1
|
Bi X, Mao Z, Zhang Y, Ren Z, Yang K, Yu C, Chen L, Zheng R, Guan J, Liu Z, Yu B, Huang Y, Shu X, Zheng Y. Endogenous dual-responsive and self-adaptive silk fibroin-based scaffold with enhancement of immunomodulation for skull regeneration. Biomaterials 2025; 320:123261. [PMID: 40132357 DOI: 10.1016/j.biomaterials.2025.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Despite the current biomaterials (e.g. titanium mesh and polyether ether ketone) have been applied to clinical skull repair, the limitations on mechanical match, shape adaptability, bioactivity and osteointegration have greatly limited their clinical application. In this work, we constructed a water and inflammatory microenvironment dual-responsive self-adaptive silk fibroin-magnesium oxide-based scaffold with the matrix metalloproteinase-2-responsive gelatin-methacryloyl-interleukin-4 (IL-4) coating, which presented good mechanical compliance, quickly shape matching and intraoperative reprocessability. With the capability of responding to an acute inflammation microenvironment followed by a triggered on-demand release of the IL-4, the combination of immunoactive IL-4 and Mg2+ co-ordinately facilitated metabolic reprogramming by suppressing glycolysis, promoting mitochondrial oxidative phosphorylation and modulating adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathways in macrophages, resulting in significantly facilitating M2 macrophage activation. During the stage of tissue remodelling, the sustained release of Mg2+ further promoted macrophage M2 polarization and the expression of anti-inflammatory cytokines, significantly reduced immune response and improved ectopic osteogenesis ability. Meanwhile, the cranial defect models of male rats demonstrated that this scaffold could significantly enhance biomineralized deposition and vascularisation, and achieve good bone regeneration of cranial defects. Overall, the bioactive scaffold provides a promising biomaterial and alternative repair strategy for critical-size skull defect repair.
Collapse
Affiliation(s)
- Xuewei Bi
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhinan Mao
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yilin Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zeqi Ren
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kang Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Chunhao Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China; School of Life, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing, China
| | - Lei Chen
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Rui Zheng
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Zhenhai Liu
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Binsheng Yu
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Yongcan Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China.
| | - Xiong Shu
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Wang L, Jiang S, Zhou J, Gholipourmalekabadi M, Cao Y, Lin K, Zhuang Y, Yuan C. From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications. Bioact Mater 2025; 49:85-120. [PMID: 40124596 PMCID: PMC11928986 DOI: 10.1016/j.bioactmat.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr2+) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr2+ also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr2+ on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Shengjie Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jialiang Zhou
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Yuan Cao
- Colorado College, 819 N Tejon Street Box 56, Colorado Springs, 80903, Colorado, USA
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
3
|
Wu L, He J, Shen N, Chen S. Molecular and cellular mechanisms underlying peripheral nerve injury-induced cellular ecological shifts: Implications for neuroregeneration. IBRO Neurosci Rep 2025; 18:120-129. [PMID: 39877591 PMCID: PMC11773043 DOI: 10.1016/j.ibneur.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life. Accordingly, the continued pursuit of more efficacious treatments is of paramount importance. In this paper, a review of the relevant literature from recent years was conducted to identify the key cell types involved after peripheral nerve injury. These included Schwann cells, macrophages, neutrophils, endothelial cells, and fibroblasts. The review was conducted in depth. This paper analyses the phenotypic changes of these cells after injury, the relevant factors affecting these changes, and how they coordinate with neurons and other cell types. In addition, it explores the potential mechanisms that mediate the behaviour of these cells. Understanding the interactions between these cells and their mutual regulation with neurons is of great significance for the discovery of new neuroregenerative treatments and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Limao Wu
- School of Clinical Medicine, Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Jinglan He
- Affiliated Hospital of Hebei University of Engineering, No. 80, Jianshe Street, Fuxing District, Handan City, Hebei Province 056003, China
| | - Na Shen
- Department of Science and Education, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Song Chen
- Orthopaedic Center, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 56004, China
| |
Collapse
|
4
|
Zhu Q, Chen Z, Wang D, Jiao X, Luan Y, Wang M, Luo R, Wang Y, Fu G, Wang Y, Zhang W. Microenvironment-responsive coating for vascular stents to regulate coagulation-inflammation interaction and promote vascular recovery. Bioact Mater 2025; 48:443-457. [PMID: 40093305 PMCID: PMC11909720 DOI: 10.1016/j.bioactmat.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Early coagulation-inflammation interaction and late in-stent restenosis undermine the efficacy of vascular stents after implantation. Targeting the interplay between inflammation and coagulation, and smooth muscle cell (SMC) proliferation, we presented a microenvironment-responsive coating designed to regulate tissue responses and vascular regeneration throughout the remodeling process. Coagulation was inhibited by incorporating anticoagulant tirofiban into the coating. MMP9-responsive nanoparticles embedded in the coating released salvianolic acid A to modulate inflammatory cell behavior and inhibit SMC dysfunction. By effectively interfering with clotting and inflammation, the coating suppressed platelet-fibrin interaction and formation of platelet-monocyte aggregates, thereby mitigating adverse effects on reendothelialization. Its ability to influence SMC proliferation and migration resulted in reduced intimal hyperplasia. Coated stents were shown to significantly regulate tissue regeneration, improve the vascular environment and even reduced the lipid content in the narrowed atherosclerotic vessels in vivo. This direct approach enhanced the vascular tissue regeneration after stent implantation, and offered promising insights for optimizing vascular stent design.
