1
|
Shi L, Simas TAM, Lichtenstein AH, Zhang Y, Sun Q, Hayman LL. Urinary enterolignan concentrations and cardiometabolic risk biomarkers in pregnant US women. Nutr J 2025; 24:82. [PMID: 40405289 PMCID: PMC12096747 DOI: 10.1186/s12937-025-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/30/2025] [Indexed: 05/24/2025] Open
Abstract
OBJECTIVE Prior evidence suggests that dietary lignans may mitigate inflammation, attenuate insulin resistance, and improve blood lipids. Little is known about the effects of lignans in pregnant women who are at elevated risk of glucose and lipid abnormalities, partially due to increase in estrogen levels during pregnancy. This study was designed to investigate the association between dietary lignan intake, measured as urinary enterolignans (enterodiol and enterolactone), with blood biomarkers of cardiometabolic risks in pregnant women. RESEARCH DESIGN AND METHODS We analyzed data from 480 pregnant women who participated in the National Health and Nutrition Examination Survey (NHANES) 1999-2010 and had data for urinary enterolignan concentrations. Multivariable linear regression analyses were used to examine the association between urinary enterolignan concentrations and cardiometabolic risk biomarkers. Cardiometabolic risk markers were log-transformed and geometric means were calculated by quartiles of urinary enterolignan concentrations. RESULTS Higher urinary enterolignan concentrations were associated with a more beneficial cardiometabolic profile: comparing women in the highest versus lowest quartiles of total enterolignan concentrations, high-density lipoprotein cholesterol (HDL-C) was 62 versus 54 mg/dL (P for trend = 0.01); triacylglycerol (TG) was 141 versus 171 mg/dL (P for trend = 0.004); TG/HDL-C ratio was 2.3 versus 3.2 (P for trend = 0.001); Total cholesterol (TC)/HDL-C ratio was 3.4 versus 3.9 (P for trend = 0.03); C-reactive protein (CRP) was 0.4 versus 0.7 mg/dL (P for trend = 0.01); and fasting insulin was 7.7 versus 13.9 μU/mL (P for trend < 0.0001). CONCLUSIONS Lignan intake may have favorable effects on cardiometabolic risk markers in pregnant women. KEY MESSAGES The results of our study showed that urinary excretion of enterolignans were inversely associated with cardiometabolic risk markers in pregnant women. These findings support further investigation on the role of lignans in modifying lipid and glucose metabolism. Given the high prevalence of maternal insulin resistance and hyperlipidemia and its serious health consequences for both women and their offspring, the use of lignans, if demonstrated to be efficacious, could provide a cost-effective option for curbing this epidemic by prevention and early treatment.
Collapse
Affiliation(s)
- Ling Shi
- Department of Nursing, Manning College of Nursing and Health Sciences, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, MA 02125, USA.
| | - Tiffany A Moore Simas
- Department of Obstetrics & Gynecology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center On Aging, Tufts University, Boston, MA, 02111, USA
| | - Yuqing Zhang
- College of Nursing, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Harvard School of Medicine, Boston, MA, 02115, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Laura L Hayman
- Department of Nursing, Manning College of Nursing and Health Sciences, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, MA 02125, USA
| |
Collapse
|
2
|
Kamaly HF, Hassan AM, Youssef ZM, Ahmed Mustafa FEZ. Histological, immunohistochemical assessment and DNA fingerprint species identification of some meat products in Egypt. Sci Rep 2025; 15:14978. [PMID: 40301444 PMCID: PMC12041293 DOI: 10.1038/s41598-025-97633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
A total of sixty commercial beef products, represented by minced meat, sausage, kofta, and burger, with fifteen samples per product, were collected randomly from different markets in Assiut city, Egypt. Samples were examined histologically, immunohistochemically and molecularly to investigate tissue composition and species substitution. Polymerase Chain Reaction (PCR) was applied to confirm the beef origin of different marketed beef products and determine if there are any adulteration and/or contamination with rodents and canine species. The histological investigation finds significant differences in skeletal muscle content, with the highest proportion in minced meat, whereas the lowest detected in kofta. Several animal tissues were detected, including adipose tissue, collagen, cartilage, and bone, where kofta showed the highest levels. We also detected plant tissues, predominantly found in burger samples. Expression Bcl2 indicated the maximum intensity in sausage, while burger showed the lowest expression. PCR results revealed that 89.13% were pure beef products, 10.87% were with rat meat contamination, and 100% of examined samples were negative for canine species. These results highlight the efficacy of histology, Bcl2 immunohistochemistry and PCR in assessing meat quality and distinguishing adulteration.
Collapse
Affiliation(s)
- Heba F Kamaly
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt
| | - Abeer M Hassan
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt
| | - Zainab Ma Youssef
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt
| | | |
Collapse
|
3
|
Sinuhaji TRF, Ramadhani S, Setiawan VK, Baroroh U. Targeting diabetes with flavonoids from Indonesian medicinal plants: a review on mechanisms and drug discovery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04139-2. [PMID: 40202673 DOI: 10.1007/s00210-025-04139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The rich biodiversity of Indonesia provides a wide variety of plants rich in flavonoids, which show promising potential as antidiabetic agents. Flavonoids are polyphenolic compounds recognized for their broad biological activities, such as antioxidant, anti-inflammatory, and antidiabetic effects. Traditional Indonesian medicinal plants such as Syzygium cumini, Moringa oleifera, and Curcuma longa are currently being studied for their flavonoid content and potential in diabetes treatment. Studies suggest that flavonoids can influence crucial pathways in diabetes management, including enhancing insulin sensitivity, boosting insulin production, and safeguarding pancreatic β cells against damage caused by oxidative stress. For example, quercetin and kaempferol, flavonoids in many Indonesian plants, have demonstrated potential for managing glucose metabolism and lowering high blood sugar levels. Additionally, these substances have been shown to inhibit enzymes such as α-glucosidase and α-amylase, which are involved in the breakdown of carbohydrates, thus aiding in the regulation of blood sugar levels after meals. The antioxidant qualities of flavonoids play a crucial role in fighting oxidative stress and are a significant contributor to the development of diabetes and related complications. Flavonoids help neutralize free radicals and enhance the body's antioxidant protection, reducing oxidative harm and promoting metabolic wellness. Additionally, their anti-inflammatory properties aid in reducing the chronic inflammation linked to insulin resistance and β-cell dysfunction. Formulation advancements, such as nanocarrier technology, have been explored to boost the effectiveness of flavonoid-based therapies. Due to its vast plant diversity, Indonesia offers a potential reservoir for new antidiabetic drugs, meriting additional research and development with the aim of this review providing new knowledge on the potential of flavonoids that can play a role in the treatment of diabetes.
Collapse
Affiliation(s)
- Tubagus Rayyan Fitra Sinuhaji
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia.
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia.
