1
|
Gu Q, Wang L, Xu M, Zhou W, Liu G, Tian H, Efferth T, Wang C, Fu Y. The natural dihydrochalcone phloretin reduces lipid accumulation via downregulation of IIS and sbp-1/ SREBP pathways in HepG2 cells and Caenorhabditis elegans. Food Funct 2025. [PMID: 40326995 DOI: 10.1039/d5fo01105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Phloretin, a natural dihydrochalcone, exhibits significant potential in modulating lipid metabolism both in vitro and in vivo. This study investigated the effects of phloretin on lipid accumulation in HepG2 cells and Caenorhabditis elegans. In HepG2 cells, phloretin reduced lipid accumulation, ROS levels, and lipid peroxidation while ameliorating mitochondrial dysfunction. It downregulated lipid synthesis genes (SREBP, FASN) and upregulated PI3K-AKT pathway genes (AKT, FOXO, MTOR). In C. elegans, phloretin alleviated lipid accumulation-induced growth and locomotor impairments, reduced lipofuscin, ROS, glucose, and triglyceride levels, and modulated amino acid and lipid metabolism pathways. Gene expression analysis revealed downregulation of sbp-1, mdt-15, fat-5, fat-6, and fat-7, and upregulation of daf-16, age-1, and skn-1. Mutant studies confirmed that phloretin's lipid-lowering effects were mediated through the IIS and sbp-1/SREBP pathways. These findings suggest phloretin is a promising candidate for regulating lipid metabolism and preventing hyperlipidemia.
Collapse
Affiliation(s)
- Qi Gu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Mingyue Xu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Wanmei Zhou
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Guosheng Liu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Haiting Tian
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Chenlu Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China
| |
Collapse
|
2
|
Shan L, Liao X, Yang X, Zhu E, Yuan H, Zhou J, Li X, Wang B. Naked cuticle homolog 2 controls the differentiation of osteoblasts and osteoclasts and ameliorates bone loss in ovariectomized mice. Genes Dis 2025; 12:101209. [PMID: 39552785 PMCID: PMC11567042 DOI: 10.1016/j.gendis.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/05/2023] [Indexed: 11/19/2024] Open
Abstract
Naked cuticle homolog 2 (NKD2) has been recognized as an antagonist of Wnt/β-catenin signaling and a tumor suppressor. The role of NKD2 in osteoblast and osteoclast differentiation and the mechanism are not fully understood. In this study, we identified the up-regulation of NKD2 during osteoblast and adipocyte differentiation. Functional experiments revealed that NKD2 stimulated osteoblast differentiation and suppressed adipocyte formation. Furthermore, NKD2 down-regulated the expression of receptor activator of nuclear factor-κB ligand in bone marrow mesenchymal stem cells and inhibited osteoclast formation from osteoclast precursor cells. Mechanistic investigations revealed that the regulation of osteoblast and adipocyte differentiation by NKD2 involved Wnt/β-catenin and tuberous sclerosis complex subunit 1 (TSC1)/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways. Unlike in undifferentiated mesenchymal cells where NKD2 promoted Dishevelled-1 degradation, in the cells differentiating toward osteoblasts or adipocytes NKD2 down-regulated secreted frizzled related protein 1/4 expression and failed to destabilize Dishevelled-1, thereby activating Wnt/β-catenin signaling. Moreover, NKD2 bound to TSC1 and inhibited mTORC1 signaling. Further investigation uncovered an interplay between TSC1/mTORC1 and Wnt/β-catenin signaling pathways. Finally, transplantation of NKD2-overexpressing bone marrow mesenchymal stem cells into the marrow of mice increased osteoblasts, reduced osteoclasts and marrow fat, and partially prevented bone loss in ovariectomized mice. This study provides evidence that NKD2 in mesenchymal stem/progenitor cells reciprocally regulates the differentiation of osteoblasts and adipocytes by modulating Wnt/β-catenin and mTORC1 pathways and inhibits osteoclast formation by down-regulating receptor activator of nuclear factor-κB ligand. It suggests that NKD2 up-regulation may ameliorate postmenopausal bone loss.
Collapse
Affiliation(s)
- Liying Shan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Liao
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoli Yang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
3
|
Deng D, Wu Y, Wu K, Zeng N, Li W. Dihydroberberine alleviates Th17/Treg imbalance in premature ovarian insufficiency mice via inhibiting Rheb/mTOR signaling. Mol Med 2024; 30:194. [PMID: 39472803 PMCID: PMC11523677 DOI: 10.1186/s10020-024-00971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is an immune-related condition. Dihydroberberine (dhBBR) plays a regulatory role in maintaining the T-helper 17 (Th17)/regulatory T (Treg) cell balance. This study aimed to explore the action mechanisms of dhBBR on POI. METHODS In vivo, female BALB/c mice were used as POI models, treated with dhBBR, or injected with recombinant interleukin (rIL)-17 and anti-CD25 monoclonal antibody. Hematoxylin and eosin staining was used to validate the model and assess the therapeutic effects of dhBBR. mRNA expression levels of cytochrome P450 (Cyp)-17a1, Cyp19a1, Cyp11a1, steroidogenic acute regulatory protein, and luteinizing hormone receptor in mouse ovaries were quantified via quantitative polymerase chain reaction (qPCR). Enzyme-linked immunosorbent assay was used to determine the cytokine and sex hormone levels. Immunohistochemical staining for cleaved-caspase 3 and Ki-67 were performed to assess ovarian cell apoptosis and proliferation. Flow cytometry was used to analyze the Th17/Treg cell balance in the ovary and spleen. In vitro cytotoxicity of dhBBR was measured using the cell counting kit-8 assay. GTP-Ras homolog enriched in brain (Rheb) activity was determined via immunofluorescence assay. Co-immunoprecipitation was performed to assess Rheb activity, Th17 or Treg induction, and binding between Rheb and mammalian target of rapamycin (mTOR) after dhBBR treatment. Flow cytometry and qPCR assays were used to verify the effect of dhBBR on CD4 + cell differentiation. Finally, Rheb/mTOR pathway activation was confirmed via western blotting of proteins, including mTOR, p-mTOR, p70S6K, p-p70S6K, 4E-BP1, and p-4E-BP1. RESULTS dhBBR improved the ovarian function in a dose-dependent manner. It also decreased ovarian cell apoptosis and increased cell proliferation. It decreased Th1 and Th17 cell proportions but increased Treg cell proportions in the ovaries and spleens of POI model mice. Cell experiments revealed that dhBBR promoted CD4 + cell differentiation into Treg cells. Co-immunoprecipitation revealed Rheb as the dhBBR target that bound to mTOR. However, MHY1485 restored dhBBR-induced changes in forkhead box P3, IL-10, transforming growth factor-β1, IL-17, IL-22, retinoic acid-related orphan receptor-γt and p-mTOR levels in Th17- and Treg-induced CD4 + cells. CONCLUSION Overall, dhBBR targeted the Rheb/mTOR pathway to promote CD4 + cell differentiation into Treg cells and alleviate POI.
Collapse
Affiliation(s)
- Disi Deng
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, No.39-41, Shijiqiao Road, Jinniu District, Chengdu, 610075, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Yeke Wu
- Department of Dentistry, Hospital of Chengdu University of Traditional Chinese Medicine, No.1166, No.39, Shijiqiao Road, Jinniu District, Chengdu, 610075, Sichuan Province, China
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Keming Wu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, No.39-41, Shijiqiao Road, Jinniu District, Chengdu, 610075, Sichuan Province, China
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
| | - Wanjing Li
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18, Daoshan Road, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
4
|
Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. Science 2024; 384:eadk6742. [PMID: 38669575 PMCID: PMC11077477 DOI: 10.1126/science.adk6742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University; New York, NY 10065, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Toronto, ON, M5T 1R8, Canada
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University; New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University; New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University; New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University; New York, NY 10065, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
5
|
Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556059. [PMID: 37732251 PMCID: PMC10508763 DOI: 10.1101/2023.09.03.556059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Addiction prioritizes drug use over innate needs by "hijacking" brain circuits that direct motivation, but how this develops remains unclear. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we find that drugs of abuse augment ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell-type-specific manner. Combining "FOS-Seq", CRISPR-perturbations, and snRNA-seq, we identify Rheb as a shared molecular substrate that regulates cell-type-specific signal transductions in NAc while enabling drugs to suppress natural reward responses. Retrograde circuit mapping pinpoints orbitofrontal cortex which, upon activation, mirrors drug effects on innate needs. These findings deconstruct the dynamic, molecular, and circuit basis of a common reward circuit, wherein drug value is scaled to promote drug-seeking over other, normative goals.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- These authors contributed equally
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- These authors contributed equally
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Kazyken D, Lentz SI, Wadley M, Fingar DC. Alkaline intracellular pH (pHi) increases PI3K activity to promote mTORC1 and mTORC2 signaling and function during growth factor limitation. J Biol Chem 2023; 299:105097. [PMID: 37507012 PMCID: PMC10477693 DOI: 10.1016/j.jbc.2023.105097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The conserved protein kinase mTOR (mechanistic target of rapamycin) responds to diverse environmental cues to control cell metabolism and promote cell growth, proliferation, and survival as part of two multiprotein complexes, mTOR complex 1 (mTORC1) and mTORC2. Our prior work demonstrated that an alkaline intracellular pH (pHi) increases mTORC2 activity and cell survival in complete media in part by activating AMP-activated protein kinase, a kinase best known to sense energetic stress. It is important to note that an alkaline pHi represents an underappreciated hallmark of cancer cells that promotes their oncogenic behaviors. In addition, mechanisms that control mTORC1 and mTORC2 signaling and function remain incompletely defined, particularly in response to stress conditions. Here, we demonstrate that an alkaline pHi increases phosphatidylinositide 3-kinase (PI3K) activity to promote mTORC1 and mTORC2 signaling in the absence of serum growth factors. Alkaline pHi increases mTORC1 activity through PI3K-Akt signaling, which mediates inhibitory phosphorylation of the upstream proteins tuberous sclerosis complex 2 and proline-rich Akt substrate of 40 kDa and dissociates tuberous sclerosis complex from lysosomal membranes, thus enabling Rheb-mediated activation of mTORC1. Thus, alkaline pHi mimics growth factor-PI3K signaling. Functionally, we also demonstrate that an alkaline pHi increases cap-dependent protein synthesis through inhibitory phosphorylation of eIF4E binding protein 1 and suppresses apoptosis in a PI3K- and mTOR-dependent manner. We speculate that an alkaline pHi promotes a low basal level of cell metabolism (e.g., protein synthesis) that enables cancer cells within growing tumors to proliferate and survive despite limiting growth factors and nutrients, in part through elevated PI3K-mTORC1 and/or PI3K-mTORC2 signaling.
