1
|
Danek V, Tureckova J, Huebner K, Erlenbach-Wuensch K, Baranova P, Dobes J, Balounova J, Simova M, Novosadova V, Madureira Trufen CE, Prochazkova M, Talacko P, Harant K, Barinka C, Beck IM, Schneider-Stock R, Sedlacek R, Prochazka J. CUL4A exhibits tumor-suppressing role via regulation of HUWE1-mediated SMAD3 intracellular shuttling. Cancer Lett 2025; 621:217663. [PMID: 40120800 DOI: 10.1016/j.canlet.2025.217663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Changes in cellular physiology and proteomic homeostasis accompanied the initiation and progression of colorectal cancer. Thus, ubiquitination represents a central regulatory mechanism in proteome dynamics. However, the complexity of the ubiquitinating network involved in carcinogenesis remains unclear. This study revealed the tumor-suppressive role of the ubiquitin ligase Cullin4A (CUL4A) in the intestine. We showed that simultaneous loss of CUL4A and hyperactivation of the Wnt pathway promotes tumor development in the distal colon. This tumor development is caused by an accumulation of the inactive SMAD3, a TGF-β pathway mediator. Depletion of CUL4A resulted in stabilization of HUWE1, which attenuated SMAD3 function. We showed a correlation between the intracellular localization of CUL4A and colorectal cancer progression, where nuclear CUL4A localization correlates with advanced colorectal cancer progression. In summary, we identified CUL4A as an important regulator of SMAD3 signal transduction competence in a HUWE1-dependent manner and demonstrated a critical role for the crosstalk between ubiquitination and the Wnt/TGF-β signaling pathways in gastrointestinal homeostasis.
Collapse
Affiliation(s)
- Veronika Danek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Jolana Tureckova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Kerstin Huebner
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | | | - Petra Baranova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 252 50, Czech Republic
| | - Jan Dobes
- Department of Cell Biology, Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Michaela Simova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Carlos Eduardo Madureira Trufen
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Michaela Prochazkova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Pavel Talacko
- BIOCEV Proteomics Core Facility, Faculty of Science, Charles University, Vestec, 252 50, Czech Republic
| | - Karel Harant
- BIOCEV Proteomics Core Facility, Faculty of Science, Charles University, Vestec, 252 50, Czech Republic
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 252 50, Czech Republic
| | - Inken M Beck
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic; Animal Research Centre, Ulm University, Ulm, Germany
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany; Institute of Pathology, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague, Czech Republic.
| |
Collapse
|
2
|
Yan W, Xiang S, Feng J, Zu X. Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells. Genes Dis 2025; 12:101341. [PMID: 40083330 PMCID: PMC11904532 DOI: 10.1016/j.gendis.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related deaths among women worldwide. Great progress has been recently achieved in controlling breast cancer; however, mortality from breast cancer remains a substantial challenge, and new treatment mechanisms are being actively sought. Programmed cell death (PCD) is associated with the progression and treatment of many types of human cancers. PCD can be divided into multiple pathways including autophagy, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis, and anoikis. Ubiquitination is a post-translational modification process in which ubiquitin, a 76-amino acid protein, is coupled to the lysine residues of other proteins. Ubiquitination is involved in many physiological events and promotes cancer development and progression. This review elaborates the role of ubiquitin-specific protease (USP) in programmed cell death, which is common in breast cancer cells, and lays the foundation for tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
| | | | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
3
|
Viola G, Trivellato D, Laitaoja M, Jänis J, Felli IC, D’Onofrio M, Mollica L, Giachin G, Assfalg M. Conformational signatures induced by ubiquitin modification in the amyloid-forming tau repeat domain. Proc Natl Acad Sci U S A 2025; 122:e2425831122. [PMID: 40198698 PMCID: PMC12012461 DOI: 10.1073/pnas.2425831122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Posttranslational modifications can critically affect conformational changes of amyloid-forming proteins. Ubiquitination of the microtubule-associated tau protein, an intrinsically disordered biomolecule, has been proposed to influence the formation of filamentous deposits in neurodegenerative conditions. Given the reported link between aggregation propensity and intrinsic structural preferences (e.g., transient extended structural motifs or tertiary contacts) in disordered proteins, we sought to explore the conformational landscape of ubiquitinated tau. Exploiting selective conjugation reactions, we produced single- and double-monoubiquitinated protein samples. Next, we examined the ubiquitinated species from different standpoints using NMR spectroscopy, small-angle X-ray scattering experiments, and native ion mobility-mass spectrometry (IM-MS). Moreover, we obtained atomistic representations of the conformational ensembles via scaled MD calculations, consistent with the experimental data. Modifying the repeat domain of tau with ubiquitin had a limited effect on secondary structure propensities and local mobility of distal regions. Instead, ubiquitination enhanced the compaction of the conformational ensemble, with the effect modulated by the site and the number of modifications. Native IM-MS patterns pinpointed similarities and differences between distinct tau proteoforms. It emerges that ubiquitination exerts a position-specific influence on the conformational distribution of tau molecules. This study reveals the unique conformational features of ubiquitinated forms of tau and points to their potential impact on aggregation and phase separation propensities, offering clues for a better understanding of disease-related structural alterations.
Collapse
Affiliation(s)
- Giovanna Viola
- Department of Biotechnology, University of Verona, VeronaI-37134, Italy
| | | | - Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, JoensuuFI-80101, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, JoensuuFI-80101, Finland
| | - Isabella C. Felli
- Department of Chemistry ‘Ugo Schiff’ and Magnetic Resonance Center, University of Florence, FlorenceI-50019, Italy
| | | | - Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, MilanI-20054, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padova, PadovaI-35131, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, VeronaI-37134, Italy
| |
Collapse
|
4
|
Tahiri E, Corti E, Duarte CB. Regulation of Synaptic NMDA Receptor Activity by Post-Translational Modifications. Neurochem Res 2025; 50:110. [PMID: 40029461 PMCID: PMC11876243 DOI: 10.1007/s11064-025-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
NMDA receptors for the neurotransmitter glutamate are widely distributed in the central nervous system, playing important roles in brain development, function and plasticity. Alterations in their activity are also important mediators in neuropsychiatric and neurodegenerative disorders. The different NMDA receptor subunits (GluN1, GluN2A-D and GluN3A, B) share a similar structure and membrane topology, with an intracellular C-terminus tail responsible for the interaction with proteins important for the trafficking of the receptors, and to control their surface distribution and signalling activity. The latter sequence varies among subunits but consistently contains the majority of post-translational modification sites on NMDA receptors. These modifications, including phosphorylation, ubiquitination, and palmitoylation, regulate interactions with intracellular proteins. Differences in the amino acid sequence between NMDA receptor subunits lead to a differential regulation by post-translational modifications. Since NMDA receptors are formed by oligomerization of different subunits, and each subunit is regulated in a specific manner, this creates multiple possibilities for regulation of these receptors, with impact in synaptic function and plasticity. This review addresses the diversity of mechanisms involved in the post-translational modification of NMDA receptor subunits, and their impact on the activity and distribution of the receptors, as well as their function in nerve cells.
Collapse
Affiliation(s)
- Emanuel Tahiri
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisa Corti
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal.
| |
Collapse
|
5
|
Maduka AO, Manohar S, Foster MW, Silva GM. Localized K63 Ubiquitin Signaling Is Regulated by VCP/p97 During Oxidative Stress. Mol Cell Proteomics 2025; 24:100920. [PMID: 39880084 PMCID: PMC11894314 DOI: 10.1016/j.mcpro.2025.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote concerted response mechanisms remain understudied. Here, we show that K63-linked polyubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in noncytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of noncytosolic compartments expanded 2.5-fold the pool of proteins (2,494) and provided a comprehensive number of sites (10,157) known to be ubiquitinated during arsenite stress, suggesting their involvement in a myriad of cellular pathways. Moreover, subcellular proteome analyses revealed proteins that are recruited to noncytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase valosin-containing protein (VCP) that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to noncytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of noncytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.
