1
|
Zhang X, Hao C, Li T, Gao W, Ren Y, Wang J, Zhang Y. Leptin attenuates diabetic cardiomyopathy-induced cardiac remodeling via regulating cGAS/STING signaling and Opa1-mediated mitochondrial fusion. Cell Signal 2025; 132:111805. [PMID: 40246132 DOI: 10.1016/j.cellsig.2025.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE This investigation seeks to elucidate the contribution of leptin to the pathogenesis of diabetic cardiomyopathy (DCM). METHODS Mice were rendered diabetic through the administration of streptozotocin (STZ). Leptin was delivered via subcutaneously implanted osmotic pumps. Assessments of cardiac performance, hypertrophy, and fibrosis were conducted using echocardiography, Hematoxylin and Eosin (H&E), Wheat Germ Agglutinin (WGA), and Masson trichrome staining. Myocardial apoptosis and oxidative stress were quantified through TUNEL assay and biochemical markers of oxidative stress, including Malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), and 3-Nitrotyrosine (3NT). Mitochondrial structure was examined using Transmission Electron Microscopy (TEM). Primary neonatal cardiomyocytes were subjected to high glucose (HG) conditions. The fluorescent indicators MitoTracker Green and MitoSOX Red were employed to evaluate mitochondrial morphology and function within the cardiomyocytes. RESULTS Mice with diabetes displayed marked cardiac hypertrophy and fibrosis, as indicated by H&E, WGA, and Masson staining. The administration of leptin significantly mitigated the cardiac pathological manifestations in diabetic mice. Leptin increased the expression of Opa1 and enhanced mitochondrial fusion and function in cardiomyocytes exposed to HG. The cGAS/STING signaling pathway may serve as a pivotal intermediary for leptin to facilitate Opa1-driven mitochondrial fusion. CONCLUSIONS Leptin appears to safeguard against hyperglycemia-induced mitochondrial oxidative damage and DCM by modulating the cGAS/STING signaling cascade and Opa1-mediated mitochondrial fusion. These results propose that leptin could be a promising agent for promoting mitochondrial fusion and preventing diabetes-associated cardiac pathologies.
Collapse
Affiliation(s)
| | - Chunyuan Hao
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Tonghua Li
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Weihua Gao
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Yang Ren
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Junzhe Wang
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Yuyang Zhang
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Yin J, Song Z, Zhang L, Cong J. Methylophiopogonanone A alleviates diabetic cardiomyopathy via inhibiting JNK1 signaling. Cell Signal 2025; 131:111762. [PMID: 40139620 DOI: 10.1016/j.cellsig.2025.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) is a common complication of type 2 diabetes mellitus (T2DM). The effects of methylophiopogonanone A (MO-A), a natural homoisoflavonoid with anti-inflammatory effects, on DCM and its underlying mechanisms were investigated in this study. METHODS The T2DM mouse model was induced by intraperitoneal injection of 30 mg/kg streptozotocin for 7 consecutive days and fed with a high-fat diet for 12 weeks. T2DM mice received MO-A (2.5, 5, or 10 mg/kg) treatment for two weeks. Cardiac function, hypertrophy, fibrosis, and inflammation were evaluated. The binding energy between MO-A and JNK1 was analyzed using molecular docking. The underlying mechanism was further investigated in high glucose (HG)-induced H9C2 cells. The cytotoxic effects, cardiomyocyte hypertrophy, fibrosis, inflammation, and relevant signaling proteins were assessed. RESULTS MO-A treatment alleviated cardiac function and histopathological changes in DCM mice. Moreover, MO-A treatment significantly decreased COLI, TGF-β1, MYH7, and ANP expression levels in DCM mice. Furthermore, TNF-α, IL-6, and IL-1β expression levels were notably downregulated after treatment with MO-A in DCM mice. Similar results were also observed in vitro. Mechanistically, MO-A targets JNK1 and downregulates its phosphorylation levels in DCM mice. The protective properties of MO-A were reversed by JNK1 overexpression in HG-induced H9C2 cells. CONCLUSION Our results revealed that MO-A could alleviate cardiac function, hypertrophy, fibrosis, and inflammation in DCM via inhibiting JNK1 signaling.
Collapse
Affiliation(s)
- Jing Yin
- Department of Traditional Chinese Medicine, Yantaishan Hospital, Yantai 264003, Shandong, China
| | - Zhicheng Song
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong, China
| | - Lijun Zhang
- Department of Endocrinology, Longkou Traditional Chinese Medicine Hospital, Yantai 265701, Shandong, China
| | - Jialin Cong
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong, China.
| |
Collapse
|
3
|
Li H, Wang G, Tang Y, Wang L, Jiang Z, Liu J. Rhein alleviates diabetic cardiomyopathy by inhibiting mitochondrial dynamics disorder, apoptosis and hypertrophy in cardiomyocytes. Cell Signal 2025; 131:111734. [PMID: 40081546 DOI: 10.1016/j.cellsig.2025.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a significant cardiovascular complication in diabetic patients, and treatment regimens are limited. Rhein, a compound extracted from the herb rhubarb, was investigated in this study for its efficacy on DCM and the potential mechanism. METHODS Streptozotocin-induced DCM mice, high-glucose (HG)-treated neonatal rat cardiomyocytes (NRCMs), and H9c2 cells with ClpP knockdown were used for the study. We performed phenotypic and molecular mechanistic studies using immunoblotting, quantitative polymerase chain reaction, transmission electron microscopy, cardiac echocardiography, and histopathological analysis. RESULTS Rhein improved the cardiac function and myocardial fibrosis, and decreased the cross-sectional area of cardiomyocytes in the DCM mice. It also improved mitochondrial dynamic disorder as evidenced by a decreased ratio of mitochondrial fission-related proteins p-Drp1S616/ Drp1 and increased expression of mitochondrial fusion proteins (Opa1, Mfn1 and Mfn2). Rhein mitigated apoptosis as indicated by decreased apoptosis-related proteins (caspase 9, cleaved-caspase 3 and Bax) and increased anti-apoptosis protein Bcl2 in the heart tissue of DCM mice. Upregulations of cardiac hypertrophy associated genes (ANP, BNP and β-MHC) were significantly inhibited by Rhein treatment. In addition, the level of ClpP, a mitochondrial protease, was increased in DCM, but was normalized by Rhein treatment. However, ClpP knockdown exacerbated cardiomyocyte injury in the presence or absence of HG in H9c2 cells, indicating that a normal level of ClpP is essential for cardiomyocytes to survive. CONCLUSIONS Our results suggest that Rhein protects DCM by ameliorating mitochondrial dynamics disorder, inhibiting cardiomyocyte apoptosis, and myocardial hypertrophy. These protective effects of Rhein may be mediated by preventing ClpP upregulation.
Collapse
Affiliation(s)
- Hejuan Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Genwang Wang
- Department of Health Service, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Tang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Zhu M, Liu W, Su S, Gong M, Liao G, Fu F, Chen G, Rao Z, Cheng J, Liu J, Lu Y, Chen Y. Reprogramming of lipids and amino acids metabolism is an early event in myocardium of type 1 diabetic rhesus monkeys. J Pharm Biomed Anal 2025; 258:116699. [PMID: 39914331 DOI: 10.1016/j.jpba.2025.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/10/2025]
Abstract
Diabetic cardiomyopathy (DC) refers to the abnormal myocardial structure and performance induced by diabetes. Although numerous studies have been carried out, the pathophysiological mechanisms of cardiovascular disorders during diabetes have not been fully clarified. Here, we compared the cardiomyopathy of healthy rhesus monkeys and rhesus monkeys with a history of streptozocin induced type 1 diabetes (T1D) over 7 years. Through comparing the cardiac function using echocardiography, and detecting the serum biochemical indexes, and changes of left ventricle (LV), we found that decreased systolic function, higher blood glycosylated hemoglobin A1c (HbA1C) level, hyperglycemia, and hyperlipidemia were early events in diabetic rhesus monkeys. In addition, cardiac histological analysis showed mildly fibrosis and early myocardial hypertrophy, as evidenced by increased Sirius red stained area and cross-sectional area of left ventricle. Transcriptome results revealed that the nutrients metabolism and extracellular matrix related pathways were markedly changed in the left ventricle of diabetic monkeys. Targeted metabolomics and targeted lipid metabolomics further revealed that disturbed amino acid metabolism and lipid accumulation in the LV of diabetic monkeys manifested by accumulated branched chain amino acids (BCAAs) and triglycerides (TAGs), and reduced contents of sphingolipids, glycerophospholipids, cholesteryl esters and carnitines. In conclusion, we reported here for the first time that diabetes lasting for more than 7 years leads to some early pathological changes of myocardium in rhesus monkeys. The cardiac function is mildly compromised and the reprogramming of lipids and amino acids metabolism might play important roles in the progression of DC.
Collapse
Affiliation(s)
- Min Zhu
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wen Liu
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shan Su
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Meng Gong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, PR China; Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Guangneng Liao
- Animal experimental center of West China hospital, Sichuan University, Chengdu, PR China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Gen Chen
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co. Ltd., Sichuan 644600, PR China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jingqiu Cheng
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jingping Liu
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanrong Lu
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Younan Chen
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| |
Collapse
|
5
|
Mahmood NMS, Mahmud AMR, Maulood IM. Vascular actions of Ang 1-7 and Ang 1-8 through EDRFs and EDHFs in non-diabetes and diabetes mellitus. Nitric Oxide 2025; 156:9-26. [PMID: 40032212 DOI: 10.1016/j.niox.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in regulating vascular homeostasis, while angiotensin 1-8 (Ang 1-8) traditionally dominates as a vasoconstrictor factor. However, the discovery of angiotensin 1-7 (Ang 1-7) and Ang 1-8 has revealed counter-regulatory mechanisms mediated through endothelial-derived relaxing factors (EDRFs) and endothelial-derived hyperpolarizing factors (EDHFs). This review delves into the vascular actions of Ang 1-7 and Ang 1-8 in both non-diabetes mellitus (non-DM) and diabetes mellitus (DM) conditions, highlighting their effects on vascular endothelial cell (VECs) function as well. In a non-DM vasculature context, Ang 1-8 demonstrate dual effect including vasoconstriction and vasodilation, respectively. Additionally, Ang 1-7 induces vasodilation upon nitric oxide (NO) production as a prominent EDRFs in distinct mechanisms. Further research elucidating the precise mechanisms underlying the vascular actions of Ang 1-7 and Ang 1-8 in DM will facilitate the development of tailored therapeutic interventions aimed at preserving vascular health and preventing cardiovascular complications.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
6
|
Zhang J, Tao J, Zhou Z, Pei W, Xiao Y, Guo Y, Gao J, Jiang C, Dai L, Zhang G, Tan C. Current research on mitochondria‑associated membranes in cardiovascular diseases (Review). Mol Med Rep 2025; 31:141. [PMID: 40183396 PMCID: PMC11976516 DOI: 10.3892/mmr.2025.13506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
The present study aimed to explore the role of mitochondria‑associated membranes (MAMs) as a key interface between mitochondria and the endoplasmic reticulum (ER) and to evaluate their importance in maintaining the physiological functions of these two organelles. MAMs not only act as a structural bridge between mitochondria and the ER but also widely participate in the regulation of mitochondrial biosynthesis and function, Ca2+ signal transduction, lipid metabolism, oxidative stress response and autophagy. In addition, the specific protein composition of MAMs is increasingly being recognized as having a profound impact on their function, and these proteins play a central role in regulating intercellular communication. Recently, the scientific community has accumulated a large amount of evidence supporting MAMs as potential targets for cardiovascular disease treatment. The present review focuses on the fine structure and multifunctional properties of MAMs and their mechanisms in the occurrence and development of cardiovascular diseases. The goal is to explore the mechanism of MAMs, therapeutic intervention points directly related to cardiovascular diseases, and feasibility of incorporating MAMs into the diagnostic strategy and treatment plan of cardiovascular diseases to provide novel insights and theoretical support for clinical practice in this field. MAMs have great potential as therapeutic targets for various cardiovascular diseases. This finding not only deepens the understanding of the interaction between organelles but also opens up a promising research path for the development of new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiaheng Zhang
- First Clinical College of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Jing Tao
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Zijuan Zhou
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wanjuan Pei
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yili Xiao
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yanghongxu Guo
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jian Gao
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Chenyv Jiang
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Ling Dai
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Guomin Zhang
- First Clinical College of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Chao Tan
- First Clinical College of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Inherit Workroom of Medical Master Professor Xiong Ji-bo's Experiences, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
7
|
Alcover S, López S, Ramos-Regalado L, Muñoz-García N, Gallinat A, Suades R, Badimon L, Vilahur G. Cardioprotection During Myocardial Infarction in Diabetic Cardiomyopathy. Diabetes 2025; 74:1021-1032. [PMID: 40080393 PMCID: PMC12097457 DOI: 10.2337/db24-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Patients with diabetes are at an increased risk of diabetic cardiomyopathy (DCM) and acute myocardial infarction (AMI). Protecting the heart against AMI is more challenging in DCM than in nondiabetic hearts. We investigated whether intravenous (i.v.) atorvastatin administration during AMI exerts cardioprotection in DCM as seen in nondiabetic hearts. Sprague-Dawley rats were divided into streptozotocin-induced DCM and normoglycemic control groups. Our model of DCM rats exhibited interstitial fibrosis and cardiac dysfunction at 5 weeks. At this time point, all animals underwent AMI induction (coronary ligation for 45 min), receiving i.v. atorvastatin or vehicle during ischemia. Animals were reperfused and sacrificed 24 h later for myocardial infarct size analysis and cardiac tissue sampling. Echocardiography was performed. DCM vehicle rats had larger infarcts than normoglycemic vehicle-treated animals at a comparable area-at-risk. Intravenous atorvastatin reduced infarct size and preserved systolic function in both groups. Compared with vehicle animals, i.v. atorvastatin inhibited RhoA membrane translocation, induced AMPK phosphorylation, prevented apoptosis execution, and improved cardiac remodelling in the infarcted heart of both groups, whereas innate immune cell infiltration was further reduced in i.v. atorvastatin-treated DCM animals. The proven cardioprotective effectiveness of this i.v. statin formulation in the presence of DCM warrants its further development into a clinically therapeutic option. ARTICLE HIGHLIGHTS Diabetic cardiomyopathy (DCM) significantly increases the risk of acute myocardial infarction and attenuates or abolishes the cardioprotective effects of several therapeutic approaches. Whether intravenous atorvastatin administration during ongoing acute myocardial infarction retains its cardioprotective potential in the presence of DCM was investigated. Intravenous atorvastatin during ischemia reduces infarct size and preserves cardiac function in DCM rats. The efficacy of this intravenous statin formulation in DCM supports its development as a viable therapeutic option for clinical use.