Collapse
Affiliation(s)
- Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Stephen I Lentz
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Maxwell Wadley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Huang H, Jing B, Zhu F, Jiang W, Tang P, Shi L, Chen H, Ren G, Xia S, Wang L, Cui Y, Yang Z, Platero AJ, Hutchins AP, Chen M, Worley PF, Xiao B. Disruption of neuronal RHEB signaling impairs oligodendrocyte differentiation and myelination through mTORC1-DLK1 axis. Cell Rep 2023; 42:112801. [PMID: 37463107 PMCID: PMC11849431 DOI: 10.1016/j.celrep.2023.112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/12/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.
Collapse
Affiliation(s)
- Haijiao Huang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Bo Jing
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China.
| | - Feiyan Zhu
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Wanxiang Jiang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ping Tang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liyang Shi
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Huiting Chen
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Guoru Ren
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Shiyao Xia
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Luoling Wang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Yiyuan Cui
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhiwen Yang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Alexander J Platero
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew P Hutchins
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Mina Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Bo Xiao
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
8
|
Pan Z, Zhang H, Dokudovskaya S. The Role of mTORC1 Pathway and Autophagy in Resistance to Platinum-Based Chemotherapeutics. Int J Mol Sci 2023; 24:10651. [PMID: 37445831 DOI: 10.3390/ijms241310651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum I) is a platinum-based drug, the mainstay of anticancer treatment for numerous solid tumors. Since its approval by the FDA in 1978, the drug has continued to be used for the treatment of half of epithelial cancers. However, resistance to cisplatin represents a major obstacle during anticancer therapy. Here, we review recent findings on how the mTORC1 pathway and autophagy can influence cisplatin sensitivity and resistance and how these data can be applicable for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zhenrui Pan
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Hanxiao Zhang
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
9
|
Zhu QY, He ZM, Cao WM, Li B. The role of TSC2 in breast cancer: a literature review. Front Oncol 2023; 13:1188371. [PMID: 37251941 PMCID: PMC10213421 DOI: 10.3389/fonc.2023.1188371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
TSC2 is a tumor suppressor gene as well as a disease-causing gene for autosomal dominant disorder tuberous sclerosis complex (TSC). Research has found that some tumor tissues have lower TSC2 expression levels than normal tissues. Furthermore, low expression of TSC2 is associated with poor prognosis in breast cancer. TSC2 acts as a convergence point of a complex network of signaling pathways and receives signals from the PI3K, AMPK, MAPK, and WNT pathways. It also regulates cellular metabolism and autophagy through inhibition of a mechanistic target of rapamycin complex, which are processes relevant to the progression, treatment, and prognosis of breast cancer. In-depth study of TSC2 functions provides significant guidance for clinical applications in breast cancer, including improving the treatment efficacy, overcoming drug resistance, and predicting prognosis. In this review, protein structure and biological functions of TSC2 were described and recent advances in TSC2 research in different molecular subtypes of breast cancer were summarized.
Collapse
Affiliation(s)
- Qiao-Yan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Zhe-Min He
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Bei Li
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Yang Z, Yu Z, Xiao B. Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways. Neurosci Bull 2023; 39:453-465. [PMID: 36352321 PMCID: PMC10043148 DOI: 10.1007/s12264-022-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Collapse
Affiliation(s)
- Zhiwen Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
11
|
New Insights into the Regulation of mTOR Signaling via Ca 2+-Binding Proteins. Int J Mol Sci 2023; 24:ijms24043923. [PMID: 36835331 PMCID: PMC9959742 DOI: 10.3390/ijms24043923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Environmental factors are important regulators of cell growth and proliferation. Mechanistic target of rapamycin (mTOR) is a central kinase that maintains cellular homeostasis in response to a variety of extracellular and intracellular inputs. Dysregulation of mTOR signaling is associated with many diseases, including diabetes and cancer. Calcium ion (Ca2+) is important as a second messenger in various biological processes, and its intracellular concentration is tightly regulated. Although the involvement of Ca2+ mobilization in mTOR signaling has been reported, the detailed molecular mechanisms by which mTOR signaling is regulated are not fully understood. The link between Ca2+ homeostasis and mTOR activation in pathological hypertrophy has heightened the importance in understanding Ca2+-regulated mTOR signaling as a key mechanism of mTOR regulation. In this review, we introduce recent findings on the molecular mechanisms of regulation of mTOR signaling by Ca2+-binding proteins, particularly calmodulin (CaM).
Collapse
|
12
|
Kent E, Coleman S, Bruemmer J, Casagrande RR, Levihn C, Romo G, Herkelman K, Hess T. Comparison of an Antioxidant Source and Antioxidant Plus BCAA on Athletic Performance and Post Exercise Recovery of Horses. J Equine Vet Sci 2023; 121:104200. [PMID: 36577471 DOI: 10.1016/j.jevs.2022.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022]
Abstract
Antioxidant supplementation decreases postexercise oxidative stress but could also decrease muscle protein synthesis. This study compared the effects of three diets: low antioxidant (control, CON), high antioxidant (AO), and branched-chain amino acid high antioxidant (BCAO) supplementation on postexercise protein synthesis and oxidative stress. We hypothesized that supplementing antioxidants with branched-chain amino acids(BCAA) would reduce oxidative stress without hindering muscle protein synthesis. Eighteen mixed-breed polo horses (11 mares and 7 geldings, with age range between 5 and 18 years, were on CON diet for 30 days (from day -45 until day 0) and then were assigned to one of the treatments after the first lactate threshold test (day 0, LT). LT were also conducted on days 15 and 30 of supplemenation. Oxidative stress was assessed by measuring blood glutathione peroxidase, superoxide dismutase, and malondialdehyde concentrations before 2 and 4 hours after each LT. Muscle biopsies were taken before and 4 hours after each LT and analyzed for gene expression of protein synthesis by RTqPCR. Data were analyzed by ANOVA and compared by least-square means. A reduction in oxidative stress occurred over time (P < .05), from day 0 to day 30. An up-regulation in the abundance of muscle protein mRNA transcripts was found for CD36, CPT1, PDK4, MYF5, and MYOG (P < .05) after all lactate threshold tests, without a treatment effect. A treatment-by-exercise effect was observed for MYOD1 (P = .0041). Transcript abundance was upregulated in AO samples post exercise compared to other treatments. MYF6 exhibited a time-by-treatment effect (P = .045), where abundance increased more in AO samples from day 0 to day 15 and 30 compared to other treatments. Transcript abundance for metabolic and myogenic genes was upregulated in post exercise muscle samples with no advantage from supplementation of antioxidants with branched-chain amino acids compared to antioxidants alone.
