1
|
Rivera-Gonzalez O, Case CT, Wilson NA, Speed JS, Taylor EB. Endothelin receptor antagonism improves glucose tolerance and adipose tissue inflammation in an experimental model of systemic lupus erythematosus. Am J Physiol Endocrinol Metab 2023; 324:E73-E84. [PMID: 36476039 PMCID: PMC9870584 DOI: 10.1152/ajpendo.00274.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Endothelin-1 (ET-1) is elevated in patients with systemic lupus erythematosus (SLE), an autoimmune disease characterized by high rates of hypertension, renal injury, and cardiovascular disease. SLE is also associated with an increased prevalence of obesity and insulin resistance compared to the general population. In the present study, we tested the hypothesis that elevated ET-1 in SLE contributes to obesity and insulin resistance. For these studies, we used the NZBWF1 mouse model of SLE, which develops obesity and insulin resistance on a normal chow diet. To test this hypothesis, we treated control (NZW) and SLE (NZBWF1) mice with vehicle, atrasentan (ETA receptor antagonist, 10 mg/kg/day), or bosentan (ETA/ETB receptor antagonist, 100 mg/kg/day) for 4 wk. Neither treatment impacted circulating immunoglobulin levels, but treatment with bosentan lowered anti-dsDNA IgG levels, a marker of SLE disease activity. Treatment with atrasentan and bosentan decreased glomerulosclerosis, and atrasentan lowered renal T-cell infiltration. Body weight was lower in SLE mice treated with atrasentan or bosentan. Endothelin receptor antagonism also improved hyperinsulinemia, homeostatic model assessment for insulin resistance, and glucose tolerance in SLE mice. Adipose tissue inflammation was also improved by endothelin receptor blockade. Taken together, these data suggest a potential therapeutic benefit for SLE patients with obesity and insulin resistance.NEW & NOTEWORTHY SLE is an autoimmune disease that is associated with obesity, insulin resistance, and elevated endothelin-1. The present study demonstrated that pharmacological inhibition of endothelin receptors decreased body weight, insulin resistance, and adipose tissue inflammation in a murine model of SLE. The therapeutic potential of endothelin receptor antagonists to treat obesity-related diseases and pathophysiological conditions, such as autoimmune diseases and insulin resistance, has become increasingly clear.
Collapse
Affiliation(s)
- Osvaldo Rivera-Gonzalez
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Clinton T Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalie A Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
2
|
Zhang L, Xue S, Hou J, Chen G, Xu ZG. Endothelin receptor antagonists for the treatment of diabetic nephropathy: A meta-analysis and systematic review. World J Diabetes 2020; 11:553-566. [PMID: 33269066 PMCID: PMC7672789 DOI: 10.4239/wjd.v11.i11.553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/22/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the main cause of chronic kidney disease and end-stage renal disease worldwide. Although available clinical trials have shown that endothelin receptor (ER) antagonists may be a novel and beneficial drug for DN, no consistent conclusions regarding their sufficient effectiveness and safety for patients with DN have been presented. AIM To assess the effectiveness and safety of ER antagonists among patients with DN. METHODS The EMBASE, PubMed, MEDLINE, Cochrane, and ClinicalTrials.gov databases were searched without any language restrictions. Relative risks with 95% confidence intervals (CIs) for dichotomous data and mean differences or standardized mean difference with 95%CIs for continuous data were calculated using Review Manager 5.3 software. Publication bias was assessed using Egger's test with Stata/SE software. RESULTS We enrolled seven studies with six data sets and 5271 participants. The ER antagonists group showed a significantly greater reduction in albuminuria and more patients with 40% reduction in urinary albumin-to-creatinine ratio than the control group (P < 0.0001 and P = 0.02, respectively). Subgroup analysis for reductions in estimated glomerular filtration rate (eGFR) showed that for the middle-dosage subgroup, the ER antagonists group exhibited lower eGFR reduction than the control group (P < 0.00001; mean difference, 0.70 95%CI: 0.66, 0.74). Moreover, significant reductions in systolic and diastolic blood pressure were observed in the invention group. CONCLUSION ER blockades combined with angiotensin converting enzyme inhibitor /angiotensin II type 1 receptor blockers may be an effective treatment to lower blood pressure and reduce proteinuria in DN with declined eGFR. However, attention should be given to adverse events, including cardiac failure, anemia, and hypoglycemia, as well as serious adverse events.