1
|
Li C, Chen X, Zha W, Fang S, Shen J, Li L, Jiang H, Tian P. Impact of gut microbiota in chronic kidney disease: natural polyphenols as beneficial regulators. Ren Fail 2025; 47:2506810. [PMID: 40441674 PMCID: PMC12123969 DOI: 10.1080/0886022x.2025.2506810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/04/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) poses a severe health risk with high morbidity and mortality, profoundly affecting patient quality of life and survival. Despite advancements in research, the pathophysiology of CKD remains incompletely understood. Growing evidence links CKD with shifts in gut microbiota function and composition. Natural compounds, particularly polyphenols, have shown promise in CKD treatment due to their antioxidant and anti-inflammatory properties and their ability to modulate gut microbiota. This review discusses recent progress in uncovering the connections between gut microbiota and CKD, including microbiota changes across different kidney diseases. We also examine metabolite alterations,such as trimethylamine-N-oxide, tryptophan derivatives, branched-chain amino acids, short-chain fatty acids, and bile acids,which contribute to CKD progression. Further, we outline the mechanisms through which polyphenols exert therapeutic effects on CKD, focusing on signaling pathways like nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), phosphatidylin-ositol-3-kinase (PI3K)/protein kinase B (Akt), and toll like receptors (TLR), as well as their impact on gut microbiota. Lastly, we consider how dietary polyphenols could be harnessed as bioactive drugs to slow CKD progression. Future research should prioritize multi-omics approaches to identify patients who would benefit from polyphenolic interventions, enabling personalized treatment strategies to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Cheng Li
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Department of Nephrology, Jiujiang University affiliated Hospital, Jiu’jiang, Jiang’xi, China
| | - Xulong Chen
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Weiwei Zha
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Sitian Fang
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nan’chang, Jiangxi, China
| | - Jiangwen Shen
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Lin Li
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Hongli Jiang
- Department of Blood Purification, Kidney Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
| | - PuXun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an, Shaan’xi, China
| |
Collapse
|
2
|
Zhou S, Wang K, Huang J, Xu Z, Yuan Q, Liu L, Wang Z, Miao J, Wang H, Wang T, Guan W, Ding C. Indole-3-lactic acid suppresses colorectal cancer via metabolic reprogramming. Gut Microbes 2025; 17:2508949. [PMID: 40409349 PMCID: PMC12118437 DOI: 10.1080/19490976.2025.2508949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/11/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025] Open
Abstract
Research indicates that abnormal gut microbiota metabolism is linked to colorectal cancer (CRC) progression, but the role of microbiota-related tryptophan metabolism disruption remains unclear. Using metagenomic sequencing and targeted Trp metabolomics, our research identified that CRC patients had abnormal indole-3-lactic acid (ILA) levels, which were related to tumor malignancy. Exogenous ILA administration suppressed CRC development in AOM/DSS induced and xenograft mice models. Furthermore, in vitro experiments demonstrated that ILA inhibits tumor cell proliferation, migration, and anti-apoptotic capabilities. Mechanistically, ILA appears to directly occupy the phosphorylation sites of STAT3, leading to a reduction in intracellular phosphorylated STAT3 (p-STAT3) levels and the inhibition of the HK2 pathway, thereby downregulating glucose metabolism in cancer cells. Notably, this inhibition is independent of the aryl hydrocarbon receptor (AHR). In conclusion, our research findings demonstrate that alterations in tryptophan metabolism among CRC patients can influence tumor progression and reveal a novel mechanism through which ILA exerts its inhibitory effects on CRC. These findings offer new insights into the role of gut microbiota in CRC and identify potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Kai Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | | | - Zhen Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Qinggang Yuan
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | | | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Gao H, Sun M, Li A, Gu Q, Kang D, Feng Z, Li X, Wang X, Chen L, Yang H, Cong Y, Liu Z. Microbiota-derived IPA alleviates intestinal mucosal inflammation through upregulating Th1/Th17 cell apoptosis in inflammatory bowel disease. Gut Microbes 2025; 17:2467235. [PMID: 39956891 PMCID: PMC11834480 DOI: 10.1080/19490976.2025.2467235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
The gut microbiota-derived metabolite indole-3-propionic acid (IPA) plays an important role in maintaining intestinal mucosal homeostasis, while the molecular mechanisms underlying IPA regulation on mucosal CD4+ T cell functions in inflammatory bowel disease (IBD) remain elusive. Here we investigated the roles of IPA in modulating mucosal CD4+ T cells and its therapeutic potential in treatment of human IBD. Leveraging metabolomics and microbial community analyses, we observed that the levels of IPA-producing microbiota (e.g. Peptostreptococcus, Clostridium, and Fournierella) and IPA were decreased, while the IPA-consuming microbiota (e.g. Parabacteroides, Erysipelatoclostridium, and Lachnoclostridium) were increased in the feces of IBD patients than those in healthy donors. Dextran sulfate sodium (DSS)-induced acute colitis and CD45RBhighCD4+ T cell transfer-induced chronic colitis models were then established in mice and treated orally with IPA to study its role in intestinal mucosal inflammation in vivo. We found that oral administration of IPA attenuated mucosal inflammation in both acute and chronic colitis models in mice, as characterized by increased body weight, and reduced levels of pro-inflammatory cytokines (e.g. TNF-α, IFN-γ, and IL-17A) and histological scores in the colon. We further utilized RNA sequencing, molecular docking simulations, and surface plasmon resonance analyses and identified that IPA exerts its biological effects by interacting with heat shock protein 70 (HSP70), leading to inducing Th1/Th17 cell apoptosis. Consistently, ectopic expression of HSP70 in CD4+ T cells conferred resistance to IPA-induced Th1/Th17 cell apoptosis. Therefore, these findings identify a previously unrecognized pathway by which IPA modulates intestinal inflammation and provide a promising avenue for the treatment of IBD.
Collapse
Affiliation(s)
- Han Gao
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Mingming Sun
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Ai Li
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Qiaoyan Gu
- Department of Gastroenterology, Yanan University Affiliated Hospital, Yan’an, Shaanxi, China
| | - Dengfeng Kang
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhongsheng Feng
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xiaoyu Li
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Chen
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhanju Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|
4
|
Wang X, Hu M, Wu W, Lou X, Gao R, Ma T, Dheen ST, Cheng J, Xiong J, Chen X, Wang J. Indole derivatives ameliorated the methamphetamine-induced depression and anxiety via aryl hydrocarbon receptor along "microbiota-brain" axis. Gut Microbes 2025; 17:2470386. [PMID: 39996473 PMCID: PMC11864316 DOI: 10.1080/19490976.2025.2470386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
In addition to the high neurotoxicity, depression, and anxiety are the most prominent characteristics of methamphetamine (Meth) withdrawal. Studies to date on the issue of Meth-associated depression and anxiety are focused on the brain, however, whether peripheral homeostasis, especially the "microbiota-gut" axis participates in these adverse outcomes, remains poorly understood. In the current study, with the fecal microbiota transplantation (FMT) assay, the mice received microbiota from Meth withdrawal mice displayed marked depression and anxiety behaviors. The 16S rRNA sequencing results showed that Meth withdrawal contributed to a striking reduction of Akkermansia, Bacteroides, Faecalibaculum, Desulfovibrio, and Anaerostipes, which are known to be associated with tryptophan (TRP) metabolism. Noteworthily, the substantial decreases of the indole derivatives from the TRP metabolic pathway, including IAA, IPA, ILA, IET, IArA, IAld, and TRM were observed in the serum of both Meth abusing humans and mice during Meth withdrawal with the UHPLC-MS/MS analysis. Combining the high and low TRP diet mouse model, the mice with high TRP diet obviously impeded Meth-associated depression and anxiety behaviors, and these results were further strengthened by the evidence that administration of IPA, IAA, and indole dramatically ameliorated the Meth induced aberrant behaviors. Importantly, these protective effects were remarkably counteracted in aryl hydrocarbon receptor knockout (AhR KO) mice, underlining the key roles of microbiota-indoles-AhR signaling in Meth-associated depression and anxiety. Collectively, the important contribution of the present work is that we provide the first evidence that peripheral gut homeostasis disturbance but not limited to the brain, plays a key role in driving the Meth-induced depression and anxiety in the periods of withdrawal, especially the microbiota and the indole metabolic disturbance. Therefore, targeting AhR may provide novel insight into the therapeutic strategies for Meth-associated psychological disorders.
Collapse
Affiliation(s)
- Xi Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miaoyang Hu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weilan Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinyu Lou
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tengfei Ma
- Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jie Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Xiong
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Zünd JN, Mujezinovic D, Reichlin M, Plüss S, Caflisch M, Robinson S, Lacroix C, Pugin B. Novel cross-feeding human gut microbes metabolizing tryptophan to indole-3-propionate. Gut Microbes 2025; 17:2501195. [PMID: 40336187 PMCID: PMC12064059 DOI: 10.1080/19490976.2025.2501195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Tryptophan-derived indoles produced by the gut microbiota, particularly indole-3-propionate (IPA), are key compounds associated with gastrointestinal balance and overall health. Reduced levels of IPA have been associated with inflammatory bowel disease, type 2 diabetes, and colorectal cancer. Since fiber-rich diets have been shown to promote IPA, we aimed to decipher fiber-specific effects and identify associated IPA-producing taxa in a range of healthy individuals. We cultured fecal microbiota from 16 adults with tryptophan and eight different dietary fibers and monitored community shifts by 16S rRNA gene amplicon sequencing and tryptophan-derived indoles using targeted liquid chromatography with diode array detection. The concentrations and types of indoles produced were donor-specific, with pectin strongly promoting IPA production in certain donors. IPA production was not associated with any known IPA producer but with the pectin-utilizing species Lachnospira eligens, which produced indole-3-lactate (ILA) in vitro, the IPA precursor. Supplementation of ILA in additional fecal microbiota cultures (n = 6) revealed its effective use as a substrate for IPA production. We identified a novel IPA producer, Enterocloster aldenensis, which produced IPA exclusively from ILA but not from tryptophan. Co-culture of L. eligens and E. aldenensis resulted in IPA production, providing new evidence for an ILA cross-feeding mechanism that may contribute to the IPA-promoting effects observed with pectin. Overall, we highlight the potential for targeted dietary interventions to promote beneficial gut taxa and metabolites.
Collapse
Affiliation(s)
- Janina N. Zünd
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Denisa Mujezinovic
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Markus Reichlin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Marina Caflisch
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Serina Robinson
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Huang R, Zhou G, Cai J, Cao C, Zhu Z, Wu Q, Zhang F, Ding Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025; 17:2483783. [PMID: 40176259 PMCID: PMC11988223 DOI: 10.1080/19490976.2025.2483783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cha Cao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Ntiri ES, Chun Nin Wong A. Microbial metabolites as engines of behavioral variation across animals. Gut Microbes 2025; 17:2501191. [PMID: 40357979 PMCID: PMC12077453 DOI: 10.1080/19490976.2025.2501191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The microbiome, especially that present in the gut, has emerged as a key modulator of animal behavior. However, the extent of its influence across species and behavioral repertoires, as well as the underlying mechanisms, remains poorly understood. Increasing evidence suggests that microbial metabolites play an important role in driving behavioral variation. In this review, we synthesize findings from vertebrates to invertebrates, spanning both model and non-model organisms, to define key groups of microbial-derived metabolites involved in modulating seven distinct behaviors: nutrition, olfaction, circadian rhythms, reproduction, locomotion, aggression, and social interactions. We discuss how these microbial metabolites interact with host chemosensory systems, neurotransmitter signaling, and epigenetic modifications to shape behavior. Additionally, we highlight critical gaps in mechanistic understanding, including the need to map additional host receptors and signaling pathways, as well as the untapped potential of microbial biosynthetic gene clusters as sources for novel bioactive compounds. Advancing these areas will enhance understanding of the microbiome's role in behavioral modulation and open new avenues for microbiome-based interventions for behavioral disorders.
Collapse
Affiliation(s)
- Eric Siaw Ntiri
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Adam Chun Nin Wong
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Shen H, Wang D, Huang Y, Yang Y, Ji S, Zhu W, Liu Q. 2,3,7,8-tetrachlorodibenzofuran modulates intestinal microbiota and tryptophan metabolism in mice. Life Sci 2025; 373:123679. [PMID: 40324646 DOI: 10.1016/j.lfs.2025.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Persistent organic pollutants (POPs) are known to disrupt gut microbiota composition and host metabolism, primarily through dietary exposure. In this study, we investigate the impact of 2,3,7,8-tetrachlorodibenzofuran (TCDF) on gut microbiota and host metabolic processes. RNA-seq analysis revealed that TCDF exposure significantly affected tryptophan metabolism, lipid metabolic pathways, and immune system function. Metagenomic and metabolomic analyses further showed that TCDF reduced the abundance of Mucispirillum schaedleri and levels of two key tryptophan metabolites, indole-3-carboxaldehyde (3-IAld) and Indole acrylic acid (IA). Supplementation with 3-IAld and IA alleviated TCDF-induced liver toxicity in mouse, as evidenced by reduced Cyp1a1 expression, and mitigated intestinal inflammation, reflected by lower pro-inflammatory cytokines (Ifn-γ and Il-1β) in the colon. Additionally, 3-IAld and IA supplementation enhanced intestinal barrier function, as demonstrated by increased Mucin 2 (MUC2) expression in the gut mucosa of mouse. These findings suggest that TCDF exposure disrupts the gut microbiome and host metabolic balance, and highlight the potential therapeutic role of tryptophan-derived metabolites in mitigating environmental pollutant-induced damage.