Collapse
Affiliation(s)
- Emily Kent
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Stephen Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Jason Bruemmer
- USDA APHIS WS, National Wildlife Research Center, Fort Collins, CO
| | - Regan R Casagrande
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Christine Levihn
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Grace Romo
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | | | - Tanja Hess
- Department of Animal Sciences, Colorado State University, Fort Collins CO.
| |
Collapse
|
13
|
Barone S, Brooks M, Zahedi K, Holliday LS, Bissler J, Yu JJ, Soleimani M. Identification of an Electrogenic 2Cl -/H + Exchanger, ClC5, as a Chloride-Secreting Transporter Candidate in Kidney Cyst Epithelium in Tuberous Sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:191-200. [PMID: 36336066 PMCID: PMC9926528 DOI: 10.1016/j.ajpath.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Kidney cyst expansion in tuberous sclerosis complex (TSC) or polycystic kidney disease (PKD) requires active secretion of chloride (Cl-) into the cyst lumen. In PKD, Cl- secretion is primarily mediated via the cystic fibrosis transmembrane conductance regulator (CFTR) in principal cells. Kidney cystogenesis in TSC is predominantly composed of type A intercalated cells, which do not exhibit noticeable expression of CFTR. The identity of the Cl--secreting molecule(s) in TSC cyst epithelia remains speculative. RNA-sequencing analysis results were used to examine the expression of FOXi1, the chief regulator of acid base transporters in intercalated cells, along with localization of Cl- channel 5 (ClC5), in various models of TSC. Results from Tsc2+/- mice showed that the expansion of kidney cysts corresponded to the induction of Foxi1 and correlated with the appearance of ClC5 and H+-ATPase on the apical membrane of cyst epithelia. In various mouse models of TSC, Foxi1 was robustly induced in the kidney, and ClC5 and H+-ATPase were expressed on the apical membrane of cyst epithelia. Expression of ClC5 was also detected on the apical membrane of cyst epithelia in humans with TSC but was absent in humans with autosomal dominant PKD or in a mouse model of PKD. These results indicate that ClC5 is expressed on the apical membrane of cyst epithelia and is a likely candidate mediating Cl- secretion into the kidney cyst lumen in TSC.
Collapse
Affiliation(s)
- Sharon Barone
- Research Services, Veterans Health Care Medical Center, Albuquerque, New Mexico; Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Marybeth Brooks
- Research Services, Veterans Health Care Medical Center, Albuquerque, New Mexico; Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Kamyar Zahedi
- Research Services, Veterans Health Care Medical Center, Albuquerque, New Mexico; Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Pediatrics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jane J Yu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Manoocher Soleimani
- Research Services, Veterans Health Care Medical Center, Albuquerque, New Mexico; Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| |
Collapse
|
14
|
Netherton CL, Shimmon GL, Hui JYK, Connell S, Reis AL. African Swine Fever Virus Host-Pathogen Interactions. Subcell Biochem 2023; 106:283-331. [PMID: 38159232 DOI: 10.1007/978-3-031-40086-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways. However, how viral proteins and virus-induced structures trigger cellular stress pathways and manipulate the subsequent responses is still relatively poorly understood. African swine fever virus alters nuclear substructures, modulates autophagy, apoptosis and the endoplasmic reticulum stress response pathways. The viral genome encodes for at least 150 genes, of which approximately 70 are incorporated into the virion. Many of the non-structural genes have not been fully characterised and likely play a role in host range and modifying immune responses. As the field moves towards approaches that take a broader view of the effect of expression of individual African swine fever genes, we summarise how the different steps in virus replication interact with the host cell and the current state of knowledge on how it modulates the resulting stress responses.
Collapse
|
15
|
Renal Transcriptome and Metabolome in Mice with Principal Cell-Specific Ablation of the Tsc1 Gene: Derangements in Pathways Associated with Cell Metabolism, Growth and Acid Secretion. Int J Mol Sci 2022; 23:ijms231810601. [PMID: 36142537 PMCID: PMC9502912 DOI: 10.3390/ijms231810601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the hamartin (TSC1) or tuberin (TSC2) genes. Using a mouse model of TSC renal cystogenesis that we have previously described, the current studies delineate the metabolic changes in the kidney and their relation to alterations in renal gene expression. To accomplish this, we compared the metabolome and transcriptome of kidneys from 28-day-old wildtype (Wt) and principal cell-specific Tsc1 KO (Tsc1 KO) mice using targeted 1H nuclear magnetic resonance targeted metabolomic and RNA-seq analyses. The significant changes in the kidney metabolome of Tsc1 KO mice included reductions in the level of several amino acids and significant decreases in creatine, NADH, inosine, UDP-galactose, GTP and myo-inositol levels. These derangements may affect energy production and storage, signal transduction and synthetic pathways. The pertinent derangement in the transcriptome of Tsc1 KO mice was associated with increased collecting duct acid secretion, active cell division and the up-regulation of signaling pathways (e.g., MAPK and AKT/PI3K) that suppress the TSC2 GTPase-activating function. The combined renal metabolome and transcriptome alterations observed in these studies correlate with the unregulated growth and predominance of genotypically normal A-intercalated cells in the epithelium of renal cysts in Tsc1 KO mice.
Collapse
|
16
|
Armijo ME, Escalona E, Peña D, Farias A, Morin V, Baumann M, Klebl BM, Pincheira R, Castro AF. Blocking the Farnesyl Pocket of PDEδ Reduces Rheb-Dependent mTORC1 Activation and Survival of Tsc2-Null Cells. Front Pharmacol 2022; 13:912688. [PMID: 35814251 PMCID: PMC9260180 DOI: 10.3389/fphar.2022.912688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Rheb is a small GTPase member of the Ras superfamily and an activator of mTORC1, a protein complex master regulator of cell metabolism, growth, and proliferation. Rheb/mTORC1 pathway is hyperactivated in proliferative diseases, such as Tuberous Sclerosis Complex syndrome and cancer. Therefore, targeting Rheb-dependent signaling is a rational strategy for developing new drug therapies. Rheb activates mTORC1 in the cytosolic surface of lysosomal membranes. Rheb’s farnesylation allows its anchorage on membranes, while its proper localization depends on the prenyl-binding chaperone PDEδ. Recently, the use of PDEδ inhibitors has been proposed as anticancer agents because they interrupted KRas signaling leading to antiproliferative effects in KRas-dependent pancreatic cancer cells. However, the effect of PDEδ inhibition on the Rheb/mTORC1 pathway has been poorly investigated. Here, we evaluated the impact of a new PDEδ inhibitor, called Deltasonamide 1, in Tsc2-null MEFs, a Rheb-dependent overactivated mTORC1 cell line. By using a yeast two-hybrid assay, we first validated that Deltasonamide 1 disrupts Rheb-PDEδ interaction. Accordingly, we found that Deltasonamide 1 reduces mTORC1 targets activation. In addition, our results showed that Deltasonamide 1 has antiproliferative and cytotoxic effects on Tsc2-null MEFs but has less effect on Tsc2-wild type MEFs viability. This work proposes the pharmacological PDEδ inhibition as a new approach to target the abnormal Rheb/mTORC1 activation in Tuberous Sclerosis Complex cells.
Collapse
Affiliation(s)
- Marisol Estrella Armijo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Emilia Escalona
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Daniela Peña
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alejandro Farias
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Violeta Morin
- Laboratorio de Proteasas y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- *Correspondence: Roxana Pincheira, ; Ariel Fernando Castro,
| | - Ariel Fernando Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- *Correspondence: Roxana Pincheira, ; Ariel Fernando Castro,
| |
Collapse
|
17
|
Zheng K, Zheng X, Yang W. The Role of Metabolic Dysfunction in T-Cell Exhaustion During Chronic Viral Infection. Front Immunol 2022; 13:843242. [PMID: 35432304 PMCID: PMC9008220 DOI: 10.3389/fimmu.2022.843242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/07/2022] [Indexed: 02/02/2023] Open
Abstract
T cells are important components of adaptive immunity that protect the host against invading pathogens during infection. Upon recognizing the activation signals, naïve and/or memory T cells will initiate clonal expansion, trigger differentiation into effector populations and traffic to the inflamed sites to eliminate pathogens. However, in chronic viral infections, such as those caused by human immunodeficiency virus (HIV), hepatitis B and C (HBV and HCV), T cells exhibit impaired function and become difficult to clear pathogens in a state known as T-cell exhaustion. The activation and function persistence of T cells demand for dynamic changes in cellular metabolism to meet their bioenergetic and biosynthetic demands, especially the augmentation of aerobic glycolysis, which not only provide efficient energy generation, but also fuel multiple biochemical intermediates that are essential for nucleotide, amino acid, fatty acid synthesis and mitochondria function. Changes in cellular metabolism also affect the function of effectors T cells through modifying epigenetic signatures. It is widely accepted that the dysfunction of T cell metabolism contributes greatly to T-cell exhaustion. Here, we reviewed recent findings on T cells metabolism under chronic viral infection, seeking to reveal the role of metabolic dysfunction played in T-cell exhaustion.
Collapse
Affiliation(s)
- Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Zheng
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Yang
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol 2021; 9:775507. [PMID: 34869377 PMCID: PMC8638743 DOI: 10.3389/fcell.2021.775507] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 is activated upon multiple cellular stresses, including DNA damage, oncogene activation, ribosomal stress, and hypoxia, to induce cell cycle arrest, apoptosis, and senescence. Mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, serves as a central regulator of cell growth, proliferation, and survival by coordinating nutrients, energy, growth factors, and oxygen levels. p53 dysfunction and mTOR pathway hyperactivation are hallmarks of human cancer. The balance between response to stresses or commitment to cell proliferation and survival is governed by various regulatory loops between the p53 and mTOR pathways. In this review, we first briefly introduce the tumor suppressor p53 and then describe the upstream regulators and downstream effectors of the mTOR pathway. Next, we discuss the role of p53 in regulating the mTOR pathway through its transcriptional and non-transcriptional effects. We further describe the complicated role of the mTOR pathway in modulating p53 activity. Finally, we discuss the current knowledge and future perspectives on the coordinated regulation of the p53 and mTOR pathways.