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Shuai Xue
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jie Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Guang Chen
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Zhong-Gao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
3
|
Polak J, Punjabi NM, Shimoda LA. Blockade of Endothelin-1 Receptor Type B Ameliorates Glucose Intolerance and Insulin Resistance in a Mouse Model of Obstructive Sleep Apnea. Front Endocrinol (Lausanne) 2018; 9:280. [PMID: 29896159 PMCID: PMC5986958 DOI: 10.3389/fendo.2018.00280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023] Open
Abstract
Obstructive sleep apnea (OSA) is associated with insulin resistance (IR) and glucose intolerance. Elevated endothelin-1 (ET-1) levels have been observed in OSA patients and in mice exposed to intermittent hypoxia (IH). We examined whether pharmacological blockade of type A and type B ET-1 receptors (ETA and ETB) would ameliorate glucose intolerance and IR in mice exposed to IH. Subcutaneously implanted pumps delivered BQ-123 (ETA antagonist; 200 nmol/kg/day), BQ-788 (ETB antagonist; 200 nmol/kg/day) or vehicle (saline or propyleneglycol [PG]) for 14 days in C57BL6/J mice (10/group). During treatment, mice were exposed to IH (decreasing the FiO2 from 20.9% to 6%, 60/h) or intermittent air (IA). After IH or IA exposure, insulin (0.5 IU/kg) or glucose (1 mg/kg) was injected intraperitoneally and plasma glucose determined after injection and area under glucose curve (AUC) was calculated. Fourteen-day IH increased fasting glucose levels (122 ± 7 vs. 157 ± 8 mg/dL, PG: 118 ± 6 vs. 139 ± 8; both p < 0.05) and impaired glucose tolerance (AUCglucose: 19,249 ± 1105 vs. 29,124 ± 1444, PG AUCglucose: 18,066 ± 947 vs. 25,135 ± 797; both p < 0.05) in vehicle-treated animals. IH-induced impairments in glucose tolerance were partially ameliorated with BQ-788 treatment (AUCglucose: 21,969 ± 662; p < 0.05). Fourteen-day IH also induced IR (AUCglucose: 7185 ± 401 vs. 8699 ± 401; p < 0.05). Treatment with BQ-788 decreased IR under IA (AUCglucose: 5281 ± 401, p < 0.05) and reduced worsening of IR with IH (AUCglucose: 7302 ± 401, p < 0.05). There was no effect of BQ-123 on IH-induced impairments in glucose tolerance or IR. Our results suggest that ET-1 plays a role in IH-induced impairments in glucose homeostasis.
Collapse
Affiliation(s)
- Jan Polak
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Naresh M. Punjabi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
BARTON M, LITTLE HJ, VAUGHAN-JONES RD, DANIELS S, DASHWOOD MR, TSUI JC. In Memoriam: Sidney George Shaw, DPhil (1948-2017). Physiol Res 2018. [DOI: 10.33549/physiolres.933886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
On March 4, 2017 at the age of 68, Sidney George Shaw (Sid) unexpectedly died from complications following surgery, only four years after retiring from the University of Bern. Trained in biochemistry at Oxford University, Sid had quickly moved into molecular pharmacology and became a key investigator in the field of enzyme biochemistry, vasoactive peptide research, and receptor signaling. Sid spent half his life in Switzerland, after moving to the University of Bern in 1984. This article, written by his friends and colleagues who knew him and worked with him during different stages of his career, summarizes his life, his passions, and his achievements in biomedical research. It also includes personal memories relating to a dear friend and outstanding scientist whose intellectual curiosity, humility, and honesty will remain an example to us all.