Collapse
Affiliation(s)
- Austin O Maduka
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sandhya Manohar
- Department of Biology, Institute for Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Matthew W Foster
- Proteomics and Metabolomics Core Facility, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
6
|
Jansen C, McAdams J, Kim C, De La Cruz P, Salaverria A, DaSilva NA, Grive K, James NE. Small molecule inhibition of ubiquitin C-terminal hydrolase L1 alters cell metabolism proteins and exerts anti- or pro-tumorigenic effects contingent upon chemosensitivity status in high grade serous ovarian cancer. Front Pharmacol 2025; 16:1547164. [PMID: 40078282 PMCID: PMC11897294 DOI: 10.3389/fphar.2025.1547164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
High grade serous ovarian cancer (HGSOC) is the most lethal of all gynecologic malignancies in which the majority of patients eventually develop chemoresistant recurrent disease. Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme canonically known for its involvement in neurodegeneration, but recently has been shown to play a key role in tumorigenesis. Furthermore, UCHL1 has garnered attention across a multitude of cancer subtypes as it has the ability to be targeted through small molecule inhibition. Therefore, the goal of this present study was to elucidate mechanistic consequences of small molecule UCHL1 inhibition in HGSOC. Comparative label-free proteomic analysis of HGSOC cell line, OVCAR8 revealed prominent changes in cell metabolism proteins upon treatment with UCHL1 small molecule inhibitor, LDN-57444. Further validation via Western blot analysis revealed that changes in cell metabolism proteins differed in matched chemosensitive versus chemoresistant HGSOC cells. Finally, cell viability analysis demonstrated that a combinatorial carboplatin and LDN-57444 blockade produced a promotion or conversely, inhibition of cell death, in chemoresistant, and chemosensitve HGSOC cells, respectively. This phenomenon was further corroborated by respective differences in activation levels of common tumor cell growth pathways STAT3, MAPK/ERK, and AKT in chemoresistant versus chemosensitive HGSOC cells. Overall, this investigation established that pharmacologic targeting of UCHL1 produces differential effects according to HGSOC chemosensitivity status.
Collapse
Affiliation(s)
- Corinne Jansen
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Julia McAdams
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Chloe Kim
- School of Public Health, Brown University, Providence, RI, United States
| | - Payton De La Cruz
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Angelica Salaverria
- Therapeutic Sciences Graduate Program, Brown University, Providence, RI, United States
| | - Nicholas A. DaSilva
- Division of Biology and Medicine, Proteomics Facility, Brown University, Providence, RI, United States
| | - Kathryn Grive
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Nicole E. James
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Xiong LY, Zhao W, Hu FQ, Zhou XM, Zheng YJ. Ubiquitination in diabetes and its complications: A perspective from bibliometrics. World J Diabetes 2025; 16:100099. [PMID: 39817224 PMCID: PMC11718460 DOI: 10.4239/wjd.v16.i1.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches. AIM To uncover the research trends and advances in diabetes ubiquitination and its complications, we conducted a bibliometric analysis. METHODS Studies on ubiquitination in diabetes mellitus and its complications were retrieved from the Web of Science Core Collection. Visual mapping analysis was conducted using the CiteSpace software. RESULTS We gathered 791 articles published over the past 23 years, focusing on ubiquitination in diabetes and its associated complications. These articles originated from 54 countries and 386 institutions, with China as the leading contributor. Shanghai Jiao Tong University has the highest number of publications in this field. The most prominent authors contributing to this research area include Wei-Hua Zhang, with Zhang Y being the most frequently cited author. Additionally, The Journal of Biological Chemistry is noted as the most cited in this field. The predominant keywords included expression, activation, oxidative stress, phosphorylation, ubiquitination, degradation, and insulin resistance. CONCLUSION The role of ubiquitination in diabetes and its complications, such as diabetic nephropathy and cardiomyopathy, is a key research focus. However, these areas require further investigations.
Collapse
Affiliation(s)
- Li-Yuan Xiong
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Wei Zhao
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Fa-Quan Hu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Xue-Mei Zhou
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Yu-Jiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| |
Collapse
|
8
|
Yamashita A, Kasai H, Maekawa S, Tanaka T, Akaike Y, Ryo A, Enomoto N, Moriishi K. Berberine promotes K 48-linked polyubiquitination of HNF4α, leading to the inhibition of HBV replication. Antiviral Res 2024; 232:106027. [PMID: 39489302 DOI: 10.1016/j.antiviral.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The current antiviral agents for the treatment of chronic infection with hepatitis B virus (HBV) do not completely remove covalently closed circular DNA (cccDNA) and integrated viral DNA fragments from patients. Berberine is an isoquinoline alkaloid extracted from various plants and has been reported to inhibit the replication of various types of DNA. In this study, we tested the effects of berberine and its derivatives on HBV infection. Berberine inhibited viral core promoter activity at the highest level among the compounds tested and suppressed HBV production and cccDNA synthesis in primary human hepatocytes and HBV-infected HepG2-NTCP cells at an EC50 value of 3.6 μM and a CC50 value of over 240.0 μM. Compared with other viral promoter activities, berberine treatment potently downregulated core promoter activity and reduced protein levels, but not RNA levels, of hepatic nuclear factor 4α (HNF4α), which primarily enhances enhancer II/core promoter activity. Furthermore, berberine treatment enhanced K48-linked, but not K63-linked, polyubiquitination and subsequent proteasome-dependent degradation of HNF4α. These results suggest that berberine enhances the polyubiquitination- and proteasome-dependent degradation of HNF4α and then inhibits HBV replication via the suppression of core promoter activity. The development of antiviral agents based on berberine may contribute to the amelioration of HBV-related disorders, regardless of the presence of residual cccDNA or integrated viral DNA fragments.
Collapse
Affiliation(s)
- Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Shinya Maekawa
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan
| | - Yasunori Akaike
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute for Infectious Diseases, Tokyo, 208-0011, Japan
| | - Nobuyuki Enomoto
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
9
|
Chen Z, Wang W, Hou J, Gao C, Song M, Zhao Z, Guan R, Chen J, Wu H, Abdul Razak SR, Han T, Zhang J, Wang L, Ahmad NH, Li X. NEDD4L contributes to ferroptosis and cell growth inhibition in esophageal squamous cell carcinoma by facilitating xCT ubiquitination. Cell Death Discov 2024; 10:473. [PMID: 39557844 PMCID: PMC11574128 DOI: 10.1038/s41420-024-02243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The oncogene xCT plays an indispensable role in tumor growth by protecting cancer cells from oxidative stress and ferroptosis. Emerging evidence indicated xCT function is tightly controlled by posttranslational modifications, especially ubiquitination. However, it still remains unclear what specific regulatory mechanism of xCT by ubiquitin ligases in human cancers. Here, we reported that NEDD4L, an E3 ubiquitin ligases, inhibited esophageal squamous cell carcinoma (ESCC) tumor growth and facilitated ferroptosis by ubiquitination of xCT. NEDD4L expression was declined in ESCC and was associated with tumor invasion, lymph node metastasis and distant metastasis. Silencing NEDD4L triggered ESCC tumor growth. Meanwhile, knock down of NEDD4L prevented the accumulation of ROS, elevated the level of GSH, reduced the content of MDA in ESCC cells, thereby inhibiting ferroptosis. Mechanistically, NEDD4L directly bound to the ∆CT domain of xCT through its WW and HECT domain. More importantly, NEDD4L promoted xCT degradation by facilitating its polyubiquitination in ESCC cells. Collectively, these findings suggest that NEDD4L is crucial in governing the stability of xCT and mediating ferroptosis in ESCC.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Weilong Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jinghan Hou
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Can Gao
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Meili Song
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zijun Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Ruirui Guan
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jingsheng Chen
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Huicheng Wu
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Siti Razila Abdul Razak
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia
| | - Tao Han
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Junbo Zhang
- Department of Surgery, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Bertam, Pulau Pinang, Malaysia.
| | - Xiumin Li
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, PR China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, Henan Province, PR China.