| | - Sintha Ramadhani
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Prof. Dr. Hamka, 13460, Jakarta, Indonesia
| | - Volta Kellik Setiawan
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Mulawarman University, 75119, Samarinda, Indonesia
| | - Umi Baroroh
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biotechnology Pharmacy, Indonesian School of Pharmacy, 40266, Bandung, Indonesia
| |
Collapse
|
4
|
Al Amin M, Dehbia Z, Nafady MH, Zehravi M, Kumar KP, Haque MA, Baig MS, Farhana A, Khan SL, Afroz T, Koula D, Tutone M, Nainu F, Ahmad I, Emran TB. Flavonoids and Alzheimer’s disease: reviewing the evidence for neuroprotective potential. Mol Cell Biochem 2025; 480:43-73. [PMID: 38568359 DOI: 10.1007/s11010-023-04922-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2025]
|
5
|
Chakraborty D, Malik S, Mann S, Agnihotri P, Joshi L, Biswas S. Chronic disease management via modulation of cellular signaling by phytoestrogen Bavachin. Mol Biol Rep 2024; 51:921. [PMID: 39158613 DOI: 10.1007/s11033-024-09849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The emergence of chronic diseases, particularly cancers, cardiovascular, and bone disorders, presents a formidable challenge, as currently available synthetic drugs often result in significant side effects and incur higher costs. Phytoestrogen Bavachin, present in the Psoralea corylifolia L. plant, represents structural and functional similarity to mammalian estrogen and has recently attracted researchers for its medicinal properties. This review spotlighted the extraction methods, bioavailability and therapeutic interventions of Bavachin against diseases. Bavachin exerted estrogenic properties, demonstrating the ability to bind to estrogen receptors (ERs), mimicking the actions of human estrogen and initiating estrogen-responsive pathways. Bavachin delivered potent therapeutic ventures in abrogating chronic diseases, including cancer, neuronal, bone, cardiovascular, skin, lung, and liver disorders via targeting signaling transductions, managing calcium signaling, immune regulation, inflammation, apoptosis, and oxidative stress. In-silico analysis, including Gene ontology and pathway enrichment analysis, retrieved molecular targets of Bavachin, majorly cytochrome c oxidase (COX), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and ER, hypothesizing Bavachin's cellular mechanism in preventing crucial health ailments. Limitations of Bavachin were also summarized, evidenced by hepatotoxicity at specific dosage levels. In conclusion, Bavachin showed promising therapeutic efficacy in suppressing chronic diseases and can be considered as an adequate replacement for hormone replacement therapy, necessitating further investigations on its effectiveness, safety, and clinical outcomes.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Malik
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonia Mann
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lovely Joshi
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Ellouze I, Korlagunta K, Lucas EA, Payton M, Singar S, Arjmandi BH. The Effects of Flaxseed Consumption on Glycemic Control in Native American Postmenopausal Women with Hyperglycemia and Hyperlipidemia. Healthcare (Basel) 2024; 12:1392. [PMID: 39057535 PMCID: PMC11276366 DOI: 10.3390/healthcare12141392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose control in postmenopausal women is influenced by many factors, such as hormones, lifestyle variables, and genetics. Limited data exist on the effect of whole flaxseed on glucose status in postmenopausal Native American women. The aim of this study was to investigate the glucose management effect of a flaxseed dietary intervention on postmenopausal Native American women. In this study, 55 Native American postmenopausal women (aged 47-63 years) with borderline hyperglycemia (>100 and <126 mg/dL) and mild to moderate hypercholestorolemia (≥200 to ≤380 mmol/L), who were not on hormone replacement therapy, were enrolled. Participants were randomly assigned to one of the three dietary regimens (control, flaxseed, and flaxseed + fiber) for three months, receiving interventions in the form of bread, muffins, and flaxseed powder. Despite daily consumption of flaxseed across diverse food formats, no significant changes in glucose (p = 0.3, p = 0.2), insulin levels (p = 0.59, p = 0.9), or HOMA-IR (p = 0.84, p = 0.66) were observed compared to their respective baseline values within the flaxseed and flaxseed + fiber groups, respectively. Conversely, the control group showed a significant rise in final glucose values from baseline (p = 0.01). However, the incorporation of ground flaxseed into low-glycemic foods holds potential for beneficial effects through maintaining glucose status among postmenopausal Native American women. This research provides critical insights into the effects of flaxseed, emphasizing the need for continued exploration to understand its role in supporting glucose management among postmenopausal Native American women. Further exploration is required to investigate the potential long-term impact and the use of flaxseed in managing glucose levels in this demographic.
Collapse
Affiliation(s)
- Ines Ellouze
- Functional Physiology and Bio-Resources Valorization Laboratory, Higher Institute of Biotechnology of Beja, Jendouba University, Beja 9000, Tunisia
| | | | - Edralin A. Lucas
- Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mark Payton
- Biomedical Sciences, Rocky Vista University, Englewood, CO 80112, USA;
| | - Saiful Singar
- Nutrition, Food, and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Bahram H. Arjmandi
- Nutrition, Food, and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
8
|
Bushra A, Riaz S, Abul Qais F, Faizy AF, Moin S, Mateen S. Biochanin obstructs human serum albumin from non-enzymatic glycation: an in vitro approach. J Biomol Struct Dyn 2024:1-13. [PMID: 38715440 DOI: 10.1080/07391102.2024.2335305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2025]
Abstract
Various serum proteins, like Human Serum Albumin (HSA) and others, are susceptible to glycation and the formation of Advanced Glycation End Products (AGEs). Diabetes and other diseases are associated with AGE development. Recently, isoflavones have been studied for their therapeutic benefits. In the present study, we glycated HSA with Methylglyoxal (MGO) with and without the test compound, i.e., Biochanin A (BCA), to test its antiglycating capacity. We studied the biochemical and biophysical effects of glycation on HSA with and without BCA and also took the help of the in silico technique. Analytical methods included intrinsic and extrinsic fluorescence, polyacrylamide gel electrophoresis (PAGE), UV spectroscopy, far UV circular dichroism, and others. For structural comprehension, TEM and SEM were used. Molecular docking and simulation were employed to observe BCA-HSA's site-specific interaction. Since HSA is a therapeutically relevant protein involved in many disorders, this study's findings are important.
Collapse
Affiliation(s)
- Anum Bushra
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Sana Riaz
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Abul Faiz Faizy
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Somaiya Mateen
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
10
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
11
|
Kang JH, Dong Z, Shin SH. Benefits of Soybean in the Era of Precision Medicine: A Review of Clinical Evidence. J Microbiol Biotechnol 2023; 33:1552-1562. [PMID: 37674385 PMCID: PMC10774093 DOI: 10.4014/jmb.2308.08016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Soybean (Glycine max) is an important ingredient of cuisines worldwide. While there is a wealth of evidence that soybean could be a good source of macronutrients and phytochemicals with health-promoting effects, concerns regarding adverse effects have been raised. In this work, we reviewed the current clinical evidence focusing on the benefits and risks of soybean ingredients. In breast, prostate, colorectal, ovarian, and lung cancer, epidemiological studies showed an inverse association between soybean food intake and cancer risks. Soybean intake was inversely correlated with risks of type 2 diabetes mellitus (T2DM), and soy isoflavones ameliorated osteoporosis and hot flashes. Notably, soybean was one of the dietary protein sources that may reduce the risk of breast cancer and T2DM. However, soybean had adverse effects on certain types of drug treatment and caused allergies. In sum, this work provides useful considerations for planning clinical soybean research and selecting dietary protein sources for human health.
Collapse
Affiliation(s)
- Jung Hyun Kang
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou 450008, Henan, P.R. China
| | - Seung Ho Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Bio & Medical Bigdata (BK4 Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Wang T, Wang YY, Shi MY, Liu L. Mechanisms of action of natural products on type 2 diabetes. World J Diabetes 2023; 14:1603-1620. [DOI: 10.4239/wjd.v14.i11.1603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past several decades, type 2 diabetes mellitus (T2DM) has been considered a global public health concern. Currently, various therapeutic modalities are available for T2DM management, including dietary modifications, moderate exercise, and use of hypoglycemic agents and lipid-lowering medications. Although the curative effect of most drugs on T2DM is significant, they also exert some adverse side effects. Biologically active substances found in natural medicines are important for T2DM treatment. Several recent studies have reported that active ingredients derived from traditional medicines or foods exert a therapeutic effect on T2DM. This review compiled important articles regarding the therapeutic effects of natural products and their active ingredients on islet β cell function, adipose tissue inflammation, and insulin resistance. Additionally, this review provided an in-depth understanding of the multiple regulatory effects on different targets and signaling pathways of natural medicines in the treatment of T2DM as well as a theoretical basis for clinical effective application.
Collapse
Affiliation(s)
- Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yang-Yang Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Meng-Yue Shi
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
13
|
Lee SH, Lim TJ, Yun EJ, Kim KH, Lim S. Anti-Menopausal Effect of Soybean Germ Extract and Lactobacillus gasseri in the Ovariectomized Rat Model. Nutrients 2023; 15:4485. [PMID: 37892560 PMCID: PMC10609938 DOI: 10.3390/nu15204485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Menopause is a significant phase in a woman's life. Menopausal symptoms can affect overall well-being and quality of life. Conventionally, hormone replacement therapy (HRT) is used to alleviate menopausal symptoms; however, depending on the conditions, HRT may lead to side effects, necessitating the exploration of alternative therapies with fewer side effects. In this study, we investigated the effects of a combination of soybean germ extract (S30) containing 30% (w/w) isoflavone and a probiotic, Lactobacillus gasseri (LGA1), on menopausal conditions in an ovariectomized (OVX) rat model. We evaluated the impact of S30+LGA on body weight, estrogen markers, uterine and bone health, vascular markers, and neurotransmitter levels. The results revealed that treatment with S30+LGA1 significantly improved body weight and uterine and bone health. Moreover, S30+LGA1 demonstrated promising effects on lipid profile, liver function, and vascular markers and positively impacted serotonin and norepinephrine levels, indicating potential mood-enhancing effects. In conclusion, S30+LGA1, possessing anti-menopausal effects in vitro and in vivo, can be recommended as a soy-based diet, which offers various health benefits, especially for menopausal women.