Collapse
Affiliation(s)
- Hanxiao Shen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ding Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuxin Huang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yueying Yang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shuqi Ji
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Zhu
- SINOPEC-SK (Wuhan) Petrochemical Co., Ltd., Wuhan 430082, China
| | - Qing Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; China Meheco Group Co.,Ltd., Beijing 100061, China.
| |
Collapse
|
9
|
Yang S, Pan H, Wang T, Zhou X, Fan L, Xiao H, Zhou Z, Xiao Y, Shi D. Bacillus paralicheniformis-mediated gut microbiota promotes M2 macrophage polarization by inhibiting P38 MAPK signaling to alleviate necrotizing enterocolitis and apoptosis in mice. Microbiol Res 2025; 296:128136. [PMID: 40081233 DOI: 10.1016/j.micres.2025.128136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Clostridial necrotizing enterocolitis is a severe gastrointestinal disease induced by Clostridium, strongly associated with intestinal dysbiosis. Fecal microbiota transplantation (FMT) has proven effective in treating gastrointestinal diseases by remodeling intestinal microbial homeostasis. However, it remains unclear whether FMT from donors with beneficial microbiota can improve the recipient's intestinal function more efficiently. This study found that probiotic Bacillus paralicheniformis SN-6-mediated gut microbiota effectively prevent Clostridial necrotizing enteritis and explored the underlying molecular mechanisms. Data demonstrated that SN-6 altered gut microbiota composition, ameliorated Clostridium perfringens-induced intestinal microbiota dysbiosis and metabolic reprogramming, particularly enhancing tryptophan metabolism. This led to a marked reduction in intestinal barrier damage and inflammation. FMT from SN-6-treated mice reduced jejunal inflammation in Clostridium perfringens-infected mice, strengthened jejunal barrier and enriched beneficial bacteria, such as Lactobacillus, Blautia, Akkermansia. Furthermore, 3-indoleacetic acid (IAA), a metabolite enriched by SN-6, activated aryl hydrocarbon receptor (AhR), suppressed the P38 mitogen-activated protein kinase (P38 MAPK) signaling, and drove macrophage polarization from M0 to M2-type, thereby reducing apoptosis and excessive inflammation. This study highlights Bacillus paralicheniformis SN-6 as a key modulator of intestinal immunomodulation via the gut microbiota-IAA-AhR-P38 MAPK axis, offering a potential therapeutic target for preventing and controlling clostridial necrotizing enteritis.
Collapse
Affiliation(s)
- Shumin Yang
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huachun Pan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingyang Wang
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xinxin Zhou
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lele Fan
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongde Xiao
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zutao Zhou
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuncai Xiao
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Deshi Shi
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Ruszkowski J, Kachlik Z, Walaszek M, Storman D, Podkowa K, Garbarczuk P, Jemioło P, Łyzińska W, Nowakowska K, Grych K, Dębska-Ślizień AM. Fecal microbiota transplantation from patients into animals to establish human microbiota-associated animal models: a scoping review. J Transl Med 2025; 23:662. [PMID: 40528217 DOI: 10.1186/s12967-025-06645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/23/2025] [Indexed: 06/20/2025] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) from humans with specific medical conditions to animal models can demonstrate causality by inducing or exacerbating pathophenotypes, linking the gut microbiota to health outcomes. METHODS We conducted a scoping review searching MEDLINE, EMBASE, Scopus, and Web of Science through July 2024 to identify human noninfectious diseases studied using FMT in animal models, investigate FMT methodologies, and assess the feasibility of systematic reviews on the role of the microbiota in specific diseases. RESULTS From 605 reports of 489 studies, we found that inflammatory bowel diseases, irritable bowel syndrome, obesity, colorectal cancer, and depression were the most commonly studied, with cancer research focusing on immunotherapy non-responsiveness. In a random sample of studies, gastrointestinal outcomes were most frequently reported, with remarkably high rates (> 80%) of successful induction of disease-specific alterations for intestinal barrier function, gastrointestinal inflammation, circulating immune parameters, and fecal metabolites. Most studies used C57BL/6 mice and oral gavage administration, with recipients being either germ-free or antibiotic-pretreated. We created tables linking conditions with publications to facilitate future systematic reviews. CONCLUSIONS Although human-to-animal FMT studies cover diverse conditions, methodological heterogeneity and inconsistent reporting hinder comparability. Standardized protocols and guidelines are needed. For several conditions, sufficient literature exists to assess the role of the gut microbiota in human health through systematic reviews.
Collapse
Affiliation(s)
- Jakub Ruszkowski
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Zofia Kachlik
- Student Scientific Circle at the Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Walaszek
- Student Scientific Circle at the Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Dawid Storman
- Department of Hygiene and Dietetics, Faculty of Medicine, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Podkowa
- Department of Pathophysiology, Jagiellonian University Medical College, ul. Czysta 18, Krakow, 31-121, Poland
| | - Paweł Garbarczuk
- Student Scientific Circle at the Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Weronika Łyzińska
- Student Scientific Circle at the Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Nowakowska
- Student Scientific Circle at the Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Konrad Grych
- Student Scientific Circle at the Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja M Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
11
|
Deng L, Tan KSW. From parasite to partner: unravelling the multifaceted role of Blastocystis in human health and disease. THE LANCET. MICROBE 2025:101155. [PMID: 40541220 DOI: 10.1016/j.lanmic.2025.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 06/22/2025]
Abstract
Blastocystis, a common protist in the human gut microbiota, has been identified as a key modulator of gut health and disease progression. Research highlights the involvement of Blastocystis in inflammatory bowel disease, cognitive function, and metabolic health. Despite an increasing interest on this topic, the literature on Blastocystis remains fragmented and often contradictory, with subtype-specific effects inadequately defined and their underlying mechanisms insufficiently elucidated. In this Personal View, we provide an in-depth discussion of the dual roles of Blastocystis subtypes that can either exacerbate gut inflammation by disrupting the epithelial barrier or confer protection by enhancing barrier integrity and inducing anti-inflammatory immune responses. We also examine the effect of Blastocystis on the gut-brain axis, identifying associations between Blastocystis colonisation and cognitive and behavioural changes mediated through alterations in gut microbial composition and metabolite profiles. Moreover, we highlight the association of Blastocystis colonisation with healthier dietary patterns and improved cardiometabolic profiles. These findings could contribute to a comprehensive understanding of Blastocystis and its potential as a biomarker of gut health.
Collapse
Affiliation(s)
- Lei Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kevin S W Tan
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Pan J, Gan L, Chen Y, Zhong L, Deng H, Huang L, Liang H. Agmatine ameliorates sepsis-related intestinal injury via the AhR-STAT3-IL-10 pathway. Mol Immunol 2025; 184:76-88. [PMID: 40516501 DOI: 10.1016/j.molimm.2025.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/01/2025] [Accepted: 06/07/2025] [Indexed: 06/16/2025]
Abstract
BACKGROUND Sepsis-related intestinal injury is essential in multi-organ dysfunction induced by the systemic inflammatory response. Agmatine (AGM) has anti-inflammatory, antioxidative, and immunomodulatory properties. However, no reports of AGM alleviating sepsis-related intestinal injury have been found. Therefore, this study intends to investigate the protective effects of AGM on sepsis-related intestinal injury and its potential mechanism. METHODS We first established a sepsis model by lipopolysaccharide (LPS) or cecum ligation perforation (CLP), and then used H&E staining, transmission electron microscopy (TEM), and TUNEL to examine the pathological changes in rat intestines after AGM treatment. ELISA was used to detect expression levels of inflammatory factors in ileal tissues and biochemical indexes of infectionin in serum. TNF-α induced Caco-2 cell inflammation model was established in vitro, and cell activity and proliferative capacity were detected by CCK8 and EdU after AGM treatment. The Caco-2 cell inflammation model with high or low expression of Aryl hydrocarbon receptor (AhR) was established, and whether AGM exerts anti-inflammatory effects via AhR/STAT3/IL-10 pathway was investigated using molecular docking, Co-IP, and Western Blot. RESULTS The histopathological staining demonstrated that AGM significantly reduced intestinal injury and the content of inflammatory factors IL-1β, IL-6, and TNF-α, improved systemic infection and the survival rate of septic mice, and restored intestinal barrier function in CLP rats. In vitro, AGM improved cell viability and proliferative capacity of the Caco-2 cell inflammation model. AGM inhibits inflammatory factor expression by activating AhR, decreasing HIF-1 protein expression, and activating the STAT3/IL-10 signaling pathway. DISCUSSION AND CONCLUSION AGM has the potential to ameliorate sepsis-related intestinal injury via the AhR-STAT3-IL-10 pathway, thereby offering theoretical basis for clinical treatment of sepsis.
Collapse
Affiliation(s)
- Junhua Pan
- College of Pharmacy, Hainan Medical University, Haikou, China; School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China; Guangdong Zhaoqing Aviation Vocational College, Zhaoqing, China
| | - Lianfang Gan
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Yaying Chen
- College of Pharmacy, Hainan Medical University, Haikou, China; School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Lifan Zhong
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Huiming Deng
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Ling Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Medical Products Administration, Haikou, China.
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
13
|
He J, Tang Q, Liu YC, Wang LJ, Chai YF. Impact of Diquat on the Intestinal Health and the Composition and Function of the Gut Microbiome. Antioxidants (Basel) 2025; 14:721. [PMID: 40563352 DOI: 10.3390/antiox14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 06/07/2025] [Accepted: 06/10/2025] [Indexed: 06/28/2025] Open
Abstract
Diquat (DQ) is extensively utilized as a herbicide in farming, and its intake can result in serious systemic toxicity due to its induction of oxidative stress (OS) and disruption of intestinal homeostasis. The gastrointestinal tract is one of the first systems exposed to DQ, and damage to this system can influence the general health of the host. Our review summarizes the toxic effects of DQ on the intestinal barrier integrity, gut microbiome, and microbial metabolites (e.g., short-chain fatty acids [SCFAs], bile acids). By elucidating the mechanisms linking DQ-induced OS to gut dysbiosis, mitochondrial dysfunction, and inflammation, our work provides critical insights into novel therapeutic strategies, including probiotics, antioxidants (e.g., hydroxytyrosol, curcumin), and selenium nanoparticles. These findings address a pressing gap in understanding environmental toxin-related gut pathology and offer potential interventions to mitigate systemic oxidative damage.
Collapse
Affiliation(s)
- Jiao He
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Qing Tang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Li-Jun Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| |
Collapse
|
14
|
Qin N, Xie X, Deng R, Gao S, Zhu T. The role of the tryptophan metabolites in gut microbiota-brain axis and potential treatments: a focus on ischemic stroke. Front Pharmacol 2025; 16:1578018. [PMID: 40556758 PMCID: PMC12185428 DOI: 10.3389/fphar.2025.1578018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/06/2025] [Indexed: 06/28/2025] Open
Abstract
Gut microbiota disturbances can elevate the risk of stroke by contributing to cerebrovascular events. Particularly, the gut tryptophan (TRP) metabolite is an essential mediator of the gut-brain axis. This review highlights the role of TRP metabolism in stroke, the influence of intestinal microbiomes on stroke pathology via TRP metabolism, and the gut-brain axis interactions. Recent studies indicate that various bioactive molecules produced via TRP metabolism can regulate various neurological functions and interrupt stroke pathophysiology. Moreover, the relationship between gut TRP metabolism and stroke development has been verified. TRP metabolism involves three pathways: kynurenine, 5-hydroxytryptamine, and indole, which potentially regulate post-stroke, may function as aryl hydrocarbon receptor agonists to modify neuronal excitotoxicity, and offer crucial targets for stroke treatment. This suggests that modulating TRP metabolite levels through various methods can enhance the prognosis of central nervous system diseases and restore microbiota-gut-brain axis functions.
