1
|
Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, Guimarães JB, Pacheco TCF, Bortolucci J, Zaramela LS, Bonato VLD, Silva JS, Martins FS, Alves-Filho JC, Gardinassi LG, Reginatto V, Carlos D. Akkermansia muciniphila restrains type 1 diabetes onset by eliciting cDC2 and Treg cell differentiation in NOD and STZ-induced experimental models. Life Sci 2025; 372:123624. [PMID: 40204069 DOI: 10.1016/j.lfs.2025.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
AIMS Akkermansia muciniphila (A. muciniphila), a Gram-negative anaerobic mucus-layer-degrading bacterium found in the intestinal mucosa, exhibits potential as a probiotic, showing promise in mitigating autoimmune and chronic inflammatory diseases. This study aims to investigate whether A. muciniphila supplementation might confer protection against type 1 diabetes (T1D) and to elucidate the immunological pathways through which it exerts its beneficial effects. MATERIALS AND METHODS Non-obese diabetic (NOD) mice and streptozotocin (STZ)-induced type 1 diabetes (T1D) models were used to evaluate the protective effects of A. muciniphila during T1D course. Body weight, blood glucose levels, and T1D incidence were monitored. Immune responses in the pancreas, pancreatic (PLN) and cecal lymph nodes (CLN) and bone marrow-derived dendritic cells (BMDC) were evaluated by flow cytometry and ELISA. KEY FINDINGS Viable A. muciniphila supplementation conferred protection against T1D onset in STZ-induced T1D and NOD mouse models. T1D modulation by A. muciniphila in the STZ model was independent of the gut microbiota, and it was associated with increased tolerogenic type-2 dendritic cells (SIRP-α+CD11b+CD103+) and regulatory T (Treg) cells in PLN and pancreas. BMDC differentiated in the presence of A. muciniphila exhibited a tolerogenic profile and induced Treg cell generation in vitro. A. muciniphila-induced protection in T1D outcome was abrogated in FOXP3-DTR mice depleted of Treg cells, indicating that its mechanism of action is dependent on the CD4+Foxp3+ Treg cells. SIGNIFICANCE A. muciniphila supplementation attenuates T1D development in mice by modulating the tolerogenic immune response and is a promising new therapeutic tool for this autoimmune disease.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jefferson Elias-Oliveira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ítalo Sousa Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jéssica Assis Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sara Cândida Barbosa
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Melissa Santana Gonsalez Machado
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jhefferson Barbosa Guimarães
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thaílla Cristina Faria Pacheco
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jonatã Bortolucci
- Department of Chemistry, University of São Paulo, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Vânia Luiza Deperon Bonato
- Laboratory of Immunology and Pulmonary Inflammation, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flaviano Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Valeria Reginatto
- Department of Chemistry, University of São Paulo, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Meral-Aktaş H, Çetin B, Güler MA, Albayrak B, Tekgündüz KŞ, Kara M, Işlek A. Safety aspects and in vitro probiotic assessment of Kluyveromyces marxianus strains from neonatal faeces. Antonie Van Leeuwenhoek 2025; 118:79. [PMID: 40375045 DOI: 10.1007/s10482-025-02090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/24/2025] [Indexed: 05/18/2025]
Abstract
The isolation and identification of probiotic yeasts is increasing rapidly. In this context, the present study aimed to isolate and identify yeast strains from neonatal faeces in Erzurum province, Türkiye and to determine their probiotic characteristics. A total of 12 yeast strains were isolated and genotypic characterization revealed the presence of seven different species, including Kluyveromyces marxianus, Candida spp. Clavispora lusitaniae, Geotrichum candidum, Trichophyton rubrum, Pichia cactophila, and Meyerozyma guilliermondii. The non-pathogenic and potentially probiotic characteristics of the K. marxianus M2, M9, and M10 strains were further investigated. Although yeast has been isolated from neonatal faeces before, K. marxianus was isolated for the first time in this study. The results revealed that the K. marxianus strains exhibited high resistance to simulated gastric juice and bile salts. The auto-aggregation percentages of the strains ranged from 92.55 to 94.78% after 4 h, while the co-aggregation percentages with pathogens ranged from 19.70 to 53.09%. The K. marxianus M2 strain exhibited the highest degree of hydrophobicity (74.97%), and none of the strains demonstrated DN-ase or haemolytic activity. Furthermore, M2 and M9 strains displayed bile salt hydrolase activity. In conclusion, based on in vitro probiotic test results, K. marxianus strains were selected as probiotic yeast candidates for further studies, especially in patients under antibiotic therapy.
Collapse
Affiliation(s)
- Hacer Meral-Aktaş
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| | - Bülent Çetin
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey.
| | - Muhammet Akif Güler
- Division of Pediatric Nephrology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Bülent Albayrak
- Department of Gastroenterology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Kadir Şerafettin Tekgündüz
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Mustafa Kara
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ali Işlek
- Department of Pediatric Gastroenterology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| |
Collapse
|
3
|
Turpin W, Lee SH, Croitoru K. Gut Microbiome Signature in Predisease Phase of Inflammatory Bowel Disease: Prediction to Pathogenesis to Prevention. Gastroenterology 2025; 168:902-913. [PMID: 39914464 DOI: 10.1053/j.gastro.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 03/23/2025]
Abstract
Advances in understanding the pathogenesis of inflammatory bowel disease (IBD) point toward a key role of the gut microbiome. We review the data describing the changes in the gut microbiome from IBD case-control studies and compare these findings with emerging data from studies of the preclinical phase of IBD. What is apparent is that assessing changes in the composition and function of the gut microbiome during the preclinical phase helps address confounding factors, such as disease activity and drug therapy, which can directly influence the gut microbiome. Understanding these changes in the predisease phase provides a means of predicting IBD in high-risk populations and offers insights into possible mechanisms involved in disease pathogenesis. Finally, we discuss strategies to use this information to design interventions aimed at modulating the microbiome as a means of preventing or delaying the onset of IBD.
Collapse
Affiliation(s)
- Williams Turpin
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sun-Ho Lee
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Holcomb M, Marshall AG, Flinn H, Lozano-Cavazos M, Soriano S, Gomez-Pinilla F, Treangen TJ, Villapol S. Probiotic treatment induces sex-dependent neuroprotection and gut microbiome shifts after traumatic brain injury. J Neuroinflammation 2025; 22:114. [PMID: 40254574 PMCID: PMC12010691 DOI: 10.1186/s12974-025-03419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 03/16/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Recent studies have highlighted the potential influence of gut dysbiosis on traumatic brain injury (TBI) outcomes. Alterations in the abundance and diversity of Lactobacillus species may affect immune dysregulation, neuroinflammatory responses, anxiety- and depressive-like behaviors, and neuroprotective mechanisms activated in response to TBI. OBJECTIVE This study aims to evaluate the protective and preventive effects of Pan-probiotic (PP) treatment on the inflammatory response during both the acute and chronic phases of TBI. METHODS Males and female mice underwent controlled cortical impact (CCI) injury or sham. They received a PP mixture in drinking water containing strains of Lactobacillus plantarum, L. reuteri, L. helveticas, L. fermentum, L. rhamnosus, L. gasseri, and L. casei. In the acute group, mice received PP or vehicle (VH) treatment for 7 weeks before TBI, continuing until 3 days post-injury (dpi). In the chronic group, treatment began 2 weeks before TBI and was extended through 35 dpi. The taxonomic microbiome profiles of fecal samples were evaluated using 16S rRNA V1-V3 sequencing analysis, and Short-chain fatty acids (SCFAs) were measured. Immunohistochemical, in situ hybridization, and histological analyses were performed to assess neuroinflammation post-TBI, while behavioral assessments were conducted to evaluate sensorimotor and cognitive functions. RESULTS Our findings suggest that a 7-week PP administration induces specific microbial changes, including increased abundance of beneficial bacteria such as Lactobacillaceae, Limosilactobacillus, and Lactiplantibacillus. PP treatment reduces lesion volume and cell death at 3 dpi, elevates SCFA levels at 35 dpi, and decreases microglial activation at both time points, particularly in males. Additionally, PP treatment improved motor recovery in males and alleviated depressive-like behaviors in females. CONCLUSION Our findings indicate that PP administration modulates microbiome composition, reduces neuroinflammation, and improves motor deficits following TBI, with these effects being particularly pronounced in male mice.
Collapse
Affiliation(s)
- Morgan Holcomb
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Austin G Marshall
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Hannah Flinn
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Mariana Lozano-Cavazos
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Sirena Soriano
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Ken Kennedy Institute, Rice University, Houston, TX, USA
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
5
|
Mishra S, Jain S, Agadzi B, Yadav H. A Cascade of Microbiota-Leaky Gut-Inflammation- Is it a Key Player in Metabolic Disorders? Curr Obes Rep 2025; 14:32. [PMID: 40208464 DOI: 10.1007/s13679-025-00624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE OF REVIEW This review addresses critical gaps in knowledge and provides a literature overview of the molecular pathways connecting gut microbiota dysbiosis to increased intestinal permeability (commonly referred to as "leaky gut") and its contribution to metabolic disorders. Restoring a healthy gut microbiota holds significant potential for enhancing intestinal barrier function and metabolic health. These interventions offer promising therapeutic avenues for addressing leaky gut and its associated pathologies in metabolic syndrome. RECENT FINDINGS In metabolic disorders such as obesity and type 2 diabetes (T2D), beneficial microbes such as those producing short-chain fatty acids (SCFAs) and other key metabolites like taurine, spermidine, glutamine, and indole derivatives are reduced. Concurrently, microbes that degrade toxic metabolites such as ethanolamine also decline, while proinflammatory, lipopolysaccharide (LPS)-enriched microbes increase. These microbial shifts place a higher burden on intestinal epithelial cells, which are in closest proximity to the gut lumen, inducing detrimental changes that compromise the structural and functional integrity of the intestinal barrier. Such changes include exacerbation of tight junction protein (TJP)s dysfunction, particularly through mechanisms such as destabilization of zona occludens (Zo)-1 mRNA or post-translational modifications. Emerging therapeutic strategies including ketogenic and Mediterranean diets, as well as probiotics, prebiotics, synbiotics, and postbiotics have demonstrated efficacy in restoring beneficial microbial populations, enhancing TJP expression and function, supporting gut barrier integrity, reducing leaky gut and inflammation, and ultimately improving metabolic disorders. This review summarizes the mechanisms by which gut microbiota contribute to the development of leaky gut and inflammation associated with metabolic syndrome. It also explores strategies for restoring gut microbiota balance and functionality by promoting beneficial microbes, increasing the production of beneficial metabolites, clearing toxic metabolites, and reducing the proportion of proinflammatory microbes. These approaches can alleviate the burden on intestinal epithelial cells, reduce leaky gut and inflammation, and improve metabolic health.
Collapse
Affiliation(s)
- Sidharth Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence of Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer's Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence of Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer's Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bryan Agadzi
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Center for Excellence of Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Byrd Alzheimer's Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Director of USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, MDC78, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Gomez-Pinilla F, Myers SK. Traumatic brain injury from a peripheral axis perspective: Uncovering the roles of liver and adipose tissue in temperature regulation. Prog Neurobiol 2025; 247:102733. [PMID: 40032155 DOI: 10.1016/j.pneurobio.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Most current treatments for TBI and other neurological disorders focus on the brain, often overlooking the significant contributions of peripheral organs to disease progression. Emerging evidence suggests that organs such as the liver and adipose tissue play crucial roles in TBI pathogenesis. The liver synthesizes lipids and proteins vital for brain function, while adipose tissue provides hormones and metabolites that influence brain activity. New research indicates that the liver and adipose tissue work in concert with the hypothalamus to regulate essential processes, such as body temperature, which become disrupted in TBI. Additionally, the brain-peripheral axis-a complex network of visceral nerve pathways, hormones, and metabolites-plays a bidirectional role in regulating brain plasticity and function. Understanding how TBI leads to dysregulation of the liver, adipose tissue, and other organs could unlock new therapeutic opportunities for treating TBI and related neurological disorders. The intricate autonomic network involving hypothalamic and enteric neurons, along with visceral nerve pathways and hormones, presents both pathological targets and therapeutic potential. We examine scientific evidence suggesting that correcting disturbances in systemic physiology could enhance the brain's capacity for healing. However, the interdependence of this autonomic network implies that treating dysfunction in one area may affect others. Therefore, we also explore the mechanisms by which diet and exercise can comprehensively impact the brain-peripheral axis, supporting the healing process. CHEMICAL COMPOUNDS: D-Fructose (PubChem CID 2723872); docosahexaenoic acid (PubChem CID 45934466); eicosapentaenoic acid (PubChem 5282847).