Collapse
Affiliation(s)
- Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Joong Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea;
| | - Eun Ju Yun
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea;
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea;
| |
Collapse
|
14
|
Guimarães VHD, Lelis DDF, Oliveira LP, Borém LMA, Guimarães FAD, Farias LC, de Paula AMB, Guimarães ALS, Santos SHS. Comparative study of dietary fat: lard and sugar as a better obesity and metabolic syndrome mice model. Arch Physiol Biochem 2023; 129:449-459. [PMID: 33176505 DOI: 10.1080/13813455.2020.1835986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diet macronutrient heterogeneity hinders animal studies' data extrapolation from metabolic disorders to human diseases. OBJECTIVE The present study aimed to evaluate different fat-diet compositions' effect on inducing lipid/glucose metabolism alterations in mice. METHODS Swiss male mice were fed for 12 weeks with five different diets: Standard Diet (ST), American Institute of Nutrition 93 for growth (AIN93G) high-butter/high-sugar (HBHS), high-lard/high-sugar (HLHS), and high-oil/high-sugar diet (soybean oil) (HOHS). Several parameters, such as serum biochemistry, histology, and liver mRNA expression, were accessed. RESULTS The main findings revealed that the HLHS diet dramatically altered liver metabolism inducing hepatic steatosis and increased total cholesterol, triglycerides, VLDL, increasing liver CCAAT/enhancer binding protein (CEBP-α), Acetyl-CoA carboxylase (ACC) and Catalase (CAT) mRNA expression. Moreover, the HLHS diet increased glucose intolerance and reduced insulin sensitivity. CONCLUSIONS High-fat/high-sugar diets are efficient to induce obesity and metabolic syndrome-associated alterations, and diets enriched with lard and sugar showed more effective results.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Deborah de Farias Lelis
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Luis Paulo Oliveira
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | | | - Felipe Alberto Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Alfredo Mauricio Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
- Institute of Agricultural Sciences (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brasil
| |
Collapse
|
15
|
The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway. Antioxidants (Basel) 2023; 12:antiox12020236. [PMID: 36829795 PMCID: PMC9952802 DOI: 10.3390/antiox12020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Redox balance is essential to maintain the body's normal metabolism. Once disrupted, it may lead to various chronic diseases, such as diabetes, neurodegenerative diseases, cardiovascular diseases, inflammatory diseases, cancer, aging, etc. Oxidative stress can cause or aggravate a series of pathological processes. Inhibition of oxidative stress and related pathological processes can help to ameliorate these chronic diseases, which have been found to be associated with Nrf2 activation. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damage, but also directly regulate genes related to the above-mentioned pathological processes to counter the corresponding changes. Therefore, targeting Nrf2 has great potential for the prevention or treatment of chronic diseases, and many natural phytochemicals have been reported as Nrf2 activators although the defined mechanisms remain to be elucidated. This review article focuses on the possible mechanism of Nrf2 activation by natural phytochemicals in the prevention or treatment of chronic diseases and the regulation of oxidative stress. Moreover, the current clinical trials of phytochemical-originated drug discovery by targeting the Nrf2-ARE pathway were also summarized; the outcomes or the relationship between phytochemicals and chronic diseases prevention are finally analyzed to propose the future research strategies and prospective.
Collapse
|
16
|
Effects of phytoestrogens on reproductive organ health. Arch Pharm Res 2022; 45:849-864. [DOI: 10.1007/s12272-022-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
|
17
|
Nasimi Doost Azgomi R, Moini Jazani A, Karimi A, Pourreza S. Potential roles of genistein in polycystic ovary syndrome: A comprehensive systematic review. Eur J Pharmacol 2022; 933:175275. [PMID: 36108737 DOI: 10.1016/j.ejphar.2022.175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most prevalent polygenic endocrine disorders in reproductive-age women. Genistein is a soy-isolated phytoestrogen and isoflavone with antioxidant, anti-inflammatory, estrogenic, and antineoplastic activity. This systematic review aimed to investigate the therapeutic effects and mechanisms of actions of genistein in PCOS. The present study was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. We searched PubMed, Scopus, Embase, and Google Scholar databases up to February 2022 using relative keywords. Studies published in English evaluated genistein's effects on PCOS, and its related symptoms were considered. Out of 298 records screened, only 13 articles met the inclusion criteria: Nine animal and 4 human studies. The results of the current study indicated that genistein supplementation may effectively improve PCOS-related symptoms by decreasing insulin resistance and anthropometric indices, improving ovarian morphology and regulating reproductive hormones, and reducing oxidative stress and inflammation by influencing biological pathways. According to the current literature, genistein may diminish the dues of PCOS. Therefore, this study shows that genistein can be considered an effective agent. in reducing the complications of PCOS. However, further studies are recommended for a broad conclusion on the exact mechanism of genistein in PCOS patients.
Collapse
Affiliation(s)
- Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Fu Y, Li Z, Xiao S, Zhao C, Zhou K, Cao S. Ameliorative effects of chickpea flavonoids on redox imbalance and mitochondrial complex I dysfunction in type 2 diabetic rats. Food Funct 2022; 13:8967-8976. [PMID: 35938733 DOI: 10.1039/d2fo00753c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chickpeas are an important source of flavonoids in the human diet, and researchers have demonstrated that flavonoids have antidiabetic compositions in chickpeas. Because the NAD+/NADH redox balance is heavily perturbed in diabetes and complex I is the only site for NADH oxidation and NAD+ regeneration, in the present study, mitochondrial complex I was used as a target for anti-diabetes. The objective of this study was to investigate the effects of a crude chickpea flavonoid extract (CCFE) on NAD+/NADH redox imbalance and mitochondrial complex I dysfunction in the pancreas as well as oxidative stress in type 2 diabetes mellitus (T2DM) rats. Our results demonstrated that the degree of NAD+/NADH redox imbalance in the pancreas of T2DM rats was alleviated by CCFE, which is likely attributed to the inhibition of the polyol pathway and the decrease in poly ADP ribose polymerase (PARP) and sirtuin 3 (Sirt3) activities. Moreover, mitochondrial complex I dysfunction in the pancreas of T2DM rats was ameliorated by CCFE through the suppression of the activity of complex I. Furthermore, CCFE treatment could attenuate oxidative stress in T2DM rats, which was proven by the reduction in hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as the upregulation of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in serum. CCFE treatment significantly improved dyslipidemia in T2DM rats.
Collapse
Affiliation(s)
- Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Zhenglei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Shiqi Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Caiyun Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Keqiang Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Shenyi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| |
Collapse
|
19
|
Shi J, Fang H, Guo Q, Yu D, Ju L, Cheng X, Piao W, Xu X, Li Z, Mu D, Zhao L, He L. Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017. Nutrients 2022; 14:nu14173524. [PMID: 36079782 PMCID: PMC9460434 DOI: 10.3390/nu14173524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study aims to determine the associations of dietary patterns with metabolic syndrome (MetS) and its components in Chinese children and adolescents aged 7–17 in 2016–2017. Using the data from the China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017, the sociodemographic information, diet, anthropometric measurements and clinical examinations of subjects were obtained, and a total of 13,071 school-aged children and adolescents were included in this study. The Cook criteria were used to define MetS and its components. Dietary intake was derived from 24-h dietary records for three consecutive days, combined with the weighing method. Factor analysis was used to identify major dietary patterns. The associations of dietary patterns with MetS and its components were examined by logistic regression analysis. Consequently, five distinct dietary patterns were identified by factor analysis, and the relationships between dietary patterns with MetS and its components were observed. After adjusting for covariates, the animal product and vegetable patterns may have a positive association with MetS; the condiment pattern was positively associated with low HDL-C; the fruit and junk food patterns had positive relationships with MetS, abdominal obesity and high TG; the cereals and tubers pattern was positively associated with MetS, abdominal obesity, high TG and low HDL-C; the beans pattern was positively associated with high TG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Li He
- Correspondence: ; Tel.: +86-010-6623-7033
| |
Collapse
|
20
|
Effect of Siberian Ginseng Water Extract as a Dietary Additive on Growth Performance, Blood Biochemical Indexes, Lipid Metabolism, and Expression of PPARs Pathway-Related Genes in Genetically Improved Farmed Tilapia (Oreochromis niloticus). FISHES 2022. [DOI: 10.3390/fishes7040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overnutrition in high-density aquaculture can negatively affect the health of farmed fish. The Chinese herbal medicine Siberian ginseng (Acanthopanax senticosus, AS) can promote animal growth and immunity, and regulate lipid metabolism. Therefore, we conducted an 8-week experiment, in which Oreochromis niloticus was fed with a diet supplemented with different concentrations of AS water extract (ASW) (0‰, 0.1‰, 0.2‰, 0.4‰, 0.8‰, and 1.6‰). The ASW improved the growth performance and increased the specific growth rate (SGR). Linear regression analysis based on the SGR estimated that the optimal ASW amount was 0.74‰. Dietary supplementation with 0.4–0.8‰ ASW reduced the triglyceride and total cholesterol levels in the serum and liver, and regulated lipid transport by increasing the high-density lipoprotein cholesterol concentration and lowering the low-density lipoprotein cholesterol concentration. Dietary supplementation with ASW increased the activities of superoxide dismutase and catalase in the liver, thereby improving the antioxidant capacity. Moreover, ASW modulated the transcription of genes in the peroxisome proliferator-activated receptor signaling pathway in the liver (upregulation of PPARα, APOA1b, and FABP10a and downregulation of PPARγ), thereby regulating fatty acid synthesis and metabolism and slowing fat deposition. These results showed that 0.4–0.8‰ ASW can slow fat deposition and protected the liver from cell damage and abnormal lipid metabolism.