Collapse
Affiliation(s)
- Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Ruirui Qu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Zhang S, Lin X, Hou Q, Hu Z, Wang Y, Wang Z. Regulation of mTORC1 by amino acids in mammalian cells: A general picture of recent advances. ACTA ACUST UNITED AC 2021; 7:1009-1023. [PMID: 34738031 PMCID: PMC8536509 DOI: 10.1016/j.aninu.2021.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates various types of signal inputs, such as energy, growth factors, and amino acids to regulate cell growth and proliferation mainly through the 2 direct downstream targets, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and ribosomal protein S6 kinase 1 (S6K1). Most of the signal arms upstream of mTORC1 including energy status, stress signals, and growth factors converge on the tuberous sclerosis complex (TSC) - Ras homologue enriched in brain (Rheb) axis. Amino acids, however, are distinct from other signals and modulate mTORC1 using a unique pathway. In recent years, the transmission mechanism of amino acid signals upstream of mTORC1 has been gradually elucidated, and some sensors or signal transmission pathways for individual amino acids have also been discovered. With the help of these findings, we propose a general picture of recent advances, which demonstrates that various amino acids from lysosomes, cytoplasm, and Golgi are sensed by their respective sensors. These signals converge on mTORC1 and form a huge and complicated signal network with multiple synergies, antagonisms, and feedback mechanisms.
Collapse
Affiliation(s)
- Shizhe Zhang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Xueyan Lin
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Qiuling Hou
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Zhiyong Hu
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Yun Wang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Zhonghua Wang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| |
Collapse
|
20
|
Abou Sawan S, Hodson N, Tinline-Goodfellow C, West DWD, Malowany JM, Kumbhare D, Moore DR. Incorporation of Dietary Amino Acids Into Myofibrillar and Sarcoplasmic Proteins in Free-Living Adults Is Influenced by Sex, Resistance Exercise, and Training Status. J Nutr 2021; 151:3350-3360. [PMID: 34486662 DOI: 10.1093/jn/nxab261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute exercise increases the incorporation of dietary amino acids into de novo myofibrillar proteins after a single meal in controlled laboratory studies in males. It is unclear whether this extends to free-living settings or is influenced by training or sex. OBJECTIVES We determined the effects of exercise, training status, and sex on 24-hour free-living dietary phenylalanine incorporation into skeletal muscle proteins. METHODS In a parallel group design, recreationally active males (mean ± SD age, 23 ± 3 years; BMI. 23.4 ± 2.9 kg/m2; n = 10) and females (age 24 ± 5 years; BMI, 23.1 ± 3.9 kg/m2; n = 9) underwent 8 weeks of whole-body resistance exercise 3 times a week. Controlled diets containing 1.6 g/kg-1/d-1 (amino acids modelled after egg), enriched to 10% with [13C6] or [2H5]phenylalanine, were consumed before and after an acute bout of resistance exercise. Fasted muscle biopsies were obtained before [untrained, pre-exercise condition (REST ] and 24 hours after an acute bout of resistance exercise in untrained (UT) and trained (T) states to determine dietary phenylalanine incorporation into myofibrillar (ΔMyo) and sarcoplasmic (ΔSarc) proteins, intracellular mechanistic target of rapamycin (mTOR) colocalization with ulex europaeus agglutinin-1 (UEA-1; capillary marker; immunofluorescence), and amino acid transporter expression (Western blotting). RESULTS The ΔMyo values were ∼62% greater (P < 0.01) in females than males at REST. The ΔMyo values increased above REST by ∼51% during UT and ∼30% in T (both P < 0.01) in males, remained unchanged in females during UT, and were ∼33% lower at T when compared to UT (P = 0.013). Irrespective of sex, ΔMyo and ΔSarc were decreased at T compared to UT (P ≤ 0.026). Resistance training increased mTOR colocalization with UEA-1 (P = 0.004), while L amino acid transporter 1, which was greater in males (P < 0.01), and sodium-coupled neutral amino acid transporter 2 protein expression were not affected by acute exercise (P ≥ 0.33) or training (P ≥ 0.45). CONCLUSIONS The exercise-induced incorporation of dietary phenylalanine into myofibrillar and sarcoplasmic proteins is attenuated after training regardless of sex, suggesting a reduced reliance on dietary amino acids for postexercise skeletal muscle remodeling in the T state.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, Toronto, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Loissell-Baltazar YA, Dokudovskaya S. SEA and GATOR 10 Years Later. Cells 2021; 10:cells10102689. [PMID: 34685669 PMCID: PMC8534245 DOI: 10.3390/cells10102689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022] Open
Abstract
The SEA complex was described for the first time in yeast Saccharomyces cerevisiae ten years ago, and its human homologue GATOR complex two years later. During the past decade, many advances on the SEA/GATOR biology in different organisms have been made that allowed its role as an essential upstream regulator of the mTORC1 pathway to be defined. In this review, we describe these advances in relation to the identification of multiple functions of the SEA/GATOR complex in nutrient response and beyond and highlight the consequence of GATOR mutations in cancer and neurodegenerative diseases.
Collapse
|
22
|
Zhang X, Deibert CP, Kim WJ, Jaman E, Rao AV, Lotze MT, Amankulor NM. Autophagy inhibition is the next step in the treatment of glioblastoma patients following the Stupp era. Cancer Gene Ther 2021; 28:971-983. [PMID: 32759988 DOI: 10.1038/s41417-020-0205-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 01/30/2023]
Abstract
It has now been nearly 15 years since the last major advance in the treatment of patients with glioma. "The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity". Autophagy is primarily a survival pathway, literally self-eating, that is utilized in response to stress (such as radiation and chemotherapy), enabling clearance of effete protein aggregates and multimolecular assemblies. Promising results have been observed in patients with glioma for over a decade now when autophagy inhibition with chloroquine derivatives coupled with conventional therapy. The application of autophagy inhibitors, the role of immune cell-induced autophagy, and the potential role of novel cellular and gene therapies, should now be considered for development as part of this well-established regimen.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christopher P Deibert
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wi-Jin Kim
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emade Jaman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aparna V Rao
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Kazyken D, Lentz SI, Fingar DC. Alkaline intracellular pH (pHi) activates AMPK-mTORC2 signaling to promote cell survival during growth factor limitation. J Biol Chem 2021; 297:101100. [PMID: 34418433 PMCID: PMC8479482 DOI: 10.1016/j.jbc.2021.101100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) signaling controls cell metabolism, promotes cell survival, and contributes to tumorigenesis, yet its upstream regulation remains poorly defined. Although considerable evidence supports the prevailing view that amino acids activate mTOR complex 1 but not mTORC2, several studies reported paradoxical activation of mTORC2 signaling by amino acids. We noted that after amino acid starvation of cells in culture, addition of an amino acid solution increased mTORC2 signaling. Interestingly, we found the pH of the amino acid solution to be alkaline, ∼pH 10. These observations led us to discover and demonstrate here that alkaline intracellular pH (pHi) represents a previously unknown activator of mTORC2. Using a fluorescent pH-sensitive dye (cSNARF1-AM) coupled with live-cell imaging, we demonstrate that culturing cells in media at an alkaline pH induces a rapid rise in the pHi, which increases mTORC2 catalytic activity and downstream signaling to the pro-growth and pro-survival kinase Akt. Alkaline pHi also activates AMPK, a canonical sensor of energetic stress. Functionally, alkaline pHi activates AMPK-mTOR signaling, which attenuates apoptosis caused by growth factor withdrawal. Collectively, these findings reveal that alkaline pHi increases mTORC2- and AMPK-mediated signaling to promote cell survival during conditions of growth factor limitation, analogous to the demonstrated ability of energetic stress to activate AMPK–mTORC2 and promote cell survival. As an elevated pHi represents an underappreciated hallmark of cancer cells, we propose that the alkaline pHi stress sensing by AMPK–mTORC2 may contribute to tumorigenesis by enabling cancer cells at the core of a growing tumor to evade apoptosis and survive.
Collapse
Affiliation(s)
- D Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S I Lentz
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - D C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
24
|
Shams R, Ito Y, Miyatake H. Evaluation of the Binding Kinetics of RHEB with mTORC1 by In-Cell and In Vitro Assays. Int J Mol Sci 2021; 22:ijms22168766. [PMID: 34445471 PMCID: PMC8395731 DOI: 10.3390/ijms22168766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is activated by the small G-protein, Ras homolog enriched in brain (RHEB–GTPase). On lysosome, RHEB activates mTORC1 by binding the domains of N-heat, M-heat, and the focal adhesion targeting (FAT) domain, which allosterically regulates ATP binding in the active site for further phosphorylation. The crucial role of RHEB in regulating growth and survival through mTORC1 makes it a targetable site for anti-cancer therapeutics. However, the binding kinetics of RHEB to mTORC1 is still unknown at the molecular level. Therefore, we studied the kinetics by in vitro and in-cell protein–protein interaction (PPI) assays. To this end, we used the split-luciferase system (NanoBiT®) for in-cell studies and prepared proteins for the in vitro measurements. Consequently, we demonstrated that RHEB binds to the whole mTOR both in the presence or absence of GTPγS, with five-fold weaker affinity in the presence of GTPγS. In addition, RHEB bound to the truncated mTOR fragments of N-heat domain (∆N, aa 60–167) or M-heat domain (∆M, aa 967–1023) with the same affinity in the absence of GTP. The reconstructed binding site of RHEB, ∆N-FAT-M, however, bound to RHEB with the same affinity as ∆N-M, indicating that the FAT domain (∆FAT, aa 1240–1360) is dispensable for RHEB binding. Furthermore, RHEB bound to the truncated kinase domain (∆ATP, aa 2148–2300) with higher affinity than to ∆N-FAT-M. In conclusion, RHEB engages two different binding sites of mTOR, ∆N-FAT-M and ∆ATP, with higher affinity for ∆ATP, which likely regulates the kinase activity of mTOR through multiple different biding modes.