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Sydney K Myers
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Ma W, Han Z, Liu X, Cui W, Zhen D, Zhou X, Song Y, Jiang S. Distinct Effects of Lactiplantibacillus plantarum HNU082 on Microbial Single-Nucleotide Variants in Large Intestine and Small Intestine. Microorganisms 2025; 13:731. [PMID: 40284568 PMCID: PMC12029867 DOI: 10.3390/microorganisms13040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
The intestinal tract extends several times the length of bodies, with varying environmental conditions across different segments (small intestinal and large intestinal), thereby harboring distinct gut microbiota. Most studies focused on the quantitative responses of gut microbiota upon probiotics entering the gut, without an in-depth analysis of how the genetic change in local gut microbiota. Therefore, in this experiment, C57BL/6J male mice were once administered Lactiplantibacillus plantarum HNU082 (Lp082). Then, the mice were euthanized on the 1st, 3rd, and 7th days after gavage, and the contents of the small and large intestines of the mice were scraped for metagenomic analysis. Based on the characterization of large intestine and small intestine bacteria, changes in the diversity and abundance of single-nucleotide variants (SNVs) of microbiota were analyzed. There were observable distinct responses at the genetic level. A significant number of SNVs were identified in Ligilactobacillus murinus in the large intestine. These SNVs may impact the utilization of carbohydrates in L. murinus. Ingested probiotics traversed the entire gut and interacted with the indigenous microbiota, driving the evolution of the indigenous gut microbiota in the different intestinal segments, thereby influencing microbial growth and metabolism. This study investigates the role of probiotics in the evolution of gut microbiota. It offers new probiotic insights and a basis for targeted interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.M.); (Z.H.); (X.L.); (W.C.); (D.Z.); (X.Z.); (Y.S.)
| |
Collapse
|
8
|
Rodríguez-Arellano SN, González-Gómez JP, Gomez-Gil B, González-Ávila M, Palomera-Hernández JR, Barrón-Cabrera E, Vergara-Jiménez MDJ, Chaidez C. A Two-Phage Cocktail Modulates Gut Microbiota Composition and Metabolic Profiles in an Ex Vivo Colon Model. Int J Mol Sci 2025; 26:2805. [PMID: 40141446 PMCID: PMC11942677 DOI: 10.3390/ijms26062805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Bacteriophage therapy is a promising approach for targeting antibiotic-resistant bacteria and modulating gut microbiota in metabolic diseases such as obesity. This study evaluated the impact of a two-phage cocktail on an ex vivo colonic simulation model of gut microbiota derived from obese individuals, both in its normalized state and after enrichment with Enterobacter cloacae, an obesity-related bacteria. Microbiological analyses confirmed that the phage cocktail remained active throughout the colonic regions over three digestion cycles and effectively reduced enterobacterial populations in the enriched microbiota. Metabarcoding of the 16S rRNA gene revealed that phage therapy did not significantly alter the abundance of dominant genera, but selectively reduced E. cloacae across all colonic regions. Alpha diversity was significantly affected only in the enriched microbiota, while beta diversity analysis indicated significant compositional shifts during therapy, with reduced dispersion in the final treatment stage. Short-chain fatty acid profiling demonstrated region- and group-specific metabolic responses, with increased lactic and butyric acid concentrations in the ascending colon of the enriched microbiota following phage treatment. This study provides the first ex vivo evidence that a two-phage cocktail can selectively eliminate E. cloacae while preserving overall microbiota structure and functionality. These findings establish a foundation for future in vivo studies exploring the role of phage therapy in reshaping gut microbial communities and metabolic profiles, highlighting its potential as a precision tool for managing gut dysbiosis in metabolic disorders.
Collapse
Affiliation(s)
| | - Jean Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacan 80110, Sinaloa, Mexico
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlan 82112, Sinaloa, Mexico
| | - Marisela González-Ávila
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico
| | - Juan Ramón Palomera-Hernández
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico
| | - Elisa Barrón-Cabrera
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacan 80019, Sinaloa, Mexico
| | | | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacan 80110, Sinaloa, Mexico
| |
Collapse
|
9
|
Wang S, Chen L, Ma Z, Zhao L, Lu Y, Fu Y, Liu H. Gut microbiota mediates the anti-inflammatory effects of supplemental infrared irradiation in mice. Photochem Photobiol 2025; 101:458-470. [PMID: 39080821 DOI: 10.1111/php.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 03/19/2025]
Abstract
In recent years, studies have shown that low-dose supplemental infrared (IR) irradiation exhibits systemic anti-inflammatory effects. The gut microbiota is increasingly recognized as a potential mediator of these effects due to its role in regulating host metabolism and inflammatory responses. To investigate the role of gut microbiota diversity and metabolite changes in the mechanism of light-emitting diodes (LED) infrared's anti-inflammatory action, we conducted IR irradiation on mice. Serum inflammatory cytokines were measured using ELISA, and fecal samples were subjected to metagenomic, untargeted, and targeted metabolomic analyses. Our results demonstrated a significant increase in the anti-inflammatory cytokine IL-10 in the IR group, accompanied by a declining trend in pro-inflammatory cytokines. Gut microbiome analysis revealed distinct alterations in composition and functional genes between the groups, including the enrichment of beneficial bacteria like various species of Parabacteroides and Akkermansia muciniphila in the IR group. Notably, the IR group exhibited enrichment in carbohydrate metabolism pathways and a reduction in DNA damage and repair pathways. Furthermore, targeted metabolomic analysis highlighted a notable increase in short-chain fatty acids (SCFAs), including butyric acid and isobutyric acid, which positively correlated with the abundance of several beneficial bacteria. These findings suggest a potential interplay between gut microbiota-derived SCFAs and the anti-inflammatory response. In conclusion, our study provides comprehensive insights into the changes in gut microbiota species and functions associated with IR irradiation. Moreover, we emphasize the significance of altered SCFAs levels in the IR group, which may contribute to the observed anti-inflammatory effects. Our findings contribute valuable evidence supporting the role of low-dose infrared light irradiation as an anti-inflammatory therapy.
Collapse
Affiliation(s)
- Shijing Wang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Letian Chen
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Zheng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liting Zhao
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Yueying Lu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Yuming Fu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, China
| | - Hong Liu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
10
|
Zhong Z, Fan F, Lv J, Wang Z, Wang B, Deng C, Sun L. Changes of potential shorty-chain fatty acids producing bacteria in the gut of patients with spinal cord injury: a systematic review and meta-analysis. Front Microbiol 2025; 16:1483794. [PMID: 40083777 PMCID: PMC11905530 DOI: 10.3389/fmicb.2025.1483794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/22/2025] [Indexed: 03/16/2025] Open
Abstract
Gut bacteria that potential produce short-chain fatty acids (SCFAs) influences the recovery of motor function in the host in patients with spinal cord injury (SCI). We aimed to conduct a review and meta-analysis of the literature on gut microbiota in SCI patients. Following the Preferred Reporting Project for Systematic Review and Meta-Analysis (PRISMA), we searched Embase, PubMed, Cochrane Library, Web of Science (WOS) and ClinicalTrials.gov. The search period was from inception to March 31, 2024. We reported standardized mean differences (d) with 95% confidence intervals (CI) and used funnel plots and Egger tests to assess publication bias. The subacute of SCI data set revealed the microflora changes in the subacute phase, and meta-analysis summarized the changes in the chronic phase. Eleven studies (720 participants) were included, 2 phyla, 1 order, and 14 genus meta-analyses performed. No substantial heterogeneity was observed, and significant publication bias was not found among the studies included. In the subacute phase of spinal cord injury, the relative abundance of Bacteroidetes, Clostridiales, Faecalbacterium, Ruminococcus, Coprococcus, Lachnospira, Dorea, Prevotella, Roseburia, Atopobium, Bifidobacterium, Bacteroides, and Blautia increased. Firmicutes and Lactobacillus decreased. In the chronic phase, Firmicutes decreased in the SCI group. Bifidobacterium, Bacteroides, Blautia, and Eubacterium were found to have a higher average proportion of abundance in patients with SCI compared to non-SCI persons, and Clostridiales, Ruminococcus, Faecalbacterium, Coprococcus, and Lachnospira showed a lower relative abundance in SCI. The genus of potential SCFAs-producing bacteria is lower in the chronic phase of spinal cord injury than in the subacute phase, and gut dysbiosis is present in both the subacute and chronic phases.
Collapse
Affiliation(s)
- Zaowei Zhong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Fei Fan
- Department of Orthopedics, The Third People’s Hospital of Datong, Datong, China
| | - Junqiao Lv
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhiqiang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Beiyang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chen Deng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lin Sun
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
11
|
Nguyen HVM, Cabello E, Dyer D, Fender C, Garcia-Jaramillo M, Hord NG, Austad S, Richardson A, Unnikrishnan A. Age, sex, and mitochondrial-haplotype influence gut microbiome composition and metabolites in a genetically diverse rat model. Aging (Albany NY) 2025; 17:524-549. [PMID: 40015964 PMCID: PMC11892925 DOI: 10.18632/aging.206211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
We evaluated the impact of sex and mitochondrial-haplotype on the age-related changes in the fecal gut microbiome of the genetically heterogeneous rodent model, the OKC-HETB/W rat. The age-related changes in the microbiome differed markedly between male and female rats. Five microbial species changed significantly with age in male rats compared to nine microbial species in female rats. Only three of these microbes changed with age in both male and female rats. The mitochondrial-haplotype of the rats also affected how aging altered the microbiome. Interestingly, most of the microbial species that changed significantly with age were mitochondrial-haplotype and sex specific, i.e., changing in one sex and not the other. We also discovered that sex and mitochondrial-haplotype significantly affected the age-related variations in content of fecal short-chain fatty acids and plasma metabolites that influence or are regulated by the microbiome, e.g., tryptophan derived metabolites and bile acids. This study demonstrates that the host's sex plays a significant role in how the gut microbiome evolves with age, even within a genetically diverse background. Importantly, this is the first study to show that the mitochondrial-haplotype of a host impacts the age-related changes in the microbiome.