Collapse
|
21
|
Phytochemical-conjugated bio-safe gold nanoparticles in breast cancer: a comprehensive update. Breast Cancer 2022; 29:761-777. [PMID: 35578088 DOI: 10.1007/s12282-022-01368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/26/2022] [Indexed: 01/02/2023]
Abstract
Breast cancer is the most common malignancy in women and is rated among one of the three common malignancies worldwide in combination with colon and lung cancer. The escalating mortality rate of breast cancer patients has captivated the attention of the present-day researchers to come up with new management options. According to WHO, early detection, timely diagnosis and comprehensive breast cancer management are the three cornerstones for controlling breast cancer incidences per year. Multidisciplinary theragnostic approaches for simultaneous diagnosis and treatment of breast cancer have further enriched the therapeutic arsenal. Imaging and biopsy play a significant role in the diagnosis of breast cancer. The treatment plan mostly initiates with general surgery or radiation therapy followed up with adjuvant and/or neoadjuvant therapy. Conventional chemotherapeutics in breast cancer suffer from toxicity and lack of site specificity. Bio-safe gold nanoparticles hold sufficient promise for bridging this gap. Diverse phytochemicals-based synthesis routes to arrive at nano-dimensional gold with spotlight on reaction mechanisms, reaction variables, specific advantages, toxicity and their influence in breast cancer conditions are the focus of this work. This review marks the first attempt to explore the potential of phytochemical-derived nano-gold in breast cancer treatment.
Collapse
|
22
|
Loutchanwoot P, Harnsoongnoen S. Microwave Microfluidic Sensor for Detection of High Equol Concentrations in Aqueous Solution. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:244-251. [PMID: 35196242 DOI: 10.1109/tbcas.2022.3153459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents a Peano fractal geometry complementary split ring resonator (PFCSRR) loaded microstrip transmission line with a microfluidic channel for equol (EQ) sensing in a high and wide range of concentrations in aqueous solution. The proposed sensor was designed based on a CSRR loaded microstrip line with a Peano fractal in the center of a CSRR and validated through simulation and experiment. The microfluidic channel was fabricated using polydimethylsiloxane (PDMS) and installed to cover the sensing area. The free space, empty microfluidic channels, deionized (DI) water, dimethyl sulfoxide (DMSO), and various concentrations of EQ were measured by a microwave sensor through sample-filled microfluidic channels. Detection of high levels of EQ was in the concentration range of 0.01 mM - 100 mM. The materials under test (MUTs) were measured in the frequency range of 1.0 GHz-3.5 GHz based on the magnitude of the transmission coefficient (S21) and resonance frequency (Fr) at room temperature. The S21 and Fr were recorded and analyzed by logarithmic concentrations of EQ for the determinant of the correlations between EQ concentration and S21 and Fr. Principal component analysis (PCA) and K-means clustering were used to analyze and classify groups of MUTs.
Collapse
|
23
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Rahaman MS, Islam F, Ahmed M, Mitra S, Khandaker MU, Idris AM, Chidambaram K, Emran TB, Cavalu S. The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules 2022; 27:1713. [PMID: 35268815 PMCID: PMC8911649 DOI: 10.3390/molecules27051713] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people's lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia;
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
24
|
Lacouture A, Lafront C, Peillex C, Pelletier M, Audet-Walsh É. Impacts of endocrine-disrupting chemicals on prostate function and cancer. ENVIRONMENTAL RESEARCH 2022; 204:112085. [PMID: 34562481 DOI: 10.1016/j.envres.2021.112085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Because of their historical mode of action, endocrine-disrupting chemicals (EDCs) are associated with sex-steroid receptors, namely the two estrogen receptors (ERα and ERβ) and the androgen receptor (AR). Broadly, EDCs can modulate sex-steroid receptor functions. They can also indirectly impact the androgen and estrogen pathways by influencing steroidogenesis, expression of AR or ERs, and their respective activity as transcription factors. Additionally, many of these chemicals have multiple cellular targets other than sex-steroid receptors, which results in a myriad of potential effects in humans. The current article reviews the association between prostate cancer and the endocrine-disrupting functions of four prominent EDC families: bisphenols, phthalates, phytoestrogens, and mycoestrogens. Results from both in vitro and in vivo models are included and discussed to better assess the molecular mechanisms by which EDCs can modify prostate biology. To overcome the heterogeneity of results published, we established common guidelines to properly study EDCs in the context of endocrine diseases. Firstly, the expression of sex-steroid receptors in the models used must be determined before testing. Then, in parallel to EDCs, pharmacological compounds acting as positive (agonists) and negative controls (antagonists) have to be employed. Finally, EDCs need to be used in a precise range of concentrations to modulate sex-steroid receptors and avoid off-target effects. By adequately integrating molecular endocrinology aspects in EDC studies and identifying their underlying molecular mechanisms, we will truly understand their impact on prostate cancer and distinguish those that favor the progression of the disease from those that slow down tumor development.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada
| | - Camille Lafront
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada
| | - Cindy Peillex
- Infectious and Immune Diseases Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Martin Pelletier
- Infectious and Immune Diseases Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada.
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada.
| |
Collapse
|
25
|
Wang SW, Lan T, Chen HF, Sheng H, Xu CY, Xu LF, Zheng F, Zhang F. Limonin, an AMPK Activator, Inhibits Hepatic Lipid Accumulation in High Fat Diet Fed Mice. Front Pharmacol 2022; 13:833705. [PMID: 35140621 PMCID: PMC8819594 DOI: 10.3389/fphar.2022.833705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023] Open
Abstract
NAFLD is the most prevalent liver disease in human history. The treatment is still limited yet. In the current study, we reported that limonin inhibited hepatic lipid accumulation and fatty acid synthesis in HFD fed mice. Using AMPK inhibitor and AMPK deficient C. elegans, we revealed the effect was dependent on the activation of AMPK. We found that limonin activated AMPK through inhibition of cellular energy metabolism and increasing ADP:ATP ratio. Furthermore, the treatment of limonin induced AMPK mediated suppression of the transcriptional activity of SREBP1/2. Our study suggests that limonin may a promising therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Si-wei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Tian Lan
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Hang-fei Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao Sheng
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-yi Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Li-feng Xu
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Fang Zheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Feng Zhang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- *Correspondence: Feng Zhang,
| |
Collapse
|
26
|
Zhou C, Liu C, Zhang Z, Liu M, Zhang Y, Li H, He P, Li Q, Qin X. Variety and quantity of dietary protein intake from different sources and risk of new-onset diabetes: a Nationwide Cohort Study in China. BMC Med 2022; 20:6. [PMID: 35022027 PMCID: PMC8756636 DOI: 10.1186/s12916-021-02199-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The relation of the variety and quantity of different sources of dietary proteins intake and diabetes remains uncertain. We aimed to investigate the associations between the variety and quantity of proteins intake from eight major food sources and new-onset diabetes, using data from the China Health and Nutrition Survey (CHNS). METHODS 16,260 participants without diabetes at baseline from CHNS were included. Dietary intake was measured by three consecutive 24-h dietary recalls combined with a household food inventory. The variety score of protein sources was defined as the number of protein sources consumed at the appropriate level, accounting for both types and quantity of proteins. New-onset diabetes was defined as self-reported physician-diagnosed diabetes or fasting glucose ≥7.0mmol/L or glycated hemoglobin ≥6.5% during the follow-up. RESULTS During a median follow-up of 9.0 years, 1100 (6.8%) subjects developed diabetes. Overall, there were U-shaped associations of percentages energy from total protein, whole grain-derived and poultry-derived proteins with new-onset diabetes; J-shaped associations of unprocessed or processed red meat-derived proteins with new-onset diabetes; a reverse J-shaped association of the fish-derived protein with new-onset diabetes; L-shaped associations of egg-derived and legume-derived proteins with new-onset diabetes; and a reverse L-shaped association of the refined grain-derived protein with new-onset diabetes (all P values for nonlinearity<0.001). Moreover, a significantly lower risk of new-onset diabetes was found in those with a higher variety score of protein sources (per score increment; HR, 0.69; 95%CI, 0.65-0.72). CONCLUSIONS There was an inverse association between the variety of proteins with appropriate quantity from different food sources and new-onset diabetes.