Collapse
Affiliation(s)
- Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan; (R.S.); (Y.I.)
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City 338-8570, Saitama, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan; (R.S.); (Y.I.)
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Saitama, Japan
| | - Hideyuki Miyatake
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City 338-8570, Saitama, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Saitama, Japan
- Correspondence: ; Tel.: +81-48-467-4979
| |
Collapse
|
25
|
Abstract
African swine fever is a devastating disease of domestic swine and wild boar caused by a large double-stranded DNA virus that encodes for more than 150 open reading frames. There is no licensed vaccine for the disease and the most promising current candidates are modified live viruses that have been attenuated by deletion of virulence factors. Like many viruses African swine fever virus significantly alters the host cell machinery to benefit its replication and viral genes that modify host pathways represent promising targets for development of gene deleted vaccines. Autophagy is an important cellular pathway that is involved in cellular homeostasis, innate and adaptive immunity and therefore is manipulated by a number of different viruses. Autophagy is regulated by a complex protein cascade and here we show that African swine fever virus can block formation of autophagosomes, a critical functional step of the autophagy pathway through at least two different mechanisms. Interestingly this does not require the A179L gene that has been shown to interact with Beclin-1, an important autophagy regulator.
Collapse
Affiliation(s)
- Gareth L Shimmon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Joshua Y K Hui
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Thomas E Wileman
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Quadram Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | | |
Collapse
|
26
|
Amino Acids in Autophagy: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:51-66. [PMID: 34251638 DOI: 10.1007/978-3-030-74180-8_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a dynamic process in which the eukaryotic cells break down intracellular components by lysosomal degradation. Under the normal condition, the basal level of autophagy removes damaged organelles, misfolded proteins, or protein aggregates to keep cells in a homeostatic condition. Deprivation of nutrients (e.g., removal of amino acids) stimulates autophagy activity, promoting lysosomal degradation and the recycling of cellular components for cell survival. Importantly, insulin and amino acids are two main inhibitors of autophagy. They both activate the mTOR complex 1 (mTORC1) signaling pathway to inhibit the autophagy upstream of the uncoordinated-51 like kinase 1/2 (ULK1/2) complex that triggers autophagosome formation. In particular, insulin activates mTORC1 via the PI3K class I-AKT pathway; while amino acids activate mTORC1 either through the PI3K class III (hVps34) pathway or through a variety of amino acid sensors located in the cytosol or lysosomal membrane. These amino acid sensors control the translocation of mTORC1 from the cytosol to the lysosomal surface where mTORC1 is activated by Rheb GTPase, therefore regulating autophagy and the lysosomal protein degradation.
Collapse
|
27
|
Kidney intercalated cells and the transcription factor FOXi1 drive cystogenesis in tuberous sclerosis complex. Proc Natl Acad Sci U S A 2021; 118:2020190118. [PMID: 33536341 PMCID: PMC8017711 DOI: 10.1073/pnas.2020190118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in TSC1 or TSC2 gene and affects multiple organs, including the kidney, where it presents with angiomyolipomata and cysts that can result in kidney failure. The factors promoting cyst formation and tumor growth in TSC are incompletely understood. Current studies demonstrate that kidney cyst epithelia in TSC mouse models and in humans with TSC are composed of hyperproliferating intercalated cells, along with activation of H+-ATPase and carbonic anhydrase 2. Interfering with intercalated cell proliferation completely inhibited and inactivating carbonic anhydrase 2 significantly protected against cyst formation in TSC. Targeting the acid base and/or electrolyte transporters of intercalated cells may provide a therapeutic approach for the treatment of kidney cysts in TSC. Tuberous sclerosis complex (TSC) is caused by mutations in either TSC1 or TSC2 genes and affects multiple organs, including kidney, lung, and brain. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomata) and cysts, which eventually leads to kidney failure. The factors promoting cyst formation and tumor growth in TSC are incompletely understood. Here, we report that mice with principal cell-specific inactivation of Tsc1 develop numerous cortical cysts, which are overwhelmingly composed of hyperproliferating A-intercalated (A-IC) cells. RNA sequencing and confirmatory expression studies demonstrated robust expression of Forkhead Transcription Factor 1 (Foxi1) and its downstream targets, apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in cyst epithelia in Tsc1 knockout (KO) mice but not in Pkd1 mutant mice. In addition, the electrogenic 2Cl−/H+ exchanger (CLC-5) is significantly up-regulated and shows remarkable colocalization with H+-ATPase on the apical membrane of cyst epithelia in Tsc1 KO mice. Deletion of Foxi1, which is vital to intercalated cells viability and H+-ATPase expression, completely abrogated the cyst burden in Tsc1 KO mice, as indicated by MRI images and histological analysis in kidneys of Foxi1/Tsc1 double-knockout (dKO) mice. Deletion of CAII, which is critical to H+-ATPase activation, caused significant reduction in cyst burden and increased life expectancy in CAII/Tsc1 dKO mice vs. Tsc1 KO mice. We propose that intercalated cells and their acid/base/electrolyte transport machinery (H+-ATPase/CAII/CLC-5) are critical to cystogenesis, and their inhibition or inactivation is associated with significant protection against cyst generation and/or enlargement in TSC.
Collapse
|
28
|
White JP. Amino Acid Trafficking and Skeletal Muscle Protein Synthesis: A Case of Supply and Demand. Front Cell Dev Biol 2021; 9:656604. [PMID: 34136478 PMCID: PMC8201612 DOI: 10.3389/fcell.2021.656604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle protein synthesis is a highly complex process, influenced by nutritional status, mechanical stimuli, repair programs, hormones, and growth factors. The molecular aspects of protein synthesis are centered around the mTORC1 complex. However, the intricacies of mTORC1 regulation, both up and downstream, have expanded overtime. Moreover, the plastic nature of skeletal muscle makes it a unique tissue, having to coordinate between temporal changes in myofiber metabolism and hypertrophy/atrophy stimuli within a tissue with considerable protein content. Skeletal muscle manages the push and pull between anabolic and catabolic pathways through key regulatory proteins to promote energy production in times of nutrient deprivation or activate anabolic pathways in times of nutrient availability and anabolic stimuli. Branched-chain amino acids (BCAAs) can be used for both energy production and signaling to induce protein synthesis. The metabolism of BCAAs occur in tandem with energetic and anabolic processes, converging at several points along their respective pathways. The fate of intramuscular BCAAs adds another layer of regulation, which has consequences to promote or inhibit muscle fiber protein anabolism. This review will outline the general mechanisms of muscle protein synthesis and describe how metabolic pathways can regulate this process. Lastly, we will discuss how BCAA availability and demand coordinate with synthesis mechanisms and identify key factors involved in intramuscular BCAA trafficking.
Collapse
Affiliation(s)
- James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
29
|
Xiao B, Zuo D, Hirukawa A, Cardiff RD, Lamb R, Sonenberg N, Muller WJ. Rheb1-Independent Activation of mTORC1 in Mammary Tumors Occurs through Activating Mutations in mTOR. Cell Rep 2021; 31:107571. [PMID: 32348753 DOI: 10.1016/j.celrep.2020.107571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 11/25/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a master modulator of cellular growth, and its aberrant regulation is recurrently documented within breast cancer. While the small GTPase Rheb1 is the canonical activator of mTORC1, Rheb1-independent mechanisms of mTORC1 activation have also been reported but have not been fully understood. Employing multiple transgenic mouse models of breast cancer, we report that ablation of Rheb1 significantly impedes mammary tumorigenesis. In the absence of Rheb1, a block in tumor initiation can be overcome by multiple independent mutations in Mtor to allow Rheb1-independent reactivation of mTORC1. We further demonstrate that the mTOR kinase is indispensable for tumor initiation as the genetic ablation of mTOR abolishes mammary tumorigenesis. Collectively, our findings demonstrate that mTORC1 activation is indispensable for mammary tumor initiation and that tumors acquire alternative mechanisms of mTORC1 activation.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Dongmei Zuo
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alison Hirukawa
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - William J Muller
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Faculty of Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind & Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
30
|
De D, Mukherjee I, Guha S, Paidi RK, Chakrabarti S, Biswas SC, Bhattacharyya SN. Rheb-mTOR activation rescues Aβ-induced cognitive impairment and memory function by restoring miR-146 activity in glial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:868-887. [PMID: 34094708 PMCID: PMC8141608 DOI: 10.1016/j.omtn.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Deposition of amyloid beta plaques in adult rat or human brain is associated with increased production of proinflammatory cytokines by associated glial cells that are responsible for degeneration of the diseased tissue. The expression of these cytokines is usually under check and is controlled at the post-transcriptional level via several microRNAs. Computational analysis of gene expression profiles of cortical regions of Alzheimer’s disease patients’ brain suggests ineffective target cytokine mRNA suppression by existing micro-ribonucleoproteins (miRNPs) in diseased brain. Exploring the mechanism of amyloid beta-induced cytokine expression, we have identified how the inactivation of the repressive miR-146 miRNPs causes increased production of cytokines in amyloid beta-exposed glial cells. In exploration of the cause of miRNP inactivation, we have noted amyloid beta oligomer-induced sequestration of the mTORC1 complex to early endosomes that results in decreased Ago2 phosphorylation, limited Ago2-miRNA uncoupling, and retarded Ago2-cytokine mRNA interaction in rat astrocytes. Interestingly, constitutive activation of mTORC1 by Rheb activator restricts proinflammatory cytokine production by reactivating miR-146 miRNPs in amyloid beta-exposed glial cells to rescue the disease phenotype in the in vivo rat model of Alzheimer’s disease.