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
10
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
11
|
Podieh F, Overboom MC, Knol JC, Piersma SR, Goeij-de Haas R, Pham TV, Jimenez CR, Hordijk PL. AAMP and MTSS1 Are Novel Negative Regulators of Endothelial Barrier Function Identified in a Proteomics Screen. Cells 2024; 13:1609. [PMID: 39404373 PMCID: PMC11476176 DOI: 10.3390/cells13191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-cell adhesion in endothelial monolayers is tightly controlled and crucial for vascular integrity. Recently, we reported on the importance of fast protein turnover for maintenance of endothelial barrier function. Specifically, continuous ubiquitination and degradation of the Rho GTPase RhoB is crucial to preserve quiescent endothelial integrity. Here, we sought to identify other barrier regulators, which are characterized by a short half-life, using a proteomics approach. Following short-term inhibition of ubiquitination with E1 ligase inhibitor MLN7243 or Cullin E3 ligase inhibitor MLN4924 in primary human endothelial cells, we identified sixty significantly differentially expressed proteins. Intriguingly, our data showed that AAMP and MTSS1 are novel negative regulators of endothelial barrier function and that their turnover is tightly controlled by ubiquitination. Mechanistically, AAMP regulates the stability and activity of RhoA and RhoB, and colocalizes with F-actin and cortactin at membrane ruffles, possibly regulating F-actin dynamics. Taken together, these findings demonstrate the critical role of protein turnover of specific proteins in the regulation of endothelial barrier function, contributing to our options to target dysregulation of vascular permeability.
Collapse
Affiliation(s)
- Fabienne Podieh
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Max C. Overboom
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Jaco C. Knol
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Richard Goeij-de Haas
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Thang V. Pham
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Connie R. Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Peter L. Hordijk
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| |
Collapse
|
12
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Pruneda JN, Nguyen JV, Nagai H, Kubori T. Bacterial usurpation of the OTU deubiquitinase fold. FEBS J 2024; 291:3303-3316. [PMID: 36636866 PMCID: PMC10338644 DOI: 10.1111/febs.16725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
The extensive cellular signalling events controlled by posttranslational ubiquitination are tightly regulated through the action of specialized proteases termed deubiquitinases. Among them, the OTU family of deubiquitinases can play very specialized roles in the regulation of discrete subtypes of ubiquitin signals that control specific cellular functions. To exert control over host cellular functions, some pathogenic bacteria have usurped the OTU deubiquitinase fold as a secreted virulence factor that interferes with ubiquitination inside infected cells. Herein, we provide a review of the function of bacterial OTU deubiquitinases during infection, the structural basis for their deubiquitinase activities and the bioinformatic approaches leading to their identification. Understanding bacterial OTU deubiquitinases holds the potential for discoveries not only in bacterial pathogenesis but in eukaryotic biology as well.
Collapse
Affiliation(s)
- Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justine V. Nguyen
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Gifu 501-1194, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| |
Collapse
|
14
|
Maduka AO, Manohar S, Foster MW, Silva GM. Localized K63 ubiquitin signaling is regulated by VCP/p97 during oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.598218. [PMID: 38948861 PMCID: PMC11213022 DOI: 10.1101/2024.06.20.598218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote these concerted response mechanisms remain understudied. Here, we show that K63-linked ubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in non-cytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of non-cytosolic compartments expanded 10-fold the pool of proteins known to be ubiquitinated during arsenite stress (2,046) and revealed their involvement in pathways related to immune signaling and translation control. Moreover, subcellular proteome analyses revealed proteins that are recruited to non-cytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase VCP that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to non-cytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of non-cytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by cellular exposure to reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.
Collapse
Affiliation(s)
| | - Sandhya Manohar
- Institute for Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Matthew W. Foster
- Proteomics and Metabolomics Core Facility, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
15
|
Wang Y, Shi Y, Niu K, Yang R, Lv Q, Zhang W, Feng K, Zhang Y. Ubiquitin specific peptidase 3: an emerging deubiquitinase that regulates physiology and diseases. Cell Death Discov 2024; 10:243. [PMID: 38773075 PMCID: PMC11109179 DOI: 10.1038/s41420-024-02010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Proteins are the keystone for the execution of various life activities, and the maintenance of protein normalization is crucial for organisms. Ubiquitination, as a post-transcriptional modification, is widely present in organisms, and it relies on the sophisticated ubiquitin-proteasome (UPS) system that controls protein quality and modulates protein lifespan. Deubiquitinases (DUBs) counteract ubiquitination and are essential for the maintenance of homeostasis. Ubiquitin specific peptidase 3 (USP3) is a member of the DUBs that has received increasing attention in recent years. USP3 is a novel chromatin modifier that tightly regulates the DNA damage response (DDR) and maintains genome integrity. Meanwhile, USP3 acts as a key regulator of inflammatory vesicles and sustains the normal operation of the innate immune system. In addition, USP3 is aberrantly expressed in a wide range of cancers, such as gastric cancer, glioblastoma and neuroblastoma, implicating that USP3 could be an effective target for targeted therapies. In this review, we retrace all the current researches of USP3, describe the structure of USP3, elucidate its functions in DNA damage, immune and inflammatory responses and the cell cycle, and summarize the important role of USP3 in multiple cancers and diseases.
Collapse
Affiliation(s)
- Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Rui Yang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Wenning Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
16
|
Liu L, Chen Y, Wu W, Chen Q, Tian Z, Huang J, Ren H, Zhang J, Du X, Zhuang M, Wang P. A multilevel investigation to reveal the regulatory mechanism of lignin accumulation in juice sac granulation of pomelo. BMC PLANT BIOLOGY 2024; 24:390. [PMID: 38730367 PMCID: PMC11088010 DOI: 10.1186/s12870-024-05095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.
Collapse
Affiliation(s)
- Luning Liu
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiran Chen
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilin Wu
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuyou Chen
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijiao Tian
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakang Huang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaqing Ren
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiacheng Zhang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Du
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mulai Zhuang
- Bureau of Agriculture and Rural Affairs of Pinghe County, Pinghe, China
| | - Ping Wang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
17
|
Zhao Z, Liu M, Lin Z, Zhu M, Lv L, Zhu X, Fan R, Al-Danakh A, He H, Tan G. The mechanism of USP43 in the development of tumor: a literature review. Aging (Albany NY) 2024; 16:6613-6626. [PMID: 38613804 PMCID: PMC11042928 DOI: 10.18632/aging.205731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Meichen Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Zhikun Lin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Xinqing Zhu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Rui Fan
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, National, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Abdullah Al-Danakh
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| |
Collapse
|
18
|
Servín Muñoz IV, Ortuño-Sahagún D, Griñán-Ferré C, Pallàs M, González-Castillo C. Alterations in Proteostasis Mechanisms in Niemann-Pick Type C Disease. Int J Mol Sci 2024; 25:3806. [PMID: 38612616 PMCID: PMC11011983 DOI: 10.3390/ijms25073806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and β-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.