Collapse
Affiliation(s)
| | - Sergi López
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
| | | | | | - Alex Gallinat
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
| | - Rosa Suades
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
| | - Lina Badimon
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Yang T, Luo L, Luo X, Liu X. Metabolic crosstalk and therapeutic interplay between diabetes and hyperuricemia. Diabetes Res Clin Pract 2025; 224:112204. [PMID: 40294652 DOI: 10.1016/j.diabres.2025.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Hyperuricemia and diabetes mellitus (DM) are prevalent metabolic disorders with high comorbidity, imposing a substantial global public health burden. Their coexistence is not merely additive but synergistic, exacerbating metabolic dysregulation through mechanisms such as insulin resistance and β-cell apoptosis, ultimately establishing a vicious cycle. Both disorders induce acute and chronic damage to vital organs, particularly the cardiovascular, renal systems. Hyperuricemia aggravates diabetic complications, notably diabetic cardiomyopathy, nephropathy and retinopathy via oxidative stress, inflammation, and metabolic dysregulation.Current urate-lowering therapies (ULTs), such as xanthine oxidase inhibitors and urate transporter 1 (URAT1, also known as SLC22A12) antagonists, demonstrate potential benefits in ameliorating diabetic complications but face challenges including safety concerns and dose adjustments. Similarly, several glucose-lowering drugs also exhibit the benefits of improving hyperuricemia. This review summarizes the metabolic crosstalk and therapeutic interplay between hyperuricemia and DM, examines the pathogenic role of uric acid in diabetic complications, and discusses the benefits and challenges of existing ULTs and glucose-lowering drugs in disrupting this cycle of metabolic dysregulation and concurrent organ damage. We hope our findings deepen the comprehension of the intricate metabolic crosstalk between glucose and urate homeostasis, providing novel therapeutic insights for patients with comorbid DM and hyperuricemia.
Collapse
Affiliation(s)
- Tianshu Yang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 Hubei, China
| | - Lingyun Luo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030 Hubei, China
| | - Xuelian Luo
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Xiaolei Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030 Hubei, China.
| |
Collapse
|
9
|
Cai L, Zhao Y, Li Z, Xiao L, Wu Y, Wang S, Liu Q, Ye Y, Guo Y, Zhang D. A Human Engineered Heart Tissue-Derived Lipotoxic Diabetic Cardiomyopathy Model Revealed Early Benefits of Empagliflozin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e03173. [PMID: 40433797 DOI: 10.1002/advs.202503173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Diabetic cardiomyopathy (DbCM) is increasingly prevalent, but intervention targets remain unclear due to the lack of appropriate models and the complexity of risk factors. Here, this work establishes an in vitro assessment system for DbCM function using cardiomyocytes derived from human pluripotent stem cells and engineered heart tissue. This work finds high-fat status in complex diabetes risk factors majorly contributes most to cardiomyocyte death and contractile dysfunction. Notably, PA induced early electrophysiological abnormalities, and lately is associated with cardiac fibrosis, mitochondrial fission, and systolic and diastolic dysfunction at tissue level. Using this in vitro assessment system, this work finds that empagliflozin (EMPA), a first-line glucose-lowering drug, effectively alleviated early PA-induced cardiomyocyte injury. Treatment with EMPA enhanced abnormal diastolic and electrophysiological functions in the PA-hEHT model and significantly reduced endoplasmic reticulum stress, and apoptosis. Furthermore, these promising results are confirmed in a type 2 diabetes mellitus mouse model, reinforcing the potential of EMPA as a therapeutic option to alleviate cardiomyocyte injury under diabetic conditions. These findings suggest that this work has developed an engineered model of diabetic cardiomyopathy that mimics the various stages of lipotoxic myocardial injury and support the use of EMPA as a potential therapeutic option for diabetic or lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuxin Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan, 430023, China
| | - Zilong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liping Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yifan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiya Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qian Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yida Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuxuan Guo
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
10
|
Cai Z, Sun F, Wang Q, Li S, Wang L, Li H, Su Y, Yang H, Dong B. Icariin alleviates cardiomyocyte pyroptosis through AMPK-NLRP3 pathway to ameliorates diabetic cardiomyopathy. Int Immunopharmacol 2025; 156:114690. [PMID: 40262250 DOI: 10.1016/j.intimp.2025.114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Among the multitude of pressing global health concerns, diabetes mellitus stands out as a significant issue. An alarming consequence of this condition is diabetic cardiomyopathy (DCM), which represents a critical contributor to mortality in individuals with diabetes. Recently, research has unveiled the pivotal role that pyroptosis plays in the progression of myocardial fibrosis associated with DCM. An epimedial flavonoid monomer, Icariin (ICA), primarily sourced from Epimedium genus plants, has shown a safeguarding influence on cardiac health through various means, encompassing anti-inflammatory actions and its capacity against oxidative stress. Our research endeavor focuses on elucidating the beneficial impacts alongside the underlying physiological processes triggered by ICA within the context of DCM. An animal model representative of DCM was developed through intraperitoneal administration of streptozotocin (STZ). In parallel, in vitro experiments utilized H9C2 cardiomyocytes to mimic hyperglycemic environments relevant to disease states. In vivo experiments found that ICA improved cardiac function, alleviated myocardial fibrosis, and reduced NLRP3-mediated pyroptosis in heart tissue of DCM mice. Under in vitro settings characterized by elevated glucose concentrations, there was a notable elevation in both NLRP3 pyroptosis-associated proteins and oxidative stress markers within the heart muscle cells. ICA treatment attenuated pyroptosis and oxidative stress caused by high glucose in cardiomyocytes. Further studies revealed that when treated with an AMPK inhibitor, the shielding benefits conferred by ICA on cardiomyocytes were negated, suggesting that the regulatory effects of ICA on cardiomyocyte pyroptosis may be achieved through the AMPK-NLRP3 pathway. In conclusion, ICA exerts protective effects in DCM by inhibiting cardiomyocyte pyroptosis, alleviating myocardial fibrosis, and improving cardiac function via the AMPK-NLRP3 pathway.
Collapse
Affiliation(s)
- Zhenhao Cai
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxiao Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengnan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huixin Li
- Binhai New Area Hospital of TCM, Tianjin, China
| | - Yudong Su
- Tongnan District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hongbo Yang
- Weifang Rehabilitation Hospital, Weifang, China
| | - Bo Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Mohyadini M, Fahimi A, Bathaie SZ, Yaghooti H. Ranolazine as a therapeutic agent for diabetic cardiomyopathy: reducing endoplasmic reticulum stress and inflammation in type 2 diabetic rat model. BMC Pharmacol Toxicol 2025; 26:111. [PMID: 40426266 DOI: 10.1186/s40360-025-00945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a significant cardiovascular complication of diabetes, characterized by structural and functional heart muscle dysfunction. Oxidative stress, endoplasmic reticulum (ER) stress, and inflammation are pivotal in the pathogenesis of DCM. Ranolazine, primarily used for angina, has demonstrated potential cardioprotective effects. This study investigates the effects of ranolazine on oxidative stress, ER stress, and inflammation in the heart tissue of type 2 diabetic rats. METHODS Diabetes was induced in male Wistar rats using Nicotinamide (110 mg/kg) and Streptozotocin (60 mg/kg). The rats were then divided into control and diabetic groups, with further subdivision into ranolazine-treated and untreated subgroups. Ranolazine was administered via gavage for eight weeks. Various parameters, including body weight, heart weight, serum glucose, troponin-I levels, oxidative stress markers, ER stress markers, and inflammatory markers, were assessed. RESULTS Diabetic rats showed increased heart weight and decreased body weight over eight weeks. Ranolazine treatment improved body weight but didn't affect serum glucose levels. The treatment significantly lowered serum troponin-I and oxidative stress markers, increased superoxide dismutase (SOD) and glutathione (GSH) levels, and decreased malondialdehyde (MDA) concentrations. Additionally, ranolazine reduced the expression of stress-related genes (GRP78, XBP1, and NLRP3) and lowered serum IL1β levels. CONCLUSIONS The results indicate that ranolazine protects against DCM by attenuating oxidative stress, ER stress, and inflammation. Its potential as a therapeutic agent for DCM warrants further investigation.
Collapse
Affiliation(s)
- Matin Mohyadini
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Ale-ahmad Ave., Tehran, Iran
| | - Aghele Fahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Ale-ahmad Ave., Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Ale-ahmad Ave., Tehran, Iran
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
| | - Hamid Yaghooti
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Ale-ahmad Ave., Tehran, Iran.
| |
Collapse
|
12
|
Lee YZ, Kow ASF, Lee QL, Lim LWC, Yusof R, Tham CL, Ho YC, Lee MT. Antidiabetic potentials of gypenosides: A review on the preclinical effects in glucose and insulin modulation as well as diabetes-related complications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04265-x. [PMID: 40411617 DOI: 10.1007/s00210-025-04265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/03/2025] [Indexed: 05/26/2025]
Abstract
PURPOSE Diabetes mellitus is a significant public health issue. Despite the emergence of promising anti-hyperglycemic drugs, treatment outcomes for diabetic patients continue to be inadequate. Gypenosides are the major bioactive compounds isolated from Gynostemma pentaphyllum (Thunb.) Makino. Gynostemma pentaphyllum has longstanding history of usage in traditional oriental medicine, particularly for the treatment of diabetes mellitus. Gypenosides were found to exhibit antidiabetic effects. This review outlined the advancements in the preclinical studies of gypenosides' pharmacological properties on diabetes mellitus and their potential mechanism of action, while also noting the lack of clinical evidence for gypenosides' efficacy. METHODS Literatures search was done using scientific databases PubMed, Web of Science, Scopus and Google Scholar up to November 2024 utilizing keywords such as "Gynostemma pentaphyllum", "gypenoside*", and "diabet*". RESULTS Research has shown that gypenosides possess therapeutic properties in mitigating diabetes mellitus by regulating blood glucose levels and insulin production. Gypenosides can modulate various key pathways associated with diabetes pathogenesis, including PI3K/Akt, PPARγ, NF-κB, AMPK and PDX1, hence contributing to their antidiabetic properties. Nevertheless, there is a paucity of research on gypenosides in clinical settings, with existing studies being mainly conducted on animal models and in vitro. Future studies with the focus on the isolation and purification of specific gypenosides, as well as the exploration on the probable pharmacological effect and molecular mechanisms behind the biological actions are necessary. CONCLUSION The findings presented may establish a foundation for subsequent clinical trials for the development of specific gypenosides as antidiabetic therapies for the betterment of human health.
Collapse
Affiliation(s)
- Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | | | - Qi Long Lee
- School of Health Sciences, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Luis Wei Cheng Lim
- School of Health Sciences, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 , Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia.
- UCSI Wellbeing Research Centre, UCSI University, No 1, Jalan Menara Gading, Cheras, 56000, Kuala Lumpur, Malaysia.
