1
|
Ahmed N, Dalmasso C, Turner MB, Arthur G, Cincinelli C, Loria AS. From fat to filter: the effect of adipose tissue-derived signals on kidney function. Nat Rev Nephrol 2025:10.1038/s41581-025-00950-5. [PMID: 40175570 DOI: 10.1038/s41581-025-00950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Obesity is associated with severe consequences for the renal system, including chronic kidney disease, kidney failure and increased mortality. Obesity has both direct and indirect effects on kidney health through several mechanisms, including activation of the renin-angiotensin system, mechanical compression, inflammation, fibrosis, increased filtration barrier permeability and renal nerve activity. The expansion of adipose tissue through hypertrophy and hyperplasia can induce haemodynamic changes that promote glomerular hyperfiltration to compensate for the greater metabolic demands of the increased body weight. Adipose expansion is also associated with the release of adipokines and pro-inflammatory cytokines, hyperinsulinaemia and insulin resistance, which exert direct and indirect effects on kidney function via various mechanisms. Increased uptake of fatty acids by the kidney leads to alterations in lipid metabolism and lipotoxicity, also contributing to the pro-inflammatory and pro-fibrotic environment. The role of the adipose tissue-brain-kidney axis in the obesity-associated decline in renal function is sustained by studies showing that stimulation of adipose tissue sensory neurons by locally released factors increases renal sympathetic nerve activity. Conversely, pre-existent kidney disease can contribute to adipose dysfunction through the accumulation of uraemic toxins and hormonal changes. These findings highlight the importance of crosstalk between adipose tissue and the kidneys and provide insights into the mechanisms underlying the associations between obesity and kidney disease.
Collapse
Affiliation(s)
- Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| | - Meghan B Turner
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Gertrude Arthur
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Cole Cincinelli
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Rivera-Alvarez I, Vázquez-Lizárraga R, Mendoza-Viveros L, Sotelo-Rivera I, Viveros-Ruiz TL, Morales-Maza J, Orozco L, Romano MC, Noriega LG, Tovar AR, Aguilar-Arnal L, Cruz-Bautista I, Aguilar-Salinas C, Orozco-Solis R. Transcriptional dynamics in type 2 diabetes progression is linked with circadian, thermogenic, and cellular stress in human adipose tissue. Commun Biol 2025; 8:398. [PMID: 40057615 PMCID: PMC11890630 DOI: 10.1038/s42003-025-07709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/10/2025] [Indexed: 04/03/2025] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased significantly over the past three decades, with an estimated 30-40% of cases remaining undiagnosed. Brown and beige adipose tissues are known for their remarkable catabolic capacity, and their ability to diminish blood glucose plasma concentration. Beige adipose tissue can be differentiated from adipose-derived stem cells or through transdifferentiation from white adipocytes. However, the impact of T2D progression on beige adipocytes' functional capacity remains unclear. Transcriptomic profiling of subcutaneous adipose tissue biopsies from healthy normal-weight, obese, prediabetic obese, and obese subjects diagnosed with T2D, reveals a progressive alteration in cellular processes associated with catabolic metabolism, circadian rhythms, thermogenesis-related signaling pathways, cellular stress, and inflammation. MAX is a potential transcription factor that links inflammation with the circadian clock and thermogenesis during the progression of T2D. This study unveils an unrecognized transcriptional circuit that increasingly disrupts subcutaneous adipose tissue oxidative capacity during the progression of T2D. These findings could open new research venues for developing chrono-pharmaceutical strategies to treat and prevent T2D.
Collapse
Affiliation(s)
| | - Rosa Vázquez-Lizárraga
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| | - Lucía Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, S.L.P., México
| | | | - Tannia L Viveros-Ruiz
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Jesús Morales-Maza
- Departamento de Cirugía Endocrina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Marta C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados (CINVESTAV), México City, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Carlos Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, México City, México
| | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México.
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México.
| |
Collapse
|
3
|
Dhritlahre RK, Thakur N, Goel A, Patial V, Padwad Y, Saneja A. Self-Nanoemulsifying Formulation Improves Oral Bioavailability and Insulin Sensitizing Potency of Formononetin-Vitamin E Conjugate in Type 2 Diabetic Mice. Mol Pharm 2025; 22:255-269. [PMID: 39699518 DOI: 10.1021/acs.molpharmaceut.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The escalating incidence of obesity, diabetes, and insulin resistance has become a significant global health concern. In this study, we have developed a self-nanoemulsifying delivery system (SNEDS) of formononetin-vitamin E conjugate (VESylated-FMN) for improving its oral bioavailability and improving insulin sensitivity and glycemic control. The developed SNEDS were characterized using dynamic light scattering and transmission electron microscopy. Thereafter, the loading capacity, in vitro release, thermodynamic, and gastrointestinal stability of the developed formulation were evaluated. The safety and oral bioavailability of VESylated-FMN-SNEDS were assessed in Sprague-Dawley rats, whereas insulin-sensitizing potency was assessed in high-fat diet-induced type 2 diabetic mice. The VESylated-FMN-SNEDS quickly emulsified on dilution (droplet size ∼79.17 nm) and showed remarkable thermodynamic and gastrointestinal stability. The developed formulation demonstrated enhanced oral bioavailability (∼1.3-fold higher AUC0-t) of VESylated-FMN without liver and kidney injury. Consequently, VESylated-FMN-SNEDS significantly improves insulin sensitivity and glycemic control in HFD-fed mice compared to VESylated-FMN by upregulating the transcript level of insulin-sensitizing genes. Therefore, the SNEDS formulation could be an effective strategy to augment the oral bioavailability and insulin-sensitizing potency of VESylated-FMN.
Collapse
Affiliation(s)
- Rakesh Kumar Dhritlahre
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Navneet Thakur
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Abhishek Goel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Vikram Patial
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Yogendra Padwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
4
|
Edgemon AK, Martinez-Perez CN, Newland MC, Rapp JT. Comparing and intervening on behavioral demand for snack foods among justice-involved adolescents: A preliminary translational analysis. J Exp Anal Behav 2025; 123:57-71. [PMID: 39723657 DOI: 10.1002/jeab.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Obesity may be more prevalent among populations who are of low socioeconomic status, have limited access to nutrient-dense foods, or both. One such population is justice-involved youth. This series of translational experiments builds on previous research on food reinforcement and behavioral demand by (a) assaying demand for snack foods among justice-involved adolescents and (b) evaluating the effect of a nutrition intervention on justice-involved adolescents' demand for healthier alternatives. In Experiment 1, participants completed preference assessments for high- and low-energy-density snack foods and corresponding commodity purchasing tasks. The results indicated significant differences in demand based on energy density and preference. In Experiment 2, justice-involved adolescents received a nutrition intervention. Following intervention, participants repeated preference assessments and commodity purchasing tasks. The researchers used mixed-effects modeling to evaluate the effect of (a) the intervention, (b) participant age, and (c) the amount of intervention received on pre-post differences in demand for healthier alternatives. Results and implications are discussed along with future directions for improving conditions of confinement for justice-involved adolescents.
Collapse
Affiliation(s)
- Anna Kate Edgemon
- Department of Psychology, University of Mississippi, University, MS, USA
| | | | | | - John T Rapp
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
5
|
Duarte Afonso Serdan T, Cervantes H, Frank B, Tian Q, Choi CHJ, Hoffmann A, Cohen P, Blüher M, Schwartz GJ, Shamsi F. Slit3 Fragments Orchestrate Neurovascular Expansion and Thermogenesis in Brown Adipose Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.613949. [PMID: 39386533 PMCID: PMC11463466 DOI: 10.1101/2024.09.24.613949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Brown adipose tissue (BAT) represents an evolutionary innovation enabling placental mammals to regulate body temperature through adaptive thermogenesis. Brown adipocytes are surrounded by a dense network of blood vessels and sympathetic nerves that support their development and thermogenic function. Cold exposure stimulates BAT thermogenesis through the coordinated induction of brown adipogenesis, angiogenesis, and sympathetic innervation. However, how these distinct processes are coordinated remains unclear. Here, we identify Slit guidance ligand 3 (Slit3) as a new niche factor that mediates the crosstalk among adipocyte progenitors, endothelial cells, and sympathetic nerves. We show that adipocyte progenitors secrete Slit3 which regulates both angiogenesis and sympathetic innervation in BAT and is essential for BAT thermogenesis in vivo. Proteolytic cleavage of Slit3 generates secreted Slit3-N and Slit3-C fragments, which activate distinct receptors to stimulate angiogenesis and sympathetic innervation, respectively. Moreover, we introduce bone morphogenetic protein-1 (Bmp1) as the first Slit protease identified in vertebrates. In summary, this study underscores the essential role of Slit3-mediated neurovascular network expansion in enabling cold-induced BAT adaptation. The co-regulation of neurovascular expansion by Slit3 fragments provides a bifurcated yet harmonized approach to ensure a synchronized response of BAT to environmental challenges. This study presents the first evidence that adipocyte progenitors regulate tissue innervation, revealing a previously unrecognized dimension of cellular interaction within adipose tissue.