Collapse
Affiliation(s)
- Iris Valeria Servín Muñoz
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red (CiberNed), Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red (CiberNed), Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Celia González-Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Mexico
| |
Collapse
|
19
|
Zhang M, Wei T, Guo D. The role of abnormal ubiquitination in hepatocellular carcinoma pathology. Cell Signal 2024; 114:110994. [PMID: 38036196 DOI: 10.1016/j.cellsig.2023.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Primary liver cancer is known for its high incidence and fatality rate. Over the years, therapeutic strategies for primary liver cancer have advanced significantly. Nonetheless, a substantial number of patients have not benefited from these methods, underscoring the pressing need for new and effective treatments for primary liver cancer. Ubiquitination is a critical post-translational modification that enables proteins to fulfill their normal biological functions and maintain their expression stability within cells. Importantly, increasing evidence suggests that the progression of liver cancer cells is often accompanied by disruptions in protein ubiquitination and deubiquitination processes. In this comprehensive review, we have compiled pertinent research about dysregulated ubiquitination in hepatocellular carcinoma (HCC) to broaden our understanding in this field. We elucidate the connections between the ubiquitination proteasome system, deubiquitination, and HCC. Furthermore, we shed light on the role of ubiquitination in cells situated within the tumor microenvironment of HCC including its involvement in mediating the activation of oncogenic pathways, reprogramming metabolic processes, and perturbing normal cellular functions. In conclusion, targeting the dysregulation of ubiquitination in HCC holds promise as a prospective and complementary therapeutic approach to existing treatments.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
20
|
Niu Q, Li Z, Jiang H, Hu B. Linc-ROR inhibits NK cell-killing activity by promoting RXRA ubiquitination and reducing MICB expression in gastric cancer patients. J Cell Biochem 2024; 125:e30516. [PMID: 38205878 DOI: 10.1002/jcb.30516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Linc-ROR plays an important role in gastric cancer (GC) development and progression. This study sought to determine how the aberrant expression of Linc-ROR impacts GC progression and immune evasion, and to identify new targets for GC therapy. GC cells overexpressing Linc-ROR and GSAGS cells were cocultured with NK-92 cells, respectively, and Linc-ROR expression was determined using reverse transcription polymerase chain reaction. Linc-ROR overexpression experiments were used to measure the expression of MICB, a tumor protein that is recognized by natural killer (NK) cells. Bioinformatics analysis identified retinoid X receptor α (RXRA) and YY1 as MICB-specific transcription factors. Cotransfection and ubiquitinated drug experiments found that Linc-ROR promoted the ubiquitination and degradation of RXRA. Linc-ROR was upregulated in GC tissue and high expression was associated with tumor escape from NK-92 cell-mediated immunity. Linc-ROR overexpression inhibited the expression of MICB on the cell surface by degrading RXRA. These findings indicate that Linc-ROR promotes the binding of RXRA and E3 ligase UBE4B, reducing RXRA and MICB expression, and limiting NK cell-killing activity. Linc-ROR is a critical long noncoding RNA with a tumor-promoting function in GC and thus may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Qingbin Niu
- Department of Gastrointestinal Surgery, Dongying People's Hospital, Dongying, China
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zongrui Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - He Jiang
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
21
|
Tessier TM, Chowdhury A, Stekel Z, Fux J, Sartori MA, Teyra J, Jarvik N, Chung J, Kurinov I, Sicheri F, Sidhu SS, Singer AU, Zhang W. Structural and functional validation of a highly specific Smurf2 inhibitor. Protein Sci 2024; 33:e4885. [PMID: 38147466 PMCID: PMC10823456 DOI: 10.1002/pro.4885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
Smurf1 and Smurf2 are two closely related member of the HECT (homologous to E6AP carboxy terminus) E3 ubiquitin ligase family and play important roles in the regulation of various cellular processes. Both were initially identified to regulate transforming growth factor-β and bone morphogenetic protein signaling pathways through regulating Smad protein stability and are now implicated in various pathological processes. Generally, E3 ligases, of which over 800 exist in humans, are ideal targets for inhibition as they determine substrate specificity; however, there are few inhibitors with the ability to precisely target a particular E3 ligase of interest. In this work, we explored a panel of ubiquitin variants (UbVs) that were previously identified to bind Smurf1 or Smurf2. In vitro binding and ubiquitination assays identified a highly specific Smurf2 inhibitor, UbV S2.4, which was able to inhibit ligase activity with high potency in the low nanomolar range. Orthologous cellular assays further demonstrated high specificity of UbV S2.4 toward Smurf2 and no cross-reactivity toward Smurf1. Structural analysis of UbV S2.4 in complex with Smurf2 revealed its mechanism of inhibition was through targeting the E2 binding site. In summary, we investigated several protein-based inhibitors of Smurf1 and Smurf2 and identified a highly specific Smurf2 inhibitor that disrupts the E2-E3 protein interaction interface.
Collapse
Affiliation(s)
- Tanner M. Tessier
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Arvid Chowdhury
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Zane Stekel
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Julia Fux
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | | | | | - Nick Jarvik
- Department of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Jacky Chung
- Department of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Igor Kurinov
- NE‐CAT, Department of Chemistry and Chemical BiologyCornell UniversityArgonneIllinoisUSA
| | - Frank Sicheri
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalTorontoOntarioCanada
| | - Sachdev S. Sidhu
- Department of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Alex U. Singer
- Department of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Wei Zhang
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
22
|
Li Y, Li Z, Zou H, Zhou P, Huo Y, Fan Y, Liu X, Wu J, Li G, Wang X. A conserved methyltransferase active site residue of Zika virus NS5 is required for the restriction of STING activation and interferon expression. J Gen Virol 2024; 105. [PMID: 38299799 DOI: 10.1099/jgv.0.001954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Zika virus (ZIKV) is a re-emerging RNA virus and causes major public health events due to its link to severe neurological complications in foetuses and neonates. The cGAS-STING signalling pathway regulates innate immunity and plays an important role in the invasion of DNA and RNA viruses. This study reveals a distinct mechanism by which ZIKV restricts the cGAS-STING signalling to repress IFN-β expression. ZIKV attenuates IFN-β expression induced by DNA viruses (herpes simplex virus type 1, HSV-1) or two double-stranded DNAs (dsDNA90 and HSV120) in mouse embryonic fibroblasts (MEFs). Notably, ZIKV NS5, the viral RNA-dependent RNA polymerase, was responsible for the repression of IFN-β. NS5 interacts with STING in the cytoplasm, suppresses IRF3 phosphorylation and nucleus localization and promotes the cleavage of STING K48-linked polyubiquitination. Furthermore, the NS5 methyltransferase (MTase) domain interacts with STING to restrict STING-induced IFN-β expression. Interestingly, point mutation analyses of conserved methyltransferase active site residue D146 indicate that it is critical for repressing IFN-β expression induced by STING stimulation in cGAS-STING signalling.
Collapse
Affiliation(s)
- Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, PR China
| | - Zhaoxin Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, PR China
| | - Haimei Zou
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Peiwen Zhou
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Yuhang Huo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, PR China
| | - Yaohua Fan
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, PR China
| | - Xiaohong Liu
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, PR China
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, PR China
| | - Xiao Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, PR China
| |
Collapse
|
23
|
Immler F, Schneider T, Kovermann M. Targeted Preparation and NMR Spectroscopic Characterization of Lys11-Linked Ubiquitin Trimers. Chembiochem 2024; 25:e202300670. [PMID: 37983597 DOI: 10.1002/cbic.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Ubiquitylation refers to the attachment of mono- or poly-ubiquitin molecules to a substrate protein. To shield ubiquitin chains against potential hydrolysis, a facile, click-chemistry based approach was recently established for the generation of site-specifically conjugated ubiquitin dimers relying on triazole-linkage. Here, the preparation of such ubiquitin chains was advanced by the generation of homotypic Lys11-linked ubiquitin trimers considering an isotopic labeling scheme in a moiety-wise manner. The structural and dynamical impact on the ubiquitin unit at proximal, central, or distal position that is potentially invoked by the respective other two moieties was systematically probed by heteronuclear high-resolution NMR spectroscopic approaches. As a result, conjugating a third ubiquitin moiety to the proximal or distal site of a ubiquitin dimer does not alter structural and dynamical characteristics as it has been seen for ubiquitin dimers. This observation suggests that recognition of a homotypically assembled ubiquitin chain by a potential substrate is primarily done by screening the length of a ubiquitin chain rather than relying on subtle changes in structure or dynamic properties of single ubiquitin moieties composing the chain.
Collapse
Affiliation(s)
- Fabian Immler
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| | - Tobias Schneider
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
24
|
Zou J, Niu K, Lu T, Kan J, Cheng H, Xu L. The Multifunction of TRIM26: From Immune Regulation to Oncology. Protein Pept Lett 2024; 31:424-436. [PMID: 38956921 PMCID: PMC11475100 DOI: 10.2174/0109298665311516240621114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.