Collapse
Affiliation(s)
- Qiongjun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Zhezhe Chen
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Dan'an Wang
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Xiaolu Jiao
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Min Wang
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Yanan Wang
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
5
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 PMCID: PMC11624874 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Zhao H, Lv J, Chen B, He F, Wang Q, Xie D, Koyama H, Zhang C, Cheng J. RAGE deficiency obstructs high uric acid-induced oxidative stress and inflammatory response. Int Immunopharmacol 2025; 151:114316. [PMID: 39987631 DOI: 10.1016/j.intimp.2025.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Hyperuricemia is a metabolic disorder primarily associated with gout and implicated in various metabolic inflammatory diseases. While the role of monosodium urate crystals triggering inflammation has been well-documented, recent findings suggest that soluble high uric acid (HUA) also induces pro-inflammatory cytokine production in human monocytes. However, the comprehensive effects of HUA levels on macrophage dysfunction and the underlying mechanisms remain underexplored. This study employs urate oxidase knockout (UOX-KO) and receptor for advanced glycation end products deficiency (RAGE-/-) mouse models to elucidate macrophage function and its mechanistic pathways. Our results demonstrate that HUA promotes M1 polarization and migration of macrophages while impairing their phagocytic ability. This process is mediated through the high mobility group box 1 (HMGB1)-RAGE- ROS axis. Notably, RAGE deficiency in bone marrow-derived cells partially mediates these effects. Pathologically, elevated HMGB1 and monocyte chemoattractant protein 1 levels in pancreatic islets increases macrophage infiltration in UOX-KO mice. Treatment with the FPS-ZM1, as a pharmacological RAGE inhibitor, effectively decreases serum UA levels, ameliorates islet inflammation and insulin resistance. These findings suggest that soluble HUA serves as a pro-inflammatory trigger through the HMGB1-RAGE-ROS axis, and that RAGE inhibition may mitigate these effects by decreasing inflammatory macrophage infiltration in the islets. Additionally, the influence of UA on macrophages extends beyond gout, potentially contributing to the pathogenesis of other metabolic inflammatory conditions, such as atherosclerosis, non-alcoholic steatohepatitis, obesity, and hyperlipidemia.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiamin Lv
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
7
|
Liu S. MiR-374a/b-5p Suppresses Cell Growth in Papillary Thyroid Carcinoma Through Blocking Exosomal ANXA1-Induced Macrophage M2 Polarization. Biochem Genet 2025; 63:1258-1274. [PMID: 38536567 DOI: 10.1007/s10528-024-10747-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2025]
Abstract
Papillary thyroid carcinoma (PTC), comprising 85% of all thyroid cancers, is an epithelial malignancy. The potential for malignant transformation in normal cells by thyroid cancer cells via exosomal Annexin A1 (ANXA1) delivery is investigated in this study. Our aim is to determine the impact of PTC cells on macrophage polarization through exosomal ANXA1 secretion and its implications for tumor progression. Exosomes in PTC cells were examined using transmission electron microscopy, exosome labeling, and nanoparticle tracking analysis. Real-time quantitative polymerase chain reaction was employed to quantify gene expression levels. Protein levels were determined through Western blot analysis. The interplay between genes was assessed using luciferase reporter and RNA pull-down assays. Functional experiments were conducted to investigate PTC cell proliferation and apoptosis. Our findings reveal that ANXA1 promotes PTC cell proliferation and inhibits apoptosis. Exosomes derived from PTC cells were found to promote macrophage M2 polarization. ANXA1 stimulates M2 polarization through the activation of the PI3K/AKT pathway. MicroRNA-374a-5p (miR-374a-5p) and microRNA-374b-5p (miR-374b-5p) were identified as inhibitors of ANXA1 expression and PI3K/AKT pathway activity, thereby inhibiting macrophage M2 polarization. Furthermore, miR-374a-5p and miR-374b-5p were observed to suppress PTC cell proliferation through their regulatory action on ANXA1. Our study suggests that miR-374a/b-5p inhibits PTC cell growth by blocking the macrophage M2 polarization induced by exosomal ANXA1.