Collapse
Affiliation(s)
| | - Heidi Cervantes
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Benjamin Frank
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Qiyu Tian
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Chan Hee J Choi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Gary J Schwartz
- Departments of Medicine and Neuroscience, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
- Departments of Cell Biology and Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
6
|
Anwar C, Lin JR, Tsai ML, Ho CT, Lai CS. Calebin A attenuated inflammation in RAW264.7 macrophages and adipose tissue to improve hepatic glucose metabolism and hyperglycemia in high-fat diet-fed obese mice. Eur J Pharmacol 2024; 978:176789. [PMID: 38945287 DOI: 10.1016/j.ejphar.2024.176789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The increased incidence of obesity, which become a global health problem, requires more functional food products with minor side and excellent effects. Calebin A (CbA) is a non-curcuminoid compound, which is reported to be an effective treatment for lipid metabolism and thermogenesis. However, its ability and mechanism of action in improving obesity-associated hyperglycemia remain unclear. This study was designed to explore the effect and mechanism of CbA in hyperglycemia via improvement of inflammation and glucose metabolism in the adipose tissue and liver in high-fat diet (HFD)-fed mice. After 10 weeks fed HFD, obese mice supplemented with CbA (25 and 100 mg/kg) for another 10 weeks showed a remarkable reducing adiposity and blood glucose. CbA modulated M1/M2 macrophage polarization, ameliorated inflammatory cytokines, and restored adiponectin as well as Glut 4 expression in the adipose tissue. In the in vitro study, CbA attenuated pro-inflammatory markers while upregulated anti-inflammatory IL-10 in LPS + IFNγ-generated M1 phenotype macrophages. In the liver, CbA attenuated steatosis, inflammatory infiltration, and protein levels of inflammatory TNF-α and IL-6. Moreover, CbA markedly upregulated Adiponectin receptor 1, AMPK, and insulin downstream Akt signaling to improve glycogen content and increase Glut2 protein. These findings indicated that CbA may be a novel therapeutic approach to treat obesity and hyperglycemia phenotype targeting on adipose inflammation and hepatic insulin signaling.
Collapse
Affiliation(s)
- Choirul Anwar
- Institute of Aquatic Science and Technology, Collage of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Jing-Ru Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, 08901, USA.
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
7
|
Yu Z, Zhang T, Yang X, Xu B, Yu Z, An L, Xu T, Jing X, Wang Y, Lu M. Neuregulin4-ErbB4 signalling pathway is driven by electroacupuncture stimulation to remodel brown adipose tissue innervation. Diabetes Obes Metab 2024; 26:3880-3896. [PMID: 38951947 DOI: 10.1111/dom.15735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
AIM To show that electroacupuncture stimulation (ES) remodels sympathetic innervation in brown adipose tissue (BAT) via the bone morphogenic protein 8B (BMP8B)-neuregulin 4 (NRG4)-ErbB4 axis, with somatotopic dependence. MATERIALS AND METHODS We established a high-fat diet (HFD) model with C57BL/6J mice to measure the thermogenesis and metabolism of BAT. In addition, the sympathetic nerve activity (SNA) was measured with the electrophysiological technique, and the immunostaining of c-Fos was used to detect the central nervous system sources of sympathetic outflows. Finally, the key role of the BMP8B-NRG4-ErbB4 axis was verified by peripheral specific antagonism of ErbB4. RESULTS ES at the forelimb and abdomen regions significantly up-regulate SNA, whereas ES at the hindlimb region has a limited regulatory effect on SNA but still partially restores HFD-induced BAT dysfunction. Mechanistically, ES at the forelimb and abdomen regions driving catecholaminergic signals in brown adipocytes depends on neural activities projected from the ventromedial nucleus of the hypothalamus (VMH) to the spinal cord intermediolateral column (IML). Notably, the peripheral suppression of ErbB4 in BAT inhibits the thermogenesis and metabolic function of BAT, as well as significantly hindering the SNA activation and metabolic benefits induced by ES. CONCLUSION These results suggest that ES appears to be an effective approach for remodeling sympathetic innervation in BAT, which is closely related to neuronal activity in the VMH and the NRG4-ErbB4 signaling pathway.
Collapse
Affiliation(s)
- Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li An
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Wang B, Hu Z, Cui L, Zhao M, Su Z, Jiang Y, Liu J, Zhao Y, Hou Y, Yang X, Zhang C, Guo B, Li D, Zhao L, Zheng S, Zhao Y, Yang W, Wang D, Yu S, Zhu S, Yan Y, Yuan G, Li K, Zhang W, Qin L, Zhang W, Sun F, Luo J, Zheng R. βAR-mTOR-lipin1 pathway mediates PKA-RIIβ deficiency-induced adipose browning. Theranostics 2024; 14:5316-5335. [PMID: 39267778 PMCID: PMC11388065 DOI: 10.7150/thno.97046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Background: Enhancing white adipose tissue (WAT) browning combats obesity. The RIIβ subunit of cAMP-dependent protein kinase (PKA) is primarily expressed in the brain and adipose tissue. Deletion of the hypothalamic RIIβ gene centrally induces WAT browning, yet the peripheral mechanisms mediating this process remain unexplored. Methods: This study investigates the mechanisms underlying WAT browning in RIIβ-KO mice. Genetic approaches such as β3-adrenergic receptors (β3ARs) deletion and sympathetic denervation of WAT were utilized. Genome-wide transcriptomic sequencing and bioinformatic analysis were employed to identify potential mediators of WAT browning. siRNA assays were employed to knock down mTOR and lipin1 in vitro, while AAV-shRNAs were used for the same purpose in vivo. Results: We found that WAT browning substantially contributes to the lean and obesity-resistant phenotypes of RIIβ-KO mice. The WAT browning can be dampened by β3ARs deletion or WAT sympathetic denervation. We identified that adipocytic mTOR and lipin1 may act as mediators of the WAT browning. Inhibition of mTOR or lipin1 abrogates WAT browning and hinders the lean phenotype of RIIβ-KO mice. In human subcutaneous white adipocytes and mouse white adipocytes, β3AR stimulation can activate mTOR and causes lipin1 nuclear translocation; knockdown of mTOR and Lipin1 mitigates WAT browning-associated gene expression, impedes mitochondrial activity. Moreover, mTOR knockdown reduces lipin1 level and nuclear translocation, indicating that lipin1 may act downstream of mTOR. Additionally, in vivo knockdown of mTOR and Lipin1 diminished WAT browning and increased adiposity. Conclusions: The β3AR-activated mTOR-lipin1 axis mediates WAT browning, offering new insights into the molecular basis of PKA-regulated WAT browning. These findings provide potential adipose target candidates for the development of drugs to treat obesity.
Collapse
Affiliation(s)
- Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Zhiping Hu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Peking University, Beijing, China
- Present address: Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Long Cui
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Miao Zhao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhijie Su
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yun Zhao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoning Yang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chenyu Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bingbing Guo
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Daotong Li
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Liang Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Shengmin Zheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Yiguo Zhao
- Department of Gastrointestinal Surgery, Peking University International Hospital, Peking University, Beijing, China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University, Beijing, China
| | - Shigong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing, China
| | - Geheng Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Lihua Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| |
Collapse
|
9
|
Tsuji T, Tolstikov V, Zhang Y, Huang TL, Camara H, Halpin M, Narain NR, Yau KW, Lynes MD, Kiebish MA, Tseng YH. Light-responsive adipose-hypothalamus axis controls metabolic regulation. Nat Commun 2024; 15:6768. [PMID: 39117652 PMCID: PMC11310318 DOI: 10.1038/s41467-024-50866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Light is fundamental for biological life, with most mammals possessing light-sensing photoreceptors in various organs. Opsin3 is highly expressed in adipose tissue which has extensive communication with other organs, particularly with the brain through the sympathetic nervous system (SNS). Our study reveals a new light-triggered crosstalk between adipose tissue and the hypothalamus. Direct blue-light exposure to subcutaneous white fat improves high-fat diet-induced metabolic abnormalities in an Opsin3-dependent manner. Metabolomic analysis shows that blue light increases circulating levels of histidine, which activates histaminergic neurons in the hypothalamus and stimulates brown adipose tissue (BAT) via SNS. Blocking central actions of histidine and denervating peripheral BAT blunts the effects of blue light. Human white adipocytes respond to direct blue light stimulation in a cell-autonomous manner, highlighting the translational relevance of this pathway. Together, these data demonstrate a light-responsive metabolic circuit involving adipose-hypothalamus communication, offering a potential strategy to alleviate obesity-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Henrique Camara
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Meghan Halpin
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Kang HM, Park SY, Kim JE, Lee KW, Hwang DY, Choi YW. Citrullus mucosospermus Extract Reduces Weight Gain in Mice Fed a High-Fat Diet. Nutrients 2024; 16:2171. [PMID: 38999918 PMCID: PMC11243677 DOI: 10.3390/nu16132171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to investigate the therapeutic potential of Citrullus mucosospermus extract (CME) in counteracting adipogenesis and its associated metabolic disturbances in murine models. In vitro experiments utilizing 3T3-L1 preadipocytes revealed that CME potently inhibited adipocyte differentiation, as evidenced by a dose-dependent reduction in lipid droplet formation. Remarkably, CME also attenuated glucose uptake and intracellular triglyceride accumulation in fully differentiated adipocytes, suggesting its ability to modulate metabolic pathways in mature adipose cells. Translating these findings to an in vivo setting, we evaluated the effects of CME in C57BL/6N mice fed a high-fat diet (HFD) for 10 weeks. CME administration, concomitantly with the HFD, resulted in a significant attenuation of body weight gain compared to the HFD control group. Furthermore, CME treatment led to substantial reductions in liver weight, total fat mass, and deposits of visceral and retroperitoneal adipose tissue, underscoring its targeted impact on adipose expansion. Histological analyses revealed the remarkable effects of CME on hepatic steatosis. While the HFD group exhibited severe lipid accumulation within liver lobules, CME dose-dependently mitigated this pathology, with the highest dose virtually abolishing hepatic fat deposition. An examination of adipose tissue revealed a progressive reduction in adipocyte hypertrophy upon CME treatment, culminating in a near-normalization of adipocyte morphology at the highest dose. Notably, CME exhibited potent anti-inflammatory properties, significantly attenuating the upregulation of pro-inflammatory cytokines' mRNA levels (TNF-α, IL-1β and IL-6) in the livers of HFD-fed mice. This suggests a potential mechanism through which CME may exert protective effects against inflammation associated with obesity and fatty liver disease.