Collapse
Affiliation(s)
- Na Qin
- Institute of Neuroregeneration & Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Rong Deng
- Institute of Neuroregeneration & Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shiman Gao
- Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Wang J, Lu S, Zhang C, Wang J, Wu H, Li G. Drug Interaction Potential of Berberine Hydrochloride When Co-Administered with Tofacitinib and Filgotinib in Rats. Drug Des Devel Ther 2025; 19:5043-5057. [PMID: 40524804 PMCID: PMC12168975 DOI: 10.2147/dddt.s491446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/23/2025] [Indexed: 06/19/2025] Open
Abstract
Propose The co-treatment of ulcerative colitis with berberine hydrochloride (BBR), the Janus kinase(JAK) inhibitor Tofacitinib (TOFA), and Fligotinib (FIGA) is feasible and sophisticated in terms of mechanism. However, no studies have yet explored their interactions. This study aimed to establish a highly sensitive, specific, and reproducible HPLC-MS/MS method for investigating the pharmacokinetic interactions between BBR-TOFA and BBR-FIGA in rats. Methods The analytes and internal standards were extracted from rat plasma using a mixed solvent of dichloromethane and ether (3:2 ratio). The mobile phase comprised a mixture of methanol (containing 0.1% formic acid) and water (containing 0.1% formic acid and 2 mm ammonium acetate), with a flow rate of 0.6 mL/min. Elution was performed in a gradient mode on a Phenomenex Kinetex column (50×3.0 mm, 2.6 μm). A systematic methodological validation was conducted according to the standards of the Chinese Pharmacopoeia, covering aspects such as specificity, calibration curve and linearity, residual effects, precision and accuracy, recovery, matrix effect, dilution integrity, and stability. Results All methodological validation parameters met the standards of the Chinese Pharmacopoeia, confirming the method's suitability for simultaneously determining the concentrations of BBR, TOFA, and FIGA in rat plasma. Pharmacokinetic experimental results indicate that TOFA and FIGA have no significant effect on the plasma concentration of BBR across various pharmacokinetic parameters. However, due to BBR's inhibition or induction of various drug-metabolizing enzymes, it significantly affects some of the pharmacokinetic parameters of TOFA and FIGA.
Collapse
Affiliation(s)
- Jinglong Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Shijia Lu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Chenxiao Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Junjie Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Huiru Wu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Guofei Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| |
Collapse
|
16
|
Kang Z, Jiang S, Fang JY, Chen H. Intestinal dysbiosis and colorectal cancer. Chin Med J (Engl) 2025; 138:1266-1287. [PMID: 40387510 DOI: 10.1097/cm9.0000000000003617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Indexed: 05/20/2025] Open
Abstract
ABSTRACT Colorectal cancer (CRC) is one of the leading causes of cancer-related morbidity and mortality worldwide, highlighting the urgent need for novel preventive and therapeutic strategies. Emerging research highlights the crucial role of the gut microbiota, including bacteria, fungi, viruses, and their metabolites, in the pathogenesis of CRC. Dysbiosis, characterized by an imbalance in microbial composition, contributes to tumorigenesis through immune modulation, metabolic reprogramming, and genotoxicity. Specific bacterial species, such as Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis , along with fungal agents like Candida species, have been implicated in CRC progression. Moreover, viral factors, including Epstein-Barr virus and human cytomegalovirus, are increasingly recognized for their roles in promoting inflammation and immune evasion. This review synthesizes the latest evidence on host-microbiome interactions in CRC, emphasizing microbial metabolites, such as short-chain fatty acids and bile acids, which may act as both risk factors and therapeutic agents. We further discuss the latest advances in microbiota-targeted clinical applications, including biomarker-assisted diagnosis, next-generation probiotics, and microbiome-based interventions. A deeper understanding of the role of gut microbiome in CRC pathogenesis could pave the way for diagnostic, preventive, and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ziran Kang
- Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Shanshan Jiang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jing-Yuan Fang
- Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
17
|
Suzuki Y, Ishioka K, Nakamura T, Miyazaki N, Marubashi S, Suzutani T. Function of Yogurt Fermented with the Lactococcus lactis 11/19-B1 Strain in Improving the Lipid Profile and Intestinal Microbiome in Hemodialysis Patients. Nutrients 2025; 17:1931. [PMID: 40507200 PMCID: PMC12157043 DOI: 10.3390/nu17111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/23/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES The number of chronic kidney disease (CKD) patients is increasing in Japan, and this population is at high risk of death from cardiovascular and cerebrovascular diseases. Therefore, prevention of arteriosclerosis as a common underlying cause of these diseases is required. In this study, we examined whether 11/19-B1 yogurt, which has been proven to reduce serum low-density lipoprotein (LDL) levels, can decrease the serum levels of indoxylsulfate and trimethylamine-N-oxide (TMAO), which are produced by intestinal microbiota and known to cause arteriosclerosis, through improving dysbiosis in hemodialysis patients. METHODS Nineteen dialysis patients consumed 50 g of 11/19-B1 yogurt daily for 8 weeks, and changes in serum lipid profile and uremic toxin levels, intestinal microbiome, as well as the frequency of bowel movement and stool characteristics were observed. RESULTS The results demonstrated that an intake of yogurt decreased serum LDL 99.3 to 88.5 (p = 0.049) and indoxylsulfate in seven of nine subjects with previously high concentrations, and improved stool characteristics as estimated by the Bristle stool score, although decreased HDL and no beneficial effect on serum TMAO was observed. CONCLUSIONS These results may suggest that the ingestion of 11/19-B1 yogurt provides a preventative effect against the progression of atherosclerosis and renal dysfunction.
Collapse
Affiliation(s)
- Yoshiki Suzuki
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan; (Y.S.); (K.I.); (N.M.)
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan;
- Department of Nephrology, Mito Red Cross Hospital, 3-12-48 Sannomaru, Mito 310-0011, Ibaragi, Japan;
| | - Ken Ishioka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan; (Y.S.); (K.I.); (N.M.)
| | - Taichi Nakamura
- Department of Nephrology, Mito Red Cross Hospital, 3-12-48 Sannomaru, Mito 310-0011, Ibaragi, Japan;
| | - Nozomu Miyazaki
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan; (Y.S.); (K.I.); (N.M.)
| | - Shigeru Marubashi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan;
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan; (Y.S.); (K.I.); (N.M.)
- Vaccine Center, Ohara General Hospital, 6-1 Agemachi, Fukushima 960-8611, Japan
| |
Collapse
|
18
|
Bui TA, O'Croinin BR, Dennett L, Winship IR, Greenshaw AJ. Pharmaco-psychiatry and gut microbiome: a systematic review of effects of psychotropic drugs for bipolar disorder. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40528728 DOI: 10.1099/mic.0.001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2025]
Abstract
Despite being one of the most common and debilitating mood disorders, bipolar disorder is often misdiagnosed and undertreated. Its pathogenesis is complex, with significant patient variability and inconsistent treatment effectiveness. The brain-gut-microbiota axis plays a critical role in bipolar disorder by modulating neurotransmitter secretion, gut peptides and systemic inflammation. However, the mechanisms by which psychotropic treatments influence gut microbiota composition and their implications for clinical outcomes remain poorly understood. This systematic review evaluated the impact of psychotropic drugs on gut microbiota and their potential role in bipolar disorder treatment outcomes. A comprehensive search across Ovid MEDLINE, Embase, APA PsycINFO, Scopus and PubMed yielded 314 articles, of which 12 met the inclusion criteria (last search: 13 August 2024). The studies included were those on adults with bipolar disorder type I or II receiving psychopharmacological treatments; those with group comparisons (e.g. healthy controls vs. medicated vs. non-medicated) investigating gut microbiome changes; and no restrictions applied to psychotic features, comorbid anxiety or prior treatment responses. Exclusions involved individual case reports, incomplete conference submissions or early terminated studies lacking efficacy analysis. Cochrane ROBINS-I V2 tool was used to measure the risk of bias, and the GRADE approach was utilized to rate the certainty of evidence in included studies. Two authors independently extracted data into Excel spreadsheets, categorizing demographic and clinical characteristics, describing microbiome analytic methods and summarizing findings on gut microbiome changes post-treatment. Given the high variability in methods and outcome measures across studies, all details were reported without data conversion. Data synthesis reveals that psychotropic treatments, including quetiapine and lithium, influence gut microbiota by increasing the abundance of beneficial bacteria supporting gut health and pathogenic bacteria linked to metabolic dysfunction. Notably, female patients exhibited more significant changes in microbial diversity following psychotropic treatment. Additionally, patients treated with psychotropics showed an increased prevalence of gut bacteria associated with multidrug antibiotic resistance. In bipolar patients treated with quetiapine, responders - those experiencing improved depressive symptom scores - displayed distinct gut microbiome profiles more closely resembling those of healthy individuals compared with non-responders. Responders also exhibited neural connectivity patterns similar to healthy subjects. These findings underscore the complex dual impact of psychotropic medications on gut microbiota, with potential consequences for both gut and mental health. While the enrichment of beneficial bacteria may support gut health, the rise in antibiotic-resistant and metabolically disruptive bacteria is concerning. Study limitations include methodological heterogeneity, inclusions of other psychiatric disorders, a high risk of bias in some studies due to incomplete statistical analyses or insufficient control for confounding factors and potential duplication of study populations arising from overlapping authorship. Further research is essential to elucidate the functional consequences of these microbial shifts and their influence on treatment efficacy. Nevertheless, this review highlights the potential of utilizing gut microbiota profiles to inform personalized treatment strategies, optimize therapeutic outcomes and minimize side effects in bipolar disorder. This study was registered with Open Science Framework (https://doi.org/10.17605/OSF.IO/3GUZR).
Collapse
Affiliation(s)
- Truong An Bui
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin R O'Croinin
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Liz Dennett
- Geoffrey and Robyn Sperber Health Sciences Library, University of Alberta, Edmonton, Alberta, Canada
| | - Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Greenshaw
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Rocha CS, Alexander KL, Herrera C, Weber MG, Grishina I, Hirao LA, Kramer DJ, Arredondo J, Mende A, Crakes KR, Fenton AN, Marco ML, Mills DA, Kappes JC, Smythies LE, Ziprin P, Sankaran-Walters S, Smith PD, Dandekar S. Microbial remodeling of gut tryptophan metabolism and indole-3-lactate production regulate epithelial barrier repair and viral suppression in human and simian immunodeficiency virus infections. Mucosal Immunol 2025; 18:583-595. [PMID: 39894082 DOI: 10.1016/j.mucimm.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Gut inflammatory diseases cause microbial dysbiosis. Human immunodeficiency virus-1 (HIV) infection disrupts intestinal integrity, subverts repair/renewal pathways, impairs mucosal immunity and propels microbial dysbiosis. However, microbial metabolic mechanisms driving repair mechanisms in virally inflamed gut are not well understood. We investigated the capability and mechanisms of gut microbes to restore epithelial barriers and mucosal immunity in virally inflamed gut by using a multipronged approach: an in vivo simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV/AIDS, ex vivo HIV-exposed human colorectal explants and primary human intestinal epithelial cells. SIV infection reprogrammed tryptophan (TRP) metabolism, increasing kynurenine catabolite levels that are associated with mucosal barrier disruption and immune suppression. Administration of Lactiplantibacillus plantarum or Bifidobacterium longum subsp. infantis into the SIV-inflamed gut lumen in vivo resulted in rapid reprogramming of microbial TRP metabolism towards indole-3-lactic acid (ILA) production. This shift accelerated epithelial repair and enhanced anti-viral defenses through induction of IL-22 signaling in mucosal T cells and aryl hydrocarbon receptor activation. Additionally, ILA treatment of human colorectal tissue explants ex vivo inhibited HIV replication by reducing mucosal inflammatory cytokine production and cell activation. Our findings underscore the therapeutic potential of microbial metabolic reprogramming of TRP-to-ILA and mechanisms in mitigating viral pathogenic effects and bolstering mucosal defenses for HIV eradication.