- Office of Postgraduate Studies, UCSI University, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Xiao L, Gu Y, Guo S, Liu Y, Cai X, Ji X, Zheng Z, Li Y, Du Y, Wang X, Gao L. STRA13 exacerbates T2DM-induced diabetic cardiomyopathy by regulating the RXRα/UCP-1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167903. [PMID: 40412731 DOI: 10.1016/j.bbadis.2025.167903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
STRA13, a basic helix-loop-helix protein superfamily member, is a CLOCK gene. Previous studies have reported the role of STRA13 in regulating blood pressure. However, the role of STRA13 in diabetic cardiomyopathy (DCM) has not been fully elucidated. In this study, STRA13 full knockout mice were subjected to a high-fat diet (HFD) to induce DCM. We found that STRA13 was upregulated in both heart tissue and cardiomyocytes undergoing metabolic disorders. STRA13 knockout ameliorated HFD-induced cardiac dysfunction, fibrosis, mitochondrial dysfunction and cell apoptosis. STRA13 deficiency also protected against HFD-induced glucose and lipid metabolism disorders. STRA13 overexpression in mice worsened HFD-induced cardiac dysfunction, fibrosis, and injury. STRA13 overexpression in cardiomyocytes worsened high glucose-induced cell injury, mitochondrial dysfunction and oxidative stress. STRA13 silencing in cardiomyocytes protected against the high glucose (HG)-induced alterations described above. Moreover, STRA13 was found to downregulate retinoid X receptor alpha (RXRα), resulting in reduced expression of uncoupling protein 1 (UCP-1). Co-IP confirmed that STRA13 interacted with RXRα. A luciferase assay confirmed that RXRα regulated the transcription of UCP-1. Silencing of STRA13 did not protect cardiomyocytes from HG-induced injury caused by RXRα or UCP-1 knockdown. Cardiac overexpression of UCP-1 also blunted the deteriorating effects of STRA13. However, STRA13 inhibited RXRα nuclear expression, which hampered the protective effects of RXRα overexpression in vivo. Taken together, our findings demonstrate that STRA13 exacerbates diabetic cardiomyopathy by impairing mitochondrial function through the disruption of RXRα-UCP-1 signaling. Therefore, targeting the STRA13-RXRα-UCP-1 axis may represent a promising therapeutic strategy for mitigating mitochondrial dysfunction and cardiac injury in the context of DCM.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yang Gu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xintong Cai
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoyang Ji
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhe Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Youyou Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Xiaofang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
14
|
Peng Z, Gong Z, Wang Z, Deng B, Zhang X, Lin J. Salvia miltiorrhiza-derived exosome-like nanoparticles improve diabetic cardiomyopathy by inhibiting NLRP3 inflammasome-mediated macrophage pyroptosis via targeting the NEDD4/SGK1 axis. Nanomedicine (Lond) 2025:1-12. [PMID: 40391625 DOI: 10.1080/17435889.2025.2506351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
AIM Exosome-like nanoparticles mediate intercellular communication and regulate gene expression. In this study, we isolated and purified exosome-like nanoparticles from Salvia miltiorrhiza (SM-ELNs), a traditional Chinese medicinal herb, and investigated their therapeutic effects on diabetic cardiomyopathy (DCM). MATERIALS & METHODS To investigate the effect of SM-ELNs on DCM, we established a mouse model via HFD/STZ treatment. Cardiac function was assessed by echocardiography. Cardiac hypertrophy was assessed by measuring the heart weight/body weight ratio and HE staining, while myocardial fibrosis was evaluated using Masson's trichrome staining. The role of SM-ELNs on NLRP3 inflammasome inhibition and macrophage pyroptosis were evaluated both in vivo and in vitro. The interaction between NEDD4 and SGK1 was analyzed by Co-IP and ubiquitination assays. RESULTS SM-ELNs treatment alleviated cardiac function and histopathological changes in DCM mice. Moreover, SM-ELNs suppressed NLRP3 inflammasome activation and subsequent macrophage pyroptosis in both in vivo and in vitro models. Mechanistically, NEDD4 facilitated the ubiquitination and degradation of SGK1 in macrophages. Both NEDD4 depletion and SGK1 addition could counteract the SM-ELNs-induced suppression of NLRP3 inflammasome-triggered macrophage pyroptosis in LPS/ATP-treated RAW264.7 cells. CONCLUSION Our study provides the first evidence that SM-ELNs inhibit NLRP3 inflammasome-mediated macrophage pyroptosis in DCM by modulating the NEDD4/SGK1 axis.
Collapse
Affiliation(s)
- Zhijian Peng
- Department of Cardiovascular, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zefeng Gong
- Internal Medicine Department, GuangZhou Nansha Hospital of TCM, Guangzhou, Guangdong, People's Republic of China
| | - Zhiyong Wang
- Internal Medicine Department, GuangZhou Nansha Hospital of TCM, Guangzhou, Guangdong, People's Republic of China
| | - Bin Deng
- Department of Cardiovascular, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xiaoduo Zhang
- Department of Cardiovascular, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jiexing Lin
- Internal Medicine Department, GuangZhou Nansha Hospital of TCM, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Li B, Zhao X, Ding Y, Zhang Y. Network toxicology and molecular docking to investigate the mechanism of bisphenol A toxicity in human diabetic cardiomyopathy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118301. [PMID: 40393322 DOI: 10.1016/j.ecoenv.2025.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is widely used in polymers, plasticizers, and food packaging, raising significant concerns for human health. Growing evidence links BPA exposure to cardiovascular diseases, including diabetic cardiomyopathy (DCM), a severe complication of diabetes characterized by myocardial dysfunction. This study employs an integrative approach combining network toxicology and molecular docking to elucidate the molecular mechanisms underlying BPA-induced DCM. Using computational tools such as ADMETlab2.0, ProTox3.0, GeneCards, OMIM, Swiss Target Prediction, and ChEMBL databases, we systematically predicted BPA's potential to induce DCM and constructed comprehensive disease and BPA target libraries. Venn diagram analysis identified 93 potential targets associated with BPA-induced DCM, and a robust BPA regulatory network was established using Cytoscape. Functional enrichment analyses revealed significant involvement of oxidative stress, insulin signaling, and metabolic pathways in BPA toxicity. Molecular docking simulations demonstrated stable binding interactions between BPA and core targets (INS, AKT1, PPARG, STAT3, PPARA, MMP9), with binding energies ranging from -5.3 to -7.5 kcal/mol. Our findings indicate that BPA may induce DCM through key genes and pathways, including cGMP-PKG signaling pathway, insulin signaling pathway, AMPK signaling pathway, and HIF-1 signaling pathway. This study provides a novel theoretical framework for understanding the molecular pathogenesis of BPA-induced DCM and highlights the potential of network toxicology in identifying toxic pathways for uncharacterized environmental compounds. These insights offer potential targets for preventive and therapeutic strategies against BPA-associated cardiovascular complications.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xu Zhao
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, No. 37 Chaoyang Middle Road, Shiyan, Hubei 442000, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Yi Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China.
| |
Collapse
|
16
|
Mayyas F, Omeish A. Comparison of the cardioprotective effects of liraglutide, dapagliflozin and their combination in a rat model of diabetes induced by streptozotocin. Life Sci 2025; 375:123721. [PMID: 40389022 DOI: 10.1016/j.lfs.2025.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists positively affect diabetic cardiac complications. AIM To evaluate and compare the impact of liraglutide, dapagliflozin, and their combination on cardiac biomarkers of inflammation, oxidative stress, and fibrosis in a rat model of streptozotocin (STZ)-induced diabetes. METHODS Adult male Wistar rats were assigned into five groups (15-17 rats/group): control rats, diabetic rats (DM, single 50 mg/kg STZ intraperitoneally (IP)), diabetic rats treated with dapagliflozin (Dapa, 1 mg/kg by oral gavage), diabetic rats treated with liraglutide (Lira), 0.4 mg/kg subcutaneously (SC), and diabetic rats treated with both medications (Dapa+Lira) for 8 weeks. Cardiac biomarkers of inflammation, oxidative stress, and fibrosis were evaluated. RESULTS Dapagliflozin and/or liraglutide treatment lowered glucose levels, mostly in the combination group. Diabetes increased heart/body weight ratio, which was normalized by all treatments. DM increased cardiac inflammatory and oxidant markers, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), endothelin-1 (ET-1), myeloperoxidase (1), plasminogen activator inhibitor-2 (PAI-2), total nitrite, and thiobarbituric acid reactive substances (TBARS). Dapagliflozin normalized inflammatory markers levels, but combination with Lira added no benefit, except for PAI-2. Dapagliflozin normalized total nitrite and TBARS levels. Combining treatments further decreased nitrite and TBARS levels and normalized cardiac SOD activity. Both dapagliflozin and the combination normalized cardiac fibrosis and platelet-derived growth factor-BB (PDGF-BB) levels. CONCLUSION Dapagliflozin reduced cardiac fibrosis, and attenuated oxidative stress, and inflammation more effectively than liraglutide. Combining treatments improved oxidative status. Our findings support using dapagliflozin to prevent cardiovascular diseases more than liraglutide.
Collapse
Affiliation(s)
- Fadia Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Anood Omeish
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
17
|
Wang P, Wang Z, Jin X, Zhang M, Shen M, Li D. Oral Sulforaphane Intervention Protects Against Diabetic Cardiomyopathy in db/db Mice: Focus on Cardiac Lipotoxicity and Substrate Metabolism. Antioxidants (Basel) 2025; 14:603. [PMID: 40427484 DOI: 10.3390/antiox14050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The protective effect of cruciferae-derived sulforaphane (SFN) on diabetic cardiomyopathy (DCM) has garnered increasing attention. However, no studies have specifically explored its mechanistic involvement in cardiac substrate metabolism and mitochondrial function. To address this gap, Type 2 diabetes mellitus (T2DM) db/db mice were orally gavaged with vehicle or 10 mg/kg body weight SFN every other day for 16 weeks, with vehicle-treated wild-type mice as controls. SFN intervention (SFN-I) alleviated hyperglycemia, dyslipidemia, HOMA-IR, serum MDA levels, and liver inflammation. Furthermore, SFN-I improved the lipotoxicity-related phenotype of T2DM cardiomyopathy, manifested as attenuation of diastolic dysfunction, cardiac injury, fibrosis, lipid accumulation and peroxidation, ROS generation, and decreased mitochondrial complex I and II activities and ATP content, despite having no effect on ceramide abnormalities. Protein expression data revealed that the model mice exhibited upregulated cardiac CD36, H-FABP, FATP4, CPT1B, PPARα, and PDK4 but downregulated GLUT4, with unchanged MPC1 and MPC2. Notably, SFN-I significantly attenuated the increase in CD36, H-FABP, CPT1B, and PPARα. These results suggest that chronic oral SFN-I protects against DCM by mitigating overall metabolic dysregulation and inhibiting cardiolipotoxicity. The latter might involve controlling cardiac fatty acid metabolism and improving mitochondrial function, rather than promoting glucose metabolism.
Collapse
Affiliation(s)
- Pan Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Ziling Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Xinyuan Jin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengdi Zhang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengfan Shen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
18
|
Chen Y, Dai MT, Gong GH. L-arginine overdose is a potential risk factor for myocardial injury in patients with type 2 diabetes. World J Diabetes 2025; 16:104409. [DOI: 10.4239/wjd.v16.i5.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/25/2025] Open
Abstract
We comment on an article published by Mansouri et al in the World Journal of Diabetes. L-arginine (L-Arg), a dietary supplement, is a precursor of nitric oxide, can improve cardiovascular disease, and it is important for treating heart disease and hypertension. Previous studies have demonstrated a beneficial effect of L-Arg on diabetes. In the study by Mansouri et al, L-Arg moderately increased blood glucose levels in normal rats. However, in diabetic rats, L-Arg significantly increased lipid levels, which is different from the findings of previous studies. This study demonstrated that a safe dose of 0.5 g/kg in diabetic rats can improve the lipid profile and decrease body weight. However, high doses (1 g/kg or higher) may aggravate damage to myocardial tissue in diabetic rats by increasing blood glucose, inflammation, and oxidative stress. Therefore, this study further demonstrated that high doses of L-Arg can exacerbate myocardial injury in diabetic patients.
Collapse
Affiliation(s)
- Yan Chen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Meng-Ting Dai
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Guo-Hua Gong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
19
|
Karuna N, Kerrigan L, Edgar K, Ledwidge M, McDonald K, Grieve DJ, Watson CJ. Sacubitril/Valsartan attenuates progression of diabetic cardiomyopathy through immunomodulation properties: an opportunity to prevent progressive disease. Cardiovasc Diabetol 2025; 24:206. [PMID: 40369551 PMCID: PMC12079907 DOI: 10.1186/s12933-025-02741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND AND AIMS Diabetic cardiomyopathy (DbCM) is recognised as a key mediator and determinant of heart failure (HF), particularly HF with preserved ejection fraction (HFpEF). Improved understanding of mechanisms underlying transition from early-stage DbCM to HFpEF will inform innovative evidence-based treatment approaches, which are urgently required to alleviate increasing disease burden. This study aimed to determine whether inhibition of neprilysin activity by Sacubitril/Valsartan in both experimental and clinical DbCM attenuates adverse remodelling through promotion of cardioprotective signalling. METHODS AND RESULTS Sacubitril/Valsartan effectively reduced plasma neprilysin activity in both diabetic patients with pre-clinical HFpEF from the PARABLE trial (baseline (Val n = 25; Sac/Val n = 35) and 3 months after treatment (Val n = 21/25; Sac/Val n = 33/35)) and DbCM (high-fat diet and streptozotocin) mice. Plasma neprilysin activity at baseline was correlated with worsening cardiac performance at 18 months indicated by left atrial stiffness index in patients (n = 44/60), whilst diastolic dysfunction and pathological remodelling in DbCM mice were improved by Sacubitril/Valsartan, but not Valsartan. snRNA-sequencing showed that progressive experimental DbCM is characterised by chronic low-grade inflammation, reflected by increased infiltration of pro-inflammatory monocytes (Ccr2+ Ly6chi) and reduction in MHC-II macrophages, which was prevented by Sacubitril/Valsartan. Informatics analysis implicated IRF7 as a central mediator of Sacubitril/Valsartan-induced immunomodulation in DbCM, whilst treatment of M2-like pro-repair macrophages with the neprilysin inhibitor, LBQ657 and Valsartan suppressed glucose-induced IRF7 expression and paracrine activation of cardiac fibroblast differentiation in vitro. CONCLUSION Immune cells are significantly involved in DbCM progression, impacting myocardial homeostasis and HF progression. Neprilysin inhibition by Sacubitril/Valsartan improved adverse cardiac remodelling in experimental DbCM through direct regulation of inflammation, highlighting immunomodulation as a novel mechanism underlying established its cardioprotective actions.