Collapse
Affiliation(s)
- He Mi Kang
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Sun Young Park
- Institute of Nano-Bio Convergence, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki Won Lee
- Natural Products Convergence R&D Division, Kwangdong Pharma. Co., Ltd., Seoul 08381, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
11
|
Wang Y, Ye L. The Afferent Function of Adipose Innervation. Diabetes 2024; 73:348-354. [PMID: 38377447 PMCID: PMC10882147 DOI: 10.2337/dbi23-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
Adipose tissue innervation is critical for regulating metabolic and energy homeostasis. While the sympathetic efferent innervation of fat is well characterized, the role of sensory or afferent innervation remains less explored. This article reviews previous work on adipose innervation and recent advances in the study of sensory innervation of adipose tissues. We discuss key open questions, including the physiological implications of adipose afferents in homeostasis as well as potential cross talk with sympathetic neurons, the immune system, and hormonal pathways. We also outline the general technical challenges of studying dorsal root ganglia innervating fat, along with emerging technologies that may overcome these barriers. Finally, we highlight areas for further research to deepen our understanding of the afferent function of adipose innervation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
12
|
Tokizane K, Brace CS, Imai SI. DMH Ppp1r17 neurons regulate aging and lifespan in mice through hypothalamic-adipose inter-tissue communication. Cell Metab 2024; 36:377-392.e11. [PMID: 38194970 PMCID: PMC10922643 DOI: 10.1016/j.cmet.2023.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
Recent studies have shown that the hypothalamus functions as a control center of aging in mammals that counteracts age-associated physiological decline through inter-tissue communications. We have identified a key neuronal subpopulation in the dorsomedial hypothalamus (DMH), marked by Ppp1r17 expression (DMHPpp1r17 neurons), that regulates aging and longevity in mice. DMHPpp1r17 neurons regulate physical activity and WAT function, including the secretion of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), through sympathetic nervous stimulation. Within DMHPpp1r17 neurons, the phosphorylation and subsequent nuclear-cytoplasmic translocation of Ppp1r17, regulated by cGMP-dependent protein kinase G (PKG; Prkg1), affect gene expression regulating synaptic function, causing synaptic transmission dysfunction and impaired WAT function. Both DMH-specific Prkg1 knockdown, which suppresses age-associated Ppp1r17 translocation, and the chemogenetic activation of DMHPpp1r17 neurons significantly ameliorate age-associated dysfunction in WAT, increase physical activity, and extend lifespan. Thus, these findings clearly demonstrate the importance of the inter-tissue communication between the hypothalamus and WAT in mammalian aging and longevity control.
Collapse
Affiliation(s)
- Kyohei Tokizane
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cynthia S Brace
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin-Ichiro Imai
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Vali A, Dalle H, Loubaresse A, Gilleron J, Havis E, Garcia M, Beaupère C, Denis C, Roblot N, Poussin K, Ledent T, Bouillet B, Cormont M, Tanti JF, Capeau J, Vatier C, Fève B, Grosfeld A, Moldes M. Adipocyte Glucocorticoid Receptor Activation With High Glucocorticoid Doses Impairs Healthy Adipose Tissue Expansion by Repressing Angiogenesis. Diabetes 2024; 73:211-224. [PMID: 37963392 DOI: 10.2337/db23-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
In humans, glucocorticoids (GCs) are commonly prescribed because of their anti-inflammatory and immunosuppressive properties. However, high doses of GCs often lead to side effects, including diabetes and lipodystrophy. We recently reported that adipocyte glucocorticoid receptor (GR)-deficient (AdipoGR-KO) mice under corticosterone (CORT) treatment exhibited a massive adipose tissue (AT) expansion associated with a paradoxical improvement of metabolic health compared with control mice. However, whether GR may control adipose development remains unclear. Here, we show a specific induction of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic vascular endothelial growth factor A (VEGFA) expression in GR-deficient adipocytes of AdipoGR-KO mice compared with control mice, together with an increased adipose vascular network, as assessed by three-dimensional imaging. GR activation reduced HIF-1α recruitment to the Vegfa promoter resulting from Hif-1α downregulation at the transcriptional and posttranslational levels. Importantly, in CORT-treated AdipoGR-KO mice, the blockade of VEGFA by a soluble decoy receptor prevented AT expansion and the healthy metabolic phenotype. Finally, in subcutaneous AT from patients with Cushing syndrome, higher VEGFA expression was associated with a better metabolic profile. Collectively, these results highlight that adipocyte GR negatively controls AT expansion and metabolic health through the downregulation of the major angiogenic effector VEGFA and inhibition of vascular network development. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Anna Vali
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Héloïse Dalle
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Alya Loubaresse
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Jérôme Gilleron
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France
| | - Emmanuelle Havis
- Sorbonne Université, CNRS, INSERM, Laboratoire de Biologie du Développement, Institut Biologie Paris Seine, Paris, France
| | - Marie Garcia
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Carine Beaupère
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Clémentine Denis
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Natacha Roblot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Karine Poussin
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Tatiana Ledent
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Benjamin Bouillet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Mireille Cormont
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France
| | - Jean-François Tanti
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France
| | - Jacqueline Capeau
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Camille Vatier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Antoine, Service Endocrinologie, CRMR PRISIS, Paris, France
| | - Bruno Fève
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Antoine, Service Endocrinologie, CRMR PRISIS, Paris, France
| | - Alexandra Grosfeld
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Marthe Moldes
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| |
Collapse
|
14
|
Knuth CM, Barayan D, Lee JH, Auger C, de Brito Monteiro L, Ricciuti Z, Metko D, Wells L, Sung HK, Screaton RA, Jeschke MG. Subcutaneous white adipose tissue independently regulates burn-induced hypermetabolism via immune-adipose crosstalk. Cell Rep 2024; 43:113584. [PMID: 38117653 PMCID: PMC10845122 DOI: 10.1016/j.celrep.2023.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Severe burns induce a chronic hypermetabolic state that persists well past wound closure, indicating that additional internal mechanisms must be involved. Adipose tissue is suggested to be a central regulator in perpetuating hypermetabolism, although this has not been directly tested. Here, we show that thermogenic adipose tissues are activated in parallel to increases in hypermetabolism independent of cold stress. Using an adipose tissue transplantation model, we discover that burn-derived subcutaneous white adipose tissue alone is sufficient to invoke a hypermetabolic response in a healthy recipient mouse. Concomitantly, transplantation of healthy adipose tissue alleviates metabolic dysfunction in a burn recipient. We further show that the nicotinic acetylcholine receptor signaling pathway may mediate an immune-adipose crosstalk to regulate adipose tissue remodeling post-injury. Targeting this pathway could lead to innovative therapeutic interventions to counteract hypermetabolic pathologies.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Dalia Barayan
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Dea Metko
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Lisa Wells
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert A Screaton
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON L8L 2X2, Canada; Hamilton General Hospital, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
15
|
Felix JB, Saha PK, de Groot E, Tan L, Sharp R, Anaya ES, Li Y, Quang H, Saidi N, Abushamat L, Ballantyne CM, Amos CI, Lorenzi PL, Klein S, Gao X, Hartig SM. N-acetylaspartate from fat cells regulates postprandial body temperature. RESEARCH SQUARE 2024:rs.3.rs-3835159. [PMID: 38260478 PMCID: PMC10802732 DOI: 10.21203/rs.3.rs-3835159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
N-acetylaspartate (NAA), the brain's second most abundant metabolite, provides essential substrates for myelination through its hydrolysis. However, activities and physiological roles of NAA in other tissues remain unknown. Here, we show aspartoacylase (ASPA) expression in white adipose tissue (WAT) governs systemic NAA levels for postprandial body temperature regulation. Proteomics and mass spectrometry revealed NAA accumulation in WAT of Aspa knockout mice stimulated the pentose phosphate pathway and pyrimidine production. Stable isotope tracing confirmed higher incorporation of glucose-derived carbon into pyrimidine metabolites in Aspa knockout cells. Additionally, serum NAA positively correlates with the pyrimidine intermediate orotidine and this relationship predicted lower body mass index in humans. Using whole-body and tissue-specific knockout mouse models, we demonstrate that fat cells provided plasma NAA and suppressed postprandial body temperature elevation. Furthermore, exogenous NAA supplementation reduced body temperature. Our study unveils WAT-derived NAA as an endocrine regulator of postprandial body temperature and physiological homeostasis.