Collapse
Affiliation(s)
- Jialai Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Kaiyi Niu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Tao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Jianxun Kan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Hao Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Lijian Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
25
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
26
|
Yan L, Cui Y, Feng J. Biology of Pellino1: a potential therapeutic target for inflammation in diseases and cancers. Front Immunol 2023; 14:1292022. [PMID: 38179042 PMCID: PMC10765590 DOI: 10.3389/fimmu.2023.1292022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological functions by mediating target protein ubiquitination. Extensive evidence has demonstrated the crucial role of Peli1 in regulating inflammation by modulating various receptor signaling pathways, including interleukin-1 receptors, Toll-like receptors, nuclear factor-κB, mitogen-activated protein kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been implicated in the development of several diseases by influencing inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage repair, and glycolysis. Peli1 is a risk factor for most cancers, including breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects against herpes simplex virus infection, systemic lupus erythematosus, esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a potential therapeutic target that warrants further investigation. This comprehensive review summarizes the target proteins of Peli1, delineates their involvement in major signaling pathways and biological processes, explores their role in diseases, and discusses the potential clinical applications of Peli1-targeted therapy, highlighting the therapeutic prospects of Peli1 in various diseases.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Zhang M, Shao Y, Gu W. The Mechanism of Ubiquitination or Deubiquitination Modifications in Regulating Solid Tumor Radiosensitivity. Biomedicines 2023; 11:3240. [PMID: 38137461 PMCID: PMC10741492 DOI: 10.3390/biomedicines11123240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy, a treatment method employing radiation to eradicate tumor cells and subsequently reduce or eliminate tumor masses, is widely applied in the management of numerous patients with tumors. However, its therapeutic effectiveness is somewhat constrained by various drug-resistant factors. Recent studies have highlighted the ubiquitination/deubiquitination system, a reversible molecular modification pathway, for its dual role in influencing tumor behaviors. It can either promote or inhibit tumor progression, impacting tumor proliferation, migration, invasion, and associated therapeutic resistance. Consequently, delving into the potential mechanisms through which ubiquitination and deubiquitination systems modulate the response to radiotherapy in malignant tumors holds paramount significance in augmenting its efficacy. In this paper, we comprehensively examine the strides made in research and the pertinent mechanisms of ubiquitination and deubiquitination systems in governing radiotherapy resistance in tumors. This underscores the potential for developing diverse radiosensitizers targeting distinct mechanisms, with the aim of enhancing the effectiveness of radiotherapy.
Collapse
Affiliation(s)
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| |
Collapse
|
28
|
Jiang W, Li M, Peng S, Hu T, Long Y, Zhang J, Peng D, Shen Y. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways. Immunol Res 2023; 71:800-813. [PMID: 37291329 DOI: 10.1007/s12026-023-09400-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Mengling Li
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Siyuan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Tian Hu
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yan Long
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Jiayi Zhang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Dan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China.
| |
Collapse
|
29
|
He T, Wen C, Yang G, Yang X. Targeted Protein Degradation: Principles, Strategies, and Applications. Adv Biol (Weinh) 2023; 7:e2300083. [PMID: 37518856 DOI: 10.1002/adbi.202300083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
Protein degradation is a general process to maintain cell homeostasis. The intracellular protein quality control system mainly includes the ubiquitin-proteasome system and the lysosome pathway. Inspired by the physiological process, strategies to degrade specific proteins have developed, which emerge as potent and effective tools in biological research and drug discovery. This review focuses on recent advances in targeted protein degradation techniques, summarizing the principles, advantages, and challenges. Moreover, the potential applications and future direction in biological science and clinics are also discussed.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Chenxi Wen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
30
|
Meng Y, Hong C, Yang S, Qin Z, Yang L, Huang Y. Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett 2023; 26:506. [PMID: 37920433 PMCID: PMC10618932 DOI: 10.3892/ol.2023.14093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Ubiquitin-specific peptidase 9X (USP9X) is involved in certain human diseases, including malignancies, atherosclerosis and certain diseases of the nervous system. USP9X promotes the deubiquitination and stabilization of diverse substrates, thereby exerting a versatile range of effects on pathological and physiological processes. USP9X serves vital roles in the processes of cell survival, invasion and migration in various types of cancer. The present review aims to highlight the current knowledge of USP9X in terms of its structure and the possible mediatory mechanisms involved in certain types of cancer, providing a thorough introduction to its biological functions in carcinogenesis and further outlining its oncogenic or suppressive properties in a diverse range of cancer types. Finally, several perspectives regarding USP9X-targeted pharmacological therapeutics in cancer development are discussed.
Collapse
Affiliation(s)
- Yimei Meng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Sifu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
31
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
32
|
Shi F, Wu Y, Wang K, Wang J, Liu M, Sun X. A pancancer analysis of the oncogenic role of ZNRF2 in human tumours. J Cell Mol Med 2023; 27:3296-3312. [PMID: 37551845 PMCID: PMC10623518 DOI: 10.1111/jcmm.17900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/19/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023] Open
Abstract
Finding effective treatments for cancer requires a thorough understanding of how it develops and progresses. Recent research has revealed the crucial role that Zinc and ring finger 2 (ZNRF2) play in the progression of non-small cell lung cancer (NSCLC) by controlling cell growth and death. However, a comprehensive analysis of ZNRF2's role in cancer as a whole has yet to be conducted. Our study sought to investigate the impact of ZNRF2 on diverse human tumours, as well as the molecular pathways involved, using databases such as TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus) and the Human Protein Atlas (HPA), as well as several bioinformatic tools. Our findings indicate that ZNRF2 is generally expressed at higher levels in tumours than in normal tissues, and in some cancers, its levels correlate positively with disease stage, potentially predicting a poor prognosis for patients. We also discovered genetic changes in ZNRF2 among cancer patients, as well as its relationship with cancer-related fibroblasts, endothelial cells and immune cell infiltration. Additionally, we explored potential molecular mechanisms of ZNRF2 in tumours, finding that it increases in hepatocellular carcinoma (HCC) tissues and that inhibiting its expression through ZNRF2 siRNA can limit HepG2 cell proliferation. Overall, our study provides a comprehensive overview of ZNRF2's oncogenic roles across various cancers.
Collapse
Affiliation(s)
- Fujie Shi
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- School of Life SciencesNanjing UniversityNanjingChina
| | - Yunfei Wu
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Kai Wang
- Division of Trauma and Surgical Intensive Care UnitResearch Institute of General Surgery, Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jiafan Wang
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Minghui Liu
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Xinlei Sun
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
33
|
Liang LJ, Wang Y, Hua X, Yuan R, Xia Q, Wang R, Li C, Chu GC, Liu L, Li YM. Cell-Permeable Stimuli-Responsive Ubiquitin Probe for Time-Resolved Monitoring of Substrate Ubiquitination in Live Cells. JACS AU 2023; 3:2873-2882. [PMID: 37885572 PMCID: PMC10598832 DOI: 10.1021/jacsau.3c00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Dynamic monitoring of intracellular ubiquitin (Ub) conjugates is instrumental to understanding the Ub regulatory machinery. Although many biochemical approaches have been developed to characterize protein ubiquitination, chemical tools capable of temporal resolution probing of ubiquitination events remain to be developed. Here, we report the development of the first cell-permeable and stimuli-responsive Ub probe and its application for the temporal resolution profiling of ubiquitinated substrates in live cells. The probe carrying the photolabile group N-(2-nitrobenzyl)-Gly (Nbg) on the amide bond between Ub Gly75 and Gly76 is readily prepared through chemical synthesis and can be delivered to live cells by conjugation via a disulfide bond with the cyclic cell-penetrating peptide cR10D (i.e., 4-((4-(dimethylamino)phenyl)-azo)-benzoic acid-modified cyclic deca-arginine). Both in vitro and in vivo experiments showed that Ub-modifying enzymes (E1, E2s, and E3s) could not install the Ub probe onto substrate proteins prior to removal of the nitrobenzyl group, which was easily accomplished via photoirradiation. The utility and practicality of this probe were exemplified by the time-resolved biochemical and proteomic investigation of ubiquitination events in live cells during a H2O2-mediated oxidative stress response. This work shows a conceptually new family of chemical Ub tools for the time-resolved studies on dynamic protein ubiquitination in different biological processes and highlights the utility of modern chemical protein synthesis in obtaining custom-designed tools for biological studies.