Collapse
Affiliation(s)
- Hoang Van M. Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Eleana Cabello
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - David Dyer
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Chloe Fender
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Norman G. Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Arlan Richardson
- Department of Biochemistry and Physiology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Archana Unnikrishnan
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, OU Health, Oklahoma City, OK 73104, USA
| |
Collapse
|
12
|
Gurung B, Courreges MC, Pollak J, Malgor R, Jiang L, Wang B, Wang S. Non-invasive treatment of Clostridioides difficile infection with a human-origin probiotic cocktail through gut microbiome-gut metabolome modulations. Front Microbiol 2025; 16:1555220. [PMID: 40078549 PMCID: PMC11897039 DOI: 10.3389/fmicb.2025.1555220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Clostridioides difficile (C. difficile) is a leading cause of hospital-associated diarrhea, primarily due to gut dysbiosis following antibiotic use. Probiotics have been found to provide several benefits to hosts via modulation of the gut microbiota and their metabolites. However, till now, no conventional probiotics have been clearly proven to be an effective prophylactic option for CDI prevention. Therefore, more studies on developing specific probiotic candidates targeting CDI and improving diversity of probiotics administrated are needed. In this study, a human-origin highly diverse and highly targeted probiotic cocktail (Pro11) containing 11 various probiotic species was developed against C. difficile. Pro11 protected mice against CDI with lower clinical scores and higher survival rates, and inhibited C. difficile in vivo with less C. difficile burden and toxins production determined in colon. Histological analysis demonstrated that Pro11 strengthened gut barrier, reducing gut permeability (less secreted sCD14 in serum) and gut inflammation. In addition, gut microbiome analysis demonstrated that Pro11 increased gut microbiome diversity and beneficial species. Along with gut microbiome modulation, gut metabolites including butyrate, were significantly increased in the probiotics-fed group. Results from this study highlighted probiotics as a promising CDI therapy as gut microbiota modulators, which will lay the foundation for translating probiotics in mitigating CDI and other intestinal pathogens for clinical use.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Maria C. Courreges
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Julie Pollak
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
| | - Ramiro Malgor
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Lin Jiang
- Division of Natural Sciences, New College of Florida, Sarasota, FL, United States
| | - Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| |
Collapse
|
13
|
Shiro Y, Arai YC, Nakaso Y, Sakurai H, Inoue M, Owari K, Sato J, Ikemoto T, Ushida T. Differences in Gut Microbiota Composition Depending on the Site of Pain in Patients with Chronic Pain. J Pain Res 2025; 18:769-782. [PMID: 39991525 PMCID: PMC11846523 DOI: 10.2147/jpr.s494984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Background There are many factors associated with chronic pain, including changes in the nervous and musculoskeletal systems and so on. Recently, it has become clear that the gut microbiota (GM) influences these factors, and there are many reports of GM dysbiosis in patients with chronic pain. However, the relationship between pain and GM remains unclear. Our previous study reported that defecation status, which reflects GM composition, was associated with pain intensity and that this relationship was different for each pain site. Our study investigated the association between pain site and the GM composition of feces in chronic pain patients. Methods The subjects were 136 patients with chronic pain and 125 healthy controls. Patients were classified into four groups, whole body (WB) pain, lower back and lower extremity (LL) pain, headache, and upper back and upper extremity pain, based on the site of pain, and we investigated differences in GM taxonomy groups compared with healthy subject. Results Chronic pain patients had a lower alpha diversity (effect size=0.16, p=0.02). But each pain site group did not differ in alpha diversity. WB pain patients showed higher Eggerthellaceae (LDA=3.09, p<0.01) and lower Halomonas (LDA =-2.72, p<0.01). LL pain patients had increased Fusobacterium and Sellimonas (LDA=4.09,3.03 p<0.01, 0.01) but reduced Halomonas (LDA=-2.59, p<0.01), and other key taxa. Conclusion WB and LL patients may have GM compositions different from healthy controls, but larger studies are needed to confirm this.
Collapse
Affiliation(s)
- Yukiko Shiro
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
- Department of Physical Therapy, Faculty of Rehabilitation Sciences, Nagoya Gakuin University, Aichi, Japan
| | - Young-Chang Arai
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Yuichiro Nakaso
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Hiroki Sakurai
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
- Faculty of Health and Medical Sciences, Tokoha University, Shizuoka, Japan
| | - Masayuki Inoue
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Keiko Owari
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Jun Sato
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Tatsunori Ikemoto
- Department of Orthopedics, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Takahiro Ushida
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| |
Collapse
|
14
|
Duan J, Sun J, Ma X, Du P, Dong P, Xue J, Lu Y, Jiang T. Association of escitalopram-induced shifts in gut microbiota and sphingolipid metabolism with depression-like behavior in wistar-kyoto rats. Transl Psychiatry 2025; 15:54. [PMID: 39962083 PMCID: PMC11833111 DOI: 10.1038/s41398-025-03277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
The microbiota-gut-brain axis plays a pivotal role in neuropsychiatric disorders, particularly in depression. Escitalopram (ESC) is a first-line antidepressant, however, its regulatory mechanisms on the microbiota-gut-brain axis in the treatment of depression remain unclear. The antidepressant effects of ESC were evaluated using the forced swim test in Wistar-Kyoto (WKY) rats, while damage in the gut and brain regions was assessed through H&E staining and immunohistochemistry. The therapeutic mechanisms in WKY rats with depression-like behavior were investigated through 16S rRNA sequencing of the gut microbiota, serum untargeted metabolomics, and hippocampal proteomics. Results indicated that ESC intervention improved depressive-like behaviors, as evidenced by increased swimming times in WKY rats, and also restored intestinal permeability and brain tissue integrity. Significant changes in the gut microbiota composition, particularly an increase in Bacteroides barnesiae, as well as increases in serum sphingolipid metabolites (Sphinganine 1-phosphate, Sphingosine, and Sphingosine-1-phosphate) and hippocampal proteins (Sptlc1, Enpp5, Enpp2), were strongly correlated. These robust correlations suggest that ESC may exert its antidepressant effects by modulating sphingolipid metabolism through the influence of gut microbiota. Accordingly, this research elucidates novel mechanisms underlying the antidepressant efficacy of ESC and highlights the pivotal importance of the microbiota-gut-brain axis in mediating these effects.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiaxing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Peipei Du
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Pengfei Dong
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanli Lu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
15
|
Ashiqueali SA, Hayslip N, Chaudhari DS, Schneider A, Zhu X, Rubis B, Seavey CE, Alam MT, Hussein R, Noureddine SA, Golusinska-Kardach E, Pazdrowski P, Yadav H, Masternak MM. Fecal microbiota transplant from long-living Ames dwarf mice alters the microbial composition and biomarkers of liver health in normal mice. GeroScience 2025:10.1007/s11357-025-01539-3. [PMID: 39904968 DOI: 10.1007/s11357-025-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Aging is associated with intestinal dysbiosis, a condition characterized by diminished microbial biodiversity and inflammation. This leads to increased vulnerability to extraintestinal manifestations such as autoimmune, metabolic, and neurodegenerative conditions thereby accelerating mortality. As such, modulation of the gut microbiome is a promising way to extend healthspan. In this study, we explore the effects of fecal microbiota transplant (FMT) from long-living Ames dwarf donors to their normal littermates, and vice versa, on the recipient gut microbiota and liver transcriptome. Importantly, our previous studies highlight differences between the microbiome of Ames dwarf mice relative to their normal siblings, potentially contributing to their extended lifespan and remarkable healthspan. Our findings demonstrate that FMT from Ames dwarf mice to normal mice significantly alters the recipient's gut microbiota, potentially reprogramming bacterial functions related to healthy aging, and changes the liver transcriptome, indicating improved metabolic health. Particularly, the microbiome of Ames dwarf mice, characterized by a higher abundance of beneficial bacterial families such as Peptococcaceae, Oscillospiraceae, and Lachnospiraceae, appears to play a crucial role in modulating these effects. Alongside, our mRNA sequencing and RT-PCR validation reveals that FMT may contribute to the significant downregulation of p21, Elovl3, and Insig2, genes involved with cellular senescence and liver metabolic pathways. Our data suggest a regulatory axis exists between the gut and liver, highlighting the potential of microbiome-targeted therapies in promoting healthy aging. Future research should focus on functional validation of altered microbial communities and explore the underlying biomolecular pathways that confer geroprotection.
Collapse
Affiliation(s)
- Sarah A Ashiqueali
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Natalie Hayslip
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- University of South Florida (USF) Morsani College of Medicine, Tampa, FL, USA
| | - Diptaraj S Chaudhari
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznań University of Medical Sciences, Poznań, Poland
| | - Corey E Seavey
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Md Tanjim Alam
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Ridwan Hussein
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Sarah A Noureddine
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Ewelina Golusinska-Kardach
- Department of Dental Surgery, Periodontology and Oral Mucosa Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Pawel Pazdrowski
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Poznan University of Medical Sciences, Student Scientific Association, Poznan, Poland
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
16
|
Ibrahim D, Khater SI, Sherkawy HS, Elgamal A, Hasan AA, Muhammed AA, Farag MFM, Eissa SA, Ismail TA, Eissa HM, Eskandrani AA, Alansari WS, El-Emam MMA. Protective Role of Nano-encapsulated Bifidobacterium breve, Bacilllus coagulans, and Lactobacillus plantarum in Colitis Model: Insights Toward Propagation of Short-Chain Fatty Acids and Reduction of Exaggerated Inflammatory and Oxidative Response. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10472-y. [PMID: 39900879 DOI: 10.1007/s12602-025-10472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Irritable bowel disease (IBD), also known as ulcerative colitis and Crohn's disease, is a chronic inflammatory disorder affecting millions of people worldwide. Herein, nano-encapsulated multi-strain probiotics formulation, comprising Bifidobacterium breve DSM24732 and B. coagulans SANK 70258 and L. plantarum DSM24730 (BBLNPs) is used as an effective intervention technique for attenuating IBD through gut microenvironment regulation. The efficacy of the prophylactic role of BBLNPs in alleviating injury induced by dextran sulfate sodium (DSS) was evaluated by assessing oxidative and inflammatory responses, levels of short-chain fatty acids (SCFAs) and their regulation on GPR41/43 pathway, expression of genes related to tight-junctions and autophagy, immunohistochemistry of IL1β and GPR43, and histological examination of inflamed colonic tissue. The severity of clinical signs and paracellular permeability to FITC (fluorescein isothiocyanate)-labeled dextran was significantly decreased after BBLNP treatment. Reduction of oxidative stress-associated biomarkers (MDA, ROS, and H2O2) and acceleration of antioxidant enzyme activities (SOD, CAT, and GSH-Px) were noted in the BBLNP-treated group. Subsiding of inflammatory markers (TNF-α, IL-18, IL-6, TRL-4, CD-8, NLRP3, and caspase 1) and upregulation of tight-junction-related genes (occludin and JAM) was detected in BBLNPs. Administration of BBLNPs remarkably resulted in a higher level of SCFAs which parrel with colonic upregulation of GPR41 and GPR43 expression compared to DSS-treated rats. Notable modulation of autophagy-related genes (p62, mTOR, LC3, and Beclin-1) was identified post BBLNP treatment. The mRNA expressions of p62 and mTOR were significantly downregulated, while LC3 and Beclin-1 were upregulated after prophylactic treatment with BBLNPs. Immune-stained labeled cells showed lower expression of IL-1β and higher expression levels of GPR43 in BBLNPs compared to the DSS-induced group. The intestinal damage caused by DSSwas effectively mitigated by oral BBLNP treatment, as supported by the restoration of healthy colonic tissue architecture. The findings suggest that BBLNPs have a promising avenue in the remission of IBD by modulating inflammation, oxidative stress, microbial metabolites such as SCFAs, and autophagy.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hoda S Sherkawy
- Department of Medical Biochemistry, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Asmaa A Hasan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Asmaa A Muhammed
- Department of Medical Physiology, Faculty of Medicine, Aswan University, Aswan, 81511, Egypt
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samar A Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hemmat M Eissa
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
17
|
Al-Adham ISI, Agha ASAA, Al-Akayleh F, Al-Remawi M, Jaber N, Al Manasur M, Collier PJ. Prebiotics Beyond the Gut: Omics Insights, Artificial Intelligence, and Clinical Trials in Organ-Specific Applications. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10465-x. [PMID: 39878922 DOI: 10.1007/s12602-025-10465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications. Integrating these innovations with "omics" technologies enables precise microbial modulation, fostering personalized nutrition and precision therapies. This review examines organ-specific effects of prebiotics, highlights findings from clinical trials, and explores biotechnological innovations that enhance prebiotic efficacy, laying the groundwork for future personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Manar Al Manasur
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
18
|
Prajapati SK, Wang S, Mishra SP, Jain S, Yadav H. Protection of Alzheimer's disease progression by a human-origin probiotics cocktail. Sci Rep 2025; 15:1589. [PMID: 39794404 PMCID: PMC11724051 DOI: 10.1038/s41598-024-84780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities. We aimed to determine the probiotics cocktail's efficacy in ameliorating AD pathology in a humanized AD mouse model of APP/PS1 strains. Remarkably, feeding mice with 1 × 1011 CFU per day in drinking water for 16 weeks significantly reduced cognitive decline (measured by the Morris Water Maze test) and AD pathology markers, such as Aβ aggregation, microglia activation, neuroinflammation, and preserved blood-brain barrier (BBB) tight junctions. The beneficial effects were linked to a reduced inflammatory microbiome, leading to decreased gut permeability and inflammation in both systemic circulation and the brain. Although both male and female mice showed overall improvements in cognition and biological markers, females did not exhibit improvements in specific markers related to inflammation and barrier permeability, suggesting that the underlying mechanisms may differ depending on sex. In conclusion, our results suggest that this unique probiotics cocktail could serve as a prophylactic agent to reduce the progression of cognitive decline and AD pathology. This is achieved by beneficially modulating the microbiome, improving intestinal tight junction proteins, reducing permeability in both gut and BBB, and decreasing inflammation in the gut, blood circulation, and brain, ultimately mitigating AD pathology and cognitive decline.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shaohua Wang
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Biomedical Sciences, Infectious and Tropical Disease Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Department of Internal Medicine-Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
19
|
Kuziak A, Heczko P, Pietrzyk A, Strus M. Iron Homeostasis Dysregulation, Oro-Gastrointestinal Microbial Inflammatory Factors, and Alzheimer's Disease: A Narrative Review. Microorganisms 2025; 13:122. [PMID: 39858890 PMCID: PMC11767265 DOI: 10.3390/microorganisms13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that profoundly impacts cognitive function and the nervous system. Emerging evidence highlights the pivotal roles of iron homeostasis dysregulation and microbial inflammatory factors in the oral and gut microbiome as potential contributors to the pathogenesis of AD. Iron homeostasis disruption can result in excessive intracellular iron accumulation, promoting the generation of reactive oxygen species (ROS) and oxidative damage. Additionally, inflammatory agents produced by pathogenic bacteria may enter the body via two primary pathways: directly through the gut or indirectly via the oral cavity, entering the bloodstream and reaching the brain. This infiltration disrupts cellular homeostasis, induces neuroinflammation, and exacerbates AD-related pathology. Addressing these mechanisms through personalized treatment strategies that target the underlying causes of AD could play a critical role in preventing its onset and progression.