Collapse
Affiliation(s)
- Dipayan De
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ishita Mukherjee
- Structural Biology and Bio-informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subhalakshmi Guha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Saikat Chakrabarti
- Structural Biology and Bio-informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
31
|
Still Living Better through Chemistry: An Update on Caloric Restriction and Caloric Restriction Mimetics as Tools to Promote Health and Lifespan. Int J Mol Sci 2020; 21:ijms21239220. [PMID: 33287232 PMCID: PMC7729921 DOI: 10.3390/ijms21239220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR), the reduction of caloric intake without inducing malnutrition, is the most reproducible method of extending health and lifespan across numerous organisms, including humans. However, with nearly one-third of the world’s population overweight, it is obvious that caloric restriction approaches are difficult for individuals to achieve. Therefore, identifying compounds that mimic CR is desirable to promote longer, healthier lifespans without the rigors of restricting diet. Many compounds, such as rapamycin (and its derivatives), metformin, or other naturally occurring products in our diets (nutraceuticals), induce CR-like states in laboratory models. An alternative to CR is the removal of specific elements (such as individual amino acids) from the diet. Despite our increasing knowledge of the multitude of CR approaches and CR mimetics, the extent to which these strategies overlap mechanistically remains unclear. Here we provide an update of CR and CR mimetic research, summarizing mechanisms by which these strategies influence genome function required to treat age-related pathologies and identify the molecular fountain of youth.
Collapse
|
32
|
Sokolov AM, Holmberg JC, Feliciano DM. The amino acid transporter Slc7a5 regulates the mTOR pathway and is required for granule cell development. Hum Mol Genet 2020; 29:3003-3013. [PMID: 32821949 PMCID: PMC7645712 DOI: 10.1093/hmg/ddaa186] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogenic mutations in the solute carrier family 7 member 5 (SLC7A5) gene, which encodes an amino acid transporter cause microcephaly and seizures, yet the mechanisms responsible for these phenotypes are unclear. Models have demonstrated that Slc7a5 deletion is embryonic lethal and that these embryos lack a fully formed telencephalon. This phenotype is similar to that of mammalian target of rapamycin (mTOR) protein kinase deletion or mTOR inhibition. Notably, in many cells, Slc7a5 import of amino acids is required to maintain mTOR activity. Slc7a5 is present within neurogenic regions during embryogenesis, is found in cultured neurons and can modulate neuronal electrophysiological properties. However, Slc7a5 is also highly expressed within endothelial cells of the blood-brain barrier where removal in conditional mice leads to severe behavioral defects and non-cell autonomous changes in neurons. Therefore, the extent that neural Slc7a5 is required for development is unclear. Here, subventricular zone neural stem cells that generate olfactory bulb granule cell neurons were electroporated with SLC7A5 or Slc7a5 short hairpin RNA encoding plasmids. Although early phases of neural development were unaltered, Slc7a5 knockdown effected late phases of GC dendrite maturation and survival. Slc7a5 knockdown also decreased mTOR pathway activity. Ras homolog enriched in brain, an mTOR activator, rescued the effect of Slc7a5 knockdown on mTOR pathway activity and dendrite arbors. The data presented here demonstrate that Slc7a5 is required for GC mTOR pathway activity, maturation and survival, which may help explain why Slc7a5 mutations prevent normal brain development and function.
Collapse
Affiliation(s)
- Aidan M Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
| | - Jennie C Holmberg
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
| |
Collapse
|
33
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
34
|
Takahara T, Amemiya Y, Sugiyama R, Maki M, Shibata H. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J Biomed Sci 2020; 27:87. [PMID: 32799865 PMCID: PMC7429791 DOI: 10.1186/s12929-020-00679-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an essential regulator of cell growth and metabolism through the modulation of protein and lipid synthesis, lysosome biogenesis, and autophagy. The activity of mTORC1 is dynamically regulated by several environmental cues, including amino acid availability, growth factors, energy levels, and stresses, to coordinate cellular status with environmental conditions. Dysregulation of mTORC1 activity is closely associated with various diseases, including diabetes, cancer, and neurodegenerative disorders. The discovery of Rag GTPases has greatly expanded our understanding of the regulation of mTORC1 activity by amino acids, especially leucine and arginine. In addition to Rag GTPases, other factors that also contribute to the modulation of mTORC1 activity have been identified. In this review, we discuss the mechanisms of regulation of mTORC1 activity by particular amino acids.
Collapse
Affiliation(s)
- Terunao Takahara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| | - Yuna Amemiya
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Risa Sugiyama
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
35
|
Zhao X, Jiang Y, Jiang T, Han X, Wang Y, Chen L, Feng X. Physiological and pathological regulation of autophagy in pregnancy. Arch Gynecol Obstet 2020; 302:293-303. [PMID: 32556514 DOI: 10.1007/s00404-020-05607-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
Autophagy exists widely in eukaryotic cells and is regulated by a variety of molecular mechanisms. Its physiological functions include providing energy, maintaining cell homeostasis, and promoting apoptosis of abnormal cells. At present, the regulation of autophagy in tumor, degenerative disease, and cardiovascular disease has attracted much attention. Gradually, the role of autophagy in pregnancy tends to be valued. The previous literature has shown that autophagy can influence the occurrence and maintenance of pregnancy from three aspects: embryo (affecting the process of fertilization and embryonic development and the function of trophoblast cells), maternal (decidualization), and maternal-to-fetal immune crosstalk. Undoubtedly, abnormalities in autophagy levels are associated with a variety of pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm delivery which have been proven by human, animal, and in vitro experiments. The regulation of autophagy is expected to be a target for the treatment of these pregnancy complications. This article reviews the research on autophagy, especially about its physiological and pathological regulation during pregnancy.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuepeng Jiang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tianyue Jiang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xinyu Han
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Wang
- Department of First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Lu Chen
- Department of First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaoling Feng
- Department of First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
36
|
Abstract
A complex molecular machinery converges on the surface of lysosomes to ensure that the growth-promoting signaling mediated by mechanistic target of rapamycin complex 1 (mTORC1) is tightly controlled by the availability of nutrients and growth factors. The final step in this activation process is dependent on Rheb, a small GTPase that binds to mTOR and allosterically activates its kinase activity. Here we review the mechanisms that determine the subcellular localization of Rheb (and the closely related RhebL1 protein) as well as the significance of these mechanisms for controlling mTORC1 activation. In particular, we explore how the relatively weak membrane interactions conferred by C-terminal farnesylation are critical for the ability of Rheb to activate mTORC1. In addition to supporting transient membrane interactions, Rheb C-terminal farnesylation also supports an interaction between Rheb and the δ subunit of phosphodiesterase 6 (PDEδ). This interaction provides a potential mechanism for targeting Rheb to membranes that contain Arl2, a small GTPase that triggers the release of prenylated proteins from PDEδ. The minimal membrane targeting conferred by C-terminal farnesylation of Rheb and RhebL1 distinguishes them from other members of the Ras superfamily that possess additional membrane interaction motifs that work with farnesylation for enrichment on the specific subcellular membranes where they engage key effectors. Finally, we highlight diversity in Rheb membrane targeting mechanisms as well as the potential for alternative mTORC1 activation mechanisms across species.
Collapse
Affiliation(s)
- Brittany Angarola
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
37
|
Duong T, Rasmussen NR, Ballato E, Mote FS, Reiner DJ. The Rheb-TORC1 signaling axis functions as a developmental checkpoint. Development 2020; 147:dev.181727. [PMID: 32041790 DOI: 10.1242/dev.181727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
In many eukaryotes, the small GTPase Rheb functions as a switch to toggle activity of TOR complex 1 (TORC1) between anabolism and catabolism, thus controlling lifespan, development and autophagy. Our CRISPR-generated, fluorescently tagged endogenous Caenorhabditis elegans RHEB-1 and DAF-15/Raptor are expressed ubiquitously and localize to lysosomes. LET-363/TOR and DAF-15/Raptor are required for development beyond the third larval stage (L3). We observed that deletion of RHEB-1 similarly conferred L3 arrest. Unexpectedly, robust RNAi-mediated depletion of TORC1 components caused arrest at stages prior to L3. Accordingly, conditional depletion of endogenous DAF-15/Raptor in the soma revealed that TORC1 is required at each stage of the life cycle to progress to the next stage. Reversal of DAF-15 depletion permits arrested animals to recover to continue development. Our results are consistent with TORC1 functioning as a developmental checkpoint that governs the decision of the animal to progress through development.