Collapse
Affiliation(s)
- Chun Zhou
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chengzhang Liu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.,Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China
| | - Zhuxian Zhang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengyi Liu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanyuan Zhang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huan Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Panpan He
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qinqin Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.,Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China
| | - Xianhui Qin
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China. .,Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
27
|
Gu H, Gwon MH, Kim SM, Yun JM. Dietary glucosinolates inhibit splenic inflammation in high fat/cholesterol diet-fed C57BL/6 mice. Nutr Res Pract 2021; 15:798-806. [PMID: 34858556 PMCID: PMC8601941 DOI: 10.4162/nrp.2021.15.6.798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is associated with chronic inflammation. The spleen is the largest organ of the lymphatic system and has an important role in immunity. Obesity-induced inflammatory responses are triggered by Toll-like receptor (TLR)-myeloid differentiation primary response 88 (MyD88) pathway signaling. Phenethyl isothiocyanate (PEITC) and 3,3′-diindolylmethane (DIM), major dietary glucosinolates present in cruciferous vegetables, have been reported to produce anti-inflammatory effects on various diseases. However, the effects of PEITC and DIM on the obesity-induced inflammatory response in the spleen are unclear. The purpose of this study was to examine the anti-inflammatory effects of PEITC and DIM on the spleen and their mechanism in high fat/cholesterol diet (HFCD)-fed C57BL/6 mice. MATERIALS/METHODS We established an animal model of HFCD-induced obesity using C57BL/6 mice. The mice were divided into six groups: normal diet with AIN-93G diet (CON), high fat diet (60% calories from fat) with 1% cholesterol (HFCD), HFCD with PEITC 30 mg/kg/day or 75 mg/kg/day (HFCD+P30, HFCD+P75), and HFCD with DIM 1.5 mg/kg/day or 7.5 mg/kg/day (HFCD+D1.5, HFCD+D7.5). Enzyme-linked immunosorbent assay was used to evaluate pro-inflammatory cytokine secretion. Western blot and quantitative polymerase chain reaction were used to analyze protein and mRNA levels of nuclear factor kappa B (NF-κB) p65, interleukin 6 (IL-6), cyclooxygenase 2 (COX-2), TLR2, TLR4, and MyD88 in spleen tissue. RESULTS Serum IL-6 levels were significantly higher in the HFCD group than in groups fed a HFCD with PEITC or DIM. Levels of NF-κB p65 protein and TLR2/4, MyD88, NF-κB p65, IL-6, and COX-2 mRNA were significantly higher in the HFCD group than in the CON group and were reduced by the PEITC and DIM supplements. CONCLUSIONS PEITC- and DIM-supplemented diets improved splenic inflammation by modulating the TLR2/4-MyD88 pathway in HFCD-fed mice. We suggest that dietary glucosinolates may at least partially improve obesity-induced inflammation of the spleen.
Collapse
Affiliation(s)
- HyunJi Gu
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Min-Hee Gwon
- Department of Education, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea
| | - Sang-Min Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
28
|
Abstract
Type 2 diabetes mellitus (T2DM) is the most prevalent disease and becoming a serious public health threat worldwide. In recent years, numerous effective T2DM intervention regimens have been developed, with promising results. However, these regimens are not usually economically available, and they are not well tolerated due to treatment-related toxicities. The focus nowadays is to identify new effective therapeutic agents, with relatively low cost and low toxicity, which can be used regularly to control a progression of T2DM in the prediabetic population. Accordingly, there has been growing attention in herbal remedies that can be presented into the general population with the tiniest side effects and the maximal preventive outcome. This article reviews recent publications in experimental models of T2DM not revised before, and supporting the potential use of nutraceuticals and phytochemicals through different mechanisms with promising results in the context of T2DM.
Collapse
|
29
|
Asbaghi O, Ashtary-Larky D, Mousa A, Rezaei Kelishadi M, Moosavian SP. The Effects of Soy Products on Cardiovascular Risk Factors in Patients with Type 2 Diabetes: A Systematic Review and Meta-analysis of Clinical Trials. Adv Nutr 2021; 13:S2161-8313(22)00072-2. [PMID: 34591084 PMCID: PMC8970819 DOI: 10.1093/advances/nmab121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies have suggested that soy products may be beneficial for cardiometabolic health, but current evidence regarding their effects in type 2 diabetes mellitus (T2DM) remain unclear. The aim of this systematic review and meta-analysis was to determine the impact of soy product consumption on cardiovascular risk factors in patients with T2DM. PubMed, Scopus, Embase, and the Cochrane library were systematically searched from inception to March 2021 using relevant keywords. All randomized controlled trials (RCTs) investigating the effects of soy product consumption on cardiovascular risk factors in patients with T2DM were included. Meta-analysis was performed using random-effects models and subgroup analysis was performed to explore variations by dose and baseline risk profile. A total of 22 trials with 867 participants were included in this meta-analysis. Soy product consumption led to a significant reduction in serum concentrations of triglycerides (TG) (WMD: -24.73 mg/dL; 95% CI: -37.49, -11.97), total cholesterol (TC) (WMD: -9.84 mg/dL; 95% CI: -15.07, -4.61), low density lipoprotein (LDL) cholesterol (WMD: -6.94 mg/dL; 95% CI: -11.71, -2.17) and C-reactive protein (CRP) (WMD: -1.27 mg/L; 95% CI: -2.39, -0.16). In contrast, soy products had no effect on high density lipoprotein (HDL) cholesterol, fasting blood sugar (FBS), fasting insulin, hemoglobin A1c (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), systolic and diastolic blood pressure (SBP/DBP) or body mass index (BMI) (all P ≥ 0.05). In subgroup analyses, there was a significant reduction in FBS after soy consumption in patients with elevated baseline FBS (>126 mg/dL) and in those who received higher doses of soy intake (>30 g/d). Moreover, soy products decreased SBP in patients with baseline hypertension (>135 mmHg). Our meta-analysis suggests that soy product consumption may improve cardiovascular parameters in patients with T2DM, particularly in individuals with poor baseline risk profiles. However, larger studies with longer durations and improved methodological quality are needed before firm conclusions can be reached.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
30
|
Martikainen J, Jalkanen K, Heiskanen J, Lavikainen P, Peltonen M, Laatikainen T, Lindström J. Type 2 Diabetes-Related Health Economic Impact Associated with Increased Whole Grains Consumption among Adults in Finland. Nutrients 2021; 13:nu13103583. [PMID: 34684582 PMCID: PMC8541656 DOI: 10.3390/nu13103583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing rapidly worldwide. A healthy diet supporting the control of energy intake and body weight has major importance in the prevention of T2D. For example, a high intake of whole grain foods (WGF) has been shown to be inversely associated with risk for T2D. The objective of the study was to estimate the expected health economic impacts of increased WGF consumption to decrease the incidence of T2D in the Finnish adult population. A health economic model utilizing data from multiple national databases and published scientific literature was constructed to estimate these population-level health economic consequences. Among the adult Finnish population, increased WGF consumption could reduce T2D-related costs between 286€ and 989€ million during the next 10-year time horizon depending on the applied scenario (i.e., a 10%-unit increase in a proportion of daily WGF users, an increased number (i.e., two or more) of WGF servings a day, or alternatively a combination of these scenarios). Over the next 20–30 years, a population-wide increase in WGF consumption could lead to much higher benefits. Furthermore, depending on the applied scenario, between 1323 and 154,094 quality-adjusted life years (QALYs) could be gained at the population level due to decreased T2D-related morbidity and mortality during the next 10 to 30 years. The results indicate that even when the current level of daily WGF consumption is already at a relatively high-level in a global context, increased WGF consumption could lead to important health gains and savings in the Finnish adult population.
Collapse
Affiliation(s)
- Janne Martikainen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.J.); (J.H.); (P.L.)
- Correspondence:
| | - Kari Jalkanen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.J.); (J.H.); (P.L.)
| | - Jari Heiskanen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.J.); (J.H.); (P.L.)
| | - Piia Lavikainen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.J.); (J.H.); (P.L.)
| | - Markku Peltonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; (M.P.); (T.L.); (J.L.)
| | - Tiina Laatikainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; (M.P.); (T.L.); (J.L.)