Collapse
Affiliation(s)
- Agata Kuziak
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 Street, 31-008 Cracow, Poland;
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Piotr Heczko
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| |
Collapse
|
20
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
21
|
Prapa I, Yanni AE, Kompoura V, Mitropoulou G, Panas P, Kostomitsopoulos N, Kourkoutas Y. Functional Modulation of Gut Microbiota and Blood Parameters in Diabetic Rats Following Dietary Intervention with Free or Immobilized Pediococcus acidilactici SK Cells on Pistachio Nuts. Nutrients 2024; 16:4221. [PMID: 39683613 DOI: 10.3390/nu16234221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The gut microbiota is linked to the pathogenesis of type 1 diabetes mellitus (T1DM), while supplementation with probiotics may result in positive alterations in the composition of the gut microbiome. This research aimed to map the changes in the gut microbiome and blood markers of streptozotocin-induced diabetic rats after a dietary intervention with free or immobilized cells of the presumptive probiotic Pediococcus acidilactici SK on pistachio nuts. METHODS Twenty-four male Wistar rats were studied and divided into four groups (healthy or diabetic) which received the free or the immobilized P. acidilactici SK cells on pistachio nuts for 4 weeks. Blood, fecal, and intestinal tissue samples were examined. RESULTS The diabetic rats exhibited an elevated concentration of HDL-c, while the inflammatory IL-1β levels were significantly lower in the diabetic animals that received the immobilized cells compared to the group that received the free cells. The dietary intervention with immobilized cells led to decreased counts of fecal staphylococci and enterococci in the diabetic animals, while the diet with both free and immobilized P. acidilactici SK cells rendered levels of these populations in normal values in the feces and intestinal tissue of the diabetic animals. Noticeably, the Lactobacillus and Bifidobacterium genera were elevated after the supplementation with immobilized P. acidilactici SK cells on pistachio nuts. CONCLUSIONS Dietary supplementation with P. acidilactici SK cells (in free or in immobilized form) beneficially affected the gut microbiota/microbiome of streptozotocin-induced diabetic rats, leading to the alleviation of dysbiosis and inflammation and control over their lipid levels.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
22
|
Modasiya I, Mori P, Maniya H, Chauhan M, Grover CR, Kumar V, Sarkar AK. In Vitro Screening of Bacterial Isolates From Dairy Products for Probiotic Properties and Other Health-Promoting Attributes. Food Sci Nutr 2024; 12:10756-10769. [PMID: 39723103 PMCID: PMC11666839 DOI: 10.1002/fsn3.4537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 12/28/2024] Open
Abstract
The present research was aimed to isolate potential probiotic organisms from dairy products locally made in and around the Saurashtra region of Gujarat. A total of 224 colonies were screened for primary attributes. Based on the results, 70 isolates were carried further for secondary screening. Out of these, only 23 isolates were further tested for antioxidant activities. Only 6 potential probiotic strains were found to have all the probiotic attributes. These isolates demonstrated survivability up to 4 h at pH ≤ 3, bile concentration ≥ 1.5%, autoaggregation ability ≥ 81.08%, and cell surface hydrophobicity more than 70% while using toluene as the test hydrocarbon. The promising six isolates were subjected to 16S rRNA sequencing for species-level identification and found to be belonging to the genus Bacillus, Enterococcus, and Lactobacillus. The isolates demonstrated higher antioxidant potential as determined by ABTS, DPPH, and FRAP methods. For all three methods, L. rhamnosus was taken as a positive control that showed 85.61%, 39.56%, and 78.18% reduction of free radicals as determined by the ABTS, DPPH, and FRAP methods, respectively. Compared to this, Limosilactobacillus fermentum BAB 7912 demonstrated the highest reduction of ABTS radicals (83.45%), while Bacillus subtilis BAB 7918 reduced 29.95% DPPH free radicals and Bacillus spizizenii BAB 7915 reduced 80.93% ferric ions as determined by the FRAP method. Isolates were subjected to 16S rRNA sequencing for species-level identification and found to be belonging to genus Bacillus, Enterococcus, and Lactobacillus.
Collapse
Affiliation(s)
- Ishita Modasiya
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Priya Mori
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Hina Maniya
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Mehul Chauhan
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Chand Ram Grover
- Symbiotics, Functional Food and Bioremediation Lab, Dairy Microbiology DivisionICAR‐N.D.R.IKarnalHaryanaIndia
| | - Vijay Kumar
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | | |
Collapse
|
23
|
Yang W, Liang H, Chen R, Du Z, Deng T, Zheng Y, Song Y, Duan Y, Lin J, Bakky MAH, Tran NT, Zhang M, Li S. Effects of dietary probiotic ( Clostridium butyricum I9, C. butyricum G15, or Paraclostridium bifermentans X13) on growth, digestive enzyme activities, immunity, and intestinal microbiota of Pacific white shrimp ( Penaeus vannamei). Front Microbiol 2024; 15:1479446. [PMID: 39664054 PMCID: PMC11631857 DOI: 10.3389/fmicb.2024.1479446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Pacific white shrimp (Penaeus vannamei) is one of the most productive and economically important species globally. However, the development and continuous expansion of the farming scale led to an increase in the risk of disease occurrence in shrimp farming. The application of probiotics as an effective method for controlling diseases in aquaculture has been widely considered. In shrimp farming, several probiotics have been used and shown benefits to the health of the host. To diverse the sources of bacterial species as probiotics in shrimp farming, in this study, we aimed to elucidate the effects of dietary probiotics (Clostridium butyricum I9 (I9), Clostridium butyricum G15 (G15), or Paraclostridium bifermentans X13) on the growth, immune response and intestinal microbiome of white shrimp. Shrimps were fed with diets containing either phosphate-buffered saline (PBS), I9 (107 CFU/g feed), G15 (107 CFU/g feed), or X13 (107 CFU/g feed) for 30 days and followed by the challenge with Vibrio parahaemolyticus (Vp). The results showed that the survival rate, body weight gain, and special growth rate of shrimps in the I9, X13, and G15 groups significantly increased, compared to the PBS. The supplementation of probiotics increased the content of short-chain fatty acids and effectively maintained the normal morphology and structure of the intestinal tract and hepatopancreas. The I9, X13, or G15 groups showed a positive change in the diversity and abundance of gut bacteria. There was a significant up-regulation of CTL, SOD, proPO, Crustin, PEN2-4, and ALF1-3 genes in shrimps in the I9, X13, and G15. Additionally, dietary probiotics significantly increased the survival rate, maintained the intestinal structure, promoted the activities of SOD, AKP, ACP, and T-AOC enzymes, and reduced the level of MDA in shrimps after Vp infection. In conclusion, dietary supplementation of I9, G15, or X13 improved the growth, immunity, and disease resistance of Pacific white shrimp, providing a scientific basis for shrimp farming.
Collapse
Affiliation(s)
- Wei Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ruhan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Zhinuo Du
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yuqing Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ying Song
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yanchuang Duan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Junyuan Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Md. Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
24
|
Li S, Li Y, Sui D, Ren Q, Ai C, Li M, Zhao S, Li H, Song S, Ren X. Anti-Inflammatory Effects of Novel Probiotic Lactobacillus rhamnosus RL-H3-005 and Pedicoccus acidilactici RP-H3-006: In Vivo and In Vitro Evidence. Foods 2024; 13:3676. [PMID: 39594091 PMCID: PMC11593918 DOI: 10.3390/foods13223676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Probiotics have garnered escalating attention in the treatment and prevention of inflammatory disorders. In this study, Lactobacillus rhamnosus RL-H3-005 (RL5) and Pediococcus acidilactici RP-H3-006 (RP6), which possess anti-inflammatory effects and favorable probiotic attributes, were selected through the comparison of an RAW264.7 inflammatory cell model screening and in vitro probiotic properties. Subsequently, it was implemented in an animal model of dextran sulfate sodium (DSS)-induced colitis. The results demonstrated that RL5 and RP6 could inhibit the release of proinflammatory factors in RAW264.7 inflammatory cells and exhibited excellent environmental adaptability, adhesion, safety, and antibacterial activity. Additionally, RL5 and RP6 provided protective effects on the intestines of mice with acute colitis by reducing the levels of intestinal inflammation and oxidative stress. Concurrently, supplementation with RL5 and RP6 modulated the composition of the gut microbiota in mice. These discoveries suggest that RL5 and RP6 can be used as a novel probiotic for alleviating intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaomeng Ren
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China; (S.L.); (Q.R.); (S.Z.); (S.S.)
| |
Collapse
|
25
|
Alan Y, Keskin AO, Sönmez M. Probiotic and functional characterization of newly isolated Lactiplantibacillus plantarum strains from human breast milk and proliferative inhibition potential of metabolites. Enzyme Microb Technol 2024; 182:110545. [PMID: 39546820 DOI: 10.1016/j.enzmictec.2024.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Four Lactiplantibacillus plantarum strains newly isolated and identified from human breast milk in Türkiye, have probiotic, functional and proliferative inhibition potential of metabolites against colon cancer cell lines were evaluated. In simulated gastric and intestinal media, all strains exhibited strong probiotic character by showing resistance, although decreasing with time and concentration. The strains were sensitive to penicillin G, rifampin and chloramphenicol and showed antibacterial effect on all pathogenic bacteria. Citric acid, malic acid, tartaric acid, pyruvic acid and fumaric acid were not detected in the strains, while the highest amount of acetic acid was detected. The quantitative-qualitative analysis and structural characterization of exopolysaccharide (EPS) was confirmed and it was determined that the strains synthesized similar amounts. Compared to standard antioxidants, the strains showed less DPPH activity and similar ABTS activity. High amounts of metabolites of the strains showed good antiproliferative effect on Caco-2, while lower amounts showed good antiproliferative effect on the HT-29 cell line. When all the data were considered, it was determined that the strains were close to each other, but the YAAS 23 strain showed slightly better properties. In conclusion, breast milk is a unique environment harboring beneficial bacteria such as L. plantarum for human health.