Collapse
Affiliation(s)
- Tam Duong
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Neal R Rasmussen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Elliot Ballato
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - F Sefakor Mote
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - David J Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
38
|
Rashid S, Pho KB, Mesbahi H, MacNeil LT. Nutrient Sensing and Response Drive Developmental Progression in Caenorhabditis elegans. Bioessays 2020; 42:e1900194. [PMID: 32003906 DOI: 10.1002/bies.201900194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022]
Abstract
In response to nutrient limitation, many animals, including Caenorhabditis elegans, slow or arrest their development. This process requires mechanisms that sense essential nutrients and induce appropriate responses. When faced with nutrient limitation, C. elegans can induce both short and long-term survival strategies, including larval arrest, decreased developmental rate, and dauer formation. To select the most advantageous strategy, information from many different sensors must be integrated into signaling pathways, including target of rapamycin (TOR) and insulin, that regulate developmental progression. Here, how nutrient information is sensed and integrated into developmental decisions that determine developmental rate and progression in C. elegans is reviewed.
Collapse
Affiliation(s)
- Sabih Rashid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| |
Collapse
|
39
|
Suryawan A, Rudar M, Fiorotto ML, Davis TA. Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. J Appl Physiol (1985) 2020; 128:286-295. [PMID: 31944890 DOI: 10.1152/japplphysiol.00332.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leucine (Leu) and its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent protein synthesis in the skeletal muscle of neonatal pigs. This study aimed to determine whether HMB and Leu utilize common nutrient-sensing mechanisms to activate mTORC1. In study 1, neonatal pigs were fed one of five diets for 24 h: low protein (LP), high protein (HP), or LP supplemented with 4 (LP+HMB4), 40 (LP+HMB40), or 80 (LP+HMB80) μmol HMB·kg body wt-1·day-1. In study 2, neonatal pigs were fed for 24 h: LP, LP supplemented with Leu (LP+Leu), or HP diets delivering 9, 18, and 18 mmol Leu·kg body wt-1·day-1, respectively. The upstream signaling molecules that regulate mTORC1 activity were analyzed. mTOR phosphorylation on Ser2448 and Ser2481 was greater in LP+HMB40, LP+HMB80, and LP+Leu than in LP and greater in HP than in HMB-supplemented groups (P < 0.05), whereas HP and LP+Leu were similar. Rheb-mTOR complex formation was lower in LP than in HP (P < 0.05), with no enhancement by HMB or Leu supplementation. The Sestrin2-GATOR2 complex was more abundant in LP than in HP and was reduced by Leu (P < 0.05) but not HMB supplementation. RagA-mTOR and RagC-mTOR complexes were higher in LP+Leu and HP than in LP and HMB groups (P < 0.05). There were no treatment differences in RagB-SH3BP4, Vps34-LRS, and RagD-LRS complex abundances. Phosphorylation of Erk1/2 and TSC2, but not AMPK, was lower in LP than HP (P < 0.05) and unaffected by HMB or Leu supplementation. Our results demonstrate that HMB stimulates mTORC1 activation in neonatal muscle independent of the leucine-sensing pathway mediated by Sestrin2 and the Rag proteins.NEW & NOTEWORTHY Dietary supplementation with either leucine or its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulates protein synthesis in skeletal muscle of the neonatal pig. Our results demonstrate that both leucine and HMB stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) phosphorylation in neonatal muscle. This leucine-stimulated process involves dissociation of the Sestrin2-GATOR2 complex and increased binding of Rag A/C to mTOR. However, HMB's activation of mTORC1 is independent of this leucine-sensing pathway.
Collapse
Affiliation(s)
- Agus Suryawan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marko Rudar
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
40
|
Novel compounds for the modulation of mTOR and autophagy to treat neurodegenerative diseases. Cell Signal 2020; 65:109442. [DOI: 10.1016/j.cellsig.2019.109442] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
|
41
|
Zhou JJ, Chun L, Liu JF. A Comprehensive Understanding of Dietary Effects on C. elegans Physiology. Curr Med Sci 2019; 39:679-684. [PMID: 31612382 DOI: 10.1007/s11596-019-2091-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Diet has been shown to play an important role in human physiology. It is a predominant exogenous factor regulating the composition of gut microbiota, and dietary intervention holds promise for treatment of diseases such as obesity, type 2 diabetes, and malnutrition. Furthermore, it was reported that diet has significant effects on physiological processes of C. elegans, including reproduction, fat storage, and aging. To reveal novel signaling pathways responsive to different diets, C. elegans and its bacterial diet were used as an interspecies model system to mimic the interaction between host and gut microbiota. Most signaling pathways identified in C. elegans are highly conserved across different species, including humans. A better understanding of these pathways can, therefore, help to develop interventions for human diseases. In this article, we summarize recent achievements on molecular mechanisms underlying the response of C. elegans to different diets and discuss their relevance to human health.
Collapse
Affiliation(s)
- Jie-Jun Zhou
- Collaborative Innovation Center for Brain Science, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Chun
- Collaborative Innovation Center for Brain Science, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jian-Feng Liu
- Collaborative Innovation Center for Brain Science, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
42
|
Abstract
Some amino acids (AA) act through several signalling pathways and mechanisms to mediate the control of gene expression at the translation level, and the regulation occurs, specifically, on the initiation and the signalling pathways for translation. The translation of mRNA to protein synthesis proceeds through the steps of initiation and elongation, and AA act as important feed-forward activators that are involved in many pathways, such as the sensing and the transportation of AA by cells, in these steps in many tissues of mammals. For the translation, phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) is a critical molecule that controls the translation initiation and its functions can be regulated by some AA. Another control point in the mRNA binding step in the translation initiation is at the regulation by mammalian target of rapamycin, which requires a change of phosphorylation status of ribosomal protein S6. In fact, the change of phosphorylation status of ribosomal protein S6 might be involved in global protein synthesis. The present review summarises recent work on the molecular mechanisms of the regulation of protein synthesis by AA and highlights new findings.
Collapse
|
43
|
Ahmed AR, Owens RJ, Stubbs CD, Parker AW, Hitchman R, Yadav RB, Dumoux M, Hawes C, Botchway SW. Direct imaging of the recruitment and phosphorylation of S6K1 in the mTORC1 pathway in living cells. Sci Rep 2019; 9:3408. [PMID: 30833605 PMCID: PMC6399282 DOI: 10.1038/s41598-019-39410-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Knowledge of protein signalling pathways in the working cell is seen as a primary route to identifying and developing targeted medicines. In recent years there has been a growing awareness of the importance of the mTOR pathway, making it an attractive target for therapeutic intervention in several diseases. Within this pathway we have focused on S6 kinase 1 (S6K1), the downstream phosphorylation substrate of mTORC1, and specifically identify its juxtaposition with mTORC1. When S6K1 is co-expressed with raptor we show that S6K1 is translocated from the nucleus to the cytoplasm. By developing a novel biosensor we demonstrate in real-time, that phosphorylation and de-phosphorylation of S6K1 occurs mainly in the cytoplasm of living cells. Furthermore, we show that the scaffold protein raptor, that typically recruits mTOR substrates, is not always involved in S6K1 phosphorylation. Overall, we demonstrate how FRET-FLIM imaging technology can be used to show localisation of S6K1 phosphorylation in living cells and hence a key site of action of inhibitors targeting mTOR phosphorylation.
Collapse
Affiliation(s)
- Abdullah R Ahmed
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK
| | - Raymond J Owens
- Protein Production UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK.,The Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Christopher D Stubbs
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK
| | - Richard Hitchman
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Rahul B Yadav
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Maud Dumoux
- Protein Production UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK.,Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Chris Hawes
- Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Stanley W Botchway
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK.
| |
Collapse
|
44
|
Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat Metab 2019; 1:321-333. [PMID: 32694720 DOI: 10.1038/s42255-019-0038-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/24/2019] [Indexed: 02/05/2023]
Abstract
The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) serves as a key conduit between growth signals and the metabolic processes underlying cell growth. The activation state of mTORC1 is controlled by intracellular nutrients and energy, as well as exogenous hormones and growth factors, thereby integrating local and systemic growth signals. Here we discuss the molecular logic of the mTORC1 signalling network and its importance in coupling growth signals to the control of cellular metabolism. After activation, mTORC1 promotes the conversion of available nutrients and energy into the major macromolecular species contributing to cellular mass, including proteins, nucleic acids and lipids, while suppressing the autophagic recycling of these macromolecules back into their nutrient constituents. Given that uncoupling of mTORC1 from its normal regulatory inputs contributes to many diseases-including cancer, genetic tumour syndromes, metabolic diseases, autoimmune diseases and neurological disorders-understanding the molecular logic of the mTORC1 network and how to modulate it may present therapeutic opportunities for treatment of a broad range of diseases and potentially even for the extension of lifespan.