Collapse
Affiliation(s)
- Clarissa Santos Rocha
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, UK
| | - Carolina Herrera
- Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, United States
| | - Mariana G Weber
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Irina Grishina
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Lauren A Hirao
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Dylan J Kramer
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Juan Arredondo
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Abigail Mende
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Katti R Crakes
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Anne N Fenton
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, United States
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, United States
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, UK
| | - Lesley E Smythies
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, UK; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, UK
| | - Paul Ziprin
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London, UK
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Phillip D Smith
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, UK
| | - Satya Dandekar
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States.
| |
Collapse
|
20
|
Han T, Liu S, Liu H, Wang X, Yang X, Chan S, Tumanov S, Cannon RD, Yang Y, Han TL. The Role of Gut-Brain Tryptophan Metabolism and Fatty Acid Peroxidation in the Effect of Sleep Deprivation on Anxiety and Depression in PCOS Mice. Mol Neurobiol 2025:10.1007/s12035-025-05099-7. [PMID: 40450088 DOI: 10.1007/s12035-025-05099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in women of childbearing age. Numerous studies have indicated a significantly elevated incidence of depression and anxiety in women affected by PCOS, often attributed to dysbiosis of gut microbiota resulting from poor sleep quality. However, the intricate relationship between sleep disorders, gut microbiota, and depression/anxiety in PCOS remains unclear. In this study, we aimed to elucidate the effects of sleep deprivation on the anxiety and depression of PCOS mice through an investigation of the gut-brain axis in order to understand the potential microbial-host interactions contributing to the occurrence of these psychological disorders. We found that sleep deprivation induced symptoms of depression and anxiety in PCOS mice and exacerbated PCOS-like pathology. Moreover, sleep deprivation altered the gut microbiota composition by suppressing beneficial bacteria such as Lactobacillus and Ruminococcus species. Additionally, sleep deprivation upregulated intestinal tryptophan-kynurenine metabolism, increased intestinal wall permeability, promoted systemic inflammation, and compromised blood-brain barrier integrity. Furthermore, the hippocampal metabolomic analysis indicated that sleep deprivation affected the metabolism of fatty acid and oxylipins, upregulated the tryptophan-kynurenine metabolic pathway, and exhibited a significant correlation with anxiety and depressive behaviors. Overall, this study suggests that sleep deprivation plays a pivotal role in the pathological mechanism of depression and anxiety in PCOS mice by modulating tryptophan and lipid metabolism through the gut-brain axis.
Collapse
Affiliation(s)
- Ting Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University of PLA, Chongqing, China
| | - Shangjing Liu
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hao Liu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaojia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - ShanAn Chan
- Agilent Technology, Inc, Taiwan, Republic of China
| | - Sergey Tumanov
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia
| | - Richard D Cannon
- Department of Oral Sciences, Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Yang Yang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Huang F, Sun K, Zhou J, Bao J, Xie G, Lu K, Fan Y. Decoding tryptophan: Pioneering new frontiers in systemic lupus erythematosus. Autoimmun Rev 2025; 24:103809. [PMID: 40158642 DOI: 10.1016/j.autrev.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organ systems, with its pathogenesis intricately tied to genetic, environmental, and immune regulatory factors. In recent years, the aberration of tryptophan metabolism has emerged as a key player in the disease, particularly through the activation of the kynurenine pathway and its influence on immune regulation. This review delves into the critical pathways of tryptophan metabolism and its profound impact on the multi-system manifestations of SLE, including its connections to the nervous system, kidneys, skin, and other organs. Additionally, it examines how tryptophan metabolism modulates the function of various immune cell types. The review also explores potential therapeutic avenues targeting tryptophan metabolism, such as dietary interventions, probiotic modulation, IDO expression inhibition, and immunoadsorption techniques. While current research has underscored the pivotal role of tryptophan metabolism in the onset and progression of SLE, its full therapeutic potential remains to be fully elucidated. This review aims to provide a solid scientific foundation for therapeutic strategies based on modulating tryptophan metabolism in SLE, offering a comprehensive overview of both clinical and basic research in this rapidly evolving field.
Collapse
Affiliation(s)
- Fugang Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ke Sun
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiawang Zhou
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 310005, Zhejiang, China.
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
22
|
Gong J, Lu H, Li Y, Xu Q, Ma Y, Lou A, Cui W, Song W, Qu P, Chen Z, Quan L, Liu X, Meng Y, Li X. ACE2 shedding exacerbates sepsis-induced gut leak via loss of microbial metabolite 5-methoxytryptophan. MICROBIOME 2025; 13:136. [PMID: 40442816 PMCID: PMC12123736 DOI: 10.1186/s40168-025-02128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/29/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND Sepsis, a critical organ dysfunction resulting from an aberrant host response to infection, remains a leading cause of mortality in ICU patients. Recent evidence suggests that angiotensin-converting enzyme 2 (ACE2) contributes to intestinal barrier function, the mechanism of which is yet to be explored. Additionally, alterations in intestinal microbiota and microbial metabolites could affect gut homeostasis, thus playing a potential role in modulating sepsis progression. RESULTS ACE2 shedding weakens the integrity of the intestinal barrier in sepsis. Mice deficient in ACE2 exhibited increased intestinal permeability and higher mortality rates post-operation compared to their wild-type counterparts. Notably, ACE2 deficiency was associated with distinct alterations in gut microbiota composition and reductions in protective metabolites, such as 5-methoxytryptophan (5-MTP). Supplementing septic mice with 5-MTP ameliorated gut leak through enhanced epithelial cell proliferation and repair. The PI3K-AKT-WEE1 signaling pathway was identified as a key mediator of the beneficial effects of 5-MTP administration. CONCLUSION ACE2 plays a protective role in maintaining intestinal barrier function during sepsis, potentially through modulation of the gut microbiota and the production of key metabolite 5-MTP. Our study enriched the mechanisms by which ACE2 regulates gut homeostasis and shed light on further applications. Video Abstract.
Collapse
Affiliation(s)
- Jiacheng Gong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haoyang Lu
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuhan Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qihan Xu
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanyuan Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weihua Song
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Qu
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhuoer Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Linghao Quan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xi Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510515, China.
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
23
|
Zeng L, Yu B, Zeng P, Duoji Z, Zuo H, Lian J, Yang T, Dai Y, Feng Y, Yu P, Yang J, Yang S, Dou Q. Mediation effect and metabolic pathways of gut microbiota in the associations between lifestyles and dyslipidemia. NPJ Biofilms Microbiomes 2025; 11:90. [PMID: 40436871 PMCID: PMC12120021 DOI: 10.1038/s41522-025-00721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 05/08/2025] [Indexed: 06/01/2025] Open
Abstract
Whether the role of gut microbial features lies in the pathways from lifestyles to dyslipidemia remains unclear. In this cross-sectional study, we conducted a metagenome-wide association analysis and fecal metabolomic profiling in 994 adults from the China Multi-Ethnic cohort. A total of 26 microbial species were identified as mediators between lifestyle factors and risk for dyslipidemia. Specifically, the abundance of [Ruminococcus] gnavus mediated the associations between lifestyles and risks for dyslipidemia, elevated low-density lipoprotein cholesterol, elevated total cholesterol, and elevated triglycerides. [Ruminococcus] gnavus, Alistipes shahii, and Lachnospira eligens were replicated to be associated with dyslipidemia in an external validation cohort. The potential metabolic pathways included arachidonic acid, bile acid, and aromatic amino-acid metabolism.
Collapse
Affiliation(s)
- Lijun Zeng
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhuoma Duoji
- High Altitude Medical Research Center, School of Medicine, Tibet University, Lhasa, China
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jian Lian
- Institute of Chronic Non-Communicable Disease Control and Prevention, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Tingting Yang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yingxue Dai
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, China
| | - Peng Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiqi Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
- International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China.
| | - Qingyu Dou
- National Clinical Research Center for Geriatrics, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Li S, Tan H, Yang J, Yao H, Nie X, Peng X, Liu Q, Yang W, Liu G, Nie Q, Bian S, Huang X, Yin JY, Cui SW, Nie SP. Effects of Three Homogalacturonan-Type Pectins on Mice with Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:13075-13088. [PMID: 40376805 DOI: 10.1021/acs.jafc.4c11988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Pectin, a class of dietary fiber, has received increasing attention in recent years for its ameliorative effects on metabolic diseases. However, the structural variability of pectin leads to differential effects on these diseases. The intrinsic mechanism by which pectin, derived from different sources, differentially influences metabolic syndrome by interacting with gut microbiota and host metabolism remains elusive and warrants thorough investigation. To address this, we investigated the effects of HG-type pectins from apple, citrus, and pomelo on phenotypic expressions, inflammatory factors, oxidative stress, and serum hormone levels in mice with metabolic syndrome. In addition, we sought to identify pivotal bacterial species and metabolites by integrating genomics and metabolomics approaches. Our exploration also extended to the relationship between structural characteristics of pectins, gut microbiota, and metabolic syndrome. Our findings revealed that the three pectins diversely improved metabolic syndrome in mice, which correlated with gut microbiota and their beneficial metabolites. Notably, all three pectins were closely associated with Bacteroides and Bacteroides acidifaciens. Besides, the potential mediators of the therapeutic effects included Bacteroides, Lactococcus, and Lachnoclostriclum for apple pectin; Colidextribacter, Bacteroides, Lachnospiraceae_NK4A136_group, and Lachnoclostriclum for citrus pectin; and Lachnospiraceae_NK4A136_group, Bacteroides, and Mucispirillum for pomelo pectin. Metabolites such as arachidonic acid, kynurenic acid, lithocholic acid, deoxycholic acid, and indoleacetic acid, linked to these microbes, may serve as the mediators of pectin's benefits. Ultimately, the molecular weight, degree of esterification, and monosaccharide composition of pectins significantly influenced the outcomes. This study may contribute to a more nuanced understanding that can inform targeted nutritional strategies to modulate gut microbiota for metabolic syndrome management.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Hong Yao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xinke Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xiaomao Peng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qionglian Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Wanyu Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Guohui Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shuigen Bian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| |
Collapse
|
25
|
Yang W, Xu X, Xie R, Lin J, Hou Z, Xin Z, Cao X, Shi T. Tryptophan metabolites exert potential therapeutic activity in graves' orbitopathy by ameliorating orbital fibroblasts inflammation and proliferation. J Endocrinol Invest 2025:10.1007/s40618-025-02593-6. [PMID: 40423900 DOI: 10.1007/s40618-025-02593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025]
Abstract
PURPOSE Graves' orbitopathy (GO) is a sight-threatening organ-specific autoimmune disease with complicated pathogenesis. Gut microbiota-derived tryptophan (Trp) metabolites play important roles in immune-related diseases, but their role in GO remains unknown. METHODS Trp metabolism-associated gut flora was analyzed by 16 S sequencing in GO patients and controls. Serum metabolomics profiling was performed to assess Trp metabolic pathway. Trp metabolites levels were measured by ELISA in 401 serum samples from a case-control study, and their effects on inflammation and proliferation in orbital fibroblasts were evaluated in vitro. RESULTS Trp metabolism-associated gut flora, including phylum Firmicutes and genus Anaerostipes, were significantly down-regulated in GO patients. Serum metabolomics revealed significant enrichment of Trp metabolic pathway in both GO and Graves' disease (GD) groups. Serum levels of indolepropionic acid (IPA), indole-3-lactate (ILA), and indoleacetic acid (IAA) were significantly decreased in both GD and GO patients compared to controls, with IAA levels further reduced in GO compared to GD patients. Notably, active GO patients had significantly lower IAA levels compared to inactive ones. Moreover, the levels of IAA were negatively correlated with clinical activity score and serum thyrotropin receptor antibody (TRAb) in GO patients. In vitro, IPA, ILA, and IAA mitigated TNFα-induced inflammation and proliferation in orbital fibroblasts by suppressing the Akt signaling pathway. CONCLUSION Trp metabolites IAA maybe a novel biomarker for GO progression. And IPA, ILA and IAA may play a protective role in GO by regulating inflammation and proliferation in orbital fibroblasts, suggesting their potential as therapeutic targets for GO treatment.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xinyu Xu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, China
| | - Rongrong Xie
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jiaqi Lin
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhijia Hou
- Beijing Tongren Hospital, Beijing Tongren Eye Center, Capital Medical University, Beijing, 100176, China
- Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100176, China
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Tingting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, China.
| |
Collapse
|
26
|
Wei Y, Wei M, Zhang L, Jia L, Huang X, Duan T, He Q, Wang K. Indole-3-lactic acid derived from tryptophan metabolism promotes trophoblast migration and invasion by activating the AhR/VCAN pathway. Placenta 2025; 165:4-15. [PMID: 40153926 DOI: 10.1016/j.placenta.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Preeclampsia (PE) is a life-threatening condition that is unique to human pregnancy, and it is a leading cause of maternal and neonatal morbidity and mortality. Currently, the only definitive treatment for PE is delivery of the placenta. Several studies have suggested that the gut microbiota and its derived metabolites may be associated with PE. Our previous work indicated that the level of indole-3-lactic acid (ILA), which is a metabolite derived from tryptophan (Trp) metabolism in the gut, is increased in PE patients. However, the effects of ILA on trophoblast function and its underlying mechanisms remain largely unknown. METHODS Transwell assays were conducted to assess the effects of ILA on trophoblast migration and invasion. Moreover, the aryl hydrocarbon receptor (AhR) signaling pathway was examined by qRT-PCR, western blotting and siRNA transfection. Additionally, RNA-seq analysis was performed to explore the mechanism underlying the ILA-mediated effects on trophoblast function. Finally, in vivo trophoblast invasion was evaluated through immunohistochemical analysis. RESULTS Our data demonstrated that ILA promoted HTR-8/SVneo cell migration and invasion through AhR signaling pathway activation. Mechanistically, VCAN upregulation played a key role in mediating the effects of ILA on trophoblasts after AhR activation. Notably, ILA supplementation improved spiral artery remodeling and increased trophoblast invasion in PE-like mice, primarily by increasing VCAN levels. CONCLUSIONS These data strongly suggest that elevated ILA in PE serve as a protective mechanism against trophoblast dysfunction. Therefore, we propose that ILA may be a novel and promising therapeutic approach for treating PE by enhancing trophoblast functions.