Collapse
Affiliation(s)
- Yusuf Alan
- Department of Medical Services and Techniques, Bitlis Eren University, Bitlis, Türkiye.
| | - Ali-Osman Keskin
- Department of Biology, Institute of Science, Muş Alparslan University, Muş, Türkiye
| | - Mehmet Sönmez
- Department of Biology, Institute of Science, Muş Alparslan University, Muş, Türkiye
| |
Collapse
|
26
|
Dutta R, Stothers L, Ackerman AL. Manipulating the Gut Microbiome in Urinary Tract Infection-Prone Patients. Urol Clin North Am 2024; 51:525-536. [PMID: 39349020 DOI: 10.1016/j.ucl.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Although antibiotics remain the mainstay of urinary tract infection treatment, many affected women can be caught in a vicious cycle in which antibiotics given to eradicate one infection predispose them to develop another. This effect is primarily mediated by disturbances in the gut microbiome that both directly enrich for uropathogenic overgrowth and induce systemic alterations in inflammation, tissue permeability, and metabolism that also decrease host resistance to infection recurrences. Here, we discuss nonantibiotic approaches to manipulating the gut microbiome to reverse the systemic consequences of antibiotics, including cranberry supplementation and other dietary approaches, probiotic administration, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Rahul Dutta
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - Lynn Stothers
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - A Lenore Ackerman
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA.
| |
Collapse
|
27
|
Nguyen HVM, Cabello E, Dyer D, Fender C, Garcia-Jaramillo M, Hord NG, Austad S, Richardson A, Unnikrishnan A. Age, sex, and mitochondrial-haplotype influence gut microbiome composition and metabolites in a genetically diverse rat model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620746. [PMID: 39553944 PMCID: PMC11565821 DOI: 10.1101/2024.10.28.620746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We evaluated the impact of sex and mitochondrial-haplotype on the age-related changes in the fecal gut microbiome of the genetically heterogeneous rodent model, the OKC-HETB/W rat. Alpha-diversity, measuring richness and evenness of gut microbiome composition, did not change with age or mitochondrial-haplotype. However, beta-diversity, a measure of microbial differences among samples, was significantly modulated by age in male and female rats in both mitochondrial-haplotypes. The age-related changes in the microbiome differed markedly between male and female rats. Five microbial species changed significantly with age in male rats compared to nine microbial species in female rats. Only three of these microbes changed with age in both male and female rats. The mitochondrial-haplotype of the rats also affected how aging altered the microbiome. Interestingly, most of the microbial species that changed significantly with age were mitochondrial-haplotype and sex specific, i.e., changing in one sex and not the other. We also discovered that sex and mitochondrial-haplotype significantly affected the age-related variations in content of fecal short-chain fatty acids and plasma metabolites that influence or are regulated by the microbiome, e.g., tryptophan derived metabolites and bile acids. This study demonstrates that the host's sex plays a significant role in how the gut microbiome evolves with age, even within a genetically diverse background. Importantly, this is the first study to show that the mitochondrial-haplotype of a host impacts the age-related changes in the microbiome and supports previous studies suggesting a bidirectional interaction between the gut microbiome and host mitochondria.
Collapse
Affiliation(s)
- Hoang Van M. Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, 1200 N Stonewall Ave, Oklahoma City, OK 73117, US
| | - Eleana Cabello
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117. US
| | - David Dyer
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117. US
| | - Chloe Fender
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, US
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, US
| | - Norman G. Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, 122 N Monroe St, Stillwater, OK 74075, US
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, 902 14 Street South, Birmingham, AL 35205, US
| | - Arlan Richardson
- Department of Biochemistry and Physiology, College of Medicine, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, Oklahoma, 921 NE 13 St, Oklahoma City, OK 73104, US
| | - Archana Unnikrishnan
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Harold Hamm Diabetes Center, OU Health, Oklahoma City, Oklahoma, 1000 N Lincoln Boulevard, Oklahoma City, OK 73104, US
| |
Collapse
|
28
|
Liu L, Ma L, Liu H, Zhao F, Li P, Zhang J, Lü X, Zhao X, Yi Y. Targeted discovery of gut microbiome-remodeling compounds for the treatment of systemic inflammatory response syndrome. mSystems 2024; 9:e0078824. [PMID: 39235366 PMCID: PMC11494991 DOI: 10.1128/msystems.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a severe inflammatory response that can lead to organ dysfunction and death. Modulating the gut microbiome is a promising therapeutic approach for managing SIRS. This study assesses the therapeutic potential of the Xuanfei Baidu (XFBD) formula in treating SIRS. The results showed that XFBD administration effectively reduced mortality rates and inflammation in SIRS mice. Using 16S rRNA sequencing and fecal microbiota transplantation (FMT), we substantiated that the therapeutic effects of XFBD are partly attributed to gut microbiota modulation. We conducted in vitro experiments to accurately assess the gut microbiome remodeling effects of 51 compounds isolated from XFBD. These compounds exhibited varying abilities to induce a microbial structure that closely resembles that of the healthy control group. By quantifying their impact on microbial structure and clustering their regulatory patterns, we devised multiple gut microbiome remodeling compound (GMRC) cocktails. GMRC cocktail C, comprising aucubin, gentiopicroside, syringic acid, gallic acid, p-hydroxybenzaldehyde, para-hydroxybenzoic acid, and isoimperatorin, demonstrated superior efficacy in treating SIRS compared to a single compound or to other cocktails. Finally, in vitro experiments showcased that GMRC cocktail C effectively rebalanced bacteria composition in SIRS patients. This study underscores XFBD's therapeutic potential in SIRS and highlights the importance of innovative treatment approaches for this disease by targeting the gut microbiota.IMPORTANCEDeveloping effective treatment strategies for systemic inflammatory response syndrome (SIRS) is crucial due to its severe and often life-threatening nature. While traditional treatments like dexamethasone have shown efficacy, they also come with significant side effects and limitations. This study makes significant strides by demonstrating that the Xuanfei Baidu (XFBD) formula can substantially reduce mortality rates and inflammation in SIRS mice through effective modulation of the gut microbiota. By quantitatively assessing the impact of 51 compounds derived from XFBD on the gut microbiome, we developed a potent gut microbiome remodeling compound cocktail. This cocktail outperformed individual compounds and other mixtures in efficacy against SIRS. These findings highlight the potential of XFBD as a therapeutic solution for SIRS and underscore the critical role of innovative strategies targeting the gut microbiota in addressing this severe inflammatory condition.
Collapse
Affiliation(s)
- Luyao Liu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Lin Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huan Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Pu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, China, Shaanxi
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| |
Collapse
|
29
|
Yao Y, Hong Q, Ding S, Cui J, Li W, Zhang J, Sun Y, Yu Y, Yu M, Mi L, Wang Y, Jiang J, Hu Y. Meta-analysis of the effects of probiotics on hyperlipidemia. Curr Res Food Sci 2024; 9:100885. [PMID: 39469722 PMCID: PMC11513789 DOI: 10.1016/j.crfs.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Background The potential role of probiotics in mitigating hyperlipidemia has garnered increasing evidence, yet the specific mechanisms warrant further investigation. Objective This study aimed to examine the alterations in short-chain fatty acids (SCFAs), a hypothesized lipid-lowering mechanism of probiotics, in animal models and to evaluate the lipid-lowering effects of probiotics on hyperlipidemic animal models through a meta-analysis of preclinical experiments. Methods: A comprehensive search of PubMed, Web of Science, EMBASE, Cochrane Library and Google Scholar up to June 2024 yielded nine studies that met the inclusion criteria (INPLASY registration number: No. CRD42024559937). Result The analysis revealed that mice receiving probiotics exhibited a significant increase in SCFA levels compared with control mice (acetic acid: standard mean difference [SMD] = 1.26, 95% confidence interval [CI] 0.80 to 1.72, P < 0.00001, I2 = 28%; propionic acid: SMD = 1.99, 95% CI 1.47 to 2.51; butyric acid: SMD = 0.66, 95% CI 0.04 to 1.28, P = 0.04, I2 = 22%; acetate: SMD = 4.5, 95% CI 3.57 to 5.42, P < 0.00001, I2 = 48%; propionate: SMD = 0.76, 95% CI 0.37 to 1.15, P = 0.0002, I2 = 44%; butyrate: SMD = 2.8, 95% CI 2.18 to 3.41, P < 0.00001, I2 = 26%). Additionally, probiotic consumption reduced markers of oxidation and inflammation as well as liver damage enzymes. Conclusion The findings from this meta-analysis suggest that probiotics can enhance SCFA content in the body, decrease lipid levels in animals, improve oxidative stress and inflammation, reduce liver damage, and effectively alleviate hyperlipidemia.
Collapse
Affiliation(s)
- Yuanyue Yao
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Siqi Ding
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingzhou Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Li Mi
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yinzhu Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
30
|
Kalairaj MS, George I, George SM, Farfán SE, Lee YJ, Rivera-Tarazona LK, Wang S, Abdelrahman MK, Tasmim S, Dana A, Zimmern PE, Subashchandrabose S, Ware TH. Controlled release of microorganisms from engineered living materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615042. [PMID: 39386653 PMCID: PMC11463585 DOI: 10.1101/2024.09.25.615042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Probiotics offer therapeutic benefits by modulating the local microbiome, the host immune response, and the proliferation of pathogens. Probiotics have the potential to treat complex diseases, but their persistence or colonization is required at the target site for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases clinically relevant doses of metabolically active probiotics in a sustained manner has been previously described. Here, we encapsulate stiff probiotic microorganisms within relatively less stiff hydrogels and show a generic mechanism where these microorganisms proliferate and induce hydrogel fracture, resulting in microbial release. Importantly, this fracture-based mechanism leads to microorganism release with zero-order release kinetics. Using this mechanism, small (∼1 μL) engineered living materials (ELMs) release >10 8 colony-forming-units (CFUs) of E. coli in 2 h. This release is sustained for at least 10 days. Cell release can be varied by more than three orders of magnitude by varying initial cell loading and modulating the mechanical properties of encapsulating matrix. As the governing mechanism of microbial release is entirely mechanical, we demonstrate controlled release of model Gram-negative, Gram-positive, and fungal probiotics from multiple hydrogel matrices. SIGNIFICANCE Probiotics offer therapeutic benefits and have the potential to treat complex diseases, but their persistence at the target site is often required for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases metabolically active probiotics in a sustained manner has been developed yet. This work demonstrates a generic mechanism where stiff probiotics encapsulated within relatively less stiff hydrogels proliferate and induce hydrogel fracture. This allows a zero-order release of probiotics which can be easily controlled by adjusting the properties of the encapsulating matrices. This generic mechanism is applicable for a wide range of probiotics with different synthetic matrices and has the potential to be used in the treatment of a broad range of diseases.