Collapse
Affiliation(s)
- Sanbao Liu
- The Second Affiliated Hospital of Wannan Medical College, No.10 Kangfu Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
8
|
Kim YI, Ko I, Yi EJ, Kim J, Hong YR, Lee W, Chang SY. NAD + modulation of intestinal macrophages renders anti-inflammatory functionality and ameliorates gut inflammation. Biomed Pharmacother 2025; 185:117938. [PMID: 40022994 DOI: 10.1016/j.biopha.2025.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Macrophages can maintain gut immune homeostasis by driving clearance of infection, but also can prevent chronic inflammation and induce tissue repair. Reduced nicotinamide adenine dinucleotide (NAD+) levels in macrophages have been reported to be associated with the onset of severe colitis. Given that dysregulation of gut macrophages plays a significant role in inflammatory bowel disease (IBD), they represent a potential target for novel therapies. Here we show an IBD therapeutic candidate LMT503, a substrate that modulates NADH quinone oxidoreductase (NQO1), which induces anti-inflammatory macrophage polarization by NAD+ enhancement. To determine the anti-inflammatory effect of LMT503, a dextran sulfate sodium (DSS)-induced colitis mouse model was used in this study. Treatment of bone marrow-derived macrophages (BMDMs) with LMT503 increased IL-10 and Arg1 levels but decreased levels of TNF-α, iNOS, and IL-6. LMT503 also increased levels of SIRT1, SIRT3, and SIRT6, suggesting that macrophages were driven to an anti-inflammatory character. In a murine DSS-induced colitis model, oral treatment with LMT503 ameliorated colonic inflammation and decreased infiltrating monocytes and neutrophils. Although NAD+ enhancement did not alter CX3CR1intCD206- or CX3CR1hiCD206+ colon macrophage population, it decreased levels of TNF-α and iNOS and increased IL-10 level, with colonic macrophages showing an anti-inflammatory character shift. Depletion of CX3CR1 expressing gut resident macrophages abrogated the immune regulatory effect of LMT503 in the colon. These data suggest that LMT503 is a therapeutic candidate that can target macrophages to drive polarization with an immunosuppressive character and ameliorate IBD.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Korea Initiative for fostering University of Research and Innovation (KIURI) Program, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Inseok Ko
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea; Department of Chemistry Education, Graduate Department of Chemical Materials, Pusan National University, Busan, Republic of Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Jusik Kim
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Yong Rae Hong
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Wheeseong Lee
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
9
|
Zhang Q, Dai J, Liu T, Rao W, Li D, Gu Z, Huang L, Wang J, Hou X. Targeting cardiac fibrosis with Chimeric Antigen Receptor-Engineered Cells. Mol Cell Biochem 2025; 480:2103-2116. [PMID: 39460827 DOI: 10.1007/s11010-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Cardiac fibrosis poses a significant challenge in cardiovascular diseases due to its intricate pathogenesis, and there is currently no standardized and effective treatment approach. The fibrotic process entails the involvement of various cell types and molecular mechanisms, such as fibroblast activation and proliferation, increased collagen synthesis, and extracellular matrix rearrangement. Traditional therapies often fall short in efficacy or carry substantial side effects. However, recent studies have shown that Chimeric Antigen Receptor T (CAR-T) cells can selectively target and eliminate activated cardiac fibroblasts (CFs) in mice, leading to reduced cardiac fibrosis and improved myocardial tissue compliance. This breakthrough presents a new and promising avenue for treating cardiac fibrosis. Currently, CAR-T cell-based therapy for cardiac fibrosis is undergoing animal experimentation, indicating ample scope for enhancement. Future investigations could explore the application of CAR cell therapy in cardiac fibrosis treatment, including the potential of CAR-natural killer (CAR-NK) cells and CAR macrophages (CAR-M), offering novel insights and strategies for combating cardiac fibrosis.
