reprod Biol Endocrinol 2022; 20:4. [PMID: 34980155 PMCID: PMC8721971 DOI: 10.1186/s12958-021-00873-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) contributes to ovarian dysfunctions in polycystic ovarian syndrome (PCOS) patients. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver in response to inflammation. In addition to its role in inflammation, SAA1 may participate in IR development in peripheral tissues. Yet, expressional regulation of SAA1 in the ovary and its role in the pathogenesis of ovarian IR in PCOS remain elusive. METHODS Follicular fluid, granulosa cells and peripheral venous blood were collected from PCOS and non-PCOS patients with and without IR to measure SAA1 abundance for analysis of its correlation with IR status. The effects of SAA1 on its own expression and insulin signaling pathway were investigated in cultured primary granulosa cells. RESULTS Ovarian granulosa cells were capable of producing SAA1, which could be induced by SAA1 per se. Moreover, the abundance of SAA1 significantly increased in granulosa cells and follicular fluid in PCOS patients with IR. SAA1 treatment significantly attenuated insulin-stimulated membrane translocation of glucose transporter 4 and glucose uptake in granulosa cells through induction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression with subsequent inhibition of Akt phosphorylation. These effects of SAA1 could be blocked by inhibitors for toll-like receptors 2/4 (TLR 2/4) and nuclear factor kappa light chain enhancer of activated B (NF-κB). CONCLUSIONS Human granulosa cells are capable of feedforward production of SAA1, which significantly increased in PCOS patients with IR. Excessive SAA1 reduces insulin sensitivity in granulosa cells via induction of PTEN and subsequent inhibition of Akt phosphorylation upon activation of TLR2/4 and NF-κB pathway. These findings highlight that elevation of SAA1 in the ovary promotes the development of IR in granulosa cells of PCOS patients.
Collapse
Affiliation(s)
- Qinling Zhu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yue Yao
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Lizhen Xu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Hasiximuke Wu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yaqiong He
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yuan Wang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yao Lu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Jia Qi
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Ying Ding
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Xinyu Li
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Jiaan Huang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Hanting Zhao
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China.
| | - Yun Sun
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
37
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|