Collapse
Affiliation(s)
- Narainrit Karuna
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Lauren Kerrigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Kevin Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mark Ledwidge
- STOP-HF Unit, St. Vincent's University Healthcare Group and University College Dublin, Dublin, Ireland
| | - Ken McDonald
- STOP-HF Unit, St. Vincent's University Healthcare Group and University College Dublin, Dublin, Ireland
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
- STOP-HF Unit, St. Vincent's University Healthcare Group and University College Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Cao C, Hua W, Xian R, Liu Y. Fumonisin B 1 Exposure Causes Intestinal Tissue Damage by Triggering Oxidative Stress Pathways and Inducing Associated CYP Isoenzymes. Toxins (Basel) 2025; 17:239. [PMID: 40423322 DOI: 10.3390/toxins17050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/28/2025] Open
Abstract
Fumonisin B1 (FB1) is considered the most toxic fumonisin produced by fungi and is commonly found in contaminated feed and crops. Fumonisin and its metabolites extensively exist in feed and crops, where FB1-polluted crop ingestion can do harm to livestock and poultry, causing poultry intestinal toxicity in the latter. For investigating FB1-mediated intestinal toxicity, we assessed the function of FB1 exposure in quail intestines and explored its possible molecular mechanisms. In total, 120 quail pups were classified into two groups, where those in the control group were given a typical control diet, and those in the experimental group were given a typical diet that contained 30 mg/kg FB1. We evaluated the histopathological and ultrastructural changes in quails' intestines on days 14, 28, and 42, and studied the molecular mechanisms by assessing oxidative stress, inflammation, and nuclear xenobiotic receptors (NXRs). Our results suggest that FB1 exposure causes intestinal inflammation by triggering oxidative stress pathways and modulating NXRs to induce Cytochrome P450 proteins (CYP) isoforms, leading to intestinal histopathological damage. The results of this study shed novel light on the molecular mechanism underlying FB1-induced intestinal injury in juvenile quails.
Collapse
Affiliation(s)
- Changyu Cao
- College of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Weiping Hua
- College of Animal Science and Technology, Foshan University, Foshan 528225, China
- Foshan University Veterinary Teaching Hospital, Foshan 528231, China
| | - Runxi Xian
- College of Animal Science and Technology, Foshan University, Foshan 528225, China
- Foshan University Veterinary Teaching Hospital, Foshan 528231, China
| | - Yang Liu
- Quality Control Technical Center (Foshan) of National Famous and Special Agricultural Products (CAQS-GAP-KZZX043)/South China Food Safety Research Center, Foshan 528231, China
| |
Collapse
|
21
|
Pasut A, Lama E, Van Craenenbroeck AH, Kroon J, Carmeliet P. Endothelial cell metabolism in cardiovascular physiology and disease. Nat Rev Cardiol 2025:10.1038/s41569-025-01162-x. [PMID: 40346347 DOI: 10.1038/s41569-025-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Endothelial cells are multifunctional cells that form the inner layer of blood vessels and have a crucial role in vasoreactivity, angiogenesis, immunomodulation, nutrient uptake and coagulation. Endothelial cells have unique metabolism and are metabolically heterogeneous. The microenvironment and metabolism of endothelial cells contribute to endothelial cell heterogeneity and metabolic specialization. Endothelial cell dysfunction is an early event in the development of several cardiovascular diseases and has been shown, at least to some extent, to be driven by metabolic changes preceding the manifestation of clinical symptoms. Diabetes mellitus, hypertension, obesity and chronic kidney disease are all risk factors for cardiovascular disease. Changes in endothelial cell metabolism induced by these cardiometabolic stressors accelerate the accumulation of dysfunctional endothelial cells in tissues and the development of cardiovascular disease. In this Review, we discuss the diversity of metabolic programmes that control endothelial cell function in the cardiovascular system and how these metabolic programmes are perturbed in different cardiovascular diseases in a disease-specific manner. Finally, we discuss the potential and challenges of targeting endothelial cell metabolism for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Alessandra Pasut
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Lama
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Jeffrey Kroon
- Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, The Netherlands.
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
22
|
Xiong Z, Liao Y, Zhang Z, Wan Z, Liang S, Guo J. Molecular Insights into Oxidative-Stress-Mediated Cardiomyopathy and Potential Therapeutic Strategies. Biomolecules 2025; 15:670. [PMID: 40427563 DOI: 10.3390/biom15050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiomyopathies comprise a heterogeneous group of cardiac disorders characterized by structural and functional abnormalities in the absence of significant coronary artery disease, hypertension, valvular disease, or congenital defects. Major subtypes include hypertrophic, dilated, arrhythmogenic, and stress-induced cardiomyopathies. Oxidative stress (OS), resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, has emerged as a key contributor to the pathogenesis of these conditions. ROS-mediated injury drives inflammation, protease activation, mitochondrial dysfunction, and cardiomyocyte damage, thereby promoting cardiac remodeling and functional decline. Although numerous studies implicate OS in cardiomyopathy progression, the precise molecular mechanisms remain incompletely defined. This review provides an updated synthesis of current findings on OS-related signaling pathways across cardiomyopathy subtypes, emphasizing emerging therapeutic targets within redox-regulatory networks. A deeper understanding of these mechanisms may guide the development of targeted antioxidant strategies to improve clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Yuanpeng Liao
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhengdong Wan
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Sijia Liang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
23
|
Zhang S, Zhang D, Xu K, Huang X, Chen Q, Chen M. The role of the farnesoid X receptor in diabetes and its complications. Mol Cell Biochem 2025; 480:2725-2736. [PMID: 39576464 DOI: 10.1007/s11010-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
Abstract
Diabetes is a metabolic disease in which tissues and organs are exposed to a hyperglycemic environment for a prolonged period. Long-term hyperglycemia can cause dysfunction of multiple organs and tissues in the body, leading to diabetic complications such as diabetic cardiomyopathy and diabetic nephropathy. Diabetes and its complications have become one of the key issues that seriously threaten the health of people worldwide. Farnesoid X receptor (FXR), as a metabolic regulator, has multiple functions in regulating insulin synthesis and secretion, insulin resistance, lipid metabolism, oxidative stress, inflammatory response, and fibrosis. It plays a key role in alleviating diabetes and its complications. In this review, we discuss the latest findings of FXR related to diabetes and its complications, focusing on its role in diabetes, diabetic nephropathy, diabetic cardiomyopathy, and diabetic liver injury. The aim is to better understand the role of FXR in diabetes and its complications and to provide new perspectives on the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Shengnan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
| | - Kui Xu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
| | - Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China.
| |
Collapse
|
24
|
Shang W, Geng X, Sun X, Fan X, Li A, Zhang C, Kang Y, Liang Y, Zhang J. Non-coding RNAs modulate pyroptosis in diabetic cardiomyopathy: A comprehensive review. Int J Biol Macromol 2025; 309:142865. [PMID: 40188918 DOI: 10.1016/j.ijbiomac.2025.142865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of heart failure (HF) among individuals with diabetes, presenting a significant medical challenge due to its complex pathophysiology and the lack of targeted therapies. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is the predominant mode of cell death in the primary resident cells involved in DCM. It has been reported to be critical in DCM's onset, progression, and pathogenesis. Non-coding RNAs (ncRNAs), diverse transcripts lacking protein-coding potential, are essential for cellular physiology and the progression of various diseases. Increasing evidence indicates that ncRNAs are pivotal in the pathogenesis of DCM by regulating pyroptosis. This observation suggests that targeting the regulation of pyroptosis by ncRNAs may offer a novel therapeutic approach for DCM. However, a comprehensive review of this topic is currently lacking. Our objective is to elucidate the regulatory role of ncRNAs in pyroptosis associated with DCM and to elucidate the relationships among these factors. Additionally, we explored how ncRNAs influence pyroptosis and contribute to the pathophysiology of DCM. By doing so, we aim to identify new research targets for the clinical diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Wenyu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xiaofei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xitong Sun
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xinbiao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Aolin Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yuxin Kang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yongchun Liang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Junping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| |
Collapse
|
25
|
Xie Y, Liang B, Meng Z, Guo R, Liu C, Yuan Y, Mu W, Wang Y, Cao J. Downregulation of HSPB1 and MGST1 Promotes Ferroptosis and Impacts Immune Infiltration in Diabetic Cardiomyopathy. Cardiovasc Toxicol 2025; 25:719-734. [PMID: 40053272 DOI: 10.1007/s12012-025-09982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/26/2025] [Indexed: 03/12/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Current therapies do not adequately resolve this problem and focus only on the optimal level of blood glucose for patients. Ferroptosis plays an important role in diabetes mellitus and cardiovascular diseases. However, the role of ferroptosis in DCM remains unclear. Differentially expressed ferroptosis-related genes (DE-FRGs) were identified by intersection of the GSE26887 dataset and the Ferroptosis Database. The associations between the DE-FRGs and immune cells in DCM, estimated via the CIBERSORTx algorithm, were analysed. Flow cytometry (FCM) was used to evaluate the infiltration of immune cells in myocardial tissues. The expression of DE-FRGs, glutathione peroxidase 4 and solute carrier family 7 member 11 was examined via real-time quantitative PCR and Western blotting. Three DE-FRGs were identified: heat shock protein family B (small) member 1 (HSPB1), microsomal glutathione S-transferase 1 (MGST1) and solute carrier family 40 member 1 (SLC40A1), which are closely linked to immune cells in DCM. In vivo, the levels of CD8 + T cells, B cells and regulatory T (Treg) cells were significantly decreased in the DCM group, whereas the levels of CD4 + T cells, M1 cells, M2 cells and monocytes were increased. Diabetes significantly decreased HSPB1 and MGST1 levels and increased ferroptosis compared with the Normal group. Furthermore, the ferroptosis inhibitor ferrostatin-1 (Fer-1) alleviated high-fat diet (HFD)-induced cardiomyocyte injury and rescued ferroptosis. These findings suggest that the ferroptosis-related genes HSPB1 and MGST1 are closely related to immune cell infiltration and may be therapeutic targets for DCM.
Collapse
MESH Headings
- Ferroptosis/drug effects
- Animals
- Diabetic Cardiomyopathies/immunology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/metabolism
- Male
- Down-Regulation
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Disease Models, Animal
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Humans
- Signal Transduction
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- HSP27 Heat-Shock Proteins/genetics
- HSP27 Heat-Shock Proteins/metabolism
- Mice, Inbred C57BL
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Databases, Genetic
Collapse
Affiliation(s)
- Yaoli Xie
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bin Liang
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhijun Meng
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Rui Guo
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Caihong Liu
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yi Yuan
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wei Mu
- Department of Interventional Therapy for Tumor and Vascular Interventional Therapy, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Yajing Wang
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Jimin Cao
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
26
|
Xu Q, Zhang H, Ruan N, Jing J, Li Y, Zhao J, Fang Z. HMOX1 as a Novel Biomarker for Glucose-Lipid Metabolism Disorder and T2DM: Systematic Bioinformatics Investigation and Experimental Verification. ACS OMEGA 2025; 10:16123-16137. [PMID: 40321502 PMCID: PMC12044504 DOI: 10.1021/acsomega.4c09662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/11/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
Type 2 diabetes mellitus (T2DM) has led to a considerable increase in morbidity and mortality worldwide. Current treatments control blood glucose but cannot reverse the disease, making it important to identify biomarkers that predict T2DM onset and progression. This study explores heme oxygenase 1(HMOX1) as a novel biomarker for T2DM through bioinformatics and experimental validation. Core differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus database, with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis analyses revealing notable pathways, including Toll-like receptor signaling and cytokine receptor interactions. A Nomogram model and receiver operating characteristic curves demonstrated strong diagnostic effectiveness for these core DEGs. The CIBERSORT algorithm assessed the relation between core DEGs and immune cell infiltration, showing substantial associations with several immune cell types, particularly highlighting HMOX1's correlation with eight immune cells (p < 0.05). In a mouse model, db/db mice displayed typical diabetic characteristics and lower serum HMOX1 levels compared to db/m controls (p < 0.01). Histological analysis confirmed liver damage and decreased expression of NFE2L2 and HMOX1 in diabetic mice tissues (p < 0.05). HMOX1 is identified as a promising biomarker for T2DM, with its downregulation confirmed through bioinformatics and experimental methods.