Collapse
Affiliation(s)
- Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Xiao Hua
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rujing Yuan
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Qiong Xia
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Rongtian Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Chuntong Li
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Chao Chu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
34
|
Song J, Zhang Y, Bai Y, Sun X, Lu Y, Guo Y, He Y, Gao M, Chi X, Heng BC, Zhang X, Li W, Xu M, Wei Y, You F, Zhang X, Lu D, Deng X. The Deubiquitinase OTUD1 Suppresses Secretory Neutrophil Polarization And Ameliorates Immunopathology of Periodontitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303207. [PMID: 37639212 PMCID: PMC10602526 DOI: 10.1002/advs.202303207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Tissue-infiltrating neutrophils (TINs) secrete various signaling molecules to establish paracrine communication within the inflammatory milieu. It is imperative to identify molecular mediators that control this secretory phenotype of TINs. The present study uncovers a secretory neutrophil subset that exhibits increased pro-inflammatory cytokine production and enhanced migratory capacity which is highly related with periodontal pathogenesis. Further analysis identifies the OTU domain-containing protein 1 (OTUD1) plays a regulatory role in this secretory neutrophil polarization. In human and mouse periodontitis, the waning of inflammation is correlated with OTUD1 upregulation, whereas severe periodontitis is induced when neutrophil-intrinsic OTUD1 is depleted. Mechanistically, OTUD1 interacts with SEC23B, a component of the coat protein II complex (COPII). By removing the K63-linked polyubiquitin chains on SEC23B Lysine 81, the deubiquitinase OTUD1 negatively regulates the COPII secretory machinery and limits protein ER-to-Golgi trafficking, thus restricting the surface expression of integrin-regulated proteins, CD9 and CD47. Accordingly, blockade of protein transport by Brefeldin A (BFA) curbs recruitment of Otud1-deficient TINs and attenuates inflammation-induced alveolar bone destruction. The results thus identify OTUD1 signaling as a negative feedback loop that limits the polarization of neutrophils with secretory phenotype and highlight the potential application of BFA in the treatment of periodontal inflammation.
Collapse
Affiliation(s)
- Jia Song
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yuning Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yusi Guo
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Ying He
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Min Gao
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaopei Chi
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Boon Chin Heng
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xin Zhang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Wenjing Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Mingming Xu
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yan Wei
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Fuping You
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Peking University‐Yunnan Baiyao International Medical Research CenterBeijing100191P. R. China
| | - Dan Lu
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Peking University‐Yunnan Baiyao International Medical Research CenterBeijing100191P. R. China
| |
Collapse
|
35
|
Wang X, Zhang X, Song CP, Gong Z, Yang S, Ding Y. PUB25 and PUB26 dynamically modulate ICE1 stability via differential ubiquitination during cold stress in Arabidopsis. THE PLANT CELL 2023; 35:3585-3603. [PMID: 37279565 PMCID: PMC10473228 DOI: 10.1093/plcell/koad159] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
Ubiquitination modulates protein turnover or activity depending on the number and location of attached ubiquitin (Ub) moieties. Proteins marked by a lysine 48 (K48)-linked polyubiquitin chain are usually targeted to the 26S proteasome for degradation; however, other polyubiquitin chains, such as those attached to K63, usually regulate other protein properties. Here, we show that 2 PLANT U-BOX E3 ligases, PUB25 and PUB26, facilitate both K48- and K63-linked ubiquitination of the transcriptional regulator INDUCER OF C-REPEAT BINDING FACTOR (CBF) EXPRESSION1 (ICE1) during different periods of cold stress in Arabidopsis (Arabidopsis thaliana), thus dynamically modulating ICE1 stability. Moreover, PUB25 and PUB26 attach both K48- and K63-linked Ub chains to MYB15 in response to cold stress. However, the ubiquitination patterns of ICE1 and MYB15 mediated by PUB25 and PUB26 differ, thus modulating their protein stability and abundance during different stages of cold stress. Furthermore, ICE1 interacts with and inhibits the DNA-binding activity of MYB15, resulting in an upregulation of CBF expression. This study unravels a mechanism by which PUB25 and PUB26 add different polyubiquitin chains to ICE1 and MYB15 to modulate their stability, thereby regulating the timing and degree of cold stress responses in plants.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng 475004, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
37
|
Chen Y, Guo Y, Yuan M, Guo S, Cui S, Chen D. USP4 promotes the proliferation and glucose metabolism of gastric cancer cells by upregulating PKM2. PLoS One 2023; 18:e0290688. [PMID: 37624791 PMCID: PMC10456134 DOI: 10.1371/journal.pone.0290688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The pyruvate kinase enzyme PKM2 catalyzes the final step in glycolysis and converts phosphoenolpyruvate (PEP) to pyruvate. PKM2 is often overexpressed in cancer and plays a role in the Warburg effect. The expression of PKM2 can be regulated at different levels. While it has been proven that PKM2 can be regulated by ubiquitination, little is known about its de-ubiquitination regulation. METHODS Immunoprecipitation was applied to identify the PKM2 interaction protein and to determine the interaction region between PKM2 and USP4. Immunofluorescence was performed to determine the cellular localization of USP4 and PKM2. The regulation of PKM2 by USP4 was examined by western blot and ubiquitination assay. MTT assays, glucose uptake, and lactate production were performed to analyze the biological effects of USP4 in gastric cancer cells. RESULTS USP4 interacts with PKM2 and catalyzes the de-ubiquitination of PKM2. Overexpression of USP4 promotes cell proliferation, glucose uptake, and lactate production in gastric cancer cells. Knockdown of USP4 reduces PKM2 levels and results in a reduction in cell proliferation and the glycolysis rate. CONCLUSIONS USP4 plays a tumor-promoting role in gastric cancer cells by regulating PKM2.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Mei Yuan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Song Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
38
|
Wang M, Zhang Z, Li Z, Zhu Y, Xu C. E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and implications for immunotherapies. Front Immunol 2023; 14:1226057. [PMID: 37497216 PMCID: PMC10366618 DOI: 10.3389/fimmu.2023.1226057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
With the rapidly increasing incidence of bladder cancer in China and worldwide, great efforts have been made to understand the detailed mechanism of bladder cancer tumorigenesis. Recently, the introduction of immune checkpoint inhibitor-based immunotherapy has changed the treatment strategy for bladder cancer, especially for advanced bladder cancer, and has improved the survival of patients. The ubiquitin-proteasome system, which affects many biological processes, plays an important role in bladder cancer. Several E3 ubiquitin ligases and deubiquitinases target immune checkpoints, either directly or indirectly. In this review, we summarize the recent progress in E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and further highlight the implications for bladder cancer immunotherapies.
Collapse
Affiliation(s)
- Maoyu Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhizhou Li
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
39
|
Trivellato D, Floriani F, Barracchia CG, Munari F, D'Onofrio M, Assfalg M. Site-directed double monoubiquitination of the repeat domain of the amyloid-forming protein tau impairs self-assembly and coacervation. Bioorg Chem 2023; 132:106347. [PMID: 36630781 DOI: 10.1016/j.bioorg.2023.106347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
In Alzheimer's disease and related disorders called tauopathies, the microtubule-associated protein tau accumulates in the brain in the form of amyloid-like supramolecular filaments. As an intrinsically disordered protein, tau undergoes many post-translational modifications, including ubiquitination. Alterations to the levels of ubiquitination of tau have been observed at various stages of neurodegenerative conditions. We focus on proteoform-specific interrogations to obtain mechanistic insight into the effects of ubiquitination on disease-related conformational transitions of tau. Single and double ubiquitination of tau at residues Lys311 and Lys317 is strongly associated with pathological conditions. In this study, we leveraged disulfide-directed chemistry to install ubiquitin at one or both of those positions in the isolated microtubule-binding repeat domain of tau. We obtained homogeneously modified tau proteins and observed that they retained disordered character in solution. We found that ubiquitination in position 317 (with or without ubiquitination in position 311) impaired the formation of ordered fibrillar structures via oligomeric intermediates. Since the transition to fibrillar species may proceed via an alternative condensation pathway involving liquid droplet intermediates, we further tested the ability of the ubiquitinated proteoforms to phase separate. Single monoubiquitinated tau species were able to coacervate, however no liquid droplets were observed for the double ubiquitinated form. Taken together, the data indicate that double ubiquitination in the third repeat of tau disfavors the formation of amyloid aggregates by distinct mechanisms, suggesting that the presence of ubiquitinated residues 311 and 317 in insoluble tau may result from modifications in advanced stages of aggregation. These findings contribute to our understanding of the influence of site-specific ubiquitination on the pathological conformational transitions of a prototypical intrinsically disordered protein.