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
- Joint Municipal Authority for North Karelia Health and Social Services (Siun Sote), 80210 Joensuu, Finland
| | - Jaana Lindström
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; (M.P.); (T.L.); (J.L.)
| |
Collapse
|
31
|
Chelliah R, Wei S, Daliri EBM, Elahi F, Yeon SJ, Tyagi A, Liu S, Madar IH, Sultan G, Oh DH. The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021; 10:2220. [DOI: https:/doi.10.3390/foods10092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Liaoning 116034, China
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
32
|
Chelliah R, Wei S, Daliri EBM, Elahi F, Yeon SJ, Tyagi A, Liu S, Madar IH, Sultan G, Oh DH. The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021; 10:2220. [PMID: 34574330 PMCID: PMC8469013 DOI: 10.3390/foods10092220] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.W.)
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Liaoning 116034, China
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| |
Collapse
|
33
|
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 2021; 14:806. [PMID: 34451903 PMCID: PMC8398612 DOI: 10.3390/ph14080806] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most widespread form of diabetes, characterized by chronic hyperglycaemia, insulin resistance, and inefficient insulin secretion and action. Primary care in T2DM is pharmacological, using drugs of several groups that include insulin sensitisers (e.g., biguanides, thiazolidinediones), insulin secretagogues (e.g., sulphonylureas, meglinides), alpha-glucosidase inhibitors, and the newest incretin-based therapies and sodium-glucose co-transporter 2 inhibitors. However, their long-term application can cause many harmful side effects, emphasising the importance of the using natural therapeutic products. Natural health substances including non-flavonoid polyphenols (e.g., resveratrol, curcumin, tannins, and lignans), flavonoids (e.g., anthocyanins, epigallocatechin gallate, quercetin, naringin, rutin, and kaempferol), plant fruits, vegetables and other products (e.g., garlic, green tea, blackcurrant, rowanberry, bilberry, strawberry, cornelian cherry, olive oil, sesame oil, and carrot) may be a safer alternative to primary pharmacological therapy. They are recommended as food supplements to prevent and/or ameliorate T2DM-related complications. In the advanced stage of T2DM, the combination therapy of synthetic agents and natural compounds with synergistic interactions makes the treatment more efficient. In this review, both pharmaceutical drugs and selected natural products, as well as combination therapies, are characterized. Mechanisms of their action and possible negative side effects are also provided.
Collapse
Affiliation(s)
- Jana Blahova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| |
Collapse
|
34
|
Soy Isoflavones Intake and Obesity in Chinese Adults: A Cross-Sectional Study in Shanghai, China. Nutrients 2021; 13:nu13082715. [PMID: 34444874 PMCID: PMC8399780 DOI: 10.3390/nu13082715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
This study was designed to examine the association of soy isoflavones (SI) intake with different body measurements indicative of obesity in Chinese adults of Shanghai, a population consuming foods rich in SI. This study used baseline data from the Shanghai Gaofeng cohort study. SI intake was measured by using a self-reported food frequency questionnaire (FFQ). A restricted cubic spline (RCS) was performed to examine the possible nonlinear relationship of SI intake with obesity. A logistic regression model was applied to estimate the odds ratios (OR) and 95% confidence interval (CI). Compared with the lowest tertile group of SI intake, the highest tertile group had a lower prevalence of obesity and central obesity. The OR for overall obesity was 0.91 (95% CI: 0.85, 0.98) in the highest versus the lowest SI tertile group; the associations differed by sex and menopausal status. A negative association was also observed between SI intake and central obesity, and a significant modifying effect of sex was found on the association. No significant interactions were observed between SI intake and physical activity (PA) levels. Our results suggest that Chinese adults with higher dietary intake of SI may be less likely to be obese, particularly for postmenopausal women.
Collapse
|
35
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
36
|
Toulabi T, Yarahmadi M, Goudarzi F, Ebrahimzadeh F, Momenizadeh A, Yarahmadi S. Effects of flaxseed on blood pressure, body mass index, and total cholesterol in hypertensive patients: A randomized clinical trial. Explore (NY) 2021; 18:438-445. [PMID: 34119421 DOI: 10.1016/j.explore.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Given the antioxidant properties of flaxseed and its biologically active ingredients, this study was conducted to determine the effects of flaxseed supplementation on body mass index (BMI), blood pressure, and total cholesterol levels in patients with hypertension. METHODS In this triple-blind clinical trial, 112 patients, with an age range of 35 to 70 years, were randomized to 2 groups receiving 10 g (n = 45) and 30 g (n = 45) of flaxseed supplementation and 1 group receiving placebo (n = 45) for 12 weeks by stratified block randomization. They were evaluated in terms of systolic (SBP) and diastolic blood pressure (DBP), BMI, and total serum cholesterol. Physical activity was measured using the International Physical Activity Questionnaire-Short Form (IPAQ-SF) and food intake was assessed using the Food Frequency Questionnaire (FFQ). The data were analyzed with SPSS, version 22, using the chi-square, Kruskal-Wallis, repeated measures analysis, ANOVA, and ANCOVA tests. RESULTS The interaction effects among the study groups and time on the mean SBP (p = 0.001), DBP (p = 0.001), total cholesterol level (p = 0.032), and BMI (p < 0.001) were significant. During the study, the 30-g group achieved the best results, so that a 13.38-unit decrease in SBP was observed compared to a 1.72 unit increase in the placebo group and a 5.6-unit decrease in DBP was measured compared to a 2.39 unit increase in the placebo group. BMI decreased by 0.86 units compared to 0.06 units in the placebo group. Total cholesterol also decreased by 20.4 units compared to 11.86 units in the placebo group. CONCLUSION The results of this study showed that flaxseed can be effective in reducing blood pressure, total cholesterol, and body mass index in hypertensive patients in a twelve-week period.
Collapse
Affiliation(s)
- Tahereh Toulabi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Masomeh Yarahmadi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fateme Goudarzi
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzad Ebrahimzadeh
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amir Momenizadeh
- Cardiovascular Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sajad Yarahmadi
- School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
37
|
Behl T, Kaur G, Sehgal A, Zengin G, Singh S, Ahmadi A, Bungau S. Flavonoids, the Family of Plant-derived Antioxidants making inroads into Novel Therapeutic Design against IR-induced Oxidative Stress in Parkinson's Disease. Curr Neuropharmacol 2021; 20:324-343. [PMID: 34030619 PMCID: PMC9413797 DOI: 10.2174/1570159x19666210524152817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for in-depth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| |
Collapse
|
38
|
The Potential Effects of Phytoestrogens: The Role in Neuroprotection. Molecules 2021; 26:molecules26102954. [PMID: 34065647 PMCID: PMC8156305 DOI: 10.3390/molecules26102954] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Phytoestrogens are naturally occurring non-steroidal phenolic plant compounds. Their structure is similar to 17-β-estradiol, the main female sex hormone. This review offers a concise summary of the current literature on several potential health benefits of phytoestrogens, mainly their neuroprotective effect. Phytoestrogens lower the risk of menopausal symptoms and osteoporosis, as well as cardiovascular disease. They also reduce the risk of brain disease. The effects of phytoestrogens and their derivatives on cancer are mainly due to the inhibition of estrogen synthesis and metabolism, leading to antiangiogenic, antimetastatic, and epigenetic effects. The brain controls the secretion of estrogen (hypothalamus-pituitary-gonads axis). However, it has not been unequivocally established whether estrogen therapy has a neuroprotective effect on brain function. The neuroprotective effects of phytoestrogens seem to be related to both their antioxidant properties and interaction with the estrogen receptor. The possible effects of phytoestrogens on the thyroid cause some concern; nevertheless, generally, no serious side effects have been reported, and these compounds can be recommended as health-promoting food components or supplements.