Collapse
Affiliation(s)
- Qi Xu
- The
First Affiliated Hospital, Anhui University
of Chinese Medicine, Hefei, Anhui 230038, China
- School
of Chinese Medicine, Anhui University of
Chinese Medicine, Hefei, Anhui 230012, China
| | - Hongrong Zhang
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Nuobing Ruan
- The
First Affiliated Hospital, Anhui University
of Chinese Medicine, Hefei, Anhui 230038, China
| | - Jiawen Jing
- The
First Affiliated Hospital, Anhui University
of Chinese Medicine, Hefei, Anhui 230038, China
| | - Yufan Li
- The
First Affiliated Hospital, Anhui University
of Chinese Medicine, Hefei, Anhui 230038, China
| | - Jindong Zhao
- The
First Affiliated Hospital, Anhui University
of Chinese Medicine, Hefei, Anhui 230038, China
- School
of Chinese Medicine, Anhui University of
Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhaohui Fang
- The
First Affiliated Hospital, Anhui University
of Chinese Medicine, Hefei, Anhui 230038, China
| |
Collapse
|
27
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
28
|
Liu B, Jin Q, Sun YK, Yang ZM, Meng P, Zhang X, Chen Q, Gan P, Zhao T, He JJ, He GP, Xue Q. From bench to bedside: targeting ferroptosis and mitochondrial damage in the treatment of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2025; 16:1563362. [PMID: 40352456 PMCID: PMC12061709 DOI: 10.3389/fendo.2025.1563362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common and fatal cardiac complication caused by diabetes, with its pathogenesis involving various forms of cell death and mitochondrial dysfunction, particularly ferroptosis and mitochondrial injury. Recent studies have indicated that ferroptosis and mitochondrial damage play crucial roles in the onset and progression of DCM, though their precise regulatory mechanisms remain unclear. Of particular interest is the interaction between ferroptosis and mitochondrial damage, as well as their synergistic effects, which are not fully understood. This review summarizes the roles of ferroptosis and mitochondrial injury in the progression of DCM and explores the molecular mechanisms involved, with an emphasis on the interplay between these two processes. Additionally, the article offers an overview of targeted drugs shown to be effective in cellular experiments, animal models, and clinical trials, analyzing their mechanisms of action and potential side effects. The goal is to provide insights for future drug development and clinical applications. Moreover, the review explores the challenges and prospects of multi-target combination therapies and personalized medicine interventions in clinical practice to offer strategic guidance for the comprehensive prevention and management of DCM.
Collapse
Affiliation(s)
- Bin Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu People’s Hospital, Gejiu, Yunnan, China
| | - Qing Jin
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Yi Kang Sun
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Zhi Ming Yang
- Department of Cardiology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu People’s Hospital, Gejiu, Yunnan, China
| | - Ping Meng
- Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Xi Zhang
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Qiu Chen
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
- Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Pin Gan
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Tao Zhao
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Jia Ji He
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Gui Ping He
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Qiang Xue
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| |
Collapse
|
29
|
Mustafa AM, El-Shiekh RA, Esmail MM, Hassan E, Senna MM, Ebid N, Elgindy AM. Surveying the Therapeutic Potentials of Isoliquiritigenin (ISL): A Comprehensive Review. Chem Biodivers 2025:e202500456. [PMID: 40274535 DOI: 10.1002/cbdv.202500456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/26/2025]
Abstract
Isoliquiritigenin (ISL), a major chalcone-type flavonoid produced predominantly from liquorice roots (Glycyrrhiza species), has exceptional therapeutic potential across a wide range of pharmacological activities. ISL has numerous benefits including antioxidant, anti-inflammatory, antidiabetic, cardioprotective, hepatoprotective, neuroprotective, and anticancer activities. This review gathers the pharmacological effects of ISL remarking into its mechanism of actions such as how it modulates oxidative stress, inflammatory pathways, glucose metabolism, and cancer growth, demonstrating its pharmacological versatility. The review emphasizes new advances in the field, allowing for more rational development and clinical use of ISL in medicine. However, further research is required to confirm the target-organ toxicity or side-effect investigations.
Collapse
Affiliation(s)
- Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Eslam Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
30
|
Zhong L, Hou X, Tian Y, Fu X. Exercise and dietary interventions in the management of diabetic cardiomyopathy: mechanisms and implications. Cardiovasc Diabetol 2025; 24:159. [PMID: 40205621 PMCID: PMC11983742 DOI: 10.1186/s12933-025-02702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/22/2025] [Indexed: 04/11/2025] Open
Abstract
The global prevalence of diabetes is rapidly increasing, significantly raising the risk of various cardiovascular diseases. Among these, diabetic cardiomyopathy (DCM) is a distinct and critical complication characterized by ventricular hypertrophy and impaired myocardial contractility, ultimately progressing to heart failure and making it a leading cause of mortality among diabetic patients. Despite advances in pharmacological therapies, the effectiveness of managing cardiac dysfunction in DCM remains challenging. Consequently, exploring additional therapeutic strategies for the prevention and treatment of DCM is urgently needed. Beyond pharmacological approaches, lifestyle modifications, particularly exercise and dietary interventions, play a fundamental role in managing DCM due to their significant cardiovascular benefits in diabetic patients. This review synthesizes recent advancements in the field, elucidating the underlying mechanisms through which exercise and dietary interventions influence DCM pathophysiology. By integrating these strategies, we aim to facilitate the development of personalized exercise and dietary regimens that effectively mitigate or prevent DCM progression.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Zhu R, Xiong L, Dan Z, Shi X, Shu C, Wang Y, Zhu H. Palmitic acid induces cardiomyocyte apoptosis by enhancing the KLF4/cMLCK signaling pathway. Gene 2025; 943:149270. [PMID: 39855370 DOI: 10.1016/j.gene.2025.149270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Hyperlipidemia and myocardial apoptosis caused by myocardial ischemia are the main causes of high mortality rates in cardiovascular diseases. Previous studies have indicated that Krüppel-like factor 4 (KLF4) is involved in the induction of cardiac myocyte apoptosis under various stress conditions. In current study, we discovered that KLF4 also participates in palmitic acid (PA)-induced cardiac myocyte apoptosis. However, the specific mechanisms by which KLF4 regulates cardiac myocyte apoptosis remain unclear. Cardiac myosin light-chain kinase (cMLCK) is a crucial enzyme involved in regulating cardiac myocyte contraction and is closely associated with the regulation of apoptosis. Here, we employed the lipotoxicity in vitro and in vivo models to explore the potential synergistic role of KLF4 and cMLCK in cardiac myocyte apoptosis. Our findings demonstrate that under the influence of PA, upregulation of KLF4 expression accompanied by downregulation of cMLCK expression leads to cardiomyocyte apoptosis and cell proliferation inhibition. Selective knockdown and overexpression of KLF4 in cardiomyocytes further confirmed the involvement of KLF4 in PA-induced cardiomyocyte apoptosis. Likewise, overexpression of cMLCK alleviated PA-induced cardiac myocyte apoptosis. Our study reveals the pro-apoptotic effect of KLF4 and elucidates the specific mechanism by which the KLF4/cMLCK signaling pathway is involved in PA-induced cardiac myocyte apoptosis, providing new therapeutic targets for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Rumeng Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lei Xiong
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhangyong Dan
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xiaorui Shi
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chuanlin Shu
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
32
|
Bahrami HSZ, Jørgensen PG, Hove JD, Dixen U, Rasmussen LJH, Eugen-Olsen J, Rossing P, Jensen MT. Association between interleukin-6, suPAR, and hsCRP with subclinical left ventricular dysfunction in type 1 diabetes: The Thousand & 1 study. Diabetes Res Clin Pract 2025; 222:112071. [PMID: 40043809 DOI: 10.1016/j.diabres.2025.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/18/2025]
Abstract
AIMS To investigate the association between chronic inflammation and subclinical left ventricular dysfunction in type 1 diabetes (T1D). METHODS In a cross-sectional study of individuals with T1D without known heart disease, interleukin-6 (IL-6), soluble-urokinase-plasminogen-activator-receptor (suPAR), and high-sensitivity C-reactive-protein (hsCRP) were examined for associations with echocardiographic E/e' (primary outcome) and global longitudinal strain (GLS) (secondary outcome). We adjusted for several clinical variables in linear regression analysis, including N-terminal pro-B-type natriuretic peptide (NT-proBNP). The biomarkers were categorized as elevated/non-elevated based on their upper quartiles. RESULTS Of 962 individuals (52 % male, mean age 49 ± 14 years), mean E/e' was 7 ± 3 and GLS 18 ± 3. In fully adjusted models, all biomarkers were each associated with increased E/e': beta coefficients for IL-6 0.2 (95 % confidence intervals: 0.1-0.3, P = 0.001), suPAR 0.5 (0.1-0.7, P = 0.011), and hsCRP 0.1 (0.0-0.2, P = 0.023). Combining biomarkers showed stronger associations: elevated IL-6 and suPAR 1.3 (0.7-2.0, P < 0.001), elevated all three 1.9 (1.1-2.7, P < 0.001). Results were similar for decreased GLS with IL-6-0.4 (-0.7 to 0.0, P = 0.039), IL-6 and hsCRP -1.0 (-1.7 to -0.4, P = 0.007), all three -1.1 (-2.0 to -0.3, P = 0.009). CONCLUSIONS Inflammatory biomarkers are independently associated with subclinical left ventricular dysfunction. Chronic inflammation may contribute to the development of myocardial dysfunction in T1D.
Collapse
Affiliation(s)
- Hashmat Sayed Zohori Bahrami
- Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark; Department of Cardiology, Copenhagen University Hospital, Amager & Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark.
| | - Peter Godsk Jørgensen
- Department of Cardiology, Copenhagen University Hospital, Herlev & Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark
| | - Jens Dahlgaard Hove
- Department of Cardiology, Copenhagen University Hospital, Amager & Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Ulrik Dixen
- Department of Cardiology, Copenhagen University Hospital, Amager & Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Line Jee Hartmann Rasmussen
- Department of Clinical Research, Copenhagen University Hospital, Amager & Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; Department of Psychology & Neuroscience, Duke University, 2020 W Main St, Durham, NC 27708, USA
| | - Jesper Eugen-Olsen
- Department of Cardiology, Copenhagen University Hospital, Herlev & Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark; Department of Clinical Research, Copenhagen University Hospital, Amager & Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark
| | - Peter Rossing
- Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Magnus T Jensen
- Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark; William Harvey Research Institute, NIHR Barts Biomedical Centre, Queen Mary University London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
33
|
Li X, Guo K, Zhou Q, Hosyanto FF, Zhou G, Zhang Y, Li Y, Yang S. Cardiomyocyte-specific deletion of STING improves cardiac function, glucose homeostasis, and wound healing in diabetic mice. Life Sci 2025; 366-367:123470. [PMID: 39956186 DOI: 10.1016/j.lfs.2025.123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
AIMS The present study aimed to investigate the effects and underling mechanisms of cardiomyocyte-specific STING knockout on cardiac function and wound healing in diabetes. MATERIALS AND METHODS In this study, type 2 diabetes was induced in cardiomyocyte-specific STING knockout mice using a combination of a high-fat diet and streptozotocin. Cardiac function and remodeling were assessed by echocardiography and histopathological analysis. Glucose homeostasis was evaluated through insulin sensitivity tests and intraperitoneal glucose tolerance tests. Wound healing was quantified by measuring the wound area in diabetic mice. KEY FINDINGS The results demonstrated that STING deletion in cardiomyocytes improved cardiac function in diabetic mice, which was accompanied by enhanced insulin sensitivity and improved glucose tolerance. Furthermore, the deletion of STING partially mitigated mitochondrial dysfunction in the myocardium. STING knockout in cardiomyocytes also facilitated angiogenesis and wound healing in diabetic mice. SIGNIFICANCE Our findings suggest that cardiomyocyte-specific STING deletion enhances cardiac function, glucose homeostasis, and wound healing, indicating that targeting STING in the heart may serve as a promising therapeutic strategy for managing diabetes mellitus.