Collapse
Affiliation(s)
- Jessica B. Felix
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Pradip K. Saha
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Evelyn de Groot
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert Sharp
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Elizabeth S. Anaya
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX
| | - Yafang Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Holly Quang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Nooshin Saidi
- Data Sciences Program, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Layla Abushamat
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Xia Gao
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
16
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
17
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
He L, Li H, Zhang L, Zhang J, Zhang G, Tong X, Zhang T, Wu Y, Li M, Jin L. Transcriptome analysis of norepinephrine-induced lipolysis in differentiated adipocytes of Bama pig. Gene 2023; 888:147753. [PMID: 37659599 DOI: 10.1016/j.gene.2023.147753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Sympathetic innervation of white adipose tissue (WAT) plays a key role in the regulation of lipid metabolism. Sympathetic activation promotes release of norepinephrine (NE), which binds to adrenergic receptors on adipocytes, promoting adipocyte lipolysis and enhanced oxidative metabolism. However, the mechanism by which sympathetic nerves regulate lipid metabolism in pig adipose tissue remains unclear. We used NE to simulate the process of sympathetic driving in pig adipocytes. RNA sequencing (RNA-seq) was used to determine the gene expression profile of pig adipocytes responding to NE stimulation. Our data suggests that the lipolytic signaling pathway is activated in pig adipocytes upon acute stimulation of NE, resulting in enhanced lipid metabolism and lipolysis, consistent with the phenomena found in humans and mice. Specifically, differentially expressed protein coding genes (PCGs) (SIRT4, SLC27A1) are mainly associated with functions that inhibit fatty acid oxidation and promote lipid synthesis. Similarly, we investigated the changes in regulatory transcripts such as long non-coding RNAs (lncRNAs) and transcripts of uncertain coding potential (TUCP) in response to NE and found that differentially expressed lncRNAs (lncG47338, lncG30660, lncG29516, lncG3790) and TUCP (TUCP_G38001) were co-expressed with target genes related to the promotion of fatty acid β-oxidation, lipolysis and oxidative metabolism, thus acting as regulators. These results indicate a broad suite of gene expression alterations in response to NE stimulation and promote the understanding of the molecular mechanisms by which NE regulates lipid metabolism in pigs.
Collapse
Affiliation(s)
- Li He
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Li
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Linzhen Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Geng Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Tong
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Wu
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
da Silva AA, Rocha-Gomes A, Reis ÍG, de Pinho Tavares Leal PE, Lessa MR, Pinto NAVD, Riul TR, Villela DC. Supplementation with Jatobá-do-cerrado flour (Hymenaea stigonocarpa Mart.) decreases hypothalamic inflammation and improves obesity parameters in rats on a high-fat diet. J Neuroimmunol 2023; 385:578237. [PMID: 37931532 DOI: 10.1016/j.jneuroim.2023.578237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
To evaluate the impact of jatobá-do-cerrado flour on nutritional, inflammatory, and oxidative stress markers, an study was conducted using male Wistar rats. These animals were allocated into four groups: a standard diet (Control), a high-fat diet (HFD), a diet with jatobá-do-cerrado flour (JCF), and a combination of high-fat diet and jatobá-do-cerrado flour (HFD + JCF). Comprehensive evaluations included food intake, cytokine concentrations, and redox status indicators. HFD group exhibited increased caloric intake and fat mass, elevated circulating IL-6, and heightened lipid peroxidation markers. This group also showed increased hypothalamic concentrations of IL-6, TNFα, and lipid peroxidation. In contrast, the HFD + JCF group showed reduced caloric intake, fat mass, and improvements in redox balance and inflammatory markers both in the blood and hypothalamus. SUMMARY: In the current study, we evaluated the potential of Jatobá-do-cerrado flour in mitigating the effects of a high-fat diet in adult Wistar rats. The addition of fat to the animals' diet for 63 days induced obesity, dyslipidemia, as well as an increase in inflammatory and lipid peroxidation markers, both in the blood and hypothalamus. Conversely, supplementation with Jatobá-do-Cerrado flour showed anti-obesogenic effects and these may be associated with the reduction of inflammation and oxidative stress. Therefore, supplementation with this flour has the potential to be a functional food for the treatment or prevention of obesity.
Collapse
Affiliation(s)
- Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ítalo Gomes Reis
- Laboratório de Nutrição Experimental - LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Pedro Ernesto de Pinho Tavares Leal
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Mayara Rodrigues Lessa
- Laboratório de Nutrição Experimental - LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Tecnologia e Biomassas do Cerrado - Departamento de Nutrição - Universidade Federal dos Vales do Jequitinhonha e Mucuri - Diamantina-MG - Brazil
| | - Nisia Andrade Villela Dessimoni Pinto
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Tecnologia e Biomassas do Cerrado - Departamento de Nutrição - Universidade Federal dos Vales do Jequitinhonha e Mucuri - Diamantina-MG - Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Daniel Campos Villela
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| |
Collapse
|
20
|
Knuth CM, Ricciuti Z, Barayan D, Rehou S, Abdullahi A, Monteiro LDB, Jeschke MG. Single-nuclei RNA Profiling Reveals Disruption of Adipokine and Inflammatory Signaling in Adipose Tissue of Burn Patients. Ann Surg 2023; 278:e1267-e1276. [PMID: 37057618 PMCID: PMC10928875 DOI: 10.1097/sla.0000000000005880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
OBJECTIVE We conducted a large-scale investigation of the systemic and adipose tissue-specific alterations in a clinical population of burn patients to identify factors that may influence hypermetabolism. BACKGROUND Previous research has identified chronic disturbances in adipose tissue inflammation, lipolysis, and browning, which may drive the perpetuation of hypermetabolism following the severe adrenergic stress of a burn injury. Given that adipose tissue is thought to be a central node in the regulation of systemic metabolism, we believe that systematically delineating the pathologic role of adipose tissue postburn, will lead to the identification of novel interventions to mitigate morbidity and mortality from severe burns. METHODS This was a single-institution cohort study, which obtained plasma and subcutaneous adipose tissue samples from severely burn adult patients over various time points during acute hospitalization. Whole-body clinical, metabolic, and inflammatory mediators were assessed in plasma, while genetic analyses through RT-qPCR and single-nuclei RNA sequencing were conducted in adipose tissue. RESULTS Systemic inflammation and adrenergic stress increase IL-6 signaling, lipolysis, browning, and adipokine dysfunction in the adipose tissue of adult burn patients, which may further propagate the long-term hypermetabolic response. Moreover, using single-nuclei RNA sequencing, we provide the first comprehensive characterization of alterations in the adipose tissue microenvironment occurring at acute and chronic stages postburn. CONCLUSION We provide novel insight toward the effect of burns on adipokine release, inflammatory signaling pathways, and adipose heterogeneity over the trajectory of acute and chronic stages.
Collapse
Affiliation(s)
- Carly M. Knuth
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | | | - Dalia Barayan
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | - Sarah Rehou
- Sunnybrook Research Institute, Toronto, Canada
- David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
| | - Abdikarim Abdullahi
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | | | - Marc G. Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
- David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Canada
- Department of Surgery, McMaster University, Hamilton, Canada
| |
Collapse
|
21
|
AlZaim I, de Rooij LPMH, Sheikh BN, Börgeson E, Kalucka J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat Rev Endocrinol 2023; 19:691-707. [PMID: 37749386 DOI: 10.1038/s41574-023-00893-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Adipose tissue is an endocrine organ and a crucial regulator of energy storage and systemic metabolic homeostasis. Additionally, adipose tissue is a pivotal regulator of cardiovascular health and disease, mediated in part by the endocrine and paracrine secretion of several bioactive products, such as adipokines. Adipose vasculature has an instrumental role in the modulation of adipose tissue expansion, homeostasis and metabolism. The role of the adipose vasculature has been extensively explored in the context of obesity, which is recognized as a global health problem. Obesity-induced accumulation of fat, in combination with vascular rarefaction, promotes adipocyte dysfunction and induces oxidative stress, hypoxia and inflammation. It is now recognized that obesity-associated endothelial dysfunction often precedes the development of cardiovascular diseases. Investigations have revealed heterogeneity within the vascular niche and dynamic reciprocity between vascular and adipose cells, which can become dysregulated in obesity. Here we provide a comprehensive overview of the evolving functions of the vasculature in regulating adipose tissue biology in health and obesity.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laura P M H de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Emma Börgeson
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
22
|
Huang X, Li X, Shen H, Zhao Y, Zhou Z, Wang Y, Yao J, Xue K, Wu D, Qiu Y. Transcriptional repression of beige fat innervation via a YAP/TAZ-S100B axis. Nat Commun 2023; 14:7102. [PMID: 37925548 PMCID: PMC10625615 DOI: 10.1038/s41467-023-43021-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Sympathetic innervation is essential for the development of functional beige fat that maintains body temperature and metabolic homeostasis, yet the molecular mechanisms controlling this innervation remain largely unknown. Here, we show that adipocyte YAP/TAZ inhibit sympathetic innervation of beige fat by transcriptional repression of neurotropic factor S100B. Adipocyte-specific loss of Yap/Taz induces S100b expression to stimulate sympathetic innervation and biogenesis of functional beige fat both in subcutaneous white adipose tissue (WAT) and browning-resistant visceral WAT. Mechanistically, YAP/TAZ compete with C/EBPβ for binding to the zinc finger-2 domain of PRDM16 to suppress S100b transcription, which is released by adrenergic-stimulated YAP/TAZ phosphorylation and inactivation. Importantly, Yap/Taz loss in adipocytes or AAV-S100B overexpression in visceral WAT restricts both age-associated and diet-induced obesity, and improves metabolic homeostasis by enhancing energy expenditure of mice. Together, our data reveal that YAP/TAZ act as a brake on the beige fat innervation by blocking PRDM16-C/EBPβ-mediated S100b expression.