Collapse
|
39
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
40
|
Post-diagnostic coffee and tea consumption and risk of prostate cancer progression by smoking history. Cancer Causes Control 2021; 32:635-644. [PMID: 33837499 DOI: 10.1007/s10552-021-01417-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Post-diagnostic coffee and tea consumption and prostate cancer progression is understudied. METHODS We examined 1,557 men from the Cancer of the Prostate Strategic Urologic Research Endeavor who completed a food frequency questionnaire a median of 28 months post-diagnosis. We estimated associations between post-diagnostic coffee (total, caffeinated, decaffeinated) and tea (total, non-herbal, herbal) and risk of prostate cancer progression (recurrence, secondary treatment, bone metastases, or prostate cancer death) using Cox proportional hazards regression. We also examined whether smoking (current, former, never) modified these associations. RESULTS We observed 167 progression events (median follow-up 9 years). Higher coffee intake was associated with higher risk of progression among current smokers (n = 95). The hazard ratio (HR) [95% confidence interval (CI)] for 5 vs 0 cups/day of coffee was 0.5 (CI 0.2, 1.7) among never smokers, but 4.5 (CI 1.1, 19.4) among current smokers (p-interaction: 0.001). There was no association between total coffee intake and prostate cancer progression among never and former smokers. However, we observed an inverse association between decaffeinated coffee (cups/days) and risk of prostate cancer progression in these men (HR > 0 to < 1 vs 0: 1.1 (CI 0.7, 1.8); HR1 to <2 vs 0: 0.7 (CI 0.3, 1.4); HR≥2 vs 0: 0.6 (CI 0.3, 1.1); p-trend = 0.03). There was no association between tea and prostate cancer progression, overall or by smoking status. CONCLUSION Among non-smoking men diagnosed with localized prostate cancer, moderate coffee and tea consumption was not associated with risk of cancer progression. However, post-diagnostic coffee intake was associated with increased risk of progression among current smokers.
Collapse
|
41
|
Madrigal C, Soto-Méndez MJ, Hernández-Ruiz Á, Valero T, Lara Villoslada F, Leis R, Martínez de Victoria E, Moreno JM, Ortega RM, Ruiz-López MD, Varela-Moreiras G, Gil Á. Dietary Intake, Nutritional Adequacy, and Food Sources of Protein and Relationships with Personal and Family Factors in Spanish Children Aged One to <10 Years: Findings of the EsNuPI Study. Nutrients 2021; 13:1062. [PMID: 33805229 PMCID: PMC8064310 DOI: 10.3390/nu13041062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 01/15/2023] Open
Abstract
Diet in the first years of life is an important factor in growth and development. Dietary protein is a critical macronutrient that provides both essential and nonessential amino acids required for sustaining all body functions and procedures, providing the structural basis to maintain life and healthy development and growth in children. In this study, our aim was to describe the total protein intake, type and food sources of protein, the adequacy to the Population Reference Intake (PRI) for protein by the European Food Safety Authority (EFSA), and the Recommended Dietary Allowance (RDA) by the Institute of Medicine (IoM). Furthermore, we analyzed whether the consumption of dairy products (including regular milk, dairy products, or adapted milk formulas) is associated with nutrient adequacy and the contribution of protein to diet and whole dietary profile in the two cohorts of the EsNuPI (in English, Nutritional Study in the Spanish Pediatric Population) study; one cohort was representative of the Spanish population from one to <10 years old (n = 707) (Spanish reference cohort, SRS) who reported consuming all kinds of milk and one was a cohort of the same age who reported consuming adapted milk over the last year (including follow-on formula, growing up milk, toddler's milk, and enriched and fortified milks) (n = 741) (adapted milk consumers cohort, AMS). The children of both cohorts had a high contribution from protein to total energy intake (16.79% SRS and 15.63% AMS) and a high total protein intake (60.89 g/day SRS and 53.43 g/day AMS). We observed that protein intake in Spanish children aged one to <10 years old was above the European and international recommendations, as well as the recommended percentages for energy intakes. The main protein sources were milk and dairy products (28% SRS and 29% AMS) and meat and meat products (27% SRS and 26% AMS), followed by cereals (16% SRS and 15% AMS), fish and shellfish (8% in both cohorts), eggs (5% SRS and 6% AMS), and legumes (4% in both cohorts). In our study population, protein intake was mainly from an animal origin (meat and meat products, milk and dairy products, fish and shellfish, and eggs) rather than from a plant origin (cereals and legumes). Future studies should investigate the long-term effect of dietary protein in early childhood on growth and body composition, and whether high protein intake affects health later in life.
Collapse
Affiliation(s)
- Casandra Madrigal
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Iberoamerican Nutrition Foundation (FINUT), Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
| | - María José Soto-Méndez
- Iberoamerican Nutrition Foundation (FINUT), Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
| | - Ángela Hernández-Ruiz
- Iberoamerican Nutrition Foundation (FINUT), Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
| | - Teresa Valero
- Spanish Nutrition Foundation (FEN), 28010 Madrid, Spain; (T.V.); (G.V.-M.)
| | | | - Rosaura Leis
- Unit of Pediatric Gastroenterology, Department of Pediatrics, Hepatology and Nutrition University Clinical Hospital of Santiago, 15706 Santiago de Compostela, Spain;
- Health Research Institute of Santiago (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Emilio Martínez de Victoria
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18100 Granada, Spain
| | - José Manuel Moreno
- Pediatric Department, University of Navarra Clinic, 28027 Madrid, Spain;
| | - Rosa M. Ortega
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Dolores Ruiz-López
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Iberoamerican Nutrition Foundation (FINUT), Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18100 Granada, Spain
| | - Gregorio Varela-Moreiras
- Spanish Nutrition Foundation (FEN), 28010 Madrid, Spain; (T.V.); (G.V.-M.)
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain
| | - Ángel Gil
- Iberoamerican Nutrition Foundation (FINUT), Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
- Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18100 Granada, Spain
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
| |
Collapse
|
42
|
Structure – Activity Relationship and Therapeutic Benefits of Flavonoids in the Management of Diabetes and Associated Disorders. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02329-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Oyola MG, Johnson RC, Bauman BM, Frey KG, Russell AL, Cho‐Clark M, Buban KN, Bishop‐Lilly KA, Merrell DS, Handa RJ, Wu TJ. Gut microbiota and metabolic marker alteration following dietary isoflavone-photoperiod interaction. Endocrinol Diabetes Metab 2021; 4:e00190. [PMID: 33532621 PMCID: PMC7831223 DOI: 10.1002/edm2.190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022] Open
Abstract
Introduction The interaction between isoflavones and the gut microbiota has been highlighted as a potential regulator of obesity and diabetes. In this study, we examined the interaction between isoflavones and a shortened activity photoperiod on the gut microbiome. Methods Male mice were exposed to a diet containing no isoflavones (NIF) or a regular diet (RD) containing the usual isoflavones level found in a standard vivarium chow. These groups were further divided into regular (12L:12D) or short active (16L:8D) photoperiod, which mimics seasonal changes observed at high latitudes. White adipose tissue and genes involved in lipid metabolism and adipogenesis processes were analysed. Bacterial genomic DNA was isolated from fecal boli, and 16S ribosomal RNA sequencing was performed. Results NIF diet increased body weight and adipocyte size when compared to mice on RD. The lack of isoflavones and photoperiod alteration also caused dysregulation of lipoprotein lipase (Lpl), glucose transporter type 4 (Glut-4) and peroxisome proliferator-activated receptor gamma (Pparg) genes. Using 16S ribosomal RNA sequencing, we found that mice fed the NIF diet had a greater proportion of Firmicutes than Bacteroidetes when compared to animals on the RD. These alterations were accompanied by changes in the endocrine profile, with lower thyroid-stimulating hormone levels in the NIF group compared to the RD. Interestingly, the NIF group displayed increased locomotion as compared to the RD group. Conclusion Together, these data show an interaction between the gut bacterial communities, photoperiod length and isoflavone compounds, which may be essential for understanding and improving metabolic health.