Collapse
MESH Headings
- Animals
- Wound Healing/physiology
- Mice
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/genetics
- Homeostasis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Knockout
- Male
- Mice, Inbred C57BL
- Glucose/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Insulin Resistance
- Diet, High-Fat
- Blood Glucose/metabolism
Collapse
Affiliation(s)
- Xiaorong Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Kai Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Qingju Zhou
- Department of Health Management Center, Chongqing General Hospital of Chongqing University, Chongqing 401147, China; Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Felycia Fernanda Hosyanto
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Guoxiang Zhou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Yiying Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, China
| | - Yuanjing Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Shenglan Yang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
34
|
Lu Q, Sun H, Zhou K, Su J, Meng X, Chen G, Zhang A, Xu A, Zhao C, Zhang Y, Wang Y, Qiu H, Lv Z, Bao Z, Zhu J, Xiao F, Zhu X, Sun H. Therapeutic Targeting of Decr1 Ameliorates Cardiomyopathy by Suppressing Mitochondrial Fatty Acid Oxidation in Diabetic Mice. J Cachexia Sarcopenia Muscle 2025; 16:e13761. [PMID: 40052435 PMCID: PMC11886612 DOI: 10.1002/jcsm.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND A significant increase in mitochondrial fatty acid oxidation (FAO) is now increasingly recognized as one of the metabolic alterations in diabetic cardiomyopathy (DCM). However, the molecular mechanisms underlying mitochondrial FAO impairment in DCM remain to be fully elucidated. METHODS A type 2 diabetes (T2D) mouse model was established by a combination of high-fat diet (HFD) and streptozotocin (STZ) injection. Neonatal rat cardiomyocytes were treated with high glucose (HG) and palmitic acid (HP) to simulate diabetic cardiac injury. Gain- and loss-of-function approaches and RNA sequencing were utilized to investigate the role and mechanism of 2,4-dienoyl-CoA reductase 1 (Decr1) in DCM. RESULTS By integrating the genomic data available in the Gene Expression Omnibus (GEO) with DCM rodents, we found that the transcriptional level of Decr1 was consistently upregulated in DCM (+255% for diabetic heart, p < 0.0001; +281% for diabetic cells, p < 0.0001). Cardiomyocytes-specific knockdown of Decr1 preserved cardiac function (+41% for EF, p < 0.0001; +24% for FS, p = 0.0052), inhibited cardiac hypertrophy (-34%, p < 0.0001), fibrosis (-69%, p < 0.0001), apoptosis (-56%, p < 0.0001) and oxidative damage (-59%, p < 0.0001) in DCM mice, while cardiomyocytes-specific overexpression of Decr1 aggravated DCM (-28% for EF, p = 0.0347; -17% for FS, p = 0.0014). Deletion of Decr1 prevented high glucose/palmitate (HG/HP)-induced hypertrophy (-22%, p = 0.0006), mitochondrial dysfunction and apoptosis (-74%, p < 0.0001) in cultured cardiomyocytes. Furthermore, RNA sequencing and functional analysis showed that Decr1 interacted with and upregulated pyruvate dehydrogenase kinase 4 (PDK4) in injured cardiomyocytes, and overexpression of PDK4 eliminated the benefits of Decr1 downregulation in DCM (-20% for EF, p = 0.0071; -28% for FS, p = 0.0022). Mechanistically, PDK4 acted as a kinase that induced phosphorylation and mitochondrial translocation of HDAC3. In the mitochondria, HDAC3 mediated the deacetylation of dehydrogenase trifunctional multienzyme complex α subunit (HADHA), contributing to excessive mitochondrial FAO and subsequent cardiac injury. From a screening of 256 natural products, we identified Atranorin and Kurarinone as potential inhibitors of Decr1, both demonstrating protective effects against DCM (Atranorin, +21% for EF, p = 0.0134; +24% for FS, p = 0.0006; Kurarinone, +20% for EF, p = 0.0183; +27% for FS, p = 0.0001). CONCLUSIONS Our study delineates a molecular mechanism by which Decr1 potentiated higher mitochondrial lipid oxidation and cardiac damage by enhancing HADHA deacetylation through the PDK4/HDAC3 signalling pathway.
Collapse
Affiliation(s)
- Qing‐Bo Lu
- Department of EndocrinologyAffiliated Hospital of Jiangnan University, Jiangnan UniversityWuxiJiangsuChina
| | - He‐Ting Sun
- School of PharmacyCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantaiChina
| | - Kuo Zhou
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Jia‐Bao Su
- Department of AnesthesiologyAffiliated Hospital of Jiangnan University, Jiangnan UniversityWuxiChina
| | - Xin‐Yu Meng
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Guo Chen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Ao‐Yuan Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - An‐Jing Xu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Chen‐Yang Zhao
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Yuan Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Yao Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Hong‐Bo Qiu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Zhuo‐Lin Lv
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Zheng‐Yang Bao
- Research Institute for Reproductive Health and Genetic DiseasesWuxi Maternity and Child Health Care Hospital, Jiangnan UniversityWuxiChina
| | - Jian Zhu
- Department of EndocrinologyAffiliated Hospital of Jiangnan University, Jiangnan UniversityWuxiJiangsuChina
| | - Feng Xiao
- Department of Cardiologythe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Nanjing Medical UniversityWuxiChina
| | - Xue‐Xue Zhu
- Department of EndocrinologyAffiliated Hospital of Jiangnan University, Jiangnan UniversityWuxiJiangsuChina
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
| | - Hai‐Jian Sun
- Department of EndocrinologyAffiliated Hospital of Jiangnan University, Jiangnan UniversityWuxiJiangsuChina
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesSchool of Medicine, Jiangnan UniversityWuxiChina
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
35
|
Luong TVT, Yang S, Kim J. Lipotoxicity as a therapeutic target in the type 2 diabetic heart. J Mol Cell Cardiol 2025; 201:105-121. [PMID: 40020774 DOI: 10.1016/j.yjmcc.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Cardiac lipotoxicity, characterized by excessive lipid accumulation in the cardiac tissue, is a critical contributor to the pathogenesis of diabetic heart. Recent research has highlighted the key mechanisms underlying lipotoxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, and cell apoptosis, which ultimately impair the cardiac function. Various therapeutic interventions have been developed to target these pathways, mitigate lipotoxicity, and improve cardiovascular outcomes in diabetic patients. Given the global escalation in the prevalence of diabetes and the urgent demand for effective therapeutic approaches, this review focuses on how targeting cardiac lipotoxicity may be a promising avenue for treating diabetes.
Collapse
Affiliation(s)
- Trang Van T Luong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seonbu Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
37
|
Lee DSM, Cardone KM, Zhang DY, Tsao NL, Abramowitz S, Sharma P, DePaolo JS, Conery M, Aragam KG, Biddinger K, Dilitikas O, Hoffman-Andrews L, Judy RL, Khan A, Kullo IJ, Puckelwartz MJ, Reza N, Satterfield BA, Singhal P, Arany Z, Cappola TP, Carruth ED, Day SM, Do R, Haggerty CM, Joseph J, McNally EM, Nadkarni G, Owens AT, Rader DJ, Ritchie MD, Sun YV, Voight BF, Levin MG, Damrauer SM. Common-variant and rare-variant genetic architecture of heart failure across the allele-frequency spectrum. Nat Genet 2025; 57:829-838. [PMID: 40195560 PMCID: PMC12049093 DOI: 10.1038/s41588-025-02140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025]
Abstract
Heart failure is a complex trait, influenced by environmental and genetic factors, affecting over 30 million individuals worldwide. Here we report common-variant and rare-variant association studies of all-cause heart failure and examine how different classes of genetic variation impact its heritability. We identify 176 common-variant risk loci at genome-wide significance in 2,358,556 individuals and cluster these signals into five broad modules based on pleiotropic associations with anthropomorphic traits/obesity, blood pressure/renal function, atherosclerosis/lipids, immune activity and arrhythmias. In parallel, we uncover exome-wide significant associations for heart failure and rare predicted loss-of-function variants in TTN, MYBPC3, FLNC and BAG3 using exome sequencing of 376,334 individuals. We find that total burden heritability of rare coding variants is highly concentrated in a small set of Mendelian cardiomyopathy genes, while common-variant heritability is diffusely spread throughout the genome. Finally, we show that common-variant background modifies heart failure risk among carriers of rare pathogenic truncating variants in TTN. Together, these findings discern genetic links between dysregulated metabolism and heart failure and highlight a polygenic component to heart failure not captured by current clinical genetic testing.
Collapse
Affiliation(s)
- David S M Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen M Cardone
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David Y Zhang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Abramowitz
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pranav Sharma
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John S DePaolo
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell Conery
- Genomics and Computational Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Krishna G Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kiran Biddinger
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ozan Dilitikas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lily Hoffman-Andrews
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Pankhuri Singhal
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zoltan Arany
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas P Cappola
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric D Carruth
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Mount Sinai Icahn School of Medicine, New York City, NY, USA
- BioMe Phenomics Center, Mount Sinai Icahn School of Medicine, New York City, NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai Icahn School of Medicine, New York City, NY, USA
| | | | - Jacob Joseph
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Girish Nadkarni
- Division of Nephrology, Department of Medicine, Mount Sinai Icahn School of Medicine, New York City, NY, USA
| | - Anjali T Owens
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan V Sun
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| | - Scott M Damrauer
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| |
Collapse
|
38
|
Saedi S, Tan Y, Watson SE, Sparks JD, Wintergerst KA, Cai L. Oxidative stress and pediatric diabetic cardiovascular complications: emerging research and clinical applications. Am J Physiol Heart Circ Physiol 2025; 328:H945-H962. [PMID: 40019178 PMCID: PMC12038818 DOI: 10.1152/ajpheart.00673.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
The prevalence and incidence of diabetes in pediatrics have dramatically increased over the last three decades. Comparatively, pediatric diabetes has faster pancreatic β-cells decline and early progression to complications compared with adult diabetes. Therefore, diabetic complications are a major concern in children and adolescents with diabetes. Diabetes has detrimental effects on the macro- and microvascular systems, resulting in cardiovascular diseases, leading causes of morbidity and mortality in youth with diabetes. Oxidative stress plays a critical role in developing cardiovascular complications in the context of pediatric diabetes. In pediatric patients with diabetes, several factors can contribute to the development of excess reactive oxygen species and oxidative stress, including nutritional deficiencies, puberty, environmental exposures, and metabolic disorders such as obesity and high blood pressure. The present study aims to raise awareness of diabetic cardiovascular complications in children and adolescents with diabetes and the role of oxidative stress and their molecular mechanisms in the pathogenesis of cardiovascular complications. In addition, some novel therapeutic strategies for the treatment and prevention of diabetic cardiovascular complications in the pediatric populations are highlighted. In summary, children and adolescents with diabetes no matter type 1 diabetes (T1D) or type 1 diabetes (T2D), have many features similar to those in adults with same kinds of diabetes, but also have many their own features distinct from adults. By developing targeted therapies and preventive measures, healthcare providers can better address the rising incidence of diabetes-related complications in children and adolescents.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, United States
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Sara E Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, United States
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, United States
- Norton Children's Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Joshua D Sparks
- Division of Pediatric Cardiology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, United States
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, United States
- Norton Children's Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, United States
- Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, United States
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States
- Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, Kentucky, United States
| |
Collapse
|
39
|
Li G, Liu R, Peng Z, Zhang S, Sun R, Wang Z, Li J, Gao Y, Xu Y, Cui J, Liu J, Yan J, Cao L, Ren S, Chu Y, Feng L, Yang L, Shen Y, Qi Z. Inhibition of CAV1 attenuates diabetic cardiomyopathy through reducing ferroptosis via activating NRF2/GCLC signaling pathway. Theranostics 2025; 15:4989-5006. [PMID: 40303344 PMCID: PMC12036865 DOI: 10.7150/thno.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Diabetic cardiomyopathy (DCM), a prevalent complication of diabetes, is a major cause of heart failure and death among patients with diabetes. However, the pathological mechanisms underlying the development of DCM remain unclear. This study aims to investigate the role and underlying mechanisms of caveolin-1 (CAV1) in DCM. Methods: DCM model was established in vivo through intraperitoneal injection of streptozotocin in mice and in vitro through high-glucose (HG) treatment in neonatal rat ventricular myocytes (NRVMs). CAV1-knockout (CAV1-KO) and overexpression (by injecting adeno-associated virus 9 (AAV9) encoding CAV1) mice were utilized to explore the role of CAV1 in DCM. Nuclear factor erythroid 2-related factor 2 (NRF2)-KO and AAV9-NRF2 mice and ML385 (an NRF2 inhibitor) were used to investigate the effect of NRF2 on DCM. Results: CAV1 expression was significantly increased in the cardiac tissues of diabetic mice and HG-treated NRVMs. CAV1 deficiency significantly alleviated diabetes-induced myocardial hypertrophy, fibrosis, abnormal mitochondria, excessive reactive oxygen species production, and ferroptosis. Conversely, cardiac-specific overexpression of CAV1 exacerbated cardiac dysfunction and myocardial histological abnormalities caused by diabetes. Mechanistically, CAV1 directly bound to NRF2 and inhibited its nuclear translocation, reducing the transcription of glutamate cysteine ligase catalytic subunit (GCLC), accumulating excess peroxide, and inducing ferroptosis and myocardial injury. Conclusion: CAV1 exacerbates the progression of DCM by suppressing the NRF2/GCLC pathway, suggesting that targeting CAV1 is a potential therapeutic approach for DCM.