Collapse
Affiliation(s)
- Xun Huang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xinmeng Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Hongyu Shen
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yiheng Zhao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhao Zhou
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yushuang Wang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Kaili Xue
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
23
|
Lorsignol A, Rabiller L, Labit E, Casteilla L, Pénicaud L. The nervous system and adipose tissues: a tale of dialogues. Am J Physiol Endocrinol Metab 2023; 325:E480-E490. [PMID: 37729026 DOI: 10.1152/ajpendo.00115.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
White, beige, and brown adipose tissues play a crucial role in maintaining energy homeostasis. Due to the heterogeneous and diffuse nature of fat pads, this balance requires a fine and coordinated control of many actors and therefore permanent dialogues between these tissues and the central nervous system. For about two decades, many studies have been devoted to describe the neuro-anatomical and functional complexity involved to ensure this dialogue. Thus, if it is now clearly demonstrated that there is an efferent sympathetic innervation of different fat depots controlling plasticity as well as metabolic functions of the fat pad, the crucial role of sensory innervation capable of detecting local signals informing the central nervous system of the metabolic state of the relevant pads is much more recent. The purpose of this review is to provide the current state of knowledge on this subject.
Collapse
Affiliation(s)
- Anne Lorsignol
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Lise Rabiller
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Elodie Labit
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Louis Casteilla
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Luc Pénicaud
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| |
Collapse
|
24
|
Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24:591-604. [PMID: 37626176 PMCID: PMC10848316 DOI: 10.1038/s41583-023-00729-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Collapse
Affiliation(s)
- Kenny L Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wolfram C Poller
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Sun M, Wan Y, Shi M, Meng ZX, Zeng W. Neural innervation in adipose tissue, gut, pancreas, and liver. LIFE METABOLISM 2023; 2:load022. [PMID: 39872245 PMCID: PMC11749697 DOI: 10.1093/lifemeta/load022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 01/30/2025]
Abstract
Efficient communication between the brain and peripheral organs is indispensable for regulating physiological function and maintaining energy homeostasis. The peripheral nervous system (PNS) in vertebrates, consisting of the autonomic and somatic nervous systems, bridges the peripheral organs and the central nervous system (CNS). Metabolic signals are processed by both vagal sensory nerves and somatosensory nerves. The CNS receives sensory inputs via ascending nerves, serves as the coordination and integration center, and subsequently controls internal organs and glands via descending nerves. The autonomic nervous system consists of sympathetic and parasympathetic branches that project peripheral nerves into various anatomical locations to regulate the energy balance. Sympathetic and parasympathetic nerves typically control the reflexive and involuntary functions in organs. In this review article, we outline the innervation of adipose tissue, gut, pancreas, and liver, to illustrate the neurobiological basis of central-peripheral interactions. We emphasize the importance of understanding the functional atlas of neural control of energy metabolism, and more importantly, provide potential avenues for further research in this area.
Collapse
Affiliation(s)
- Mengxue Sun
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yongwen Wan
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Mengjie Shi
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
27
|
Shamsi F, Zheng R, Ho LL, Chen K, Tseng YH. Comprehensive analysis of intercellular communication in the thermogenic adipose niche. Commun Biol 2023; 6:761. [PMID: 37479789 PMCID: PMC10361964 DOI: 10.1038/s42003-023-05140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
Brown adipose tissue (BAT) is responsible for regulating body temperature through adaptive thermogenesis. The ability of thermogenic adipocytes to dissipate chemical energy as heat counteracts weight gain and has gained considerable attention as a strategy against obesity. BAT undergoes major remodeling in a cold environment. This remodeling results from changes in the number and function of brown adipocytes, expanding the network of blood vessels and sympathetic nerves, and changes in the composition and function of immune cells. Such synergistic adaptation requires extensive crosstalk between individual cells in the tissue to coordinate their responses. To understand the mechanisms of intercellular communication in BAT, we apply the CellChat algorithm to single-cell transcriptomic data of mouse BAT. We construct an integrative network of the ligand-receptor interactome in BAT and identify the major signaling inputs and outputs of each cell type. By comparing the ligand-receptor interactions in BAT of mice housed at different environmental temperatures, we show that cold exposure enhances the intercellular interactions among the major cell types in BAT, including adipocytes, adipocyte progenitors, lymphatic and vascular endothelial cells, myelinated and non-myelinated Schwann cells, and immune cells. These interactions are predicted to regulate the remodeling of the extracellular matrix, the inflammatory response, angiogenesis, and neurite growth. Together, our integrative analysis of intercellular communications in BAT and their dynamic regulation in response to housing temperatures provides a new understanding of the mechanisms underlying BAT thermogenesis. The resources presented in this study offer a valuable platform for future investigations of BAT development and thermogenesis.
Collapse
Affiliation(s)
- Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA.
- Department of Cell Biology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| | - Rongbin Zheng
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Li-Lun Ho
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
28
|
Wang S, Liu Y, Chen J, He Y, Ma W, Liu X, Sun X. Effects of multi-organ crosstalk on the physiology and pathology of adipose tissue. Front Endocrinol (Lausanne) 2023; 14:1198984. [PMID: 37383400 PMCID: PMC10293893 DOI: 10.3389/fendo.2023.1198984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
In previous studies, adipocytes were found to play an important role in regulating whole-body nutrition and energy balance, and are also important in energy metabolism, hormone secretion, and immune regulation. Different adipocytes have different contributions to the body, with white adipocytes primarily storing energy and brown adipocytes producing heat. Recently discovered beige adipocytes, which have characteristics in between white and brown adipocytes, also have the potential to produce heat. Adipocytes interact with other cells in the microenvironment to promote blood vessel growth and immune and neural network interactions. Adipose tissue plays an important role in obesity, metabolic syndrome, and type 2 diabetes. Dysfunction in adipose tissue endocrine and immune regulation can cause and promote the occurrence and development of related diseases. Adipose tissue can also secrete multiple cytokines, which can interact with organs; however, previous studies have not comprehensively summarized the interaction between adipose tissue and other organs. This article reviews the effect of multi-organ crosstalk on the physiology and pathology of adipose tissue, including interactions between the central nervous system, heart, liver, skeletal muscle, and intestines, as well as the mechanisms of adipose tissue in the development of various diseases and its role in disease treatment. It emphasizes the importance of a deeper understanding of these mechanisms for the prevention and treatment of related diseases. Determining these mechanisms has enormous potential for identifying new targets for treating diabetes, metabolic disorders, and cardiovascular diseases.
Collapse
Affiliation(s)
- Sufen Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuejing He
- Clinical Laboratory, Dongguan Eighth People’s Hospital, Dongguan, China
| | - Wanrui Ma
- Department of General Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xuerong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
29
|
Aamir K, Sethi G, Afrin MR, Hossain CF, Jusuf PR, Sarker SD, Arya A. Arjunolic acid modulate pancreatic dysfunction by ameliorating pattern recognition receptor and canonical Wnt pathway activation in type 2 diabetic rats. Life Sci 2023:121856. [PMID: 37307966 DOI: 10.1016/j.lfs.2023.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Arjunolic acid (AA) is a potent phytochemical with multiple therapeutics effects. In this study, AA is evaluated on type 2 diabetic (T2DM) rats to understand the mechanism of β-cell linkage with Toll-like receptor 4 (TLR-4) and canonical Wnt signaling. However, its role in modulating TLR-4 and canonical Wnt/β-catenin crosstalk on insulin signaling remains unclear during T2DM. Aim The current study is aimed to examine the potential role of AA on insulin signaling and TLR-4-Wnt crosstalk in the pancreas of type 2 diabetic rats. METHOD Multiple methods were used to determine molecular cognizance of AA in T2DM rats, when treated with different dosage levels. Histopathological and histomorphometry analysis was conducted using masson trichrome and H&E stains. While, protein and mRNA expressions of TLR-4/Wnt and insulin signaling were assessed using automated Western blotting (jess), immunohistochemistry, and RT-PCR. RESULTS Histopathological findings revealed that AA had reversed back the T2DM-induced apoptosis and necrosis caused to rats pancreas. Molecular findings exhibited prominent effects of AA in downregulating the elevated level of TLR-4, MyD88, NF-κB, p-JNK, and Wnt/β-catenin by blocking TLR-4/MyD88 and canonical Wnt signaling in diabetic pancreas, while IRS-1, PI3K, and pAkt were all upregulated by altering the NF-κB and β-catenin crosstalk during T2DM. CONCLUSION Overall results, indicate that AA has potential to develop as an effective therapeutic in the treatment of T2DM associated meta-inflammation. However, future preclinical research at multiple dose level in a long-term chronic T2DM disease model is warranted to understand its clinical relevance in cardiometabolic disease.
Collapse
Affiliation(s)
- Khurram Aamir
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Akhtar Saeed College of Pharmacy, Canal Campus, Lahore, Pakistan
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mst Rejina Afrin
- Department of Pharmacy, Faculty of Sciences and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Chowdhury Faiz Hossain
- Department of Pharmacy, Faculty of Sciences and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Patricia Regina Jusuf
- School of Biosciences, Faculty of Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Satyajit D Sarker
- Centre for Natural Product Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Aditya Arya
- School of Biosciences, Faculty of Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Natural Product Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, United Kingdom; Department of Pharmacology & Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
30
|
Zhang S, Chen J, Li Q, Zeng W. Opioid growth factor receptor promotes adipose tissue thermogenesis via enhancing lipid oxidation. LIFE METABOLISM 2023; 2:load018. [PMID: 39872016 PMCID: PMC11749475 DOI: 10.1093/lifemeta/load018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 01/29/2025]
Abstract
The thermogenic brown and beige adipocytes consume fatty acids and generate heat to maintain core body temperature in the face of cold challenges. Since their validated presence in humans, the activation of thermogenic fat has been an attractive target for treating obesity and related metabolic diseases. Here, we reported that the opioid growth factor receptor (Ogfr) was highly expressed in adipocytes and promoted thermogenesis. The mice with genetic deletion of Ogfr in adipocytes displayed an impaired capacity to counter environmental cold challenges. Meanwhile, Ogfr ablation in adipocytes led to reduced fatty acid oxidation, enhanced lipid accumulation, impaired glucose tolerance, and exacerbated tissue inflammation under chronic high-fat diet (HFD)-fed conditions. At the cellular level, OGFr enhanced the production of mitochondrial trifunctional protein subunit α (MTPα) and also interacted with MTPα, thus promoting fatty acid oxidation. Together, our study demonstrated the important role of OGFr in fatty acid metabolism and adipose thermogenesis.