Collapse
Affiliation(s)
| | - Fulvio Floriani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
40
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
41
|
Delegkou GN, Birkou M, Fragkaki N, Toro T, Marousis KD, Episkopou V, Spyroulias GA. E2 Partner Tunes the Ubiquitylation Specificity of Arkadia E3 Ubiquitin Ligase. Cancers (Basel) 2023; 15:1040. [PMID: 36831384 PMCID: PMC9954413 DOI: 10.3390/cancers15041040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Arkadia (RNF111) is a positive regulator of the TGF-β signaling that mediates the proteasome-dependent degradation of negative factors of the pathway. It is classified as an E3 ubiquitin ligase and a SUMO-targeted ubiquitin ligase (STUBL), implicated in various pathological conditions including cancer and fibrosis. The enzymatic (ligase) activity of Arkadia is located at its C-terminus and involves the RING domain. Notably, E3 ligases require E2 enzymes to perform ubiquitylation. However, little is known about the cooperation of Arkadia with various E2 enzymes and the type of ubiquitylation that they mediate. In the present work, we study the interaction of Arkadia with the E2 partners UbcH5B and UbcH13, as well as UbcH7. Through NMR spectroscopy, we found that the E2-Arkadia interaction surface is similar in all pairs examined. Nonetheless, the requirements and factors that determine an enzymatically active E2-Arkadia complex differ in each case. Furthermore, we revealed that the cooperation of Arkadia with different E2s results in either monoubiquitylation or polyubiquitin chain formation via K63, K48, or K11 linkages, which can determine the fate of the substrate and lead to distinct biological outcomes.
Collapse
Affiliation(s)
| | - Maria Birkou
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Nefeli Fragkaki
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Tamara Toro
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | | | - Vasso Episkopou
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| | | |
Collapse
|
42
|
Shi J, Zhang Q, Yin X, Ye J, Gao S, Chen C, Yang Y, Wu B, Fu Y, Zhang H, Wang Z, Wang B, Zhu Y, Wu H, Yao Y, Xu G, Wang Q, Wang S, Zhang W. Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. Int J Biol Sci 2023; 19:449-464. [PMID: 36632454 PMCID: PMC9830507 DOI: 10.7150/ijbs.76798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Metastasis leads to the vast majority of breast cancer mortality. Increasing evidence has shown that N6-methyladenosine (m6A) modification and its associated regulators play a pivotal role in breast cancer metastasis. Here, we showed that overexpression of the m6A reader IGF2BP1 was clinically correlated with metastasis in breast cancer patients. Moreover, IGF2BP1 promoted distant metastasis in vitro and in vivo. Mechanistically, we first identified USP10 as the IGF2BP1 deubiquitinase. USP10 can bind to, deubiquitinate, and stabilize IGF2BP1, resulting in its higher expression level in breast cancer. Furthermore, by MeRIP-seq and experimental verification, we found that IGF2BP1 directly recognized and bound to the m6A sites on CPT1A mRNA and enhanced its stability, which ultimately mediated IGF2BP1-induced breast cancer metastasis. In clinical samples, USP10 levels correlated with IGF2BP1 and CPT1A levels, and breast cancer patients with high levels of USP10, IGF2BP1, and CPT1A had the worst outcome. Therefore, these findings suggest that the USP10/IGF2BP1/CPT1A axis facilitates breast cancer metastasis, and this axis may be a promising prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jiajun Shi
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Qianyi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Xi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Jiahui Ye
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Shengqing Gao
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Yaxuan Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Baojuan Wu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Yuping Fu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Hongmei Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Yun Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Hongyan Wu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, People's Republic of China
| | - Shouyu Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Weijie Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| |
Collapse
|
43
|
Liu Z, Fu Y, Huang Y, Zeng F, Rao J, Xiao X, Sun X, Jin H, Li J, Yang J, Du W, Liu L. Ubiquitination of SARS-CoV-2 ORF7a Prevents Cell Death Induced by Recruiting BclXL To Activate ER Stress. Microbiol Spectr 2022; 10:e0150922. [PMID: 36326498 PMCID: PMC9769937 DOI: 10.1128/spectrum.01509-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which has emerged in the last 2 years. The accessory protein ORF7a has been proposed as an immunomodulating factor that can cause dramatic inflammatory responses, but it is unknown how ORF7a interacts with host cells. We show that ORF7a induces cell apoptosis by recruiting the prosurvival factor BclXL to the endoplasmic reticulum (ER) via the exposed C-terminal residues Lys117 and Lys119. Simultaneously, ORF7a activates ER stress via the PERK-elF2α-CHOP pathway and inhibits the expression of endogenous BclXL, resulting in enhanced cell apoptosis. Ubiquitination of ORF7a interrupts the interaction with BclXL in the ER and weakens the activation of ER stress, which to some extent rescues the cells. Our work demonstrates that SARS-CoV-2 ORF7a hires antiapoptosis protein and aggregates on the ER, resulting in ER stress and apoptosis initiation. On the other hand, ORF7a utilizes the ubiquitin system to impede and escape host elimination, providing a promising potential target for developing strategies for minimizing the COVID-19 pandemic. IMPORTANCE Viruses struggle to reproduce after infecting cells, and the host eliminates infected cells through apoptosis to prevent virus spread. Cells adopt a special ubiquitination code to protect against viral infection, while ORF7a manipulates and exploits the ubiquitin system to eliminate host cells' effect on apoptosis and redirect cellular pathways in favor of virus survival. Our results revealed that SARS-CoV-2-encoded accessory protein ORF7a recruits prosurvival factor BclXL to the ER and activates the cellular ER stress response resulting in the initiation of programmed death to remove virus-infected cells. Ubiquitination of ORF7a blocked the recruitment of BclXL and suppressed the ER stress response, which helps to counteract cell apoptosis and rescue cell fate. These findings help us understand the mechanism of SARS-CoV-2 invasion and contribute to a theoretical foundation for the clinical prevention of COVID-19.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yanan Fu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Yanping Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Feng Zeng
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Jingjing Rao
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Xiao Xiao
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Xiaoguang Sun
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Hao Jin
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Jing Yang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Weixing Du
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Long Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
44
|
Xia D, Pan L, Fu X, Meng Y, Li M, Wang W, Wang Z. Deubiquitinase USP29 correlates RORγt expression and its association with thymoma myasthenia gravis. Am J Transl Res 2022; 14:8632-8639. [PMID: 36628242 PMCID: PMC9827293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The objective of this study was to examine the expression of deubiquitylases USP29 in thymomas with myasthenia gravis (MG) and research associated immunological processes. METHODS 69 MG patients with thymomas, 21 thymoma patients without MG, and 31 healthy controls were classified into three groups (categories): group with MG-associated thymoma (MG-T), group with non-MG-associated thymoma (NMG-T), and group with healthy controls (HC). In thymomas, the mRNA and protein levels of RORγt and USP29 were examined by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) and western blotting. Th17 cell counts in MG patients with thymomas were investigated by flow cytometry. RESULTS In MG-related thymomas, the mRNA and protein levels of deubiquitylases USP29 were substantially elevated. USP29 post-transcriptionally regulated RORγt. In MG patients with thymomas, the expression of USP29 was positively linked to the RORγt expression and Th17 cell frequency. CONCLUSION This work exhibited that the elevated USP29 enhanced RORγt expression, which in turn affected the Th17 cell growth in thymomatous MG. Our data suggest that USP29 might take part in the regulation of RORγt expression and Th17 cell generation and constitute an innovative regulatory function for USP29 in autoimmune disease.