Collapse
Affiliation(s)
- M. BARTON
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland
| | | | | | | | | | - J. C. TSUI
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
5
|
Elgebaly MM, Kelly A, Harris AK, Elewa H, Portik-Dobos V, Ketsawatsomkron P, Marrero M, Ergul A. Impaired insulin-mediated vasorelaxation in a nonobese model of type 2 diabetes: role of endothelin-1. Can J Physiol Pharmacol 2008; 86:358-64. [PMID: 18516099 DOI: 10.1139/y08-034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insulin resistance involves decreased phosphorylation of insulin receptor substrate (IRS) proteins and (or) Akt. In the vasculature, modulated Akt phosphorylation may cause impaired vasorelaxation via decreased eNOS activation. Diet-induced insulin resistance enhances endothelin-1(ET-1)-mediated vasoconstriction and prevents vasodilatation to insulin. Presently, we evaluated insulin-mediated vascular relaxation, assessed molecular markers of the insulin signaling pathway, and determined the involvement of ET-1 in response to insulin by using selective ETA- or ETB-receptor blockade in a lean model of type 2 diabetes. Dose-response curves to insulin (0.01-100 ng/mL) were generated with wire myograph using thoracic aorta rings from control Wistar or diabetic Goto-Kakizaki (GK) rats (n=3-11). Maximal relaxation (Rmax) to insulin was significantly impaired and insulin sensitivity was decreased in the GK group. Preincubation with 1 micromol/L BQ-123 or BQ-788 for ETA- and ETB-receptor blockade, respectively, resulted in improved insulin sensitivity. Immunoblotting for native and phosphorylated Akt and IRS-1 revealed a decrease in Akt activation in the GK group. In vivo hyperinsulinemic euglycemic clamp studies showed decreased glucose utilization in GK rats, indicative of insulin resistance. These findings provide evidence that vascular insulin resistance occurs in a nonobese model of diabetes and that both ET receptor subtypes are involved in vascular relaxation to insulin.
Collapse
Affiliation(s)
- Mostafa M Elgebaly
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Raichlin E, Prasad A, Mathew V, Kent B, Holmes DR, Pumper GM, Nelson RE, Lerman LO, Lerman A. Efficacy and safety of atrasentan in patients with cardiovascular risk and early atherosclerosis. Hypertension 2008; 52:522-8. [PMID: 18695150 DOI: 10.1161/hypertensionaha.108.113068] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin plays an important role in the pathogenesis of atherosclerosis. The aim of the study was to evaluate the safety and hemodynamic and metabolic responses to 6 months treatment with atrasentan, the selective endothelin-A receptor antagonist. Seventy-two patients with multiple cardiovascular risk factors and nonobstructive coronary artery disease on coronary angiogram were randomly assigned in a double-blind manner to atrasentan or placebo. Mean aortic blood pressure decreased from 92+/-10 to 80+/-10 mm Hg (P<0.001) in the atrasentan group and did not change in the placebo group (93+/-10 and 92+/-11 mm Hg; P=0.84). The difference between the groups was significant (P<0.001). No effect on heart rate was observed. In a subgroup of patients not treated with angiotensin-converting enzyme inhibitor, creatinine level decreased in the atrasentan versus the placebo group (P=0.011). Fasting glucose (P=0.026), glycosylated hemoglobin level (P=0.041), triglyceride l (P=0.013), lipoprotein-A (P=0.046), and uric acid levels (P=0.048) decreased significantly in the atrasentan group compared with the placebo group. No progression of angiographic coronary disease was observed. The most common adverse effects with atrasentan were nasal stuffiness, headache, and edema. In conclusion, 6 months of treatment with atrasentan results in a reduction of blood pressure and improvement in glucose and lipid metabolism. These findings suggest the beneficial role of atrasentan in the treatment of hypertension and metabolic syndrome.
Collapse
Affiliation(s)
- Eugenia Raichlin
- Division of Cardiovascular Diseases, Center for Coronary Physiology and Imaging, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The normal action of insulin to vasodilate and redistribute blood flow in support of skeletal muscle metabolism is impaired in insulin-resistant states. Increased endogenous endothelin contributes to endothelial dysfunction in obesity and diabetes. Here, we test the hypothesis that increased endogenous endothelin action also contributes to skeletal muscle insulin resistance via impairments in insulin-stimulated vasodilation. We studied nine lean and seven obese humans, measuring the metabolic and hemodynamic effects of insulin (300 mU . m(-2) . min(-1)) alone and during femoral artery infusion of BQ123 (an antagonist of type A endothelin receptors, 1 micromol/min). Endothelin antagonism augmented skeletal muscle responses to insulin in obese subjects through changes in both leg blood flow (LBF) and glucose extraction. Insulin-stimulated LBF was significantly increased in obese subjects only. These changes, combined with differential effects on glucose extraction, resulted in augmented insulin-stimulated leg glucose uptake in obese subjects (54.7 +/- 5.7 vs. 107.4 +/- 18.9 mg/min with BQ123), with no change in lean subjects (103.7 +/- 11.4 vs. 88.9 +/- 16.3, P = 0.04 comparing BQ123 across groups). BQ123 allowed augmented leg glucose extraction in obese subjects even in the face of NOS antagonism. These findings suggest that increased endogenous endothelin action contributes to insulin resistance in skeletal muscle of obese humans, likely through both vascular and tissue effects.