Collapse
Affiliation(s)
- Alexander J Valvezan
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
45
|
Chao LH, Avruch J. Cryo-EM insight into the structure of MTOR complex 1 and its interactions with Rheb and substrates. F1000Res 2019; 8. [PMID: 30647914 PMCID: PMC6325617 DOI: 10.12688/f1000research.16109.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The mechanistic target of rapamycin (MTOR) is a giant protein kinase that, together with the accessory proteins Raptor and mLst8, forms a complex of over 1 MDa known as MTOR complex 1 (MTORC1). MTORC1, through its protein kinase activity, controls the accretion of cell mass through the regulation of gene transcription, mRNA translation, and protein turnover. MTORC1 is activated in an interdependent manner by insulin/growth factors and nutrients, especially amino acids, and is inhibited by stressors such as hypoxia and by the drug rapamycin. The action of insulin/growth factors converges on the small GTPase Rheb, which binds directly to the MTOR polypeptide in MTORC1 and, in its GTP-bound state, initiates kinase activation. Biochemical studies established that MTORC1 exists as a dimer of the MTOR/Raptor/mLst8 trimer, and progressive refinements in cryo-electron microscopy (cryo-EM) have enabled an increasingly clear picture of the architecture of MTORC1, culminating in a deep understanding of how MTORC1 interacts with and phosphorylates its best-known substrates-the eIF-4E binding protein/4E-BP, the p70 S6 kinase/S6K1B, and PRAS40/AKT1S1-and how this is inhibited by rapamycin. Most recently, Rheb-GTP has been shown to bind to MTORC1 in a cooperative manner at an allosteric site remote from the kinase domain that twists the latter into a catalytically competent configuration. Herein, we review the recent cryo-EM and associated biochemical studies of MTORC1 and seek to integrate these new results with the known physiology of MTORC1 regulation and signaling.
Collapse
Affiliation(s)
- Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Abdel-Maksoud MS, El-Gamal MI, Benhalilou DR, Ashraf S, Mohammed SA, Oh CH. Mechanistic/mammalian target of rapamycin: Recent pathological aspects and inhibitors. Med Res Rev 2018; 39:631-664. [PMID: 30251347 DOI: 10.1002/med.21535] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), also known as the mechanistic target of rapamycin, regulates many normal cell processes such as transcription, cell growth, and autophagy. Overstimulation of mTOR by its ligands, amino acids, sugars, and/or growth factors leads to physiological disorders, including cancer and neurodegenerative diseases. In this study, we reviewed the recent advances regarding the mechanism that involves mTOR in cancer, aging, and neurodegenerative diseases. The chemical and biological properties of recently reported small molecules that function as mTOR kinase inhibitors, including adenosine triphosphate-competitive inhibitors and dual mTOR/PI3K inhibitors, have also been reviewed. We focused on the reports published in the literature from 2012 to 2017.
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Dalia Reyane Benhalilou
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sandy Ashraf
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea.,Department of Biomolecular Science, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
47
|
Suryawan A, Davis TA. Amino Acid- and Insulin-Induced Activation of mTORC1 in Neonatal Piglet Skeletal Muscle Involves Sestin2-GATOR2, Rag A/C-mTOR, and RHEB-mTOR Complex Formation. J Nutr 2018; 148:825-833. [PMID: 29796625 PMCID: PMC6669959 DOI: 10.1093/jn/nxy044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Background Feeding stimulates protein synthesis in skeletal muscle of neonates and this response is regulated through activation of mechanistic target of rapamycin complex 1 (mTORC1). The identity of signaling components that regulate mTORC1 activation in neonatal muscle has not been fully elucidated. Objective We investigated the independent effects of the rise in amino acids (AAs) and insulin after a meal on the abundance and activation of potential regulators of mTORC1 in muscle and whether the responses are modified by development. Methods Overnight-fasted 6- and 26-d-old pigs were infused for 2 h with saline (control group) or with a balanced AA mixture (AA group) or insulin (INS group) to achieve fed levels while insulin or AAs, respectively, and glucose were maintained at fasting levels. Muscles were analyzed for potential mTORC1 regulatory mechanisms and results were analyzed by 2-factor ANOVA followed by Tukey's post hoc test. Results The abundances of DEP domain-containing mTOR-interacting protein (DEPTOR), growth factor receptor bound protein 10 (GRB10), and regulated in development and DNA damage response 2 (REDD2) were lower (65%, 73%, and 53%, respectively; P < 0.05) and late endosomal/lysosomal adaptor, MAPK and mTOR activator 1/2 (LAMTOR1/2), vacuolar H+-ATPase (V-ATPase), and Sestrin2 were higher (94%, 141%, 145%, and 127%, respectively; P < 0.05) in 6- than in 26-d-old pigs. Both AA and INS groups increased phosphorylation of GRB10 (P < 0.05) compared with control in 26- but not in 6-d-old pigs. Formation of Ras-related GTP-binding protein A (RagA)-mTOR, RagC-mTOR, and Ras homolog enriched in brain (RHEB)-mTOR complexes was increased (P < 0.05) and Sestrin2-GTPase activating protein activity towards Rags 2 (GATOR2) complex was decreased (P < 0.05) by both AA and INS groups and these responses were greater (P < 0.05) in 6- than in 26-d-old pigs. Conclusion The results suggest that formation of RagA-mTOR, RagC-mTOR, RHEB-mTOR, and Sestrin2-GATOR2 complexes may be involved in the AA- and INS-induced activation of mTORC1 in skeletal muscle of neonates after a meal and that enhanced activation of the mTORC1 signaling pathway in neonatal muscle is in part due to regulation by DEPTOR, GRB10, REDD2, LAMTOR1/2, V-ATPase, and Sestrin2.
Collapse
Affiliation(s)
- Agus Suryawan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Teresa A Davis
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX,Address correspondence to TAD (e-mail: )
| |
Collapse
|
48
|
Sandlund L, Kongshaug H, Nilsen F, Dalvin S. Molecular characterization and functional analysis of components of the TOR pathway of the salmon louse, Lepeophtheirus salmonis (Krøyer, 1838). Exp Parasitol 2018; 188:83-92. [PMID: 29625096 DOI: 10.1016/j.exppara.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 11/27/2022]
Abstract
The salmon louse Lepeophtheirus salmonis (Copepods, Caligida) is a marine ectoparasite infecting salmonid fishes in the northern hemisphere. At present, salmon lice infections are the most severe disease problem in the salmon farming industry causing significant economic losses. Due to development of resistance towards available chemotherapeutants, it is clear that new chemotherapeutants or non-chemical control methods are essential to manage the parasite in the future. The TOR signaling pathway is present in all metazoans and is a major regulator of cellular activity according to nutrient availability. In this study, we identified the TOR pathway genes in salmon louse; LsTSC1, LsTSC2, LsRheb, LsTOR, LsRaptor and LsRictor. RNA interference mediated gene silencing was performed to elucidate the functional role of each member of the pathway. Our results show that interference of the TOR signaling pathway either directly or indirectly inhibits many biological processes including egg maturation. In addition, the effect of gene knock-down results in more comprehensive physiological defects when targeting TORC1 and the upstream regulator Rheb. This is the first report on the TOR pathway in the salmon louse and that our research contributes to the basic knowledge of the parasite that could lead to development of novel treatment methods.
Collapse
Affiliation(s)
- Liv Sandlund
- SLRC-Sea Lice Research Center, Institute of Marine Research, 5817 Bergen, Norway
| | - Heidi Kongshaug
- SLRC-Sea Lice Research Center, Department of Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Frank Nilsen
- SLRC-Sea Lice Research Center, Department of Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Sussie Dalvin
- SLRC-Sea Lice Research Center, Institute of Marine Research, 5817 Bergen, Norway.
| |
Collapse
|
49
|
Kang J, Kusnadi EP, Ogden AJ, Hicks RJ, Bammert L, Kutay U, Hung S, Sanij E, Hannan RD, Hannan KM, Pearson RB. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription. Oncotarget 2018; 7:48887-48904. [PMID: 27385002 PMCID: PMC5226478 DOI: 10.18632/oncotarget.10346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer.
Collapse
Affiliation(s)
- Jian Kang
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Eric P Kusnadi
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Allison J Ogden
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Molecular Imaging and Targeted Therapeutics Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Lukas Bammert
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Sandy Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital & Department of Ophthalmology, University of Melbourne, East Melbourne, Victoria, Australia
| | - Elaine Sanij
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Ross D Hannan
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.,Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberaa, ACT, Australia
| | - Katherine M Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberaa, ACT, Australia
| | - Richard B Pearson
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
50
|
Paquette M, El-Houjeiri L, Pause A. mTOR Pathways in Cancer and Autophagy. Cancers (Basel) 2018; 10:cancers10010018. [PMID: 29329237 PMCID: PMC5789368 DOI: 10.3390/cancers10010018] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.
Collapse
Affiliation(s)
- Mathieu Paquette
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|