Collapse
Affiliation(s)
- Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Ruiqing Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Zeyan Peng
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Runjia Sun
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Ziwei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Lei Cao
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Shan Ren
- The First Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, 832003, China
| | - Yushun Chu
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University; Department of Cardiology, Beichen Hospital, Nankai University, Tianjin, 300071, China
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
- The First Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, 832003, China
- Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| |
Collapse
|
40
|
Zhang Z, Wang Z, Kan M, Tian M, Zhang Z. Novel Dual-Emissive Up-conversion Fluorescent Probe for Imaging Ectopic Lipid Accumulation in Diabetes Mellitus. ACS Sens 2025; 10:1959-1969. [PMID: 40037932 DOI: 10.1021/acssensors.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Diabetic kidney disease (DKD) is a leading cause of death among diabetic patients, primarily due to ectopic lipid accumulation in nonadipose tissues. The lack of molecular tools for quantitatively visualizing this lipid accumulation has hindered in-depth studies. This study aims to develop a dual-emissive up-conversion fluorescent probe, DSDM, for precise in vivo and ex vivo analyses of lipid accumulation. DSDM exhibits up-conversion green emission and down-conversion near-infrared (NIR) fluorescence when excited at 561 nm. This allows for the simultaneous imaging of lipid droplets (LDs) and the endoplasmic reticulum (ER), the primary sites for lipid synthesis and storage. With intracellular lipid consumption and accumulation, the green emission in LDs decreased or increased, while the NIR fluorescence in the ER remained constant. Using the NIR emission as an internal control, the green-to-NIR emission intensity ratio can quantify the LD amount accurately, overcoming the possible interferences from inhomogeneous staining, variation in cell population, and other factors. With the probe, we quantitatively analyzed LD accumulation in human kidney cells with either overexpressed or silenced aquaporin 7 (AQP7), induced by palmitic acid. Herein, AQP7 is specifically expressed in kidney tubules and is the only channel that regulates adipose glycerol transport. In DKD mice with kidney-specific AQP7 knockout, the probe successfully detected up-regulated lipid accumulation and ER stress. Tissue imaging revealed that the inhibited close contact between LDs and ER might facilitate the assessment of lipid accumulation in DKD. This approach effectively addresses the limitations of precise tissue biopsy in DKD, thereby improving DKD management.
Collapse
Affiliation(s)
- Zheming Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Mengfan Kan
- Shandong Provincial Key Laboratory for Major Chronic Disease Prevention and Treatment, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, China
- Clinical Immunological Translational Medicine Laboratory of Shandong Provincial University Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250013, China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Zhongwen Zhang
- Shandong Provincial Key Laboratory for Major Chronic Disease Prevention and Treatment, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, China
- Shandong Provincial University Laboratory for Clinical Immuno-translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250013, China
| |
Collapse
|
41
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
42
|
Lian H, Ren Q, Liu W, Zhang R, Zou X, Zhang S, Luo Y, Deng W, Wang Q, Qi L, Li Y, Wang W, Zhong L, Zhang P, Guo C, Li L, Li Y, Ba T, Yang C, Huo L, Wang Y, Li C, Hao D, Zhang Y, Xu Y, Wang F, Wang X, Zhang F, Gong S, Yang W, Han X, Ji L. Cardiovascular abnormalities already occurred in newly-diagnosed patients with early-onset type 2 diabetes. Cardiovasc Diabetol 2025; 24:140. [PMID: 40140837 PMCID: PMC11948644 DOI: 10.1186/s12933-025-02665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND The prevalence of early-onset type 2 diabetes (EOD) is rapidly increasing. This study intends to screen for early cardiovascular abnormalities in patients newly diagnosed with EOD and evaluate the cardiovascular risk across cluster phenotypes. METHOD A total of 400 patients ≤ 40 years old with newly diagnosed type 2 diabetes were enrolled from the START cohort (the Study of The newly diAgnosed eaRly onset diabeTes). Cluster classification was performed using the K-means method based on age, BMI, HbA1c, HOMA2-β, HOMA2-IR, and GAD antibodies. Echocardiography and carotid ultrasound were performed within 3 months of diabetes diagnosis. Carotid ultrasound abnormalities included intimal thickening and plaque formation, while echocardiography assessed changes in cardiac structure and systolic/diastolic function. Cluster-specific partitioned polygenic scores (pPS) were used to validate our findings from a genetic perspective. RESULT Carotid artery abnormalities were detected in 26.3% of patients, and echocardiography abnormalities were observed in 20.0%. Patients with severe insulin resistant diabetes (SIRD) had the highest incidence of carotid artery abnormality (40.0%). After adjusting for relevant risk factors, fasting C-peptide levels were significantly associated with a 1.247-fold increase in the risk of carotid artery abnormalities. Left atrial enlargement was more prevalent in the SIRD (16.7%) and mild obesity-related diabetes (MOD) (18.5%) classifications. A high proportion of patients with SIRD had abnormal left ventricular geometry (36.1%). Increases in BMI, fasting C-peptide level and HOMA2IR were accompanied by a further increase in left atrial enlargement risk by 1.136-, 1.781- and 1.687-fold respectively. The pPS for lipodystrophy was higher in the EOD group with plaque formation, and showed a significant linear correlation with the ratio of the left atrial anteroposterior diameter to body surface area (LAAP/BSA) (R = 0.344, p < 0.001). CONCLUSION Heart and carotid artery abnormalities are common in patients with early-onset T2DM at the time of diagnosis. Patients with obesity and insulin resistance are at higher risk for cardiovascular abnormalities. Cluster classification based on clinical characteristics enables more accurate identification of patients at increased risk of cardiovascular complications at an early stage.
Collapse
Affiliation(s)
- Hong Lian
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Qian Ren
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Wei Liu
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Rui Zhang
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Xiantong Zou
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Simin Zhang
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yingying Luo
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Wei Deng
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Qiuping Wang
- Department of Endocrinology, Bejing Fangshan District Liangxiang Hospital, Beijing, 102400, People's Republic of China
| | - Lin Qi
- Department of Endocrinology, Bejing Yanhua Hospital, Beijing, 102500, People's Republic of China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu Hospital, Beijing, 101299, People's Republic of China
| | - Wenbo Wang
- Department of Endocrinology, Beijing Univesity Shougang Hospital, Beijing, 100144, People's Republic of China
| | - Liyong Zhong
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital, Beijing, 100050, People's Republic of China
| | - Pengkai Zhang
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Chengcheng Guo
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Li Li
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yating Li
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Tianhao Ba
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Chaochao Yang
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Lili Huo
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Yan'ai Wang
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Chunxia Li
- Department of Endocrinology, Bejing Fangshan District Liangxiang Hospital, Beijing, 102400, People's Republic of China
| | - Dejun Hao
- Department of Endocrinology, Bejing Yanhua Hospital, Beijing, 102500, People's Republic of China
| | - Yajing Zhang
- Department of Endocrinology, Beijing Pinggu Hospital, Beijing, 101299, People's Republic of China
| | - Yan Xu
- Department of Endocrinology, Beijing Univesity Shougang Hospital, Beijing, 100144, People's Republic of China
| | - Fang Wang
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital, Beijing, 100050, People's Republic of China
| | - Xiangqing Wang
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Fang Zhang
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Siqian Gong
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Wenjia Yang
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Xueyao Han
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Linong Ji
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Peking University Diabetes Centre, Beijing, 100191, People's Republic of China.
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| |
Collapse
|
43
|
Huang X, Wang Y, Wan R, You Z, Huang L. Identification of lipid metabolism-related genes in dapagliflozin treated rats with diabetic cardiomyopathy by bioinformatics. Front Endocrinol (Lausanne) 2025; 16:1525831. [PMID: 40182633 PMCID: PMC11965135 DOI: 10.3389/fendo.2025.1525831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is a heart disease caused by the metabolic disorders of glucose and lipids associated with diabetes, leading to heart failure and death in diabetic patients. Dapagliflozin (DAPA) serves as a treatment for managing blood glucose levels in individuals with type 2 diabetes mellitus (DM). However, the specific mechanisms by which DAPA treats DCM are not yet fully understood. Methods Sprague-Dawley (SD) rats (n = 5/group) were randomly divided into control, model, and intervention groups. Lipid metabolism-related genes (LMRGs) were gotten from publicly available database. Differential expression analysis of model vs. control and intervention vs. model samples was performed to obtain differentially expressed genes (DEGs), and the result was recorded as DEGs-Model and DEGs-Intervention. The intersection of genes with opposing expression trends between DEGs-Model and DEGs-Intervention were considered as candidate genes. Subsequently, candidate genes and LMRGs were intersected to acquire hub genes, and the expression of hub genes was analyzed in each group of samples. Then, the mechanism of action of these hub genes were investigated through functional enrichment analysis, gene set enrichment analysis (GSEA), and predictive of m6A binding sites. Results Ultimately, 68 candidate genes and 590 LMRGs were intersected to derive 2 hub genes (Acsbg1 and Etnppl). Acsbg1 was significantly increase in model group compared with control group. RT-qPCR results confirmed Acsbg1 was obviously higher expression in model group, while Etnppl was significantly lower expression in model group compare to control groups and intervention group. While the expression of Etnppl was significantly increase in intervention group compared with model group. Functional enrichment analyses indicated that Acsbg1 and Etnppl were associated with fatty acid metabolism. The findings of GSEA indicated that Acsbg1 and Etnppl might affect the occurrence and progression of DCM through lysosome. And the Acsbg1 and Etnppl were located at UCAGG in the RNA secondary structure. Conclusion This study identified 2 hub genes (Acsbg1 and Etnppl) as potential new focal points for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Xun Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunhong Wang
- Department of Cardiology, Ningdu County People’s Hospital, Ganzhou, Jiangxi, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhigang You
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
44
|
He Q, Li X, Li H, Tan A, Chi Y, Fang D, Li X, Liu Z, Shang Q, Zhu Y, Cielecka-Piontek J, Chen J. TGR5 Activation by Dietary Bioactives and Related Improvement in Mitochondrial Function for Alleviating Diabetes and Associated Complications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6293-6314. [PMID: 40045496 DOI: 10.1021/acs.jafc.4c10395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1 (GPBAR1), is a cell surface receptor involved in key physiological processes, including glucose homeostasis and energy metabolism. Recent research has focused on the role of TGR5 activation in preventing or treating diabetes while also highlighting its potential impact on the progression of diabetic complications. Functional foods and edible plants have emerged as valuable sources of natural compounds that can activate TGR5, offering potential therapeutic benefits for diabetes management. Despite growing interest, studies on the activation of TGR5 by dietary bioactive compounds remain scattered. This Review aims to provide a comprehensive analysis of how dietary bioactives act as potential agents for TGR5 activation in managing diabetes and its complications. It explores the mechanisms of TGR5 activation through both direct agonistic effects and indirect pathways via modulation of the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Quanrun He
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Xinhang Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Haimeng Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Aditya Tan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Yunlin Chi
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Daozheng Fang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Xinyue Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Zhihao Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Qixiang Shang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Yong Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland
| | - Jihang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| |
Collapse
|
45
|
Tang Q, Ji Y, Xia Z, Zhang Y, Dong C, Sun Q, Lei S. Identification and validation of endoplasmic reticulum stress-related diagnostic biomarkers for type 1 diabetic cardiomyopathy based on bioinformatics and machine learning. Front Endocrinol (Lausanne) 2025; 16:1478139. [PMID: 40171194 PMCID: PMC11959167 DOI: 10.3389/fendo.2025.1478139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background Diabetic cardiomyopathy (DC) is a serious complication in patients with type 1 diabetes mellitus and has become a growing public health problem worldwide. There is evidence that endoplasmic reticulum stress (ERS) is involved in the pathogenesis of DC, and related diagnostic markers have not been well-studied. Therefore, this study aimed to screen ERS-related genes (ERGs) with potential diagnostic value in DC. Methods Gene expression data on DC were downloaded from the GEO database, and ERGs were obtained from The Gene Ontology knowledgebase. Limma package analyzed differentially expressed genes (DEGs) in the DC and control groups, and then integrated with ERGs to identify ERS-related DEGs (ERDEGs). The ERDEGs diagnostic model was developed based on a combination of LASSO and Random Forest approaches, and the diagnostic performance was evaluated by the area under the receiver operating characteristic curve (ROC-AUC) and validated against external datasets. In addition, the association of the signature genes with immune infiltration was analyzed using the CIBERSORT algorithm and the Spearman correlation test. Results Gene expression data on DC were downloaded from the GEO database and ERGs were obtained from the Gene Ontology Knowledgebase. Limma package analysis identified 3100 DEGs between DC and control groups and then integrated with ERGs to identify 65 ERDEGs. Four diagnostic markers, Npm1, Jkamp, Get4, and Lpcat3, were obtained based on the combination of LASSO and random forest approach, and their ROC-AUCs were 0.9112, 0.9349, 0.8994, and 0.8639, respectively, which proved their diagnostic potential in DC. Meanwhile, Npm1, Jkamp, Get4, and Lpcat3 were validated by external datasets and a mouse model of type 1 DC. In addition, Npm1 was significantly negatively correlated with plasma cells, activated natural killer cells, or quiescent mast cells, whereas Get4 was significantly positively correlated with quiescent natural killer cells and significantly negatively correlated with activated natural killer cells (P < 0.05). Conclusions This study provides novel diagnostic biomarkers (Npm1, Jkamp, Get4, and Lpcat3) for DC from the perspective of ERS, which provides new insights into the development of new targets for individualized treatment of type 1 diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Qiao Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Czarnik K, Sablik Z, Borkowska A, Drożdż J, Cypryk K. Concentric remodeling and the metabolic-associated steatotic liver disease in patients with type 1 diabetes: an exploratory study. Acta Diabetol 2025; 62:385-395. [PMID: 39287794 PMCID: PMC11872745 DOI: 10.1007/s00592-024-02365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Diabetic cardiomyopathy in young patients with type 1 diabetes (T1D) usually presents as asymptomatic diastolic heart dysfunction with left ventricle (LV) remodeling. Its prevalence seems to be underestimated. One of the factors seemingly influencing LV remodeling is a metabolic-associated steatotic liver disease (MASLD), which was extensively investigated in patients with type 2 diabetes but not with T1D. This study aimed to describe the correlation between MASLD risk and relative wall thickness (RWT) in young patients with T1D without heart failure symptoms or treatment. MATERIALS AND METHODS Study participants were recruited at the inpatient diabetology department, in admission order. Patients underwent a set of laboratory tests and echocardiographic examinations. The risk of MASLD was estimated using fatty liver index (FLI). Acquired data was then statistically analyzed. RESULTS The study group consisted of 55 patients. 25 participants had RWT > 0.42, suggesting LV remodeling. Study participants did not differ in HbA1c, NT-proBNP, HDL, LDL, non-HDL, and uric acid concentrations. However, patients with RWT > 0.42 had higher FLI (40.97 vs. 13.82, p < 0.01) and BMI (27.3 vs. 22.5, p < 0.01) and differed in transaminase concentrations. Moreover, patients with RWT > 0.42 had significantly higher LV mass index (85.6 vs. 68.2 g/m2) and altered mitral ring velocities. In univariable logistic regression, FLI correlated with LV remodeling risk (OR 1.028, p = 0.05). The optimal cutoff point for FLI predicting the RWT > 0.42 was 26.38 (OR 10.6, p = 0.04, sensitivity 0.857, specificity 0.657). CONCLUSIONS FLI correlates with RWT in patients with T1D independently of diabetes metabolic control and hypothetically may support recognizing T1D patients with a higher risk of LV remodeling.