Collapse
Affiliation(s)
- Mario G. Oyola
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMDUSA
- Center for Neuroscience and Regenerative MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Ryan C. Johnson
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Bradly M. Bauman
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Kenneth G. Frey
- Genomics and Bioinformatics DepartmentBiological Defense Research DirectorateNaval Medical Research Center – FrederickFort DetrickMDUSA
| | - Ashley L. Russell
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMDUSA
- Center for Neuroscience and Regenerative MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Madelaine Cho‐Clark
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Katelyn N. Buban
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Kimberly A. Bishop‐Lilly
- Genomics and Bioinformatics DepartmentBiological Defense Research DirectorateNaval Medical Research Center – FrederickFort DetrickMDUSA
- Program in Emerging Infectious DiseasesUniformed Services University of the Health SciencesBethesdaMDUSA
| | - D. Scott Merrell
- Program in Emerging Infectious DiseasesUniformed Services University of the Health SciencesBethesdaMDUSA
- Department of Microbiology and ImmunologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Robert J. Handa
- Department of Biomedical SciencesColorado State UniversityFort CollinsCOUSA
| | - T. John Wu
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMDUSA
- Center for Neuroscience and Regenerative MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
44
|
Gómez-Zorita S, González-Arceo M, Fernández-Quintela A, Eseberri I, Trepiana J, Portillo MP. Scientific Evidence Supporting the Beneficial Effects of Isoflavones on Human Health. Nutrients 2020; 12:nu12123853. [PMID: 33348600 PMCID: PMC7766685 DOI: 10.3390/nu12123853] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Isoflavones are phenolic compounds with a chemical structure similar to that of estradiol. They are present in several vegetables, mainly in legumes such as soy, white and red clover, alfalfa and beans. The most significant food source of isoflavones in humans is soy-derived products. Isoflavones could be used as an alternative therapy for pathologies dependent on hormonal disorders such as breast and prostate cancer, cardiovascular diseases, as well as to minimize menopausal symptoms. According to the results gathered in the present review, it can be stated that there is scientific evidence showing the beneficial effect of isoflavones on bone health and thus in the prevention and treatment of osteoporosis on postmenopausal women, although the results do not seem entirely conclusive as there are discrepancies among the studies, probably related to their experimental designs. For this reason, the results should be interpreted with caution, and more randomized clinical trials are required. By contrast, it seems that soy isoflavones do not lead to a meaningful protective effect on cardiovascular risk. Regarding cancer, scientific evidence suggests that isoflavones could be useful in reducing the risk of suffering some types of cancer, such as breast and endometrial cancer, but further studies are needed to confirm these results. Finally, isoflavones could be useful in reducing hot flushes associated with menopause. However, a limitation in this field is that there is still a great heterogeneity among studies. Lastly, with regard to isoflavone consumption safety, it seems that they are safe and that the most common adverse effect is mild and occurs at the gastrointestinal level.
Collapse
Affiliation(s)
- Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
| | - Maitane González-Arceo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
- Correspondence: (I.E.); (J.T.)
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
- Correspondence: (I.E.); (J.T.)
| | - María Puy Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
| |
Collapse
|
45
|
Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, Nawi MSM, Khatib A, Siddiqui MJ, Umar A, Alhassan AM. Medicinal Potential of Isoflavonoids: Polyphenols That May Cure Diabetes. Molecules 2020; 25:molecules25235491. [PMID: 33255206 PMCID: PMC7727648 DOI: 10.3390/molecules25235491] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
Collapse
Affiliation(s)
- Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
- Correspondence: (Q.U.A.); (S.M.)
| | - Abdul Hasib Mohd Ali
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
- Correspondence: (Q.U.A.); (S.M.)
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
| | - Awis Sukarni Mohmad Sabere
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Mohamed Sufian Mohd. Nawi
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Mohammad Jamshed Siddiqui
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Abdulrashid Umar
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria; (A.U.); (A.M.A.)
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria; (A.U.); (A.M.A.)
| |
Collapse
|
46
|
Yanni AE, Kartsioti K, Karathanos VT. The role of yoghurt consumption in the management of type II diabetes. Food Funct 2020; 11:10306-10316. [PMID: 33211046 DOI: 10.1039/d0fo02297g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enrichment of yoghurt with specific ingrdients beneficially affects the management of Type II Diabetes Mellitus (DMII). As far as the role of yoghurt in the management of DMII is concerned, the limited number of randomized clinical trials (RCTs) which have been conducted suggest that daily intake of yoghurt enriched with vitamin D and/or calcium as well as probiotics positively influences glycemic regulation and may contribute to more effective control of the disease. It is argued that the various ingredients which are already contained in the complex matrix of food, such as bioactive peptides, calcium, B-complex vitamins and beneficial microbes, as well as the fact that it can be used as a vehicle for the inclusion of other effective ingredients can have an impact on the metabolic control of diabetic patients. The aim of this review is to present the RCTs which have been conducted in the last decade in patients with DMII in an attempt to highlight the positive effects of yoghurt in the management of the disease.
Collapse
Affiliation(s)
- Amalia E Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
| | - Kleio Kartsioti
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
| | - Vaios T Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
| |
Collapse
|
47
|
Echegaray N, Pateiro M, Gullón B, Amarowicz R, Misihairabgwi JM, Lorenzo JM. Phoenix dactylifera products in human health – A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Tanideh R, Delavari S, Farshad O, Irajie C, Javad Yavari Barhaghtalab M, Koohpeyma F, Koohi-Hosseinabadi O, Jamshidzadeh A, Tanideh N, Iraji A. Effect of flaxseed oil on biochemical parameters, hormonal indexes and stereological changes in ovariectomized rats. Vet Med Sci 2020; 7:521-533. [PMID: 33103380 PMCID: PMC8025639 DOI: 10.1002/vms3.372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
The ovariectomized rat is a widely used preclinical model for studying postmenopausal and its complications. In this study, the therapeutic effect of flaxseed oil on the ovariectomized adult rats was investigated. Our results showed that biochemical parameters including calcium, oestrogen and progesterone levels increase 8 weeks after ovariectomy in rats. Also, the amount of alkaline phosphatase decreased significantly after 8 weeks compared with the OVX rat. The healing potential of flaxseed oil was proven by successfully recovering the affected tissue and preventing the unpleasant symptoms of ovariectomized rats. The biological effects of flaxseed oil may be due to high amounts of fatty acids, phytoestrogens and an array of antioxidants. The results suggest that flaxseed oil can mimic the action of oestrogen and can be a potential treatment for hormone replacement therapy (HRT).
Collapse
Affiliation(s)
- Romina Tanideh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Delavari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
49
|
Xiao X, Erukainure OL, Sanni O, Koorbanally NA, Islam MS. Phytochemical properties of black tea ( Camellia sinensis) and rooibos tea ( Aspalathus linearis); and their modulatory effects on key hyperglycaemic processes and oxidative stress. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4345-4354. [PMID: 33087948 DOI: 10.1007/s13197-020-04471-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
The comparative phytochemicals, antioxidative and antidiabetic activities of Camellia sinensis (black tea) and Aspalathus linearis (rooibos tea) were studied in vitro and ex vivo. Concentrated infusions of the teas showed significant free radical scavenging activities in vitro. They significantly increased the glutathione level, superoxide dismutase and catalase enzyme activities in oxidative hepatic injury, while concomitantly depleting malondialdehyde level. The teas significantly inhibited intestinal glucose absorption and α-amylase activities, and elevated muscle glucose uptake. LCMS phytochemical profiling revealed the presence of hydroxycaffeic acid, l-threonate, caffeine, vanillic acid, n-acetylvaline, and spinacetin 3-glucoside in C. sinensis. While quinolinic acid, coumestrol, phloroglucinol, 8-hydroxyquercetagetin, umbelliferone, and ajoene were identified in A. linearis. These results portray the antioxidant and antidiabetic potencies of both teas, with A. linearis showed better activity compared to C. sinensis. These teas may thus be used as functional foods in the management of diabetes and other oxidative stress related metabolic disorders.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000 South Africa
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000 South Africa.,Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| | - Olakunle Sanni
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000 South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000 South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000 South Africa
| |
Collapse
|
50
|
Kim M, Im S, Cho YK, Choi C, Son Y, Kwon D, Jung YS, Lee YH. Anti-Obesity Effects of Soybean Embryo Extract and Enzymatically-Modified Isoquercitrin. Biomolecules 2020; 10:E1394. [PMID: 33008006 PMCID: PMC7601939 DOI: 10.3390/biom10101394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Soy isoflavones are bioactive phytoestrogens with known health benefits. Soybean embryo extract (SEE) has been consumed as a source of isoflavones, mainly daidzein, glycitein, and genistein. While previous studies have reported the anti-obesity effects of SEE, this study investigates their molecular mechanisms and the synergistic effects of co-treatment with SEE and enzymatically modified isoquercitrin (EMIQ). SEE upregulated genes involved in lipolysis and brown adipocyte markers and increased mitochondrial content in differentiated C3H10T1/2 adipocytes in vitro. Next, we use a high-fat diet-induced obesity mouse model to determine the anti-obesity effect of SEE. Two weeks of single or combined treatment with SEE and EMIQ significantly reduced body weight gain and improved glucose tolerance. Mechanistically, SEE treatment increased mitochondrial content and upregulated genes involved in lipolysis in adipose tissue through the cAMP/PKA-dependent signaling pathway. These effects required a cytosolic lipase adipose triglyceride lipase (ATGL) expression, confirmed by an adipocyte-specific ATGL knockout mouse study. Collectively, this study demonstrates that SEE exerts anti-obesity effects through the activation of adipose tissue metabolism and exhibits a synergistic effect of co-treatment with EMIQ. These results improve our understanding of the mechanisms underlying the anti-obesity effects of SEE related to adipose tissue metabolism.
Collapse
Affiliation(s)
- Minsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Seowoo Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Yoon keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Doyoung Kwon
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.K.); (Y.-S.J.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.K.); (Y.-S.J.)
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| |
Collapse
|