Collapse
Affiliation(s)
- Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lu Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Linyan Jia
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaojie Huang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
27
|
Ao RF, Yong HR, Hu YT, Huang YS, Gao JW, Tu C, Zhuang JS, Zhong ZM. Indolepropionic Acid Attenuates CFA-Induced Inflammatory Pain in Mice. J Pain Res 2025; 18:2643-2650. [PMID: 40433318 PMCID: PMC12109599 DOI: 10.2147/jpr.s525859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background Chronic pain is a global health issue that affects as many as 20% of the population. Inflammatory pain, an important form of chronic pain, negatively impacts patients' quality of life. Indolepropionic acid (IPA), a metabolite derived from the gut microbiota, has anti-inflammatory properties. However, its effect on inflammatory pain has not yet been explored. This study aims to investigate the impact of IPA on CFA-induced inflammatory pain. Methods A mouse model of inflammatory pain was established by injection of Complete Freund's Adjuvant (CFA) into the hind paw, and treated with the IPA supplement. Behavioral assessments were conducted using the Von Frey test, cold or hot plate tests. The expression of pain-related transcripts, such as transient receptor potential vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP) was evaluated. Degree of inflammation was assessed by the thickness of paws, degree of inflammatory infiltration and the changes of serum tumor necrosis factor (TNF)-α, interleukin(IL)-6 and IL-1β. Results IPA supplement improved the CFA-induced decrease of the mechanical withdrawal threshold and cold and thermal withdrawal latency. Meanwhile, IPA inhibited the CFA-induced upregulation of TRPV1 and CGRP in DRGs. In addition, IPA treatment also suppressed the CFA-induced local and systemic inflammation, including the swelling and thickening of the paw, local infiltration of inflammatory cells, and increased serum levels of TNF-α, IL-6, and IL-1β. Conclusion Our results show that IPA can improve pain-related behavior and alleviate inflammation in the CFA-treated mice, which provides new insight into potential strategies for inflammatory pain management.
Collapse
Affiliation(s)
- Rui-Feng Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Heng-Rui Yong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ying-Tao Hu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yu-Sheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jing-Shen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
28
|
Lin H, Shao X, Gu H, Yu X, He L, Zhou J, Zhong Z, Guo S, Li D, Chen F, Song Y, Xu L, Wang P, Meng L, Chi J, Lian J. Akkermansia muciniphila ameliorates doxorubicin-induced cardiotoxicity by regulating PPARα-dependent mitochondrial biogenesis. NPJ Biofilms Microbiomes 2025; 11:86. [PMID: 40410194 PMCID: PMC12102390 DOI: 10.1038/s41522-025-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/26/2025] [Indexed: 05/25/2025] Open
Abstract
Doxorubicin (DOX) is a key chemotherapeutic agent but is also a leading cause of DOX-induced cardiotoxicity (DIC), limiting its clinical use. Akkermansia muciniphila (A. muciniphila), known for its benefits as a probiotic in treating metabolic syndrome, has uncertain effects in the context of DIC. Here, 16S rRNA sequencing of fecal samples from anthracycline-treated patients and DIC mice revealed marked depletion of A. muciniphila. Cardiac transcriptomics, supported by in vitro experiments, showed that A. muciniphila colonization improved mitochondrial function and alleviated DIC by activating the PPARα/PGC1α signaling pathway in both normal and antibiotic-treated C57BL/6 mice. Further analysis uncovered a restructured microbiome-metabolome network following A. muciniphila administration, which contributed to DIC protection. Notably, A. muciniphila supplementation increased serum levels of the tryptophan metabolite indole-3-propionic acid (IPA), which binds to the cardiac aryl hydrocarbon receptor (AhR), leading to the activation of the PPARα/PGC1α signaling pathway. In conclusion, our study sheds light on the potential of A. muciniphila as a probiotic in mitigating DIC.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xian Shao
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, China
| | - Haodi Gu
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xinrou Yu
- Department of Cardiology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, China
| | - Lingyan He
- Department of Traditional Chinese Medicine, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China
| | - Jiedong Zhou
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zuoquan Zhong
- Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Li
- Department of Haematology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Fei Chen
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yongfei Song
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Lili Xu
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, China
| | - Ping Wang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| | - Jufang Chi
- Department of Cardiology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, China.
| | - Jiangfang Lian
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
29
|
Shen H, Liangpunsakul S, Iwakiri Y, Szabo G, Wang H. Immunological mechanisms and emerging therapeutic targets in alcohol-associated liver disease. Cell Mol Immunol 2025:10.1038/s41423-025-01291-w. [PMID: 40399593 DOI: 10.1038/s41423-025-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/19/2025] [Indexed: 05/23/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major global health challenge, with inflammation playing a central role in its progression. As inflammation emerges as a critical therapeutic target, ongoing research aims to unravel its underlying mechanisms. This review explores the immunological pathways of ALD, highlighting the roles of immune cells and their inflammatory mediators in disease onset and progression. We also examine the complex interactions between inflammatory cells and non-parenchymal liver cells, as well as their crosstalk with extra-hepatic organs, including the gut, adipose tissue, and nervous system. Furthermore, we summarize current clinical research on anti-inflammatory therapies and discuss promising therapeutic targets. Given the heterogeneity of ALD-associated inflammation, we emphasize the need for precision medicine to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
30
|
Li Z, Liu H. Microbe-dependent and independent effects of diet on metabolic inflammation in glucose metabolism regulation. Food Chem 2025; 488:144852. [PMID: 40413951 DOI: 10.1016/j.foodchem.2025.144852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Diet can contribute to the development of metabolic disease including type 2 diabetes (T2D) by inducing metabolic inflammation. While the gut microbiota mediates the effects of diet, the diet can also exert its effects independent of gut microbes. The microbe-dependent and -independent effects of diet on inflammation remain to be elucidated. This review examines recent advances and dissects the specifics of both gut microbe-dependent and independent mechanisms through which diet impacts inflammation and glucose metabolism. We delineate how diet interacts with the gut microbiome and induces metabolic inflammation. We also describe the direct effects of dietary components and their related metabolites on the immune system, and explore how diet-induced sterile inflammation may contribute to metabolic disorders. It is important to consider both microbe-dependent and independent pathways when developing therapeutic approaches aimed at preventing T2D.
Collapse
Affiliation(s)
- Zhipeng Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Huiying Liu
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
31
|
Knox KE, Abrahamsson D, Trowbridge J, Park JS, Wang M, Carrera E, Hartmayer L, Morello-Frosch R, Rudel RA. Application of a Non-targeted Biomonitoring Method to Characterize Occupational Chemical Exposures of Women Nurses Relative to Office Workers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9437-9448. [PMID: 40324159 PMCID: PMC12096436 DOI: 10.1021/acs.est.4c14790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
We analyzed blood serum samples from two unique female occupational cohorts - 60 nurses and 40 office workers in San Francisco, CA - using liquid chromatography and high-resolution mass spectrometry (quadrupole time-of-flight). Applying a nontargeted analysis (NTA) approach, we sought to isolate occupationally related chemical exposures that were unique to nurses by flagging features that were different from office workers in abundance (mean; 95th percentile) or detection frequency. Of 9828 negative electrospray ionization (ESI-) and 6898 positive electrospray ionization (ESI+) detected chemical features, 1094 and 938, respectively, were higher in nurses, possibly due to workplace exposures. We deciphered the molecular structures of these chemical features by applying data-dependent acquisition (DDA) and targeted MS/MS approaches to pooled samples from each occupational group, and we annotated them using spectral MS/MS databases in MS-DIAL. Nurses had higher concentrations of 14 chemicals that we identified at Schymanski Level 1 (N = 6) or 2 (N = 8), as well as 20 tentatively identified chemicals without spectra. Several chemicals may be occupationally relevant for nurses, including a PFAS (6:2 fluorotelomer sulfonic acid), tridecanedioic acid, salicylic acid, and the medications acetaminophen and theophylline. To our knowledge, this study is the first to apply NTA to elucidate novel chemical exposures in nurses.
Collapse
Affiliation(s)
- Kristin E. Knox
- Silent
Spring Institute, Newton, Massachusetts02460, United States
| | - Dimitri Abrahamsson
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, California94143, United States
| | - Jessica Trowbridge
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, California94143, United States
| | - June-Soo Park
- Environmental
Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California94710, United States
| | - Miaomiao Wang
- Environmental
Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California94710, United States
| | - Erin Carrera
- Department
of Nursing, University of San Francisco, San Francisco, California94143, United States
- California
Nurses for Environmental Health & Justice, Bolinas, California94924, United States
| | - Lisa Hartmayer
- Department
of Nursing, University of San Francisco, San Francisco, California94143, United States
- California
Nurses for Environmental Health & Justice, Bolinas, California94924, United States
| | - Rachel Morello-Frosch
- Department
of Environmental Science, Policy and Management, and School of Public
Health, University of California, Berkeley, California94720, United States
| | - R. A. Rudel
- Silent
Spring Institute, Newton, Massachusetts02460, United States
| |
Collapse
|
32
|
Cao Z, Zhang C, Liu L, Lei H, Zhang H, He Y, Li X, Xiang Q, Wang YF, Zhang L, Chen G. Microbiota-derived indole acetic acid extends lifespan through the AhR-Sirt2 pathway in Drosophila. mSystems 2025; 10:e0166524. [PMID: 40197001 PMCID: PMC12090787 DOI: 10.1128/msystems.01665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Disruption of aryl hydrocarbon receptor (AhR) signaling and aberrant tryptophan metabolism have been shown to be highly associated with aging and age-related disorders. However, the underlying molecular mechanisms by which the AhR-mediated signaling pathway contributes to the aging process remain largely unknown. In this study, we find that aged Drosophila exhibits markedly reduced tryptophan metabolism leading to impaired AhR ligands, especially indole acetic acid (IAA), compared with their young controls. Supplementation with IAA, produced from Lactobacillus spp., dose-dependently extends the lifespan of Drosophila and improves healthy aging with resistance to starvation and oxidative stress. Mechanistically, activation of AhR by IAA markedly enhances Sirt2 activity by binding to its promoter, thereby inhibiting downstream TOR signaling and related fatty acid and amino acid metabolism. Both Ahr and Sirt2 mutant flies with IAA supplementation display a negligible lifespan extension, suggesting that AhR-mediated Sirt2 signaling contributes to lifespan extension in flies upon IAA supplementation. From the perspective of host metabolism, IAA supplementation significantly increases unsaturated fatty acids (UFAs) in aged flies, which are regarded to be beneficial for healthy status. These findings provide new insights into the physiological functions of AhR involved in the aging process by mediating Sirt2 signaling. IMPORTANCE Disruption of aryl hydrocarbon receptor (AhR) signaling and aberrant tryptophan metabolism contribute to aging and age-related disorders, but the underlying molecular mechanisms are largely unknown. Using multiomics analyses combined with biochemical assays, this study reveals that AhR activation by indole acetic acid (IAA) effectively extends the lifespan accompanied by improved healthy aging in Drosophila via the AhR-Sirt2 pathway.
Collapse
Affiliation(s)
- Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huabao Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Yanmeng He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhi Li
- School of Pharmacy, Faculty of Medicine, Laboratory for Drug Discovery from Natural Resource, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Qingwei Xiang
- Hubei Shizhen Laboratory, Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gang Chen
- Hubei Shizhen Laboratory, Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
33
|
Ma T, Li Y, Yang N, Wang H, Shi X, Liu Y, Jin H, Kwok LY, Sun Z, Zhang H. Efficacy of a postbiotic and its components in promoting colonic transit and alleviating chronic constipation in humans and mice. Cell Rep Med 2025; 6:102093. [PMID: 40286792 PMCID: PMC12147849 DOI: 10.1016/j.xcrm.2025.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
This study evaluates the efficacy of the postbiotic Probio-Eco in alleviating constipation in humans and mice. A randomized, double-blind, placebo-controlled crossover trial involving 110 adults with chronic constipation (Rome IV criteria) demonstrates that a 3-week Probio-Eco intervention significantly improves constipation symptoms, stool straining, and worry scores. Gut microbiota and metabolomic analyses reveal modulations in specific gut microbiota, succinate, tryptophan derivatives, deoxycholate, propionate, butyrate, and cortisol, correlating with symptom relief. A loperamide-induced mouse model confirms that Probio-Eco and its bioactive components (succinate, 3-indoleacrylic acid, and 5-hydroxytryptophan) alleviate constipation by stimulating mucin-2 secretion, regulating intestinal transport hormones, and promoting anti-inflammatory responses. Multi-omics integration identifies key pathways, including succinate-short-chain fatty acid, tryptophan-5-hydroxytryptophan-serotonin, and tryptophan-3-indoleacrylic acid, driving intestinal homeostasis and motility. These findings highlight the comprehensive efficacy of Probio-Eco and provide robust evidence for its clinical application in constipation management. This study was registered at Chinese Clinical Trial Registry (ChiCTR2100054376).