Collapse
Affiliation(s)
- Klaudia Czarnik
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Central Teaching Hospital in Lodz, 251 Pomorska Street, 92-213, Lodz, Poland.
| | - Zbigniew Sablik
- Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | - Anna Borkowska
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jarosław Drożdż
- Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Central Teaching Hospital in Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| |
Collapse
|
47
|
Zeng JQ, Zhou HF, Du HX, Wu YJ, Mao QP, Yin JJ, Wan HT, Yang JH. Tongmai Hypoglycemic Capsule Attenuates Myocardial Oxidative Stress and Fibrosis in the Development of Diabetic Cardiomyopathy in Rats. Chin J Integr Med 2025; 31:251-260. [PMID: 39644459 DOI: 10.1007/s11655-024-4002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To investigate the effect of Tongmai Hypoglycemic Capsule (THC) on myocardium injury in diabetic cardiomyopathy (DCM) rats. METHODS A total of 24 Sprague Dawley rats were fed for 4 weeks with high-fat and high-sugar food and then injected with streptozotocin intraperitoneally for the establishment of the DCM model. In addition, 6 rats with normal diets were used as the control group. After modeling, 24 DCM rats were randomly divided into the model, L-THC, M-THC, and H-THC groups by computer generated random numbers, and 0, 0.16, 0.32, 0.64 g/kg of THC were adopted respectively by gavage, with 6 rats in each group. After 12 weeks of THC administration, echocardiography, histopathological staining, biochemical analysis, and Western blot were used to detect the changes in myocardial structure, oxidative stress (OS), biochemical indexes, protein expressions of myocardial fibrosis, and nuclear factor erythroid 2-related faactor 2 (Nrf2) element, respectively. RESULTS Treatment with THC significantly decreased cardiac markers such as creatine kinase, lactate dehydrogenase, and creatine kinase-MB, etc., (P<0.01); enhanced cardiac function indicators including heart rate, ejection fraction, cardiac output, interventricular septal thickness at diastole, and others (P<0.05 or P<0.01); decreased levels of biochemical indicators such as fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate transaminase, (P<0.05 or P<0.01); and decreased the levels of myocardial fibrosis markers α-smooth muscle actin (α-SMA), and collagen I (Col-1) protein (P<0.01), improved myocardial morphology and the status of myocardial interstitial fibrosis. THC significantly reduced malondialdehyde levels in model rats (P<0.01), increased levels of catalase, superoxide dismutase, and glutathione (P<0.01), and significantly increased the expression of Nrf2, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and superoxide dismutase 2 proteins in the left ventricle of rats (P<0.01). CONCLUSION THC activates the Nrf2 signaling pathway and plays a protective role in reducing OS injury and cardiac fibrosis in DCM rats.
Collapse
Affiliation(s)
- Jie-Qiong Zeng
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hui-Fen Zhou
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hai-Xia Du
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Yu-Jia Wu
- College of Life Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Qian-Ping Mao
- College of Life Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Jun-Jun Yin
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hai-Tong Wan
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Jie-Hong Yang
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China.
| |
Collapse
|
48
|
Cieri IF, Rodriguez Alvarez AA, Patel S, Boya M, Nurko A, Teeple W, Dua A. TEG-Guided Anticoagulation Assessment in Deep Vein Arterialization: A Prospective Analysis. Ann Vasc Surg 2025; 112:287-297. [PMID: 39733999 DOI: 10.1016/j.avsg.2024.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Deep vein arterialization (DVA) is an innovative surgical technique aimed at enhancing blood flow in compromised limbs facing amputation. Maintenance of flow postrevascularization is crucial to limb salvage. As this is a new technique, no standardized thromboprophylaxis regime is currently established, and postprocedure thromboprophylaxis is at the discretion of the proceduralist. This study aims to evaluate coagulation profiles using viscoelastic studies in peripheral artery disease patients who underwent DVA, assessing the impact of various postprocedure thromboprophylaxis regimens. METHODS Patients (aged > 60 years) undergoing DVA were prospectively evaluated using thromboelastography at baseline, 1, 3, and 6 months (2020-2024). Postprocedure thromboprophylaxis included mono antiplatelet therapy (MAPT), MAPT + direct oral anticoagulant (DOAC), dual antiplatelet therapy (DAPT), or DAPT + DOAC. Coagulation profiles were analyzed using descriptive statistics. RESULTS Among 16 patients (mean age 66.6 years, 75% male/Caucasian), hypertension and hyperlipidemia were present in 91%, and diabetes in 88%. The DAPT + DOAC group showed consistently superior platelet inhibition with the lowest adenosine diphosphate maximum amplitude values throughout baseline (35.65 mm vs. 42.2-65.03 mm in other groups), 1 month (26.7 mm vs. 32.14-69.4 mm), 3 months (27.36 mm vs. 32.2-39.97 mm), and 6 months (43.7 mm vs. 50.2-50.5 mm). MAPT demonstrated the slowest clot strengthening (citrated kaolin angle 65.25° vs. 68.7-71.55°). CONCLUSION Thromboelastography with platelet mapping demonstrated enhanced platelet inhibition and reduced clot formation in the DAPT + DOAC group, suggesting the importance of coagulation monitoring.
Collapse
Affiliation(s)
- Isabella F Cieri
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA
| | | | - Shiv Patel
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA
| | - Mounika Boya
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA
| | - Andrea Nurko
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA
| | - William Teeple
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA
| | - Anahita Dua
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
49
|
Houbachi L, Walker PM, Fournel I, Ksiazek E, Petit JM, Cochet A, Leclercq T, Roger A, Simoneau I, Bouillet B, Guenancia C. Evolution of myocardial steatosis in high cardiovascular risk T2DM patients treated by GLP1 receptor agonists: LICAS study. Diabetes Res Clin Pract 2025; 221:112017. [PMID: 39900263 DOI: 10.1016/j.diabres.2025.112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND We hypothesized that the reduction of intramyocardial fat content may be involved in the cardioprotective effect of glucagon-like peptide-1 receptor agonists (GLP1-RA) in patients with type 2 diabetes (T2D). Therefore, we aimed to evaluate the change in intramyocardial triglyceride content in T2D patients treated with GLP1-RA. METHODS This monocentric proof-of-concept cohort study included patients with unbalanced T2D prior to the introduction of GLP1-RA. Patients underwent cardiac magnetic resonance imaging (MRI) coupled with nuclear magnetic resonance (NMR) spectroscopy at baseline and six months after the introduction (M6) of a GLP1-RA to assess changes in intramyocardial triglyceride levels and morphological, functional, and cardiac tissue parameters. The relative delta (Δr) between baseline and M6 was calculated and analyzed by Student test or sign test. RESULTS Twenty-six patients (mean age = 62.2 ± 6.7 years, median HbA1c = 9.1 %) fulfilled inclusion criteria and had both NMR measures. Compared with baseline, relative intramyocardial triglyceride levels significantly decreased after six months of treatment (mean Δr = -26 % [95 %CI:-39; -13]p = 0.003), as well as glycated hemoglobin (HbA1c) (median Δr = -26 % [IQR:25], p < 0.0001), body mass index (BMI) (mean Δr = -6% [-9; -4], p < 0.0001) and left ventricular mass (mean Δr = -6 [-12; -1] p = 0.02). The relative evolution of intramyocardial triglyceride content was not correlated with the relative evolution of HbA1c (r = 0.10) and BMI (r = -0.02). CONCLUSIONS We demonstrate a significant reduction in intramyocardial triglyceride content in patients with T2D after six months of treatment with GLP1-RA. The lack of correlation with reductions in HbA1c and BMI suggests a specific effect of GLP1-RA on myocardial steatosis, which might contribute to their previously demonstrated cardiovascular benefits.
Collapse
Affiliation(s)
- Lina Houbachi
- Department of Endocrinology and Diabetology, CHU Dijon 21000 Dijon, France
| | - Paul Michael Walker
- Medical Imaging Department, CHU Dijon / ICMUB Laboratory, CNRS UMR 6302, University of Burgundy, France
| | - Isabelle Fournel
- CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Epidémiologique Clinique F21000 Dijon, France
| | - Elea Ksiazek
- CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Epidémiologique Clinique F21000 Dijon, France
| | - Jean-Michel Petit
- Department of Endocrinology and Diabetology, CHU Dijon 21000 Dijon, France; INSERM Research Center U1231, Team Padys 21000 Dijon, France; University of Burgundy 21000 Dijon, France
| | - Alexandre Cochet
- Medical Imaging Department, CHU Dijon / ICMUB Laboratory, CNRS UMR 6302, University of Burgundy, France
| | | | - Antoine Roger
- Cardiology Department, CHU Dijon 21000 Dijon, France
| | - Isabelle Simoneau
- Department of Endocrinology and Diabetology, CHU Dijon 21000 Dijon, France
| | - Benjamin Bouillet
- Department of Endocrinology and Diabetology, CHU Dijon 21000 Dijon, France; INSERM Research Center U1231, Team Padys 21000 Dijon, France; University of Burgundy 21000 Dijon, France
| | - Charles Guenancia
- Cardiology Department, CHU Dijon 21000 Dijon, France; Epidemiology of Cerebro- and Cardiovascular Diseases (EA 7460), UFR Science de Santé, Université de Bourgogne 21000 Dijon, France.
| |
Collapse
|
50
|
Pan J, Chen MY, Jiang CY, Zhang ZY, Yan JL, Meng XF, Han YP, Lou YY, Yang JT, Qian LB. Luteolin alleviates diabetic cardiac injury related to inhibiting SHP2/STAT3 pathway. Eur J Pharmacol 2025; 989:177259. [PMID: 39788407 DOI: 10.1016/j.ejphar.2025.177259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Diabetic cardiomyopathy, a heart disease resulting from diabetes mellitus, inflicts structural and functional damage to the heart. Recent studies have highlighted the potential role of luteolin, a flavonoid, in mitigating diabetic cardiovascular injuries. The Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is implicated in exacerbating diabetes- and obesity-related complications. Interestingly, luteolin has been shown to inhibit protein tyrosine phosphatases, but it's unclear how SHP2 relates to luteolin's protective effects against diabetic heart disease. Here, we hypothesized that the inhibition of SHP2 signaling could play a role in luteolin's protective action against diabetic heart injury. Diabetes was induced in male Sprague-Dawley rats through a high-fat diet followed by a single intraperitoneal dose of streptozotocin (30 mg/kg). Five weeks post-diabetes induction, these rats were intraperitoneally injected with luteolin at varying doses (5, 10, 20 mg/kg) every other day for an additional 5 weeks. Then cardiac function was assessed, and hearts were isolated for further analysis. We found that luteolin notably improved cardiac function, inhibited cardiac hypertrophy and fibrosis, reduced levels of inflammatory factors and reactive oxygen species, and activated superoxide dismutase. Importantly, luteolin treatment also reduced the expression of SHP2 and phosphorylated signal transducer and activator of transcription 3 (STAT3) in a dose-dependent manner. These findings suggest that luteolin protects the diabetic heart against inflammation, oxidative stress, hypertrophy, and fibrosis, which may relate to down-regulating cardiac SHP2/STAT3 signaling.
Collapse
Affiliation(s)
- Jie Pan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Meng-Yuan Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China; Department of Clinical Laboratory Medicine, First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Chun-Yan Jiang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zi-Yan Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jia-Lin Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xiang-Fei Meng
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yu-Peng Han
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jin-Ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|