Collapse
|
31
|
Tîrziu AT, Susan M, Susan R, Sonia T, Harich OO, Tudora A, Varga NI, Tiberiu-Liviu D, Avram CR, Boru C, Munteanu M, Horhat FG. From Gut to Eye: Exploring the Role of Microbiome Imbalance in Ocular Diseases. J Clin Med 2024; 13:5611. [PMID: 39337098 PMCID: PMC11432523 DOI: 10.3390/jcm13185611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The gut microbiome plays a crucial role in human health, and recent research has highlighted its potential impact on ocular health through the gut-eye axis. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various ocular diseases. Methods: A comprehensive literature search was conducted using relevant keywords in major electronic databases, prioritizing recent peer-reviewed articles published in English. Results: The gut microbiota influences ocular health through immune modulation, maintenance of the blood-retinal barrier, and production of beneficial metabolites. Dysbiosis can disrupt these mechanisms, contributing to ocular inflammation, tissue damage, and disease progression in conditions such as uveitis, age-related macular degeneration, diabetic retinopathy, dry eye disease, and glaucoma. Therapeutic modulation of the gut microbiome through probiotics, prebiotics, synbiotics, and fecal microbiota transplantation shows promise in preclinical and preliminary human studies. Conclusions: The gut-eye axis represents a dynamic and complex interplay between the gut microbiome and ocular health. Targeting the gut microbiome through innovative therapeutic strategies holds potential for improving the prevention and management of various ocular diseases.
Collapse
Affiliation(s)
- Andreea-Talida Tîrziu
- Department of General Medicine, Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Susan
- Centre for Preventive Medicine, Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Razvan Susan
- Centre for Preventive Medicine, Department of Family Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Tanasescu Sonia
- Department of Pediatrics, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Octavia Oana Harich
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Adelina Tudora
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, Strada Liviu Rebreanu 86, 310419 Arad, Romania
| | - Norberth-Istvan Varga
- Department of General Medicine, Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragomir Tiberiu-Liviu
- Medical Semiology II Discipline, Internal Medicine Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, "Vasile Goldis" Western University, 310414 Arad, Romania
| | - Casiana Boru
- Department of Medicine, "Vasile Goldis" University of Medicine and Pharmacy, 310414 Arad, Romania
| | - Mihnea Munteanu
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
32
|
Cao L, Wan M, Xian Z, Zhou Y, Dong L, Huang F, Su D. Lacticaseibacillus casei- and Bifidobacterium breve-fermented red pitaya promotes beneficial microbial proliferation in the colon. Food Funct 2024; 15:9434-9445. [PMID: 39189643 DOI: 10.1039/d4fo02352h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Red pitaya has been demonstrated to strongly inhibit α-glucosidase activity; however, the impact of red pitaya fermentation by probiotic bacteria on α-glucosidase inhibition remains unclear. In this study, six strains of lactic acid bacteria (Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, Lactobacillus bulgaricus, Lacticaseibacillus casei, Lactobacillus acidophilus and Streptococcus thermophilus) and one strain of Bifidobacterium breve were utilized for the fermentation of red pitaya pulp. The α-glucosidase and α-amylase inhibition rates of red pitaya pulp were significantly greater after fermentation by Bifidobacterium breve and Lacticaseibacillus casei than by the other abovementioned strains. The LC group exhibited an α-glucosidase inhibition rate of 99%, with an α-amylase inhibition rate of 89.91%. In contrast, the BB group exhibited an α-glucosidase inhibition rate of 95.28%, accompanied by an α-amylase inhibition rate of 95.28%. Moreover, red pitaya pulp fermented with Bifidobacterium breve and Lacticaseibacillus casei produced a notable quantity of oligosaccharides, which was more than three times greater than that in the other groups. Furthermore, 16S rRNA high-throughput sequencing analysis was conducted to assess alterations in the composition of the gut microbiota. This revealed an increase in the abundance of Lactobacillus and Faecalibacterium in the pulp fermented by Bifidobacterium breve and Lacticaseibacillus casei, whereas the abundance of Sutterella decreased. Further analysis at the species level revealed that Bifidobacterium longum, Faecalibacterium prausnitzii, and Lactobacillus zeae were the dominant strains present during colonic fermentation. These results indicate a beneficial health trend associated with probiotic bacterial fermentation of red pitaya pulp, which is highly important for the development of functional products.
Collapse
Affiliation(s)
- Li Cao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Mengxi Wan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zhixing Xian
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yongqiang Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510006, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510006, China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Archana, Gupta AK, Noumani A, Panday DK, Zaidi F, Sahu GK, Joshi G, Yadav M, Borah SJ, Susmitha V, Mohan A, Kumar A, Solanki PR. Gut microbiota derived short-chain fatty acids in physiology and pathology: An update. Cell Biochem Funct 2024; 42:e4108. [PMID: 39228159 DOI: 10.1002/cbf.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Short-chain fatty acids (SCFAs) are essential molecules produced by gut bacteria that fuel intestinal cells and may also influence overall health. An imbalance of SCFAs can result in various acute and chronic diseases, including diabetes, obesity and colorectal cancer (CRC). This review delves into the multifaceted roles of SCFAs, including a brief discussion on their source and various gut-residing bacteria. Primary techniques used for detection of SCFAs, including gas chromatography, high-performance gas chromatography, nuclear magnetic resonance and capillary electrophoresis are also discussed through this article. This review study also compiles various synthesis pathways of SCFAs from diverse substrates such as sugar, acetone, ethanol and amino acids. The different pathways through which SCFAs enter cells for immune response regulation are also highlighted. A major emphasis is the discussion on diseases associated with SCFA dysregulation, such as anaemia, brain development, CRC, depression, obesity and diabetes. This includes exploring the relationship between SCFA levels across ethnicities and their connection with blood pressure and CRC. In conclusion, this review highlights the critical role of SCFAs in maintaining gut health and their implications in various diseases, emphasizing the need for further research on SCFA detection, synthesis and their potential as diagnostic biomarkers. Future studies of SCFAs will pave the way for the development of novel diagnostic tools and therapeutic strategies for optimizing gut health and preventing diseases associated with SCFA dysregulation.
Collapse
Affiliation(s)
- Archana
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Abhijeet Kumar Gupta
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Ashab Noumani
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Dharmendra Kumar Panday
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Fareen Zaidi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gunjan Joshi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Manisha Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Jyoti Borah
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Vanne Susmitha
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Keivanlou MH, Amini-Salehi E, Sattari N, Hashemi M, Saberian P, Prabhu SV, Javid M, Mirdamadi A, Heidarzad F, Bakhshi A, Letafatkar N, Zare R, Hassanipour S, Nayak SS. Gut microbiota interventions in type 2 diabetes mellitus: An umbrella review of glycemic indices. Diabetes Metab Syndr 2024; 18:103110. [PMID: 39213690 DOI: 10.1016/j.dsx.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND We aimed to explore how probiotics, prebiotics, or synbiotics impact glycemic indices in patients with diabetes mellitus. METHOD A comprehensive search was conducted on PubMed, Scopus, and Web of Science from inception up to April 2023. The random-effects model was employed for the study analysis. Furthermore, sensitivity and subgroup analyses were conducted to investigate potential sources of heterogeneity. AMSTAR2 checklist was used to determine the quality of studies. Comprehensive meta-analysis version 3 was used for the study analysis. RESULT A total of 31 studies were included in the final analysis. Based on the results of the meta-analysis, gut microbial therapy could significantly decrease serum fasting blood glucose levels in patients with type 2 diabetes mellitus (effect size: -0.211; 95 % CI: -0.257, -0.164; P < 0.001). Additionally, significant associations were also found between gut microbial therapy and improved serum levels of fasting insulin, glycated hemoglobin, and homeostatic model assessment for insulin resistance (effect size: -0.087; 95 % confidence interval: -0.120, -0.053; P < 0.001; effect size: -0.166; 95 % confidence interval: -0.200, -0.132; P < 0.001; effect size: -0.230; 95 % confidence interval: -0.288, -0.172; P < 0.001, respectively). CONCLUSION Our results revealed promising effects of gut microbiota modulation on glycemic profile of patients with type 2 diabetes mellitus. The use of these agents as additional treatments can be considered.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sandeep Samethadka Nayak
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital , Bridgeport, CT, USA
| |
Collapse
|
36
|
Min M, Dulai AS, Ahmad N, Sivamani RK. Review of Integrative Medical Therapies for Psoriasis: The Microbiome, Probiotics, Diet, and Mindfulness. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2024; 9:108-114. [PMID: 39301214 PMCID: PMC11361491 DOI: 10.1177/24755303241236386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Psoriasis is a chronic inflammatory condition with cutaneous and systemic involvement. Although many efficacious treatment options are available, concerns regarding costs and duration of treatment have expanded interest in the role of integrative medical therapies for psoriasis. Objective In this review, we aim to provide evidence for the use of integrative medical approaches in the management of psoriasis, namely approaches utilizing the microbiome, probiotics, diet, and mindfulness. Methods PubMed/Medline and Google Scholar databases were searched from inception up to 16 August 2023 to identify clinical studies that evaluated how integrative medical therapies affect psoriasis severity. Search terms combined "psoriasis" or "psoriatic arthritis" with terms related to the microbiome, diet, and lifestyle. Results Multiple clinical studies have shown that integrative approaches can reduce psoriasis severity. Probiotic supplementation in psoriatic patients decreased PASI scores, decreased inflammatory markers, increased quality of life, and reduced the risk of disease relapse. Intermittent fasting, in the context of Ramadan, decreased PASI scores and plasma CRP levels. Low-calorie diets and low-calorie ketogenic diets have been shown to reduce psoriasis severity. Notably, combining low-calorie diets with biologics and cyclosporine synergistically improved psoriasis to a greater extent than pharmaceutical therapy alone. A gluten-free diet improved psoriasis and reduced antigliadin antibodies in those with hypersensitivity. Mindfulness therapies also improved psoriasis severity with and without phototherapy. Conclusion Several studies show that integrative medicine can be used to manage psoriasis. Specifically, probiotic supplementation, diets that promote weight loss or modulate antigliadin antibodies, and mindfulness therapies may improve disease severity.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Skin Science and Research, Sacramento, CA, USA
- College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Ajay S Dulai
- Integrative Skin Science and Research, Sacramento, CA, USA
| | - Nabeel Ahmad
- Integrative Skin Science and Research, Sacramento, CA, USA
- College of Medicine, University of Houston, Houston, TX, USA
| | - Raja K Sivamani
- Integrative Skin Science and Research, Sacramento, CA, USA
- College of Medicine, California Northstate University, Elk Grove, CA, USA
- Department of Dermatology, University of California-Davis, CA, USA
- Pacific Skin Institute, Sacramento, CA, USA
| |
Collapse
|
37
|
Yoon S, Park S, Jung SE, Lee C, Kim WK, Choi ID, Ko G. Fermented Milk Containing Lacticaseibacillus rhamnosus SNU50430 Modulates Immune Responses and Gut Microbiota in Antibiotic-Treated Mice. J Microbiol Biotechnol 2024; 34:1299-1306. [PMID: 38755001 PMCID: PMC11239404 DOI: 10.4014/jmb.2401.01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430-antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL-5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.
Collapse
Affiliation(s)
- Sunghyun Yoon
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - SungJun Park
- N-Bio, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 08826, Republic of Korea
- weBiom Inc., Seoul 08826, Republic of Korea
| | - Seong Eun Jung
- R&BD Center, hy Co., Ltd., Yongin 17086, Republic of Korea
| | - Cheonghoon Lee
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon-Ki Kim
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Dong Choi
- R&BD Center, hy Co., Ltd., Yongin 17086, Republic of Korea
| | - GwangPyo Ko
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- N-Bio, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Aykut MN, Erdoğan EN, Çelik MN, Gürbüz M. An Updated View of the Effect of Probiotic Supplement on Sports Performance: A Detailed Review. Curr Nutr Rep 2024; 13:251-263. [PMID: 38470560 PMCID: PMC11133216 DOI: 10.1007/s13668-024-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW Modulation of the host microbiota through probiotics has been shown to have beneficial effects on health in the growing body of research. Exercise increases the amount and diversity of beneficial microorganisms in the host microbiome. Although low- and moderate-intensity exercise has been shown to reduce physiological stress and improve immune function, high-intensity prolonged exercise can suppress immune function and reduce microbial diversity due to intestinal hypoperfusion. The effect of probiotic supplementation on sports performance is still being studied; however, questions remain regarding the mechanisms of action, strain used, and dose. In this review, the aim was to investigate the effects of probiotic supplements on exercise performance through modulation of gut microbiota and alleviation of GI symptoms, promotion of the immune system, bioavailability of nutrients, and aerobic metabolism. RECENT FINDINGS Probiotic supplementation may improve sports performance by reducing the adverse effects of prolonged high-intensity exercise. Although probiotics have been reported to have positive effects on sports performance, information about the microbiome and nutrition of athletes has not been considered in most current studies. This may have limited the evaluation of the effects of probiotic supplementation on sports performance.