Collapse
Affiliation(s)
- Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yalin Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Ni Yang
- State Key Laboratory of Research and Development of Classical Prescription and Modern Chinese Medicine, 1899 Meiling Road, Nanchang 330103, China
| | - Huan Wang
- Inner Mongolia People's Hospital, Hohhot, China
| | - Xuan Shi
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanfang Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
34
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri B, Blekhman R, Willis AD, Yu MK, Fernàndez-Guerra A, Füssel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. eLife 2025; 12:RP89862. [PMID: 40377187 PMCID: PMC12084026 DOI: 10.7554/elife.89862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health vs IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
Affiliation(s)
- Iva Veseli
- Biophysical Sciences Program, The University of ChicagoChicagoUnited States
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Yiqun T Chen
- Data Science Institute and Department of Biomedical Data Science, Stanford UniversityStanfordUnited States
| | - Matthew S Schechter
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of BremenBremenGermany
| | - Emily C Fogarty
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Andrea R Watson
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Bana Jabri
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Ran Blekhman
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Amy D Willis
- Department of Biostatistics, University of WashingtonSeattleUnited States
| | - Michael K Yu
- Toyota Technological Institute at ChicagoChicagoUnited States
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
| | - Jessika Füssel
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
| | - A Murat Eren
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
- Marine ‘Omics Bridging Group, Max Planck Institute for Marine MicrobiologyBremenGermany
- Helmholtz Institute for Functional Marine BiodiversityOldenburgGermany
- Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
| |
Collapse
|
35
|
Xiong L, Huang YX, Mao L, Xu Y, Deng YQ. Targeting gut microbiota and its associated metabolites as a potential strategy for promoting would healing in diabetes. World J Diabetes 2025; 16:98788. [DOI: 10.4239/wjd.v16.i5.98788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Impaired healing of diabetic wounds is one of the most important complications of diabetes, often leading to lower limb amputations and incurring significant economic and psychosocial costs. Unfortunately, there are currently no effective prevention or treatment strategies available. Recent research has reported that an imbalance in the gut microbiota, known as dysbiosis, was linked to the onset of type 2 diabetes, as well as the development and progression of diabetic complications. Indeed, the gut microbiota has emerged as a promising therapeutic approach for treating type 2 diabetes and related diseases. However, there is few of literatures specifically discussing the relationship between gut microbiota and diabetic wounds. This review aims to explore the potential role of the gut microbiota, especially probiotics, and its associated byproducts such as short chain fatty acids, bile acids, hydrogen sulfide, and tryptophan metabolites on wound healing to provide fresh insights and novel perspectives for the treatment of chronic wounds in diabetes.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lan Mao
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong-Qiong Deng
- Department of Dermatology & STD, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610000, Sichuan Province, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
36
|
Bressa C, González-Soltero R, Tabone M, Clemente-Velasco S, Gálvez BG, Larrosa M. Exploring the relationship between APOEε4 allele and gut microbiota composition and function in healthy adults. AMB Express 2025; 15:77. [PMID: 40372527 PMCID: PMC12081816 DOI: 10.1186/s13568-025-01888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
The APOE ε4 allele (APOE4) is a known risk factor for neurodegenerative and cardiovascular diseases, but its link to body composition and metabolism remains debated. The gut microbiota influences host metabolism and immunity, yet its relationship with APOE genotype in healthy individuals is not well understood. The objective of this work was to examine associations between APOE genotype and gut microbiota composition and function in healthy adults, focusing on microbial and metabolic differences related to the APOE4 allele. Seventy-seven healthy Spanish adults were genotyped for APOE. Fecal microbiota profiles were assessed by 16 S rRNA gene sequencing, and predicted functions were inferred using PICRUSt2. Body composition (DEXA) and physical activity (accelerometry) were also measured. APOE4 carriers exhibited subtle shifts in microbiota composition, including a five-fold reduction in Megamonas and lower abundance of the Eubacterium brachy group-both linked to energy harvest and adiposity-compared to APOE3 homozygotes. An uncharacterized Puniceicoccaceae genus was enriched in APOE4 carriers. Although E. brachy group abundance correlated with adiposity, no significant differences in body composition were observed. Functional predictions showed APOE4-associated microbiota enriched in pathways for carotenoid biosynthesis and trehalose metabolism, and depleted in tryptophan biosynthesis, propionate production, and multidrug resistance mechanisms. APOE4 carriers harbor gut microbiota with distinct taxonomic and functional features, potentially reflecting adaptations to metabolic and oxidative challenges. These findings underscore the relevance of the gut microbiome in shaping APOE4-associated phenotypes and warrant further investigation into its mechanistic contributions to health and disease.
Collapse
Affiliation(s)
- C Bressa
- Masmicrobiota Research Group, Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo- Majadahonda km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - R González-Soltero
- Masmicrobiota Research Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - M Tabone
- Masmicrobiota Research Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - S Clemente-Velasco
- Masmicrobiota Research Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - B G Gálvez
- Masmicrobiota Research Group, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain.
| | - M Larrosa
- Masmicrobiota Research Group, Madrid, Spain.
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
37
|
Shi L, Chen L, Jin G, Yang Y, Zhu F, Zhou G. Si-Ni Decoction as a Potential Treatment for Ulcerative Colitis: Modulation of Gut Microbiota and AKT1 Inhibition Through Network Pharmacology and in vivo Validation. J Inflamm Res 2025; 18:6263-6280. [PMID: 40391232 PMCID: PMC12087465 DOI: 10.2147/jir.s516556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/26/2025] [Indexed: 05/21/2025] Open
Abstract
Background Sini Decoction (SND), a time-honored formulation in traditional Chinese medicine, consists of three key ingredients: aconite, licorice, and ginger rhizome. It has been used for more than a thousand years to relieve symptoms associated with acute gastroenteritis, dyspepsia, and abdominal discomfort, but its therapeutic efficacy in ulcerative colitis (UC) and the mechanisms involved have not been validated. In this study, a comprehensive approach integrating network pharmacology, molecular docking, molecular dynamics simulation and experimentation was used to assess the efficacy of SND in the treatment of UC and to explore its molecular mechanisms. Methods The bioactive compounds associated with ulcerative colitis (UC) were identified using the TCMSP database, with potential targets predicted via the Swiss Target Prediction database. Protein-protein interaction networks were constructed using the STRING database and Cytoscape and the most important genes were identified. Subsequently, molecular docking was combined with molecular dynamics simulations using molecular docking to assess the binding affinity of the main active ingredient of SND to AKT1. To evaluate the therapeutic effects of SND, we utilized a dextran sodium sulfate-induced UC mouse model. Additionally, fecal samples were collected for analysis of the intestinal microbiota to explore the influence of SND on gut flora composition. Results Fifteen bioactive components from SND were identified, and their activities were validated. The results indicated that AKT serine/threonine kinase 1 is a core target of SND for the treatment of UC. The anti-inflammatory, intestinal barrier-protective, and microbiota-regulating effects of SND were confirmed in animal models, alongside evidence of its inhibitory effect on AKT1. Conclusion The active ingredients of SND were screened, with a focus on AKT1 inhibition, to reduce inflammation in UC, protect the intestinal barrier, and regulate the intestinal microbiota, demonstrating significant therapeutic potential.
Collapse
Affiliation(s)
- Lihao Shi
- Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Leilei Chen
- Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Guangxi Zhou
- Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| |
Collapse
|
38
|
Maschek S, Østergaard TH, Krych L, Zachariassen LF, Sørensen DB, Junker Mentzel CM, Hansen AK, Sjögren JM, Barfod KK. Investigating fecal microbiota transplants from individuals with anorexia nervosa in antibiotic-treated mice using a cross-over study design. J Eat Disord 2025; 13:82. [PMID: 40361238 PMCID: PMC12077011 DOI: 10.1186/s40337-025-01276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Anorexia nervosa (AN) is a complex and serious mental disorder, which may affect individuals of all ages and sex, but primarily affecting young women. The disease is characterized by a disturbed body image, restrictive eating behavior, and a lack of acknowledgment of low body weight. The underlying causes of AN remain largely unknown, and current treatment options are limited to psychotherapy and nutritional support. This paper investigates the impact of Fecal Microbiota Transplants (FMT) from patients with AN on food intake, body weight, behavior, and gut microbiota into antibiotic-treated mice. Two rounds of FMT were performed using AN and control (CO) donors. During the second round of FMT, a subset of mice received gut microbiota (GM) from a different donor type. This split-group cross-over design was chosen to demonstrate any recovery effect of FMT from a non-eating disorder state donor. The first FMT, from donors with AN, resulted in lower food intake in mice without affecting body weight. Analysis of GM showed significant differences between AN and CO mice after FMT1, before cross-over. Specific bacterial genera and families Ruminococcaceae, Lachnospiraceae, and Faecalibacterium showed different abundances in AN and CO receiving mice. Behavioral tests showed decreased locomotor activity in AN mice after FMT1. After FMT2, serum analysis revealed higher levels of appetite-influencing hormones (PYY and leptin) in mice receiving AN-GM. Overall, the results suggest that AN-GM may contribute to altered food intake and appetite regulation, which can be ameliorated with FMT from a non-eating disorder state donor potentially offering FMT as a supportive treatment for AN.
Collapse
Affiliation(s)
- Sina Maschek
- Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Theresa Helena Østergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, Denmark
| | - Lukasz Krych
- Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Line Fisker Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, Denmark
| | - Dorte Bratbo Sørensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, Denmark
| | - Caroline M Junker Mentzel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, Denmark
| | - Jan Magnus Sjögren
- Psychiatric Center Ballerup, Ballerup, 2750, Denmark
- Department of Clinical Sciences, Umeå University, Umeå, 901 87, Sweden
| | - Kenneth Klingenberg Barfod
- Food Science, University of Copenhagen, Frederiksberg C, Denmark.
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, Denmark.
| |
Collapse
|
39
|
Jacobsen GE, Gonzalez EE, Mendygral P, Faust KM, Hazime H, Fernandez I, Santander AM, Quintero MA, Jiang C, Damas OM, Deshpande AR, Kerman DH, Proksell S, Sendzischew Shane M, Sussman DA, Ghaddar B, Cickovsk T, Abreu MT. Deep Sequencing of Crohn's Disease Lamina Propria Phagocytes Identifies Pathobionts and Correlates With Pro-Inflammatory Gene Expression. Inflamm Bowel Dis 2025; 31:1203-1219. [PMID: 39951038 PMCID: PMC12069990 DOI: 10.1093/ibd/izae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 05/14/2025]
Abstract
BACKGROUND Crohn's disease (CD) is characterized by an inflammatory response to gut microbiota. Macrophages and dendritic cells play an active role in CD inflammation. Specific microbiota have been implicated in the pathogenesis of ileal CD. We investigated the phagocyte-associated microbiome using an unbiased sequencing approach to identify potential pathobionts and elucidate the host response to these microbes. METHODS We collected ileal and colonic mucosal biopsies from CD patients and controls without inflammatory bowel disease (IBD), isolated lamina propria phagocytes (CD11b+ cells), and performed deep RNA sequencing (n = 37). Reads were mapped to the human genome for host gene expression analysis and a prokaryotic database for microbiome taxonomic and metatranscriptomic profiling. Results were confirmed in a second IBD cohort (n = 17). Lysed lamina propria cells were plated for bacterial culturing; isolated colonies underwent whole genome sequencing (n = 11). RESULTS Crohn's disease ileal phagocytes contained higher relative abundances of Escherichia coli, Ruminococcus gnavus, and Enterocloster spp. than those from controls. CD phagocyte-associated microbes had increased expression of lipopolysaccharide (LPS) biosynthesis pathways. Phagocytes with a higher pathobiont burden showed increased expression of pro-inflammatory and antimicrobial genes, including PI3 (antimicrobial peptide) and BPIFB1 (LPS-binding molecule). E. coli isolated from the CD lamina propria had more flagellar motility and antibiotic resistance genes than control-derived strains. CONCLUSIONS Lamina propria resident phagocytes harbor bacterial strains that may act as pathobionts in CD. Our findings shed light on the role of pathobionts and the immune response in CD pathogenesis and suggest new targets for therapies.