Collapse
Affiliation(s)
- Shan Zhang
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Jianhui Chen
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Qingqing Li
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
31
|
Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav 2023; 265:114174. [PMID: 36965573 PMCID: PMC11537203 DOI: 10.1016/j.physbeh.2023.114174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Guilherme A, Rowland LA, Wetoska N, Tsagkaraki E, Santos KB, Bedard AH, Henriques F, Kelly M, Munroe S, Pedersen DJ, Ilkayeva OR, Koves TR, Tauer L, Pan M, Han X, Kim JK, Newgard CB, Muoio DM, Czech MP. Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program. Cell Rep 2023; 42:112488. [PMID: 37163372 PMCID: PMC10286105 DOI: 10.1016/j.celrep.2023.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Disruption of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) in mice induces browning in inguinal white adipose tissue (iWAT). However, adipocyte FASN knockout (KO) increases acetyl-coenzyme A (CoA) and malonyl-CoA in addition to depletion of palmitate. We explore which of these metabolite changes triggers adipose browning by generating eight adipose-selective KO mouse models with loss of ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), ACC2, malonyl-CoA decarboxylase (MCD) or FASN, or dual KOs ACLY/FASN, ACC1/FASN, and ACC2/FASN. Preventing elevation of acetyl-CoA and malonyl-CoA by depletion of adipocyte ACLY or ACC1 in combination with FASN KO does not block the browning of iWAT. Conversely, elevating malonyl-CoA levels in MCD KO mice does not induce browning. Strikingly, adipose ACC1 KO induces a strong iWAT thermogenic response similar to FASN KO while also blocking malonyl-CoA and palmitate synthesis. Thus, ACC1 and FASN are strong suppressors of adipocyte thermogenesis through promoting lipid synthesis rather than modulating the DNL intermediates acetyl-CoA or malonyl-CoA.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaltinaitis B Santos
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sean Munroe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Lauren Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Trevellin E, Bettini S, Pilatone A, Vettor R, Milan G. Obesity, the Adipose Organ and Cancer in Humans: Association or Causation? Biomedicines 2023; 11:biomedicines11051319. [PMID: 37238992 DOI: 10.3390/biomedicines11051319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Epidemiological observations, experimental studies and clinical data show that obesity is associated with a higher risk of developing different types of cancer; however, proof of a cause-effect relationship that meets the causality criteria is still lacking. Several data suggest that the adipose organ could be the protagonist in this crosstalk. In particular, the adipose tissue (AT) alterations occurring in obesity parallel some tumour behaviours, such as their theoretically unlimited expandability, infiltration capacity, angiogenesis regulation, local and systemic inflammation and changes to the immunometabolism and secretome. Moreover, AT and cancer share similar morpho-functional units which regulate tissue expansion: the adiponiche and tumour-niche, respectively. Through direct and indirect interactions involving different cellular types and molecular mechanisms, the obesity-altered adiponiche contributes to cancer development, progression, metastasis and chemoresistance. Moreover, modifications to the gut microbiome and circadian rhythm disruption also play important roles. Clinical studies clearly demonstrate that weight loss is associated with a decreased risk of developing obesity-related cancers, matching the reverse-causality criteria and providing a causality correlation between the two variables. Here, we provide an overview of the methodological, epidemiological and pathophysiological aspects, with a special focus on clinical implications for cancer risk and prognosis and potential therapeutic interventions.
Collapse
Affiliation(s)
- Elisabetta Trevellin
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Silvia Bettini
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Anna Pilatone
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Roberto Vettor
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Gabriella Milan
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| |
Collapse
|
34
|
Kumar S, Chhimwal J, Kumar S, Singh R, Patial V, Purohit R, Padwad YS. Phloretin and phlorizin mitigates inflammatory stress and alleviate adipose and hepatic insulin resistance by abrogating PPARγ S273-Cdk5 interaction in type 2 diabetic mice. Life Sci 2023; 322:121668. [PMID: 37023949 DOI: 10.1016/j.lfs.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
AIMS The rising prevalence of type 2 diabetes mellitus (T2DM) and accompanying insulin resistance is alarming globally. Natural and synthetic agonists of PPARγ are potentially attractive candidates for diabetics and are known to efficiently reverse adipose and hepatic insulin resistance, but related side effects and escalating costs are the causes of concern. Therefore, targeting PPARγ with natural ligands is advantageous and promising approach for the better management of T2DM. The present research aimed to assess the antidiabetic potential of phenolics Phloretin (PTN) and Phlorizin (PZN) type 2 diabetic mice. MAIN METHODS In silico docking was performed to check the effect of PTN and PZN on PPARγ S273-Cdk5 interactions. The docking results were further validated in preclinical settings by utilizing a mice model of high fat diet-induced T2DM. KEY FINDINGS Computational docking and further MD-simulation data revealed that PTN and PZN inhibited the activation of Cdk5, thereby blocking the phosphorylation of PPARγ. Our in vivo results further demonstrated that PTN and PZN administration significantly improved the secretory functions of adipocytes by increasing adiponectin and reducing inflammatory cytokine levels, which ultimately reduced the hyperglycaemic index. Additionally, combined treatment of PTN and PZN decreased in vivo adipocyte expansion and increased Glut4 expression in adipose tissues. Furthermore, PTN and PZN treatment reduced hepatic insulin resistance by modulating lipid metabolism and inflammatory markers. SIGNIFICANCE In summary, our findings strongly imply that PTN and PZN are candidates as nutraceuticals in the management of comorbidities related to diabetes and its complications.
Collapse
Affiliation(s)
- Shiv Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Suresh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rahul Singh
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
35
|
Giovana Maciel Reis C, Rocha-Gomes A, Escobar Teixeira A, Gomes de Oliveira D, Mainy Oliveira Santiago C, Alves da Silva A, Regina Riul T, de Jesus Oliveira E. Short-term Cafeteria Diet Is Associated with Fat Mass Accumulation, Systemic and Amygdala Inflammation, and Anxiety-like Behavior in Adult Male Wistar Rats. Neuroscience 2023; 515:37-52. [PMID: 36773840 DOI: 10.1016/j.neuroscience.2023.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Obesity is linked to metabolic, hormonal and biochemical alterations, and is also a risk factor for behavioral disorders. Evidence suggests that these disorders may be related to the consumption of hypercaloric diets, fat mass accumulation and changes in inflammation and redox status. Although much is known about the chronic effects of hypercaloric diets on mental health, few studies have evaluated the consequences of short-term exposure of these diets on behavior. The aim of this study was to evaluate nutritional, behavioral (anxiety-like), inflammatory and redox status parameters in adult male Wistar rats exposed to short-term cafeteria diet. Adult Wistar male rats (90 days-old; n = 12/group) received, during 14 days, the diets: Control- standard diet; Simple Cafeteria Diet (SCD)- homogeneous cafeteria diet. Varied Cafeteria Diet (VCD)- cafeteria diet with rotation and variation. Nutritional analyzes and tests for anxiety-like behaviors were performed, in addition to inflammatory and redox status measurements in blood and amygdala. The SCD group showed higher fat energy intake, while the VCD group consumed more energy from carbohydrates. SCD and VCD showed higher fat mass accumulation, in addition to higher levels of TNFα, INFγ, TBARS and FRAP in the blood. Also, SCD and VCD groups reported high levels of TNFα in the amygdala. Regarding behavioral evaluations, SCD and VCD groups showed anxiogenesis in the elevated plus maze, light-dark box, and open field tests. Therefore, the two cafeteria diets induced obesity and systemic inflammation, which in turn, resulted in an increase in amygdala TNFα levels and anxiety-like behaviors in Wistar rats.