Collapse
Affiliation(s)
- Miray Nur Aykut
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Esma Nur Erdoğan
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Gürbüz
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey.
| |
Collapse
|
39
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Effects of Probiotics on Gut Microbiota: An Overview. Int J Mol Sci 2024; 25:6022. [PMID: 38892208 PMCID: PMC11172883 DOI: 10.3390/ijms25116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
40
|
Gulnaz A, Lew LC, Park YH, Sabir JSM, Albiheyri R, Rather IA, Hor YY. Efficacy of Probiotic Strains Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 in Management of Obesity: An In Vitro and In Vivo Analysis. Pharmaceuticals (Basel) 2024; 17:676. [PMID: 38931347 PMCID: PMC11206994 DOI: 10.3390/ph17060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of obesity, characterized by an excessive accumulation of adipose tissue and adipocyte hypertrophy, presents a major public health challenge. This study investigates the therapeutic potential of two probiotic strains, Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093, in the context of obesity. Utilizing 3T3-L1 cell-derived human adipocytes, we assessed Probio65's and Probio-093's capacity to mitigate triglyceride accumulation and influence adipocytokine production in vitro. Subsequently, an in vivo trial with male C57BL/6J mice examined the effects of both probiotic strains on adipose tissue characteristics, body weight, fat mass, and obesity-related gene expression. This study employed both live and ethanol-extracted bacterial cells. The results demonstrated significant reductions in the triglyceride deposition, body weight, and adipose tissue mass in the treated groups (p < 0.05). Furthermore, both strains modulated adipokine profiles by downregulating proinflammatory markers such as PAI-1, leptin, TNF-α, STAMP2, F4/80, resistin, and MCP-1, and upregulating the insulin-sensitive transporter GLUT4 and the anti-inflammatory adiponectin (p < 0.05). Our findings suggest that Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 are promising agents for microbiome-targeted anti-obesity therapies, offering the effective mitigation of obesity and improvement in adipocyte function in a murine model.
Collapse
Affiliation(s)
- Aneela Gulnaz
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Lee-Ching Lew
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| | - Yong-Ha Park
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| |
Collapse
|
41
|
Yao X, Nie W, Chen X, Zhang J, Wei J, Qiu Y, Liu K, Shao D, Liu H, Ma Z, Li Z, Li B. Two Enterococcus faecium Isolates Demonstrated Modulating Effects on the Dysbiosis of Mice Gut Microbiota Induced by Antibiotic Treatment. Int J Mol Sci 2024; 25:5405. [PMID: 38791443 PMCID: PMC11121104 DOI: 10.3390/ijms25105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Broad-spectrum antibiotics are frequently used to treat bacteria-induced infections, but the overuse of antibiotics may induce the gut microbiota dysbiosis and disrupt gastrointestinal tract function. Probiotics can be applied to restore disturbed gut microbiota and repair abnormal intestinal metabolism. In the present study, two strains of Enterococcus faecium (named DC-K7 and DC-K9) were isolated and characterized from the fecal samples of infant dogs. The genomic features of E. faecium DC-K7 and DC-K9 were analyzed, the carbohydrate-active enzyme (CAZyme)-encoding genes were predicted, and their abilities to produce short-chain fatty acids (SCFAs) were investigated. The bacteriocin-encoding genes in the genome sequences of E. faecium DC-K7 and DC-K9 were analyzed, and the gene cluster of Enterolysin-A, which encoded a 401-amino-acid peptide, was predicted. Moreover, the modulating effects of E. faecium DC-K7 and DC-K9 on the gut microbiota dysbiosis induced by antibiotics were analyzed. The current results demonstrated that oral administrations of E. faecium DC-K7 and DC-K9 could enhance the relative abundances of beneficial microbes and decrease the relative abundances of harmful microbes. Therefore, the isolated E. faecium DC-K7 and DC-K9 were proven to be able to alter the gut microbiota dysbiosis induced by antibiotic treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (X.Y.); (W.N.); (X.C.); (J.Z.); (J.W.); (Y.Q.); (K.L.); (D.S.); (H.L.); (Z.M.)
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (X.Y.); (W.N.); (X.C.); (J.Z.); (J.W.); (Y.Q.); (K.L.); (D.S.); (H.L.); (Z.M.)
| |
Collapse
|
42
|
Güler MA, Çetin B, Albayrak B, Meral-Aktaş H, Tekgündüz KŞ, Kara M, Işlek A. Isolation, identification, and in vitro probiotic characterization of forty novel Bifidobacterium strains from neonatal feces in Erzurum province, Türkiye. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4165-4175. [PMID: 38299445 DOI: 10.1002/jsfa.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Neonatal feces are one of the most important sources for probiotic isolation. The purpose of this study was the isolation and identification of Bifidobacterium spp. from neonatal feces and the evaluation of in vitro probiotic properties of strains including safety tests. RESULTS A total of 40 isolates were obtained from 14 healthy newborns' feces in Erzurum province, Türkiye. By their rep-PCR patterns and 16S rRNA gene sequences, isolates were identified as 26 Bifidobacterium breve and 14 Bifidobacterium longum. Fifteen of the isolates tolerated bile salts and showed high resistance to simulated gastric juice. Isolates exhibited varying rates of auto-aggregation and hydrophobicity. In addition, most of the isolates displayed antibacterial activity against Escherichia coli O157:H7, Staphylococcus aureus ATCC 29213, Salmonella Typhimurium RSHMB 95091, and Pseudomonas aeruginosa ATCC 9027. However, only one strain showed bile salt hydrolase activity and two strains showed the ability to produce H2O2. Bifidobacterium strains were generally sensitive to the tested antibiotics and lacked kanamycin, gentamicin, and streptomycin resistance genes, and hemolytic and DNAse activities. On the other hand, it was determined that five strains had various virulence genes including gelE, esp, efaAfs, hyl, and ace. CONCLUSION Results of the present study suggested that B. longum BH28, B. breve BH4 and B. breve BH5 strains have the potential as probiotic candidates for further studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammet Akif Güler
- Division of Pediatric Nephrology, Department of Pediatrics, Atatürk University, Faculty of Medicine, Erzurum, Türkiye
| | - Bülent Çetin
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Bülent Albayrak
- Department of Gastroenterology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Hacer Meral-Aktaş
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Kadir Şerafettin Tekgündüz
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Mustafa Kara
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Ali Işlek
- Department of Pediatric Gastroenterology, Faculty of Medicine, Çukurova University, Adana, Türkiye
| |
Collapse
|
43
|
Barnes AJ, Bennett EF, Vezina B, Hudson AW, Hernandez GE, Nutter NA, Bray AS, Nagpal R, Wyres KL, Zafar MA. Ethanolamine metabolism through two genetically distinct loci enables Klebsiella pneumoniae to bypass nutritional competition in the gut. PLoS Pathog 2024; 20:e1012189. [PMID: 38713723 PMCID: PMC11101070 DOI: 10.1371/journal.ppat.1012189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/17/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K. pneumoniae) is an asymptomatic gut colonizer and, unlike well-studied enteric pathogens, harbors two genetically distinct ethanolamine utilization (eut) loci. Our investigation uncovered unique roles for each eut locus depending on EA utilization as a carbon or nitrogen source. Murine gut colonization studies demonstrated the necessity of both eut loci in the presence of intact gut microbiota for robust GI colonization by K. pneumoniae. Additionally, while some Escherichia coli gut isolates could metabolize EA, other commensals were incapable, suggesting that EA metabolism likely provides K. pneumoniae a selective advantage in gut colonization. Molecular and bioinformatic analyses unveiled the conservation of two eut loci among K. pneumoniae and a subset of the related taxa in the K. pneumoniae species complex, with the NtrC-RpoN regulatory cascade playing a pivotal role in regulation. These findings identify EA metabolism as a critical driver of K. pneumoniae niche establishment in the gut and propose microbial metabolism as a potential therapeutic avenue to combat K. pneumoniae infections.
Collapse
Affiliation(s)
- Andrew J. Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Emma F. Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Noah A. Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States of America
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
44
|
Tywanek E, Michalak A, Świrska J, Zwolak A. Autoimmunity, New Potential Biomarkers and the Thyroid Gland-The Perspective of Hashimoto's Thyroiditis and Its Treatment. Int J Mol Sci 2024; 25:4703. [PMID: 38731922 PMCID: PMC11083198 DOI: 10.3390/ijms25094703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Autoimmune thyroid disease (AITD) is the most common organic specific illness of the thyroid gland. It may manifest as the overproduction or the decline of thyroxine and triiodothyronine. Hyperthyroidism develops due to the overproduction of hormones as an answer to the presence of stimulatory antibodies against the TSH receptor. Hashimoto's thyroiditis (HT) is generally characterized by the presence of thyroid peroxidase and thyroglobulin antibodies, with a concomitant infiltration of lymphocytes in the thyroid. Due to the progressive destruction of cells, AITD can lead to subclinical or overt hypothyroidism. Pathophysiology of AITD is extremely complicated and still not fully understood, with genetic, environmental and epigenetic factors involved in its development. Due to increasing incidence and social awareness of this pathology, there is an urgent need to expand the background concerning AITD. A growing body of evidence suggests possible ways of treatment apart from traditional approaches. Simultaneously, the role of potential new biomarkers in the diagnosis and monitoring of AITD has been highlighted recently, too. Therefore, we decided to review therapeutic trends in the course of AITD based on its pathophysiological mechanisms, mainly focusing on HT. Another aim was to summarize the state of knowledge regarding the role of new biomarkers in this condition.
Collapse
Affiliation(s)
- Ewa Tywanek
- Department of Internal Medicine and Internal Medicine in Nursing, Medical University of Lublin, Witold Chodźki Street 7, 20-093 Lublin, Poland; (E.T.); (A.Z.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland
- Endocrinology Department with Nuclear Medicine Department, Center of Oncology of the Lublin Region St. Jana z Dukli, Kazimierz Jaczewski Street 7, 20-090 Lublin, Poland;
| | - Agata Michalak
- Department of Gastroenterology, Medical University of Lublin, Poland, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Joanna Świrska
- Endocrinology Department with Nuclear Medicine Department, Center of Oncology of the Lublin Region St. Jana z Dukli, Kazimierz Jaczewski Street 7, 20-090 Lublin, Poland;
| | - Agnieszka Zwolak
- Department of Internal Medicine and Internal Medicine in Nursing, Medical University of Lublin, Witold Chodźki Street 7, 20-093 Lublin, Poland; (E.T.); (A.Z.)