Collapse
Affiliation(s)
- Gillian E Jacobsen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eddy E Gonzalez
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Payton Mendygral
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Katerina M Faust
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hajar Hazime
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irina Fernandez
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ana M Santander
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria A Quintero
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chunsu Jiang
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oriana M Damas
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amar R Deshpande
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David H Kerman
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siobhan Proksell
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Morgan Sendzischew Shane
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel A Sussman
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bassel Ghaddar
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Trevor Cickovsk
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Maria T Abreu
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
40
|
Hsu CY, Ahmad I, Maya RW, Abass MA, Gupta J, Singh A, Joshi KK, Premkumar J, Sahoo S, Khosravi M. The potential therapeutic approaches targeting gut health in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a narrative review. J Transl Med 2025; 23:530. [PMID: 40350437 PMCID: PMC12066075 DOI: 10.1186/s12967-025-06527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disorder characterized by persistent fatigue and cognitive impairments, with emerging evidence highlighting the role of gut health in its pathophysiology. The main objective of this review was to synthesize qualitative and quantitative data from research examining the gut microbiota composition, inflammatory markers, and therapeutic outcomes of interventions targeting the microbiome in the context of ME/CFS. METHODS The data collection involved a detailed search of peer-reviewed English literature from January 1995 to January 2025, focusing on studies related to the microbiome and ME/CFS. This comprehensive search utilized databases such as PubMed, Scopus, and Web of Science, with keywords including "ME/CFS," "Gut-Brain Axis," "Gut Health," "Intestinal Dysbiosis," "Microbiome Dysbiosis," "Pathophysiology," and "Therapeutic Approaches." Where possible, insights from clinical trials and observational studies were included to enrich the findings. A narrative synthesis method was also employed to effectively organize and present these findings. RESULTS The study found notable changes in the gut microbiota diversity and composition in ME/CFS patients, contributing to systemic inflammation and worsening cognitive and physical impairments. As a result, various microbiome interventions like probiotics, prebiotics, specific diets, supplements, fecal microbiota transplantation, pharmacological interventions, improved sleep, and moderate exercise training are potential therapeutic strategies that merit further exploration. CONCLUSIONS Interventions focusing on the gut-brain axis may help reduce neuropsychiatric symptoms in ME/CFS by utilizing the benefits of the microbiome. Therefore, identifying beneficial microbiome elements and incorporating their assessments into clinical practice can enhance patient care through personalized treatments. Due to the complexity of ME/CFS, which involves genetic, environmental, and microbial factors, a multidisciplinary approach is also necessary. Since current research lacks comprehensive insights into how gut health might aid ME/CFS treatment, standardized diagnostics and longitudinal studies could foster innovative therapies, potentially improving quality of life and symptom management for those affected.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, USA
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - J Premkumar
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, India
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
41
|
Ye J, Raman M, Taylor LM, Yousuf M, Panaccione R, Turbide C, Sinha SR, Haskey N. Reduced Sulfur Diet Reshapes the Microbiome and Metabolome in Mild-Moderate Ulcerative Colitis. Int J Mol Sci 2025; 26:4596. [PMID: 40429741 PMCID: PMC12111015 DOI: 10.3390/ijms26104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
This pilot study investigated the effects of a reduced sulfur (RS) diet on the gut microbiome composition and fecal metabolome in individuals with remitted or active ulcerative colitis (UC). Thirteen participants maintained their habitual diet (control), while nine followed an RS diet for eight weeks (Wk8). Stool and plasma samples were collected at the baseline and Wk8. The sulfur intake decreased in the RS group (-28 g/1000 kcal) versus the control group (-1.7 g/1000 kcal; p < 0.001). The RS group exhibited a significant decrease in lipopolysaccharide-binding protein (-5280 ng/mL), while these levels increased in the control group (620 ng/mL; p < 0.05). The microbiome analysis showed an increased alpha diversity at Wk8 (p < 0.01), suggesting a microbial shift with a RS intake. The metabolic alterations indicated enhanced nitrogen disposal (increased uric acid, methyluric acid, N-acetyl-L-glutamate) and a higher energy demand (elevated ubiquinol and glucose-pyruvate). The RS diet increased beneficial microbes Collinsella stercoris, Asaccharobacter celatus, and Alistipes finegoldii, while decreasing pathobionts Eggerthella lenta and Romboutsia ilealis. Methyluric acid correlated positively with C. stercoris (β = 0.70) and negatively with E. lenta (β = -0.77) suggesting these microbes utilized this metabolite and influenced the microbiome composition. In conclusion, a RS diet promoted microbial diversity, metabolic adaptations, and reduced inflammation, highlighting its potential as a novel strategy for UC management.
Collapse
Affiliation(s)
- Jiayu Ye
- Division of Gastroenterology and Hepatology, Stanford Medicine, Stanford University, 300 Pasteur Dr., Palo Alto, CA 94305, USA; (J.Y.); (S.R.S.)
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (M.R.); (L.M.T.); (M.Y.); (R.P.); (C.T.)
| | - Lorian M. Taylor
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (M.R.); (L.M.T.); (M.Y.); (R.P.); (C.T.)
| | - Munazza Yousuf
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (M.R.); (L.M.T.); (M.Y.); (R.P.); (C.T.)
| | - Remo Panaccione
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (M.R.); (L.M.T.); (M.Y.); (R.P.); (C.T.)
| | - Christian Turbide
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (M.R.); (L.M.T.); (M.Y.); (R.P.); (C.T.)
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, Stanford Medicine, Stanford University, 300 Pasteur Dr., Palo Alto, CA 94305, USA; (J.Y.); (S.R.S.)
| | - Natasha Haskey
- Department of Biology, Irving K Barber Faculty of Science, University of British Columbia-Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
42
|
Parra I, Carrasco-Carballo A, Palafox-Sanchez V, Martínez-García I, Aguilera J, Góngora-Alfaro JL, Aranda-González II, Tizabi Y, Mendieta L. Peroxisome Proliferator-Activated Receptors (PPARs) May Mediate the Neuroactive Effects of Probiotic Metabolites: An In Silico Approach. Int J Mol Sci 2025; 26:4507. [PMID: 40429654 PMCID: PMC12111801 DOI: 10.3390/ijms26104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 05/29/2025] Open
Abstract
It is well established that the gut-brain axis (GBA) is a bidirectional communication between the gut and the brain. This axis, critical in maintaining overall homeostasis, is regulated at the neuronal, endocrine, and immunological levels, all of which may be influenced by the gut microbiota (GM). Therefore, dysbiosis or disruption in the GM may have serious consequences including neuroinflammation due to overactivation of the immune system. Strategies to reestablish GM integrity via use of probiotics are being pursued as novel therapeutic intervention in a variety of central and peripheral diseases. The mechanisms leading to dysbiosis or efficacy of probiotics, however, are not fully evident. Here, we performed computational analysis on two major probiotics, namely Lactobacillus Lacticaseibacillus rhamnosus GG (formerly named Lactobacillus rhamnosus, L. rhamnosus GG) and Bifidobacterium animalis spp. lactis (B. lactis or B. animalis) to not only shed some light on their mechanism(s) of action but also to identify potential molecular targets for novel probiotics. Using the PubMed web page and BioCyc Database Collection platform we specifically analyzed proteins affected by metabolites of these bacteria. Our results indicate that peroxisome proliferator-activated receptors (PPARs), nuclear receptor proteins that are involved in regulation of inflammation are key mediators of the neuroactive effect of probiotics.
Collapse
Affiliation(s)
- Irving Parra
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico; (I.P.); (I.M.-G.)
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Victoria Palafox-Sanchez
- Institute for Obesity Research, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey 64700, Mexico;
| | - Isabel Martínez-García
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico; (I.P.); (I.M.-G.)
| | - José Aguilera
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - José L. Góngora-Alfaro
- Departamento de Neurociencias, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Avenida Itzáes No. 490 x 59, Mérida 97000, Mexico;
| | - Irma Isela Aranda-González
- Facultad de Medicina, Universidad Autónoma de Yucatán, Avenida Itzáes No. 498 x 59 y 59A, Mérida 97000, Mexico;
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Liliana Mendieta
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico; (I.P.); (I.M.-G.)
| |
Collapse
|
43
|
Fang L, Peng H, Tan Z, Deng N, Peng X. The Role of Gut Microbiota on Intestinal Fibrosis in Inflammatory Bowel Disease and Traditional Chinese Medicine Intervention. J Inflamm Res 2025; 18:5951-5967. [PMID: 40357383 PMCID: PMC12067688 DOI: 10.2147/jir.s504827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the intestine, frequently complicated by intestinal fibrosis. As fibrosis progresses, it can result in luminal stricture and compromised intestinal function, significantly diminishing patients' quality of life. Emerging evidence suggests that gut microbiota and their metabolites contribute to the pathogenesis of IBD-associated intestinal fibrosis by influencing inflammation and modulating immune responses. This review systematically explores the mechanistic link between gut microbiota and intestinal fibrosis in IBD and evaluates the therapeutic potential of traditional Chinese medicine (TCM) interventions. Relevant studies were retrieved from PubMed, Web of Science, Embase, Scopus, CNKI, Wanfang, and VIP databases. Findings indicate that TCM, including Chinese herbal prescriptions and bioactive constituents, can modulate gut microbiota composition and microbial metabolites, ultimately alleviating intestinal fibrosis through anti-inflammatory, immunemodulatory, and anti-fibrotic mechanisms. These insights highlight the potential of TCM as a promising strategy for targeting gut microbiota in the management of IBD-associated fibrosis.
Collapse
Affiliation(s)
- Leyao Fang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huiyi Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
44
|
Vernia F, Ribichini E, Burrelli Scotti G, Latella G. Nutritional Deficiencies and Reduced Bone Mineralization in Ulcerative Colitis. J Clin Med 2025; 14:3202. [PMID: 40364233 PMCID: PMC12072929 DOI: 10.3390/jcm14093202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Inadequate dietary intake of vitamin D, vitamin K, and calcium, as well as sub-optimal sunlight exposure, can lead to bone loss in the general population, and more so in patients with ulcerative colitis, who are burdened by additional predisposing factors for osteoporosis, such as chronic inflammation and cortisone use. However, micronutrient deficiencies, if present, are easily corrected by nutritional intervention. While the relation between calcium and vitamin D and bone metabolism is well known, fewer data are available for vitamin K, for both healthy individuals and patients. The aim of this review is to provide an overview of recent reports focusing on nutritional deficits relevant to the development of osteoporosis/osteopenia in patients affected by ulcerative colitis. Methods: A systematic electronic search of the English literature up to January 2025 was performed using Medline and the Cochrane Library. Results: Despite being central in bone mineralization, data on dietary calcium intake in ulcerative colitis are relatively scarce, deriving mostly from mixed inflammatory bowel disease cohorts. Although lower than controls, dietary calcium intake approaches the recommended daily allowance, which establishes the necessary daily intake of nutrients. Conversely, vitamin D and vitamin K deficiencies are highly prevalent in ulcerative colitis patients. The widely shared opinion that milk and lactose-containing foods, as well as vegetables, worsen diarrhea is a prime determinant of inadequate vitamin D and vitamin K intake. Conclusions: Increased awareness of the importance of nutrition and the common occurrence of nutritional deficits represents the first step for the development of dietary intervention strategies to counteract the increased risk of osteoporosis in ulcerative colitis patients.
Collapse
Affiliation(s)
- Filippo Vernia
- Department of Life, Health, and Environmental Sciences, Division of Gastroenterology, Hepatology, and Nutrition, University of L’Aquila, Piazza S. Tommasi, 1-Coppito, 67100 L’Aquila, Italy;
| | - Emanuela Ribichini
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (E.R.); (G.B.S.)
| | - Giorgia Burrelli Scotti
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (E.R.); (G.B.S.)
| | - Giovanni Latella
- Department of Life, Health, and Environmental Sciences, Division of Gastroenterology, Hepatology, and Nutrition, University of L’Aquila, Piazza S. Tommasi, 1-Coppito, 67100 L’Aquila, Italy;
| |
Collapse
|
45
|
Zhang S, Zhao R, Wang R, Lu Y, Xu M, Lin X, Lan R, Zhang S, Tang H, Fan Q, Yang J, Liu L, Xu J. Weissella viridescens Attenuates Hepatic Injury, Oxidative Stress, and Inflammation in a Rat Model of High-Fat Diet-Induced MASLD. Nutrients 2025; 17:1585. [PMID: 40362894 PMCID: PMC12073722 DOI: 10.3390/nu17091585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disorder globally. Probiotic supplementation has shown promise in its prevention and treatment. Although Weissella viridescens, a lactic acid bacterium with immunomodulatory effects, has antibacterial and anti-inflammatory activities, there is a lack of direct evidence for its role in alleviating MASLD. This study aimed to investigate the protective effects of W. viridescens strain Wv2365, isolated from healthy human feces, in a high-fat diet (HFD)-induced rat model of MASLD. Methods: Rats were randomly assigned to a normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with W. viridescens Wv2365 (Wv2365) groups. All groups were fed their respective diets for 8 weeks. During this period, the NC and HFD groups received a daily oral gavage of PBS, while the Wv2365 group received a daily oral gavage of Wv2365. Results: Wv2365 supplementation significantly reduced HFD-induced body weight gain, improved NAFLD activity scores, alleviated hepatic injury, and restored lipid metabolism. A liver transcriptomic analysis revealed the downregulation of inflammation-related pathways, along with decreased serum levels of TNF-α, IL-1β, IL-6, MCP-1, and LPS. Wv2365 also activated the Nrf2/HO-1 antioxidant pathway, enhanced hepatic antioxidant enzyme activities and reduced malondialdehyde levels. A gut microbiota analysis showed the enrichment of beneficial genera, including Butyricicoccus, Akkermansia, and Blautia. Serum metabolomic profiling revealed increased levels of metabolites including indole-3-propionic acid, indoleacrylic acid, and glycolithocholic acid. Conclusions: Wv2365 attenuates hepatic injury, oxidative stress, and inflammation in a rat model of high-fat-diet-induced MASLD, supporting its potential as a probiotic candidate for the modulation of MASLD.