Collapse
Affiliation(s)
- Qinghang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xumin Hou
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
10
|
Ma Z, Wang Y, Zhang X, Ding S, Fan J, Li T, Xiao X, Li J. Curculigoside exhibits multiple therapeutic efficacy to induce apoptosis and ferroptosis in osteosarcoma via modulation of ROS and tumor microenvironment. Tissue Cell 2025; 93:102745. [PMID: 39864205 DOI: 10.1016/j.tice.2025.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Patients with osteosarcoma (OS) exhibit metastasis upon diagnosis, and the condition frequently acquires resistance to traditional chemotherapy treatments, failing the therapy. The objective of this research was to examine the impact of curculigoside (Cur), a key phenolic compound discovered in the rhizome of C. orchioides Gaertn, on OS cells and the surrounding tumor environment. METHODS We assessed the impact of curculigoside on tumor inhibition in four osteosarcoma cell lines and mice tumor xenograft models using various techniques including cell viability assay, wound healing assay, cell apoptosis analysis, immunofluorescent staining, and IHC. Moreover, we created a mini-PDX model by utilizing freshly obtained primary OS cells from surgically removed OS tissues to evaluate the possible clinical use of Cur. RESULT The results of our study show that Cur triggers cell death in OS cells and enhances the maturation of RAW264.7 cells. By effectively inhibiting the growth of OS cells, these actions mechanistically trigger the catastrophic buildup of unbound iron and uncontrolled lipid peroxidation, ultimately resulting in ferroptosis. Moreover, additional validation of Cur's substantial antineoplastic impact is obtained through in vivo experiments employing xenograft and mini-PDX models. CONCLUSIONS To sum up, this research is the initial one to exhibit the anti-tumor effects of Cur on OS using various methods, indicating that Cur shows potential as a viable approach for treating OS.
Collapse
Affiliation(s)
- Ziyang Ma
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Yirong Wang
- Department of Endodontics, School of Stomatology, The Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoyu Zhang
- Affiliated Medical College, Yan'an University, Xi'an 716000, China
| | - Shi Ding
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Jian Fan
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China.
| | - Jing Li
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Liu J, Hu B. Stability of periodic solution for a free boundary problem modeling small plaques. Math Biosci 2025; 382:109397. [PMID: 39954941 DOI: 10.1016/j.mbs.2025.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/25/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Mathematical models describing the growth of plaque in the arteries (e.g., Friedman and Hao (2015), Friedman et al. (2015), Hao and Friedman (2014), McKay et al. (2005) and Mukherjee et al. (2019)) were introduced. All of these models include the interaction of the "bad" cholesterols, low-density lipoprotein (LDL), and the "good" cholesterols, high-density lipoprotein (HDL), in triggering whether plaque will grow or shrink. Because the blood vessels tend to be circular, 2D cross-section model is a good approximation, and the 2D models are studied in Friedman et al. (2015), Zhang et al. (2023) and Zhao and Hu (2022). A bifurcation into a 3D plaque was recently studied in Huang and Hu (2022). All of these models assume a constant supply of LDL and HDL from the blood vessel. In reality, nutrient concentration changes with the intake of food, which happens very often in a periodic manner. When the LDL and HDL supplies from the blood vessel are periodic and are not too far away from the prevalent values, a periodic solution was obtained in Huang and Hu (2023). In this paper, we carry out the linear stability analysis of this periodic solution and provide simulation results to confirm our analysis.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Bei Hu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
12
|
Premarathna AD, Robal M, Bai RG, Ahmed TAE, Rjabovs V, Hincke MT, Tuvikene R. Bioactivities of Nostoc sp. polysaccharides: Anti-inflammatory, wound healing, cytoprotective, and anticoagulant effects. Int J Biol Macromol 2025; 303:140350. [PMID: 39894132 DOI: 10.1016/j.ijbiomac.2025.140350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Polysaccharides from various cyanobacterial species have attracted attention for their potential health benefits. In this study, polysaccharide extracts from a freshwater Nostoc sp. were explored for their potential in immunomodulation relevant to skincare, and particularly wound care. Nostoc sp. polysaccharides (NSPs) were tested in various cellular and molecular assays using RAW264.7 macrophages and skin cell lines (HDF, HaCaT). Polysaccharides from the Nostoc sp. outer layer (OL) and inner fluid (IF) significantly enhanced cell proliferation and migration of HDF. HaCaT scratch-wound healing improved with certain polysaccharide extracts. Inner fluid fractions IF-2B and IF-3B polysaccharides demonstrated anti-inflammatory effects in RAW264.7 cells, while IF-1B reduced TNF-α and IL-8 expression in HaCaT cells. TNF-α, though not promoting cell proliferation, positively impacted phagocytosis and NO production. NSPs exhibited weak anticoagulation properties, and fraction IF-1B with monomer composition (Ara/3.0: Glc/23.7: Man/20.3: GlcA/28.0) accelerated wound healing; importantly, OL-1B along with all of the IF cold and hot-extracted fractions were non-cytotoxic, suggesting significant potential for developing skin therapeutics, including pharmaceutical and cosmetic products, based on active compounds from Nostoc sp.. The study underscores the underexplored potential of Nostoc sp. extracts in skincare and highlights the potential benefits of these bioactive components for therapeutic applications.