Collapse
Affiliation(s)
- Amale Lteif
- Division of Endocrinology and Metabolism, Department of Medicine, Indiana University School of Medicine, CL459, 541 North Clinical Drive, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
8
|
Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, Musch TI, Poole DC. Effects of Type II diabetes on capillary hemodynamics in skeletal muscle. Am J Physiol Heart Circ Physiol 2006; 291:H2439-44. [PMID: 16844923 DOI: 10.1152/ajpheart.00290.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculatory red blood cell (RBC) hemodynamics are impaired within skeletal muscle of Type I diabetic rats (Kindig CA, Sexton WL, Fedde MR, and Poole DC. Respir Physiol 111: 163–175, 1998). Whether muscle microcirculatory dysfunction occurs in Type II diabetes, the more prevalent form of the disease, is unknown. We hypothesized that Type II diabetes would reduce the proportion of capillaries supporting continuous RBC flow and RBC hemodynamics within the spinotrapezius muscle of the Goto-Kakizaki Type II diabetic rat (GK). With the use of intravital microscopy, muscle capillary diameter ( dc), capillary lineal density, capillary tube hematocrit (Hctcap), RBC flux ( FRBC), and velocity ( VRBC) were measured in healthy male Wistar (control: n = 5, blood glucose, 105 ± 5 mg/dl) and male GK ( n = 7, blood glucose, 263 ± 34 mg/dl) rats under resting conditions. Mean arterial pressure did not differ between groups ( P > 0.05). Sarcomere length was set to a physiological length (∼2.7 μm) to ensure that muscle stretching did not alter capillary hemodynamics; dc was not different between control and GK rats ( P > 0.05), but the percentage of RBC-perfused capillaries (control: 93 ± 3; GK: 66 ± 5 %), Hctcap, VRBC, FRBC, and O2 delivery per unit of muscle were all decreased in GK rats ( P < 0.05). This study indicates that Type II diabetes reduces both convective O2 delivery and diffusive O2 transport properties within muscle microcirculation. If these microcirculatory deficits are present during exercise, it may provide a basis for the reduced O2 exchange characteristic of Type II diabetic patients.
Collapse
Affiliation(s)
- Danielle J Padilla
- Dept. of Anatomy/Physiology, College of Veterinary Medicine, 228 Coles Hall, 1600 Denison Ave., Manhattan, KS 66506-5802, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, Musch TI, Poole DC. Effects of Type II diabetes on muscle microvascular oxygen pressures. Respir Physiol Neurobiol 2006; 156:187-95. [PMID: 17015044 DOI: 10.1016/j.resp.2006.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/15/2006] [Accepted: 08/21/2006] [Indexed: 11/17/2022]
Abstract
We tested the hypothesis that muscle microvascular O2 pressure (PmvO2; reflecting the O2 delivery (QO2) to O2 uptake (VO2) ratio) would be lowered in the spinotrapezius muscle of Goto-Kakizaki (GK) Type II diabetic rats (n=7) at rest and during twitch contractions when compared to control (CON; n=5) rats. At rest, PmvO2 was lower in GK versus CON rats (CON: 29+/-2; GK: 18+/-2Torr; P<0.05). At the onset of contractions, GK rats evidenced a faster change in PmvO2 than CON (i.e., time constant (tau); CON: 16+/-4; GK: 6+/-2s; P<0.05). In contrast to the monoexponential fall in PmvO2 to the steady-state level seen in CON, GK rats exhibited a biphasic PmvO2 response that included a blunted (or non-existent) PmvO2 decrease followed by recovery to a steady-state PmvO2 that was at, or slightly above, resting values. Compared with CON, this decreased PmvO2 across the transition to a higher metabolic rate in Type II diabetes would be expected to impair blood-muscle O2 exchange and contractile function.
Collapse
Affiliation(s)
- Danielle J Padilla
- Department of Anatomy and Physiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Matthias Barton
- Medical Policlinic, Department of Internal Medicine, University Hospital, Zürich, Switzerland.
| | | | | |
Collapse
|