Collapse
Affiliation(s)
- Clarisse Giovana Maciel Reis
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Dalila Gomes de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Eduardo de Jesus Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil.
| |
Collapse
|
36
|
Wang B, Zhao M, Su Z, Jin B, Yang X, Zhang C, Guo B, Li J, Hong W, Liu J, Zhao Y, Hou Y, Lai F, Zhang W, Qin L, Zhang W, Luo J, Zheng R. RIIβ-PKA in GABAergic Neurons of Dorsal Median Hypothalamus Governs White Adipose Browning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205173. [PMID: 36529950 PMCID: PMC9929258 DOI: 10.1002/advs.202205173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The RIIβ subunit of cAMP-dependent protein kinase A (PKA) is expressed in the brain and adipose tissue. RIIβ-knockout mice show leanness and increased UCP1 in brown adipose tissue. The authors have previously reported that RIIβ reexpression in hypothalamic GABAergic neurons rescues the leanness. However, whether white adipose tissue (WAT) browning contributes to the leanness and whether RIIβ-PKA in these neurons governs WAT browning are unknown. Here, this work reports that RIIβ-KO mice exhibit a robust WAT browning. RIIβ reexpression in dorsal median hypothalamic GABAergic neurons (DMH GABAergic neurons) abrogates WAT browning. Single-cell sequencing, transcriptome sequencing, and electrophysiological studies show increased GABAergic activity in DMH GABAergic neurons of RIIβ-KO mice. Activation of DMH GABAergic neurons or inhibition of PKA in these neurons elicits WAT browning and thus lowers body weight. These findings reveal that RIIβ-PKA in DMH GABAergic neurons regulates WAT browning. Targeting RIIβ-PKA in DMH GABAergic neurons may offer a clinically useful way to promote WAT browning for treating obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Bingwei Wang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Miao Zhao
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhijie Su
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Baohua Jin
- Department of PharmacologyInstitution of Chinese Integrative MedicineHebei Medical UniversityShijiazhuang050017P. R. China
| | - Xiaoning Yang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Chenyu Zhang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Bingbing Guo
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jiebo Li
- Institute of Medical PhotonicsBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Weili Hong
- Institute of Medical PhotonicsBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Jiarui Liu
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Yun Zhao
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Yujia Hou
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Futing Lai
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Wei Zhang
- Department of PharmacologyInstitution of Chinese Integrative MedicineHebei Medical UniversityShijiazhuang050017P. R. China
| | - Lihua Qin
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Weiguang Zhang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jianyuan Luo
- Department of Medical GeneticsSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Ruimao Zheng
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Neuroscience Research InstituteKey Laboratory for Neuroscience of Ministry of EducationKey Laboratory for Neuroscience of National Health Commission of the People's Republic of ChinaPeking UniversityBeijing100191P. R. China
| |
Collapse
|
37
|
Feshchenko DA, Rudenko BA, Shukurov FB, Vasiliev DK, Mamedov MN, Drapkina OM. Influence of catheter-based renal denervation on carbohydrate metabolism in patients with diabetes and hypertension. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2023. [DOI: 10.15829/1728-8800-2022-3459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim. To study the effect of catheter-based sympathetic renal denervation (RDN) by radiofrequency ablation on glucose metabolism in patients with type 2 diabetes and uncontrolled hypertension.Material and methods. Sixty patients were randomly assigned in a 1:1 ratio to the RDN group and the control group. Radiofrequency ablation was performed through the femoral access using a Symplicity Spyral™ renal denervation system (Medtronic, USA).Results. The technical success was 100%. There were no any complications. During the follow-up period, patients in the RDN group showed a significant decrease in the average level of glycated hemoglobin — from 7,9 (6,83-8,35) to 6,85 (6,12-7,10)% (p<0,001) and basal glycemia — from 9,5 (7,17-10,28) to 7,55 (6,43-8,95) mmol/l (p<0,001) with no significant changes in the control group. Changes in glucose levels and the degree of insulin resistance correlated with a decrease in office systolic blood pressure (r=0,36, p=0,005). After 6-month follow-up period in the RDN group, along with a significant decrease in the HOMA-IR by 1,92 (p<0,001), the average high-density lipoprotein cholesterol level also significantly increased by 0,17 mmol/l (p<0,001), and mean triglyceride level decreased by -0,55 mmol/l (p<0,001).Conclusion. The study results confirm the hypothesis of pleiotropic effects of RDN in patients with comorbid pathology associated with central sympathetic nervous system hyperactivity (diabetes, hypertension, dyslipidemia).
Collapse
Affiliation(s)
- D. A. Feshchenko
- National Medical Research Center for Therapy and Preventive Medicine
| | - B. A. Rudenko
- National Medical Research Center for Therapy and Preventive Medicine
| | - F. B. Shukurov
- National Medical Research Center for Therapy and Preventive Medicine
| | - D. K. Vasiliev
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. N. Mamedov
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
38
|
Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab 2022; 34:1914-1931. [PMID: 36257317 PMCID: PMC9742337 DOI: 10.1016/j.cmet.2022.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023]
Abstract
Accumulating evidence indicates that interoception maintains proper physiological status and orchestrates metabolic homeostasis by regulating feeding behaviors, glucose balance, and lipid metabolism. Continuous skeletal remodeling consumes a tremendous amount of energy to provide skeletal scaffolding, support muscle movement, store vital minerals, and maintain a niche for hematopoiesis, which are processes that also contribute to overall metabolic balance. Although skeletal innervation has been described for centuries, recent work has shown that skeletal metabolism is tightly regulated by the nervous system and that skeletal interoception regulates bone homeostasis. Here, we provide a general discussion of interoception and its effects on the skeleton and whole-body metabolism. We also discuss skeletal interoception-mediated regulation in the context of pathological conditions and skeletal pain as well as future challenges to our understanding of these process and how they can be leveraged for more effective therapy.
Collapse
Affiliation(s)
- Xiao Lv
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Gao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Qian X, Meng X, Zhang S, Zeng W. Neuroimmune regulation of white adipose tissues. FEBS J 2022; 289:7830-7853. [PMID: 34564950 DOI: 10.1111/febs.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/21/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
The white adipose tissues (WAT) are located in distinct depots throughout the body. They serve as an energy reserve, providing fatty acids for other tissues via lipolysis when needed, and function as an endocrine organ to regulate systemic metabolism. Their activities are coordinated through intercellular communications among adipocytes and other cell types such as residential and infiltrating immune cells, which are collectively under neuronal control. The adipocytes and immune subtypes including macrophages/monocytes, eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2s), T and B cells, dendritic cells (DCs), and natural killer (NK) cells display cellular and functional diversity in response to the energy states and contribute to metabolic homeostasis and pathological conditions. Accumulating evidence reveals that neuronal innervations control lipid deposition and mobilization via regulating lipolysis, adipocyte size, and cellularity. Vice versa, the neuronal innervations and activity are influenced by cellular factors in the WAT. Though the literature describing adipose tissue cells is too extensive to cover in detail, we strive to highlight a selected list of neuronal and immune components in this review. The cell-to-cell communications and the perspective of neuroimmune regulation are emphasized to enlighten the potential therapeutic opportunities for treating metabolic disorders.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xia Meng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shan Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
40
|
Galley JC, Singh S, Awata WMC, Alves JV, Bruder-Nascimento T. Adipokines: Deciphering the cardiovascular signature of adipose tissue. Biochem Pharmacol 2022; 206:115324. [PMID: 36309078 PMCID: PMC10509780 DOI: 10.1016/j.bcp.2022.115324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
Abstract
Obesity and hypertension are intimately linked due to the various ways that the important cell types such as vascular smooth muscle cells (VSMC), endothelial cells (EC), immune cells, and adipocytes, communicate with one another to contribute to these two pathologies. Adipose tissue is a very dynamic organ comprised primarily of adipocytes, which are well known for their role in energy storage. More recently adipose tissue has been recognized as the largest endocrine organ because of its ability to produce a vast number of signaling molecules called adipokines. These signaling molecules stimulate specific types of cells or tissues with many adipokines acting as indicators of adipocyte healthy function, such as adiponectin, omentin, and FGF21, which show anti-inflammatory or cardioprotective effects, acting as regulators of healthy physiological function. Others, like visfatin, chemerin, resistin, and leptin are often altered during pathophysiological circumstances like obesity and lipodystrophy, demonstrating negative cardiovascular outcomes when produced in excess. This review aims to explore the role of adipocytes and their derived products as well as the impacts of these adipokines on blood pressure regulation and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Joseph C. Galley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Wanessa M. C. Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliano V. Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Ramms B, Pollow DP, Zhu H, Nora C, Harrington AR, Omar I, Gordts PL, Wortham M, Sander M. Systemic LSD1 Inhibition Prevents Aberrant Remodeling of Metabolism in Obesity. Diabetes 2022; 71:2513-2529. [PMID: 36162056 PMCID: PMC9750949 DOI: 10.2337/db21-1131] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
The transition from lean to obese states involves systemic metabolic remodeling that impacts insulin sensitivity, lipid partitioning, inflammation, and glycemic control. Here, we have taken a pharmacological approach to test the role of a nutrient-regulated chromatin modifier, lysine-specific demethylase (LSD1), in obesity-associated metabolic reprogramming. We show that systemic administration of an LSD1 inhibitor (GSK-LSD1) reduces food intake and body weight, ameliorates nonalcoholic fatty liver disease (NAFLD), and improves insulin sensitivity and glycemic control in mouse models of obesity. GSK-LSD1 has little effect on systemic metabolism of lean mice, suggesting that LSD1 has a context-dependent role in promoting maladaptive changes in obesity. In analysis of insulin target tissues we identified white adipose tissue as the major site of insulin sensitization by GSK-LSD1, where it reduces adipocyte inflammation and lipolysis. We demonstrate that GSK-LSD1 reverses NAFLD in a non-hepatocyte-autonomous manner, suggesting an indirect mechanism potentially via inhibition of adipocyte lipolysis and subsequent effects on lipid partitioning. Pair-feeding experiments further revealed that effects of GSK-LSD1 on hyperglycemia and NAFLD are not a consequence of reduced food intake and weight loss. These findings suggest that targeting LSD1 could be a strategy for treatment of obesity and its associated complications including type 2 diabetes and NAFLD.