Collapse
Affiliation(s)
- Amal D Premarathna
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| | - Marju Robal
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| | - Renu Geetha Bai
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia; Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, Tartu 51014, Estonia
| | - Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ontario K1H 8M5, Canada
| | - Vitalijs Rjabovs
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Institute of Chemistry and Chemical Technology, Riga Technical University, Paula Valdena iela 3/7, LV-1048 Riga, Latvia
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| |
Collapse
|
13
|
Reis-Prado AHD, Rahimnejad M, Dal-Fabbro R, Toledo PTAD, Anselmi C, Oliveira PHCD, Fenno JC, Cintra LTA, Benetti F, Bottino MC. Injectable thermosensitive antibiotic-laden chitosan hydrogel for regenerative endodontics. Bioact Mater 2025; 46:406-422. [PMID: 39850022 PMCID: PMC11754974 DOI: 10.1016/j.bioactmat.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/03/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025] Open
Abstract
Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The thermosensitivity, gelation kinetics, compressive strength, cytocompatibility, and antibacterial efficacy were evaluated according to well-established protocols. An in vivo model of periapical disease and evoked bleeding in rats' immature permanent teeth was performed to determine disinfection, tissue repair, and root formation. AZI was successfully incorporated into interconnected porous CH hydrogels, which retained their thermosensitivity. The mechanical and rheological findings indicated that adding AZI did not adversely affect the hydrogels' strength and injectability. Incorporating 3 % and 5 % AZI into the hydrogels led to minimal cytotoxic effects compared to higher concentrations while enhancing the antibacterial response against endodontic bacteria. AZI-laden hydrogel significantly decreased E. faecalis biofilm compared to the controls. Regarding tissue response, the 3 % AZI-laden hydrogel improved mineralized tissue formation and vascularization compared to untreated teeth and those treated with double antibiotic paste. Our findings demonstrate that adding 3 % AZI into CH hydrogels ablates infection and supports neotissue formation in vivo when applied to a clinically relevant model of regenerative endodontics.
Collapse
Affiliation(s)
- Alexandre Henrique dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Priscila Toninatto Alves de Toledo
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Morphology and Pediatric Dentistry, São Paulo State University (UNESP) - Araraquara School of Dentistry, Araraquara, SP, Brazil
| | - Pedro Henrique Chaves de Oliveira
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - J. Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Francine Benetti
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenetics Chromatin 2025; 18:16. [PMID: 40156046 PMCID: PMC11954343 DOI: 10.1186/s13072-025-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Liu Y, Niu H, Zhang J, Liang R, Zhou Z, Lei C, He S, Lu C, Zhao Y. Dynamic cellular composition and immune landscape revealed by single-cell transcriptome profiling in a brain arteriovenous malformation. Funct Integr Genomics 2025; 25:76. [PMID: 40146346 DOI: 10.1007/s10142-025-01590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/07/2025] [Accepted: 03/22/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Cerebral arteriovenous malformation is a congenital blood vessel abnormality with its immune mechanism remains unclear. Our study characterized the change of cellular composition and gene expression landscape in brain arteriovenous malformation (bAVM). METHODS We conducted single-cell RNA sequencing analysis on one bAVM sample and three healthy control (HC) samples. Cell clustering analysis and cell type annotation were used to identify the major cell types in bAVM and HC samples. Critical differentially expressed genes between bAVM and HC sample were analyzed in each cell types to explore the functional changes of each kind of cells. We also examined the cell communication change in bAVM sample and identified the significantly changed cellular interaction pathways. RESULTS 5 major cell types were identified including NK cells, monocytes, fibroblasts, endothelial cells (EC), tissue stem cells and smooth muscle cells (SMC). In bAVM sample, proportion of monocytes raised significantly while SMC decreased. Inflammation and cell migration related genes expression and cell communication pathways changed dramatically in bAVM sample. CONCLUSION Inhibition of monocyte-endothelium interaction and promotion of NK cells interaction were found in bAVM sample, which may reveal a new mechanism about inflammation response and cellular impairment in the disease progression.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongchuan Niu
- Department of Neurosurgery, Peking University International Hospital, Beijing, 102206, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Rui Liang
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang City, 332000, China
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang City, 332000, China
| | - Zhenyu Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chengxu Lei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Department of Neurosurgery, Peking University International Hospital, Beijing, 102206, China.