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (S.Z.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruiqing Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruoshi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yao Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mingchao Xu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang 050010, China
| | - Xiaoying Lin
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (S.Z.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Suping Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huijing Tang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (S.Z.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qianhua Fan
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (S.Z.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
| | - Liyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
| | - Jianguo Xu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (S.Z.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
| |
Collapse
|
46
|
Yang J, Ren H, Cao J, Fu J, Wang J, Su Z, Lu S, Sheng K, Wang Y. Gut commensal Lachnospiraceae bacteria contribute to anti-colitis effects of Lactiplantibacillus plantarum exopolysaccharides. Int J Biol Macromol 2025; 309:142815. [PMID: 40187461 DOI: 10.1016/j.ijbiomac.2025.142815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The probiotic Lactiplantibacillus plantarum (L. plantarum) could ameliorate colitis. Alterations in the composition of gut microbiota (GM) have been proved in cases of colitis. The exopolysaccharides from L. plantarum HMPM2111 (LPE) could be effective in colitis through altering the composition of the GM. These effects were linked to inhibiting intestinal inflammation, regulating the TXNIP/NLRP3 inflammasome axis, and attenuating colonic barrier dysfunction. The combination of fecal microbiota transplantation (FMT) and antibiotic inducement showed that gut bacteria susceptible to vancomycin were inversely associated with colitis features and were necessary for the anti-inflammatory effects of LPE. The elevated abundances of gut commensal Lachnospiraceae bacteria were associated with the restoration of colitis treated by LPE. Metabolomics analysis showed that colitis mice treated with LPE had higher levels of propionate and tryptophan metabolites generated from gut bacteria. The administration of these metabolites protected colitis and resulted in a reduction in inflammatory responses. The outcomes of our investigation emerge the significance of the GM in controlling the protective implications of LPE against colitis. Lachnospiraceae bacteria, together with downstream metabolites, contribute substantially to protection. This work elucidates the essential function of the GM-metabolite axis in producing comprehensive protection versus colitis and identifies prospective treatment targets.
Collapse
Affiliation(s)
- Jian Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Huijuan Ren
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jialing Cao
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jingjing Fu
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China; Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Junhui Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ziwei Su
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Shiqi Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
47
|
Wang J, Niu G, Mai H, Zhang X, Zhu J, Li B, Gao Y, Huang T, Meng Q, Chen R. The protective role of 3-Indoleglyoxylic acid in Bisphenol S-induced intestinal barrier dysfunction via mitochondrial ROS-Mediated IL-17/CXCL10/TNF-α signaling. ENVIRONMENT INTERNATIONAL 2025; 199:109477. [PMID: 40279686 DOI: 10.1016/j.envint.2025.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/27/2025]
Abstract
Bisphenol S (BPS) has become extensively used in the manufacturing of consumer products. BPS mainly enters the body through food and water, with oral exposure targeting the gastrointestinal tract. However, its safety profile remains contentious and warrants further investigation. In this study, we aimed to assess whether BPS exerts harmful effects on the body in the absence of overt pathological damage. Our results revealed that although BPS did not lead to significant histopathological damage, it induced intestinal barrier dysfunction. Additionally, in vitro investigations utilizing NCM460 cells and human-derived colorectal organoids demonstrated that BPS exposure induced mitochondrial reactive oxygen species (ROS) levels in intestinal endocrine cells (EECs), upregulating the expression of inflammatory mediators TNF-α and CXCL10. Using a DSS-induced colitis mouse model, it was found that BPS exposure exacerbates the progression of intestinal inflammatory diseases. Analysis of single-cell databases demonstrated a significant reduction in the expression of CHGA, a functional protein of enteroendocrine cells (EECs), in patients with inflammatory bowel disease (IBD). The expression of CHGA showed a significant negative correlation with the expression of IL17. Notably, supplementation with 3-Indoleglyoxylic acid effectively mitigates the intestinal damage induced by BPS. These findings highlight the role of mitochondrial oxidative stress and IL-17/CXCL10/TNF-α signaling in BPS-induced intestinal damage and demonstrate the therapeutic potential of 3-Indoleglyoxylic acid in mitigating these effects.
Collapse
Affiliation(s)
- Jing Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guolei Niu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huanzhuo Mai
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xianan Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiahao Zhu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bin Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yushuang Gao
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tengkai Huang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environment Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| |
Collapse
|
48
|
Wang J, Cheng W, Yang R. Nervous system-gut microbiota-immune system axis: future directions for preventing tumor. Front Immunol 2025; 16:1535955. [PMID: 40376000 PMCID: PMC12078214 DOI: 10.3389/fimmu.2025.1535955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor is one of the leading causes of death worldwide. The occurrence and development of tumors are related to multiple systems and factors such as the immune system, gut microbiota, and nervous system. The immune system plays a critical role in tumor development. Studies have also found that the gut microbiota can directly or indirectly affect tumorigenesis and tumor development. With increasing attention on the tumor microenvironment in recent years, the nervous system has emerged as a novel regulator of tumor development. Some tumor therapies based on the nervous system have also been tested in clinical trials. However, the nervous system can not only directly interact with tumor cells but also indirectly affect tumor development through the gut microbiota. The nervous system-mediated gut microbiota can regulate tumorigenesis, growth, invasion, and metastasis through the immune system. Here, we mainly explore the potential effects of the nervous system-gut microbiota-immune system axis on tumorigenesis and tumor development. The effects of the nervous system-gut microbiota-immune system axis on tumors involve the nervous system regulating immune cells through the gut microbiota, which can prevent tumor development. Meanwhile, the direct effects of the gut microbiota on tumors and the regulation of the immune system by the nervous system, which can affect tumor development, are also reviewed.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
49
|
Dai J, Yang J, Han S, Li N, Wang S, Xia S, Kim HH, Jun Y, Lee S, Kitagawa Y, Xie F, Yang L, Shen S, Chen L, Turner DP, Hodin RA, Martyn JAJ, Mao J, You Z. Deficiency of intestinal alkaline phosphatase affects behavior and microglia activity in mice. Brain Behav Immun 2025; 126:297-310. [PMID: 39984137 PMCID: PMC12051184 DOI: 10.1016/j.bbi.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/26/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
The gut microbiota plays crucial roles in the development and functions of the central nervous system (CNS) as well as in modulation of neurobehavior in heath and disease. The gut brush border enzyme intestinal alkaline phosphatase (IAP) is an important positive regulator of gut microbial homeostasis. In mice, IAP is encoded by Akp3 gene, which is specifically expressed in the duodenum of the small intestine. IAP deficiency alters gut bacterial composition and gut barrier function. Decreased IAP activity has been observed in aging, gut inflammatory diseases, and metabolic disorders. We hypothesized that this enzyme could also play an important role in modulating neurobehavior. We performed deep sequencing of gut bacterial 16S rRNA and found that IAP deficiency changed gut microbiota composition at various taxonomic levels. Using targeted metabolomic analysis, we also found that IAP deficiency resulted in changes of gut bacteria-derived metabolites in serum and brain metabolism. Neurobehavioral analyses revealed that Akp3-/- (IAP knockout) mice had decreased basal nociception thresholds, increased anxiety-like behavior, and reduced locomotor activity. Furthermore, Akp3-/- mice had more pronounced brain microglial phagocytic activity, together with an increase in the activated microglia population. Fecal microbiota transplantation from wildtype to Akp3-/- mice partially improved neurobehavior and reduced brain microglial phagocytic activity in Akp3-/- mice. This study demonstrates that deficiency of the endogenous gut-derived host factor IAP induces behavioral phenotype changes (nociception; motor activity, and anxiety) and affects brain microglia activity. Changes in the gut microbiota induced by knocking down Akp3 contribute to behavioral changes, which is probably mediated by microglia activity modulated by the gut bacteria-derived metabolites.
Collapse
Affiliation(s)
- Jiajia Dai
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Sen Han
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, the United States of America
| | - Na Li
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Shiyu Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Suyun Xia
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Hyung-Hwan Kim
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Charlestown, MA, the United States of America
| | - Yonghyun Jun
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Charlestown, MA, the United States of America; Department of Anatomy, School of Medicine, Chosun University, Dong-gu, Dong-gu, Gwangju, South Korea
| | - Seeun Lee
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Charlestown, MA, the United States of America
| | - Yoshinori Kitagawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America; Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Fei Xie
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America
| | - Liuyue Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Dana P Turner
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Richard A Hodin
- Department of Surgery, Massachusetts General Hospital, Boston, MA, the United States of America
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America.
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America.
| |
Collapse
|
50
|
Leroue MK, Maddux AB, Lehmann T, Niemiec S, Mancuso CA, Khailova L, Mourani PM, Klawitter J, Davidson JA. Alteration in Indole Metabolites After Cardiopulmonary Bypass Surgery in Neonates and Infants. Crit Care Explor 2025; 7:e1267. [PMID: 40327389 PMCID: PMC12055184 DOI: 10.1097/cce.0000000000001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
IMPORTANCE Cardiopulmonary bypass (CPB) surgery is associated with changes in the intestinal microbiome. Metabolism of tryptophan into the indole pathway is entirely facilitated by the intestinal microbiome, and indole metabolites play a critical role in intestinal epithelial integrity, intestinal and systemic vascular tone, and intestinal and systemic immune response. OBJECTIVES To evaluate the impact of CPB on microbial-derived indole metabolites and their association with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study of neonates and infants younger than 6 months of age undergoing CPB at a quaternary children's hospital. MAIN OUTCOMES AND MEASURES Serum samples underwent quantitative pathway mapping via mass spectroscopy. Clinical outcomes of interest included cardiac ICU (CICU) length of stay and Vasoactive-Inotropic Score (VIS) at 48 hours. RESULTS Ninety patients between 2 and 169 days old were enrolled. Patients showed significant postoperative changes in seven of eight indole metabolites. A two-fold increase in preoperative levels of indole-3-carboxylic acid was associated with 0.63 odds of requiring vasoactive medications at 48 hours (p = 0.023) and among those subjects still requiring vasoactives at 48 hours, they had an average 7.1% decrease in VIS at 48 hours (p = 0.005), and a 12.25% reduction in CICU length of stay (p = 0.001). Higher levels of indole-3-carboxylic acid preoperatively and at 24 and 48 hours postoperatively were also significantly associated with decreased CICU length of stay. Conversely, increased levels of several metabolites, including indole-3-lactic acid, indole-3-carbaldhyde, indole-3-propionic acid, tryptamine, and tryptophol, in the preoperative and postoperative period were associated with higher VIS at 48 hours and increased CICU length of stay. CONCLUSIONS AND RELEVANCE CPB was associated with significant changes in indole metabolite levels postoperatively. Indole-3-carboxylic acid, which suppresses T-regulatory (Treg) differentiation, is associated with improved patient outcomes, whereas other metabolites, that promote Treg differentiation, were associated with worse outcomes.
Collapse
Affiliation(s)
- Matthew K. Leroue
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado, Aurora, CO
| | - Aline B. Maddux
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado, Aurora, CO
| | - Tanner Lehmann
- Section of Cardiology, Department of Pediatrics, University of Colorado, Aurora, CO
| | - Sierra Niemiec
- Department of Biostatistics and Informatics, University of Colorado, Denver, CO
| | | | - Ludmila Khailova
- Section of Cardiology, Department of Pediatrics, University of Colorado, Aurora, CO
| | - Peter M. Mourani
- Section of Critical Care Medicine, Department of Pediatrics, Arkansas Children’s Hospital and University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado, Aurora, CO
| | - Jesse A. Davidson
- Section of Cardiology, Department of Pediatrics, University of Colorado, Aurora, CO
| |
Collapse
|