Collapse
Affiliation(s)
- Bastian Ramms
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Dennis P. Pollow
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Han Zhu
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Chelsea Nora
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Austin R. Harrington
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Ibrahim Omar
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Philip L.S.M. Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Matthew Wortham
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
42
|
Liao ZZ, Ran L, Qi XY, Wang YD, Wang YY, Yang J, Liu JH, Xiao XH. Adipose endothelial cells mastering adipose tissues metabolic fate. Adipocyte 2022; 11:108-119. [PMID: 35067158 PMCID: PMC8786343 DOI: 10.1080/21623945.2022.2028372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dynamic communication within adipose tissue depends on highly vascularized structural characteristics to maintain systemic metabolic homoeostasis. Recently, it has been noted that adipose endothelial cells (AdECs) act as essential bridges for biological information transmission between adipose-resident cells. Hence, paracrine regulators that mediate crosstalk between AdECs and adipose stromal cells were summarized. We also highlight the importance of AdECs to maintain adipocytes metabolic homoeostasis by regulating insulin sensitivity, lipid turnover and plasticity. The differential regulation of AdECs in adipose plasticity often depends on vascular density and metabolic states. Although choosing pro-angiogenic or anti-angiogenic therapies for obesity is still a matter of debate in clinical settings, the growing numbers of drugs have been confirmed to play an anti-obesity effect by affecting vascularization. Pharmacologic angiogenesis intervention has great potential as therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Zhe-Zhen Liao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Ran
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao-Yan Qi
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
43
|
Zhang S, Sun Z, Jiang X, Lu Z, Ding L, Li C, Tian X, Wang Q. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system. Front Immunol 2022; 13:1049936. [PMID: 36479119 PMCID: PMC9720262 DOI: 10.3389/fimmu.2022.1049936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis requires not only the accumulation of iron ions, but also changes in many ferroptosis-related regulators, including a decrease in GPX4 and inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1. Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied by iron buildup, decreased GSH, and increased ROS. On the neurological side, the pro-inflammatory factor released by AT may have first caused ferroptosis in the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders of the autonomic nervous system. On the immune side, obesity may cause M2 macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may also trigger the ferroptosis of B1 cells. In addition, some studies have also found the role of GPX4 in neutrophil autophagy, which is also worth pondering whether there is a connection with ferroptosis. In conclusion, this review summarizes the associations between neuroimmune regulation associated with obesity and ferroptosis, and on the basis of this, highlights their potential molecular mechanisms, proposing that ferroptosis in one or more cells in a multicellular tissue changes the fate of that tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuewen Tian
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| | - Qinglu Wang
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| |
Collapse
|
44
|
He W, Cai W, Yang X, Camilleri G, Zheng X, Wang Q, Li Y, Mukherjee R, Huang W, Sutton R. Insulin or blood purification treatment for hypertriglyceridaemia-associated acute pancreatitis: A systematic review and meta-analysis. Pancreatology 2022; 22:846-857. [PMID: 35981949 DOI: 10.1016/j.pan.2022.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Hypertriglyceridaemia increases risks from acute pancreatitis (HTG-AP) over other aetiologies, but optimal management for HTG-AP remains undefined. We performed a systematic review and meta-analysis of studies of insulin-based treatment (IT) versus blood purification treatment (BPT) for HTG-AP. METHODS Searches were conducted to identify randomised trials and observational studies published between 1946 and 2022 that compared IT and BPT for HTG-AP reporting baseline and post-treatment serum triglyceride (TG) levels with clinical outcomes. The primary outcome was serum TG reduction (Δ-TG) from baseline while secondary outcomes included complications, length of stay, adverse events, and cost. RESULTS Fifteen (1 randomised, 2 prospective case-controlled, and 12 retrospective cohort) studies were analysed comprising 909 cases with HTG-AP. Pooled results demonstrated IT was significantly less efficient than BPT in Δ-TG at 24 h (WMD -666.06, 95% CI -1130.18 to -201.94, P = 0.005; 12 studies), at 48 h (WMD -672.60, 95% CI -1233.44 to -111.77; 8 studies), and overall Δ-TG by day 7 (WMD -385.81, 95% CI -711.07 to -60.54; 8 studies) (both P = 0.02). IT, however, was associated with significantly fewer adverse events (OR 0.09, 95% CI 0.03 to 0.27, P < 0.0001; 7 studies) and significantly reduced cost (WMD -2.50, 95% CI -3.61 to -1.39, P < 0.00001; 3 studies). Other secondary outcomes were not significantly different between the two regimens (all P ≥ 0.11). In subgroup analysis Δ-TG at 24 h and overall Δ-TG became insignificant, while other results were unaffected. CONCLUSION Our findings support the general use of IT for inpatient management of HTG-AP, restricting BPT to those predicted or found to respond poorly to IT.
Collapse
Affiliation(s)
- Wenhua He
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China; Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Wenhao Cai
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xinmin Yang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Georgette Camilleri
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Xi Zheng
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Yuying Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China; West China Biobanks and Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China.
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
45
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
46
|
Srivastava RK, Ruiz de Azua I, Conrad A, Purrio M, Lutz B. Cannabinoid CB1 Receptor Deletion from Catecholaminergic Neurons Protects from Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms232012635. [PMID: 36293486 PMCID: PMC9604114 DOI: 10.3390/ijms232012635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
High-calorie diets and chronic stress are major contributors to the development of obesity and metabolic disorders. These two risk factors regulate the activity of the sympathetic nervous system (SNS). The present study showed a key role of the cannabinoid type 1 receptor (CB1) in dopamine β-hydroxylase (dbh)-expressing cells in the regulation of SNS activity. In a diet-induced obesity model, CB1 deletion from these cells protected mice from diet-induced weight gain by increasing sympathetic drive, resulting in reduced adipogenesis in white adipose tissue and enhanced thermogenesis in brown adipose tissue. The deletion of CB1 from catecholaminergic neurons increased the plasma norepinephrine levels, norepinephrine turnover, and sympathetic activity in the visceral fat, which coincided with lowered neuropeptide Y (NPY) levels in the visceral fat of the mutant mice compared with the controls. Furthermore, the mutant mice showed decreased plasma corticosterone levels. Our study provided new insight into the mechanisms underlying the roles of the endocannabinoid system in regulating energy balance, where the CB1 deletion in dbh-positive cells protected from diet-induced weight gain via multiple mechanisms, such as increased SNS activity, reduced NPY activity, and decreased basal hypothalamic-pituitary-adrenal (HPA) axis activity.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484887, India
| | - Inigo Ruiz de Azua
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Martin Purrio
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Correspondence:
| |
Collapse
|
47
|
Wang G, Song A, Bae M, Wang QA. Adipose Tissue Plasticity in Aging. Compr Physiol 2022; 12:4119-4132. [PMID: 36214190 DOI: 10.1002/cphy.c220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Marie Bae
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
48
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
49
|
Puente-Ruiz SC, Jais A. Reciprocal signaling between adipose tissue depots and the central nervous system. Front Cell Dev Biol 2022; 10:979251. [PMID: 36200038 PMCID: PMC9529070 DOI: 10.3389/fcell.2022.979251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, various dietary and social factors led to the development of increased brain sizes alongside large adipose tissue stores. Complex reciprocal signaling mechanisms allow for a fine-tuned interaction between the two organs to regulate energy homeostasis of the organism. As an endocrine organ, adipose tissue secretes various hormones, cytokines, and metabolites that signal energy availability to the central nervous system (CNS). Vice versa, the CNS is a critical regulator of adipose tissue function through neural networks that integrate information from the periphery and regulate sympathetic nerve outflow. This review discusses the various reciprocal signaling mechanisms in the CNS and adipose tissue to maintain organismal energy homeostasis. We are focusing on the integration of afferent signals from the periphery in neuronal populations of the mediobasal hypothalamus as well as the efferent signals from the CNS to adipose tissue and its implications for adipose tissue function. Furthermore, we are discussing central mechanisms that fine-tune the immune system in adipose tissue depots and contribute to organ homeostasis. Elucidating this complex signaling network that integrates peripheral signals to generate physiological outputs to maintain the optimal energy balance of the organism is crucial for understanding the pathophysiology of obesity and metabolic diseases such as type 2 diabetes.
Collapse
|
50
|
Serum Cystatin-C is linked to increased prevalence of diabetes and higher risk of mortality in diverse middle-aged and older adults. PLoS One 2022; 17:e0270289. [PMID: 36094936 PMCID: PMC9467319 DOI: 10.1371/journal.pone.0270289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/06/2022] [Indexed: 01/13/2023] Open
Abstract
Objective Type 2 Diabetes Mellitus (henceforth diabetes) affects roughly 35 million individuals in the US and is a major risk factor for cardiovascular and kidney disease. Serum Cystatin-C is used to monitor renal function and detect kidney damage. Recent research has focused on linking Cystatin-C to cardiovascular risk and disease, but most findings focus on small sample sizes and generalize poorly to diverse populations, thus limiting epidemiological inferences. The aim of this manuscript is to study the association between Cystatin-C, diabetes, and mortality and test for possible sex or racial/ethnic background modifications in these relationships. Methods We analyzed 8-years of biennial panel data from Health and Retirement Study participants 50-years and older who self-identified as White (unweighted N (uN) = 5,595), Black (uN = 867), or Latino (uN = 565) for a total of uN = 7,027 individuals. We modeled diabetes and death over 8-years as function of baseline Cystatin-C (log transformed) adjusting for covariates and tested modifications in associations by race/ethnic background and sex. Results Mean log Cystatin-C at visit 1 was 0.03±0.32 standard deviation. A 10% increase in Cystatin-C levels was associated with 13% increased relative risk of diabetes at baseline (11% and 9% by years 4 and 8). A 10% increase in Cystatin-C was highly associated with increased relative risk of death (28% and 31% by years 4 and 8). These associations were present even after adjusting for possible confounders and were not modified by sex or racial/ethnic background. Conclusion Despite differential risks for diabetes and mortality by racial/ethnic groups, Cystatin-C was equally predictive of these outcomes across groups. Cystatin-C dysregulations could be used as a risk indicator for diabetes and as a warning sign for accelerated risk of mortality.
Collapse
|