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing, 102206, China.
| | - Yuanli Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Department of Neurosurgery, Peking University International Hospital, Beijing, 102206, China.
| |
Collapse
|
16
|
Wang Q, Yu Y, Ruan L, Huang M, Chen W, Sun X, Liu J, Jiang Z. Integrated single-cell and bulk transcriptomic analysis identifies a novel macrophage subtype associated with poor prognosis in breast cancer. Cancer Cell Int 2025; 25:119. [PMID: 40148933 PMCID: PMC11948682 DOI: 10.1186/s12935-025-03750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are pivotal components of the breast cancer (BC) tumor microenvironment (TME), significantly influencing tumor progression and response to therapy. However, the heterogeneity and specific roles of TAM subpopulations in BC remain inadequately understood. METHODS We performed an integrated analysis of single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) data from BC patients to comprehensively characterize TAM heterogeneity. Utilizing the MetaTiME computational framework and consensus clustering, we identified distinct TAM subtypes and assessed their associations with clinical outcomes and treatment responses. A machine learning-based predictive model was developed to evaluate the prognostic significance of TAM-related gene expression profiles. RESULTS Our analysis revealed three distinct TAM subgroups. Notably, we identified a novel macrophage subtype, M_Macrophage-SPP1-C1Q, characterized by high expression of SPP1 and C1QA, representing an intermediate differentiation state with unique proliferative and oncogenic properties. High infiltration of M_Macrophage-SPP1-C1Q was significantly associated with poor overall survival (OS) and chemotherapy resistance in BC patients. We developed a Random Forest (RF)-based predictive model, Macro.RF, which accurately stratified patients based on survival outcomes and chemotherapy responses, independent of established prognostic parameters. CONCLUSION This study uncovers a previously unrecognized TAM subtype that drives poor prognosis in BC. The identification of M_Macrophage-SPP1-C1Q enhances our understanding of TAM heterogeneity within the TME and offers a novel prognostic biomarker. The Macro.RF model provides a robust tool for predicting clinical outcomes and guiding personalized treatment strategies in BC patients.
Collapse
Affiliation(s)
- Qing Wang
- Fujian Medical University, Fuzhou, 350011, China
| | - Yushuai Yu
- Fujian Medical University, Fuzhou, 350011, China
| | - Liqiong Ruan
- Department of Clinical Laboratory, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | | | - Wei Chen
- Department of Breast Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Xiaomei Sun
- Department of Pathology, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Jun Liu
- Department of Thyroid and Breast Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China.
- Department of Breast-Thyroid Surgery, Shanghai General Hospital, Shanghai, 200000, China.
| | - Zirong Jiang
- Department of Thyroid and Breast Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China.
- Ningde Clinical Medical College of Fujian Medical University, Ningde, 352100, China.
| |
Collapse
|
17
|
Li Y, Li X, Wu W, Liu P, Liu J, Jiang H, Deng L, Ni C, Wu X, Zhao Y, Ren J. Insights into the roles of macrophages in Klebsiella pneumoniae infections: a comprehensive review. Cell Mol Biol Lett 2025; 30:34. [PMID: 40140770 PMCID: PMC11948646 DOI: 10.1186/s11658-025-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Klebsiella pneumoniae (KP) infections represent a significant global health challenge, characterized by severe inflammatory sequelae and escalating antimicrobial resistance. This comprehensive review elucidates the complex interplay between macrophages and KP, encompassing pathogen recognition mechanisms, macrophage activation states, cellular death pathways, and emerging immunotherapeutic strategies. We critically analyze current literature on macrophage pattern recognition receptor engagement with KP-associated molecular patterns. The review examines the spectrum of macrophage responses to KP infection, including classical M1 polarization and the newly described M(Kp) phenotype, alongside metabolic reprogramming events such as glycolytic enhancement and immune responsive gene 1 (IRG1)-itaconate upregulation. We systematically evaluate macrophage fate decisions in response to KP, including autophagy, apoptosis, pyroptosis, and necroptosis. Furthermore, we provide a critical assessment of potential future therapeutic modalities. Given the limitations of current treatment paradigms, elucidating macrophage-KP interactions is imperative. Insights gained from this analysis may inform the development of novel immunomodulatory approaches to augment conventional antimicrobial therapies, potentially transforming the clinical management of KP infections.
Collapse
Affiliation(s)
- Yangguang Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juanhan Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Liting Deng
- School of Medicine, Southeast University, Nanjing, 210000, China
| | - Chujun Ni
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China.
- Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Wang Z, Zhong D, Yan T, Zheng Q, Zhou E, Ye Z, He X, Liu Y, Yan J, Yuan Y, Wang Y, Cai X. Stem Cells from Human Exfoliated Deciduous Teeth-Derived Exosomes for the Treatment of Acute Liver Injury and Liver Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17948-17964. [PMID: 40087139 PMCID: PMC11955941 DOI: 10.1021/acsami.4c19748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in regenerative medicine due to their regenerative potential. However, traditional MSC-based therapies are hindered by issues such as microvascular obstruction and low cell survival after transplantation. Exosomes derived from MSCs (MSC-Exo) provide a cell-free, nanoscale alternative, mitigating these risks and offering therapeutic potential for liver diseases. Nonetheless, the functional variability of MSCs from different sources complicates their clinical application. Stem cells derived from human exfoliated deciduous teeth (SHED) offer advantages such as ease of procurement and robust proliferative capacity, but their secretome, particularly SHED-Exo, remains underexplored in the context of liver disease therapy. This study analyzed MSC-Exo from various sources via small RNA sequencing to identify differences in microRNA profiles, aiding in the selection of optimal MSC sources for clinical use. SHED-Exo was subsequently tested in an acute liver injury model, showing notable regenerative effects, including enhanced hepatocyte proliferation, macrophage polarization, and reduced inflammation. Despite strong liver-targeting properties, the rapid hepatic clearance of SHED-Exo limits its effectiveness in chronic liver diseases. To address this challenge, a GelMA-based hydrogel was developed for in situ delivery, ensuring sustained release and enhanced antifibrotic efficacy, providing a promising strategy for chronic liver disease management.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danyang Zhong
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tingting Yan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiang Zheng
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Enjie Zhou
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhichao Ye
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiaoyan He
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yu Liu
- Department
of Cardiac Surgery, Zhejiang University
School of Medicine Sir Run Run Shaw Hospital, Hangzhou 310016, Zhejiang, China
| | - Jianing Yan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuyang Yuan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yifan Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- National
Engineering Research Center of Innovation and Application of Minimally
Invasive Instruments, Hangzhou 310016, China
- Zhejiang
Minimal Invasive Diagnosis and Treatment Technology Research Center
of Severe Hepatobiliary Disease, Hangzhou 310016, China
| | - Xiujun Cai
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- National
Engineering Research Center of Innovation and Application of Minimally
Invasive Instruments, Hangzhou 310016, China
- Zhejiang
Minimal Invasive Diagnosis and Treatment Technology Research Center
of Severe Hepatobiliary Disease, Hangzhou 310016, China
| |
Collapse
|
19
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
20
|
Xu J, Dong L, Xie X, Geng BD, Lu J, Dong Y, Hu Y, Liu C, Mao Y, Ge G, Ren Z. Human umbilical cord-derived mesenchymal stem cells improve thymus and spleen functions in D-galactose-induced aged mice. Sci Rep 2025; 15:9470. [PMID: 40108399 PMCID: PMC11923087 DOI: 10.1038/s41598-025-94364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
As aging progresses, the structures and functions of immune organs such as the thymus and spleen deteriorate, leading to impaired immune function and immune senescence. This study investigated the potential of umbilical cord mesenchymal stem cells (UC-MSCs) to mitigate D-galactose-induced immune senescence by enhancing the structural and functional integrity of aging immune organs and regulating the gut microbiota. The findings show that UC-MSCs treatment significantly delayed thymus and spleen atrophy and reduced the number of senescence-associated β-galactosidase (SA-β-gal) positive cells. At the molecular level, UC-MSCs treatment downregulated the expression of aging-related genes, including p16, p53, p21, and RB. It also boosted antioxidant enzyme activity, increasing the levels of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), while decreasing serum malondialdehyde (MDA) levels by activating the Nrf2/HO-1 pathway. Additionally, UC-MSCs treatment restored the balance of the gut microbiota. These results demonstrate that UC-MSCs significantly improve the structural and functional integrity of immune organs and enhance the composition of the gut microbiome, offering a potential strategy for delaying immune senescence.
Collapse
Affiliation(s)
- Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Li Dong
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xiaofen Xie
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Bill D Geng
- School of Natural Science, University of Texas at Austin, Austin, USA
| | - Junhou Lu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Yongxi Dong
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yang Hu
- Children's Medical Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Can Liu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Guizhong Biotechnology Co., Ltd., Guiyang, China
| | - Yuanhu Mao
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Guo Ge
- Key Laboratory of Medical Biology, Guizhou Medical University, Ankang Avenue, Gui'an New District, China.
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China.
| | - Zhenkui Ren
- Clinical Laboratory, Second People's Hospital of Guizhou Province, 206 South Section of Xintian Avenue, Guiyang City, China.