- Endocrinology Department with Nuclear Medicine Department, Center of Oncology of the Lublin Region St. Jana z Dukli, Kazimierz Jaczewski Street 7, 20-090 Lublin, Poland;
| |
Collapse
|
45
|
Jang YJ, Choi HS, Oh I, Chung JH, Moon JS. Effects of Limosilactobacillus reuteri ID-D01 Probiotic Supplementation on Exercise Performance and Gut Microbiota in Sprague-Dawley Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10257-9. [PMID: 38635106 DOI: 10.1007/s12602-024-10257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
The gut microbiota composition in animals and humans has recently been found to be influenced by exercise. Although Limosilactobacillus reuteri strains have notable probiotic properties that promote human health, understanding of its effects in combination with exercise and physical activity is limited. Therefore, this study examined the effects of L. reuteri ID-D01, a human-derived probiotic, on exercise performance and fatigue in Sprague-Dawley rats. Organ weight, maximal running distance, serum biochemistry, muscle performance, microbial community composition, and short-chain fatty acid (SCFA) levels were assessed. Results indicated that ID-D01 supplementation significantly improved endurance performance. Rats in the probiotic group demonstrated a significant increase in maximal running distance compared with that in the control group (p < 0.05). Additionally, levels of fatigue markers, such as lactate and creatine phosphokinase, were significantly reduced in the ID-D01-administered groups, suggesting its potential to alleviate exercise-induced fatigue. Microbiome analysis revealed a distinct shift in gut microbiota composition in response to ID-D01 administration. The group that received ID-D01 probiotics exhibited a significant increase in the abundance of SCFA-producing bacteria, particularly Akkermansia spp., compared with that in the control groups. Furthermore, they showed elevated production of SCFAs, such as acetate and butyrate. In conclusion, this study demonstrated that ID-D01 can enhance exercise performance and reduce fatigue. Herein, we highlighted that human-derived probiotics could improve physical performance, as observed by changes in gut microbiota composition and SCFA production.
Collapse
Affiliation(s)
- Ye-Ji Jang
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | - Han Sol Choi
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | - Ikhoon Oh
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | | | - Jin Seok Moon
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea.
- Ildong Pharmaceutical Co., Ltd, Seoul, 06752, Republic of Korea.
| |
Collapse
|
46
|
van Zanten GC, Madsen AL, Yde CC, Krych L, Yeung N, Saarinen MT, Kot W, Jensen HM, Rasmussen MA, Ouwehand AC, Nielsen DS. Randomised, Placebo-Controlled Investigation of the Impact of Probiotic Consumption on Gut Microbiota Diversity and the Faecal Metabolome in Seniors. Microorganisms 2024; 12:796. [PMID: 38674741 PMCID: PMC11052279 DOI: 10.3390/microorganisms12040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Aging has been associated with a changed composition and function of the gut microbiota (GM). Here, we investigate the effects of the multi-strain probiotic HOWARU® Restore on GM composition and function in seniors. Ninety-eight healthy adult volunteers aged ≥75 years were enrolled in a randomised, double-blinded intervention (NCT02207140), where they received HOWARU Restore (1010 CFU) or the placebo daily for 24 weeks, with 45 volunteers from each group completing the intervention. Questionnaires monitoring the effects on gastro-intestinal discomfort and bowel movements were collected. Faecal samples for GM characterisation (qPCR, 16S rRNA gene amplicon sequencing) and metabolomics (GC-FID, 1H NMR) were collected at the baseline and after 24 weeks. In the probiotic group, self-reported gastro-intestinal discomfort in the form of flatulence was significantly decreased during the intervention. At the baseline, 151 'core species' (present in ≥95% of samples) were identified. Most core species belonged to the Lachnospiraceae and Ruminococcaceae families. Neither alpha diversity nor beta diversity or faecal metabolites was affected by probiotic intake. On the contrary, we observed high intra-individual GM stability, with 'individual' accounting for 72-75% of variation. In conclusion, 24 weeks of HOWARU Restore intake reduced gastro-intestinal discomfort in the form of flatulence in healthy seniors without significantly influencing GM composition or activity.
Collapse
Affiliation(s)
- Gabriella C. van Zanten
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
| | - Anne Lundager Madsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
| | - Christian C. Yde
- IFF Enabling Technologies, Brabrand, 8220 Aarhus, Denmark; (C.C.Y.); (H.M.J.)
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
| | - Nicolas Yeung
- IFF Health, 02460 Kantvik, Finland; (N.Y.); (M.T.S.)
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Henrik Max Jensen
- IFF Enabling Technologies, Brabrand, 8220 Aarhus, Denmark; (C.C.Y.); (H.M.J.)
| | - Morten A. Rasmussen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
- Copenhagen Studies on Asthma in Childhood, University of Copenhagen, 2820 Gentofte, Denmark
| | | | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
| |
Collapse
|
47
|
Liu X, Jiang N, Wang X, Yan H, Guan L, Kong L, Chen J, Zhang H, Ma H. Weissella cibaria Relieves Gut Inflammation Caused by Escherichia coli through Inflammation Modulation and Gut Microbiota Regulation. Foods 2024; 13:1133. [PMID: 38611436 PMCID: PMC11011356 DOI: 10.3390/foods13071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The emergence of multi-drug-resistant (MDR) pathogens has considerably challenged the development of new drugs. Probiotics that inhibit MDR pathogens offer advantages over chemical antibiotics and drugs due to their increased safety and fewer side effects. This study reported that Weissella cibaria P-8 isolated from pickles showed excellent antibacterial activity against intestinal pathogens, particularly the antibacterial activity against MDR Escherichia coli B2 was the highest. This study showed that the survival rates of W. cibaria P-8 at pH 2.0 and 0.3% bile salt concentration were 72% and 71.56%, respectively, and it still had antibacterial activity under pepsin, trypsin, protease K, and catalase hydrolysis. Moreover, W. cibaria P-8 inhibits the expression of inflammatory factors interleukin-1β, tumor necrosis factor-α, and interleukin-6, upregulates the interleukin-10 level, and increases total antioxidant capacity and superoxide dismutase enzyme activity in serum. W. cibaria P-8 also efficiently repairs intestinal damage caused by E. coli infection. The gut microbiota analysis demonstrated that W. cibaria P-8 colonizes the intestine and increases the abundance of some beneficial intestinal microorganisms, particularly Prevotella. In conclusion, W. cibaria P-8 alleviated MDR E. coli-induced intestinal inflammation by regulating inflammatory cytokine and enzyme activity and rebalancing the gut microbiota, which could provide the foundation for subsequent clinical analyses and probiotic product development.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Nan Jiang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Xinyue Wang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Haowen Yan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lili Guan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
- The Key Laboratory of New Veterinary Drug Research, Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
| |
Collapse
|
48
|
Holcomb M, Marshall A, Flinn H, Lozano M, Soriano S, Gomez-Pinilla F, Treangen TJ, Villapol S. Probiotic treatment causes sex-specific neuroprotection after traumatic brain injury in mice. RESEARCH SQUARE 2024:rs.3.rs-4196801. [PMID: 38645104 PMCID: PMC11030542 DOI: 10.21203/rs.3.rs-4196801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Recent studies have shed light on the potential role of gut dysbiosis in shaping traumatic brain injury (TBI) outcomes. Changes in the levels and types of Lactobacillus bacteria present might impact the immune system disturbances, neuroinflammatory responses, anxiety and depressive-like behaviors, and compromised neuroprotection mechanisms triggered by TBI. Objective This study aimed to investigate the effects of a daily pan-probiotic (PP) mixture in drinking water containing strains of Lactobacillus plantarum, L. reuteri, L. helveticus, L. fermentum, L. rhamnosus, L. gasseri, and L. casei, administered for either two or seven weeks before inducing TBI on both male and female mice. Methods Mice were subjected to controlled cortical impact (CCI) injury. Short-chain fatty acids (SCFAs) analysis was performed for metabolite measurements. The taxonomic profiles of murine fecal samples were evaluated using 16S rRNA V1-V3 sequencing analysis. Histological analyses were used to assess neuroinflammation and gut changes post-TBI, while behavioral tests were conducted to evaluate sensorimotor and cognitive functions. Results Our findings suggest that PP administration modulates the diversity and composition of the microbiome and increases the levels of SCFAs in a sex-dependent manner. We also observed a reduction of lesion volume, cell death, and microglial and macrophage activation after PP treatment following TBI in male mice. Furthermore, PP-treated mice show motor function improvements and decreases in anxiety and depressive-like behaviors. Conclusion Our findings suggest that PP administration can mitigate neuroinflammation and ameliorate motor and anxiety and depressive-like behavior deficits following TBI. These results underscore the potential of probiotic interventions as a viable therapeutic strategy to address TBI-induced impairments, emphasizing the need for gender-specific treatment approaches.
Collapse
|
49
|
Revankar NA, Negi PS. Biotics: An emerging food supplement for health improvement in the era of immune modulation. Nutr Clin Pract 2024; 39:311-329. [PMID: 37466413 DOI: 10.1002/ncp.11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
The involvement of the commensal microbiota in immune function is a multifold process. Biotics, such as probiotics, prebiotics, synbiotics, and paraprobiotics, have been subjected to animal and human trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in overall health. In recent years, studies on human microbiome interaction have established the multifarious role of biotics in maintaining overall health. The consumption of biotics has been extensively reported to help in maintaining microbial diversity, enhancing gut-associated mucosal immune homeostasis, and providing protection against a wide range of lifestyle disorders. However, the establishment of biotics as an alternative therapy for a range of health conditions is yet to be ascertained. Despite the fact that scientific literature has demonstrated the correlation between biotics and immune modulation, most in vivo and in vitro reports are inconclusive on the dosage required. This review provides valuable insights into the immunomodulatory effects of biotics consumption based on evidence obtained from animal models and clinical trials. Furthermore, we highlight the optimal dosages of biotics that have been reported to deliver maximum health benefits. By identifying critical research gaps, we have suggested a roadmap for future investigations to advance our understanding of the intricate crosstalk between biotics and immune homeostasis.
Collapse
Affiliation(s)
- Neelam A Revankar
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep S Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
50
|
Nataraj BH, Jeevan K, Dang AK, Nagpal R, Ali SA, Behare PV. Pre-clinical safety and toxicity assessment of Limosilactobacillus fermentum NCDC 400 in murine model. Microb Pathog 2024; 189:106589. [PMID: 38382627 DOI: 10.1016/j.micpath.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Comprehensive safety assessment of potential probiotic strains is crucial in the selection of risk-free strains for clinical translation. This study aimed to evaluate the biosafety of Limosilactobacillus fermentum NCDC 400, a potential probiotic strain, using oral toxicity tests in a Swiss albino mouse model. Mice were orally gavaged with low (108 CFU/mouse/day) and high (1010 CFU/mouse/day) doses of NCDC 400 for 14 (acute), 28 (subacute), and 90 (subchronic) days to assess behavioral, hematological, biochemical, immunological, and histological effects. The administration of NCDC 400 did not result in any observable adverse effects on general health parameters, including body weight, feed and water intake, and organ indices. Hematological and biochemical parameters, such as glucose, serum enzymes, urea, creatinine, serum minerals, total serum proteins, and lipid profile, remained largely unaffected by the test strain. Notably, NCDC 400 administration led to a significant reduction in harmful intestinal enzymes and improvement in gut health indices, as indicated by fecal pH, lactate, ammonia, and short-chain fatty acids. There were no instances of bacterial translocation of NCDC 400 to blood or extra-intestinal organs. Immune homeostasis was not adversely affected by repeated exposure to NCDC 400 in all three oral toxicity studies. Histopathological examination revealed no strain-related changes in various tissues. Based on these findings, a dose of 1010 CFU/mouse/day was considered as the No Observable Effect Level (NOEL) in healthy mice. In conclusion, this study demonstrates the safe and non-toxic behavior of L. fermentum NCDC 400. The results support and ensure the safety and suitability for clinical trials and eventual translation into clinical practice as potential probiotic.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India; Dairy Chemistry and Bacteriology Section, Southern Regional Station (SRS), ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, Karnataka, India.
| | - K Jeevan
- Regional Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Aamkho, Gwalior, 474009, Madhya Pradesh, India.
| | - Ajay Kumar Dang
- Animal Physiology Division, ICAR-NDRI, Karnal, 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, 32306, USA
| | - Syed Azmal Ali
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69121, Germany.
| | - Pradip V Behare
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|