Collapse
Affiliation(s)
- Deyu Xia
- Department of Neurology, Hebei Yanda HospitalLangfang 065201, Hebei, P. R. China
| | - Liyan Pan
- Department of Neurology, Hebei Yanda HospitalLangfang 065201, Hebei, P. R. China
| | - Xiaochen Fu
- Department of Intervention Therapy, Hebei Yanda HospitalLangfang 065201, Hebei, P. R. China
| | - Yiran Meng
- Department of Neurology, Hebei Yanda HospitalLangfang 065201, Hebei, P. R. China
| | - Min Li
- Department of Neurology, Hebei Yanda HospitalLangfang 065201, Hebei, P. R. China
| | - Wei Wang
- Department of Neurology, Hebei Yanda HospitalLangfang 065201, Hebei, P. R. China
| | - Zhongkui Wang
- Department of Neurology, Hebei Yanda HospitalLangfang 065201, Hebei, P. R. China
| |
Collapse
|
45
|
Song J, Yuan X, Piao L, Wang J, Wang P, Zhuang M, Liu J, Liu Z. Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Front Oncol 2022; 12:1072701. [PMID: 36530999 PMCID: PMC9753703 DOI: 10.3389/fonc.2022.1072701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 02/13/2025] Open
Abstract
Although some advances have been made in the treatment of osteosarcoma in recent years, surgical resection remains the mainstream treatment. Initial and early diagnosis of osteosarcoma could be very difficult to achieve due to the insufficient sensitivity for the means of examination. The distal metastasis of osteosarcoma also predicts the poor prognosis of osteosarcoma. In order to solve this series of problems, people begin to discover a new method of diagnosing and treating osteosarcoma. Ubiquitination, as an emerging posttranslational modification, has been shown to be closely related to osteosarcoma in studies over the past decades. In general, this review describes the cellular functions and molecular mechanisms of ubiquitination during the development of osteosarcoma.
Collapse
Affiliation(s)
- Jiaxun Song
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaofeng Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lianhua Piao
- Jiangsu University of Technology, Changzhou, China
| | - Jiawen Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Pu Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ming Zhuang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Liu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhiwei Liu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
46
|
Comprehensive Analysis of Ubiquitome Changes in Nicotiana benthamiana after Rice Stripe Virus Infection. Viruses 2022; 14:v14112349. [PMID: 36366447 PMCID: PMC9694600 DOI: 10.3390/v14112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rice stripe virus (RSV) is one of the most devastating viruses affecting rice production. During virus infection, ubiquitination plays an important role in the dynamic regulation of host defenses. We combined the ubiquitomics approach with the label-free quantitation proteomics approach to investigate potential ubiquitination status changes of Nicotiana benthamiana infected with RSV. Bioinformatics analyses were performed to elucidate potential associations between proteins with differentially ubiquitinated sites (DUSs) and various cellular components/pathways during virus infection. In total, 399 DUSs in 313 proteins were identified and quantified, among them 244 ubiquitinated lysine (Kub) sites in 186 proteins were up-regulated and 155 Kub sites in 127 proteins were down-regulated at 10 days after RSV infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that proteins with up-regulated Kub sites were significantly enriched in the ribosome. Silencing of 3-isopropylmalate dehydratase large subunit through virus-induced gene silencing delayed RSV infection, while silencing of mRNA-decapping enzyme-like protein promoted RSV symptom in the late stage of infection. Moreover, ubiquitination was observed in all seven RSV-encoded proteins. Our study supplied the comprehensive analysis of the ubiquitination changes in N. benthamiana after RSV infection, which is helpful for understanding RSV pathogenesis and RSV-host interactions.
Collapse
|
47
|
Esfahanian N, Nelson M, Autenried R, Pattison JS, Callegari E, Rezvani K. Comprehensive Analysis of Proteasomal Complexes in Mouse Brain Regions Detects ENO2 as a Potential Partner of the Proteasome in the Striatum. Cell Mol Neurobiol 2022; 42:2305-2319. [PMID: 34037901 PMCID: PMC8617079 DOI: 10.1007/s10571-021-01106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022]
Abstract
Defects in the activity of the proteasome or its regulators are linked to several pathologies, including neurodegenerative diseases. We hypothesize that proteasome heterogeneity and its selective partners vary across brain regions and have a significant impact on proteasomal catalytic activities. Using neuronal cell cultures and brain tissues obtained from mice, we compared proteasomal activities from two distinct brain regions affected in neurodegenerative diseases, the striatum and the hippocampus. The results indicated that proteasome activities and their responses to proteasome inhibitors are determined by their subcellular localizations and their brain regions. Using an iodixanol gradient fractionation method, proteasome complexes were isolated, followed by proteomic analysis for proteasomal interaction partners. Proteomic results revealed brain region-specific non-proteasomal partners, including gamma-enolase (ENO2). ENO2 showed more association to proteasome complexes purified from the striatum than to those from the hippocampus. These results highlight a potential key role for non-proteasomal partners of proteasomes regarding the diverse activities of the proteasome complex recorded in several brain regions.
Collapse
Affiliation(s)
- Niki Esfahanian
- Division of Basic Biomedical Sciences, Sanford School of Medicine,, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Morgan Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine,, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Rebecca Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine,, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - J Scott Pattison
- Division of Basic Biomedical Sciences, Sanford School of Medicine,, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine,, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine,, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA.
| |
Collapse
|
48
|
Jeong SY, Hariharasudhan G, Kim MJ, Lim JY, Jung SM, Choi EJ, Chang IY, Kee Y, You HJ, Lee JH. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res 2022; 50:10469-10486. [PMID: 36155803 PMCID: PMC9561274 DOI: 10.1093/nar/gkac808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
Collapse
Affiliation(s)
- Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Ji-Yeon Lim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eun-Ji Choi
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Younghoon Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
49
|
Zong Q, Mao B, Zhang HB, Wang B, Yu WJ, Wang ZW, Wang YF. Comparative Ubiquitome Analysis Reveals Deubiquitinating Effects Induced by Wolbachia Infection in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23169459. [PMID: 36012723 PMCID: PMC9409319 DOI: 10.3390/ijms23169459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The endosymbiotic Wolbachia bacteria frequently cause cytoplasmic incompatibility (CI) in their insect hosts, where Wolbachia-infected males cross with uninfected females, leading to no or fewer progenies, indicating a paternal modification by Wolbachia. Recent studies have identified a Wolbachia protein, CidB, containing a DUB (deubiquitylating enzyme) domain, which can be loaded into host sperm nuclei and involved in CI, though the DUB activity is not necessary for CI in Drosophila melanogaster. To investigate whether and how Wolbachia affect protein ubiquitination in testes of male hosts and are thus involved in male fertility, we compared the protein and ubiquitinated protein expressions in D. melanogaster testes with and without Wolbachia. A total of 643 differentially expressed proteins (DEPs) and 309 differentially expressed ubiquitinated proteins (DEUPs) were identified to have at least a 1.5-fold change with a p-value of <0.05. Many DEPs were enriched in metabolic pathway, ribosome, RNA transport, and post-translational protein modification pathways. Many DEUPs were involved in metabolism, ribosome, and proteasome pathways. Notably, 98.1% DEUPs were downregulated in the presence of Wolbachia. Four genes coding for DEUPs in ubiquitin proteasome pathways were knocked down, respectively, in Wolbachia-free fly testes. Among them, Rpn6 and Rpn7 knockdown caused male sterility, with no mature sperm in seminal vesicles. These results reveal deubiquitylating effects induced by Wolbachia infection, suggesting that Wolbachia can widely deubiquitinate proteins that have crucial functions in male fertility of their hosts, but are not involved in CI. Our data provide new insights into the regulatory mechanisms of endosymbiont/host interactions and male fertility.
Collapse
|
50
|
Jing Y, Zuo C, Du YX, Mao J, Ding R, Zhang J, Liang LJ, Qu Q. Chemical tools for E3 ubiquitin ligase study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|