| |
Collapse
|
21
|
Lan X, Johnston E, Ning T, Chen G, Haglund L, Li J. Immunomodulatory bioadhesive technologies. Biomaterials 2025; 321:123274. [PMID: 40156979 DOI: 10.1016/j.biomaterials.2025.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Bioadhesives have found significant use in medicine and engineering, particularly for wound care, tissue engineering, and surgical applications. Compared to traditional wound closure methods such as sutures and staples, bioadhesives offer advantages, including reduced tissue damage, enhanced healing, and ease of implementation. Recent progress highlights the synergy of bioadhesives and immunoengineering strategies, leading to immunomodulatory bioadhesives capable of modulating immune responses at local sites where bioadhesives are applied. They foster favorable therapeutic outcomes such as reduced inflammation in wounds and implants or enhanced local immune responses to improve cancer therapy efficacy. The dual functionalities of bioadhesion and immunomodulation benefit wound management, tissue regeneration, implantable medical devices, and post-surgical cancer management. This review delves into the interplay between bioadhesion and immunomodulation, highlighting the mechanobiological coupling involved. Key areas of focus include the modulation of immune responses through chemical and physical strategies, as well as the application of these bioadhesives in wound healing and cancer treatment. Discussed are remaining challenges such as achieving long-term stability and effectiveness, necessitating further research to fully harness the clinical potential of immunomodulatory bioadhesives.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Evan Johnston
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Tianqin Ning
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Ave W, Montreal, Quebec, H3A 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec, H4A 0A9, Canada.
| | - Jianyu Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
22
|
Kostecki KL, Harmon RL, Iida M, Harris MA, Crossman BE, Bruce JY, Salgia R, Wheeler DL. Axl Regulation of NK Cell Activity Creates an Immunosuppressive Tumor Immune Microenvironment in Head and Neck Cancer. Cancers (Basel) 2025; 17:994. [PMID: 40149328 PMCID: PMC11940164 DOI: 10.3390/cancers17060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Head and neck cancer (HNC) evades immune responses by manipulating the tumor immune microenvironment (TIME). Tumor-bound Axl has been implicated in promoting an immunosuppressive TIME in HNC, though its precise role remains unclear. Understanding Axl's contribution to immune evasion in HNC could lead to the identification of new therapeutic targets; therapies directed at these targets could be combined with and thereby enhance immunotherapies. Results: Using Axl knockout (Axl KO) cell lines derived from the immunologically "cold" MOC2 mouse model, we found that Axl loss delayed tumor growth in immunocompetent mice. This was accompanied by reduced immunosuppressive cells, including MDSCs, Tregs, B cells, and neutrophils, and increased infiltration of cytotoxic CD8 T cells and NK cells. To identify the immune population(s) responsible for these changes, Axl KO tumors were implanted in immune-deficient mice. Axl KO tumor growth in athymic nude mice (which lack T cells) was unchanged, whereas tumor growth in NCG mice (which lack NK cells) was rescued, suggesting that NK cells mediate the Axl KO tumor growth delay. Further, Axl loss enhanced NK cell cytotoxicity in vitro and in vivo, and NK cell depletion reversed delayed Axl KO tumor growth. Mechanistically, Axl KO tumors showed decreased expression of CD73 and CCL2, which inhibit NK cells, and increased expression of CCL5 and CXCL10, which promote NK cell recruitment and activation. Conclusions: These novel findings suggest that tumor-bound Axl fosters an immunosuppressive TIME by inhibiting NK cell recruitment and function, thereby promoting tumor growth. Targeting Axl may enhance NK cell-mediated tumor killing and improve immunotherapy efficacy in HNC.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Regan L. Harmon
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Madelyn A. Harris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Justine Yang Bruce
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
- Carbone Cancer Center, University of Wisconsin, Madison, WI 43792, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Deric L. Wheeler
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 43792, USA
| |
Collapse
|
23
|
Liang W, Wu H, Long Q, Lin H, Lv X, Ma W, Wu T, Li A, Zheng Q, Guo J, Chen X, Guo J, Sun D. LKB1 activated by NaB inhibits the IL-4/STAT6 axis and ameliorates renal fibrosis through the suppression of M2 macrophage polarization. Life Sci 2025; 370:123564. [PMID: 40097066 DOI: 10.1016/j.lfs.2025.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Renal fibrosis is a critical pathological characteristic of chronic kidney disease, and current antifibrotic therapies has limited efficacy. Sodium butyrate (NaB) has been shown to be highly effective in mitigating bleomycin-induced pulmonary fibrosis; however, its specific impact on renal fibrosis and the underlying mechanisms remain unclear. This study aims to elucidate the role and mechanism of NaB in renal fibrosis by using a mouse model of renal fibrosis induced through Unilateral Ureteral Obstruction (UUO) and folic acid (FA) administration. RESULTS NaB significantly decreased the distribution of collagen fibers in renal tissues and mitigated fibrosis in a dose-dependent manner. Further analysis indicated that NaB inhibited M2 macrophage polarization in the renal tissues of UUO model mice by blocking the phosphorylation of STAT6, hence reducing renal fibrosis. Additionally, in vitro experiments demonstrated that NaB inhibited fibroblast activation induced by M2 macrophages. Mechanistic studies revealed that NaB attenuates fibroblast activation and M2 macrophage polarization by upregulating LKB1 and inhibiting the activation of the STAT6 signaling pathway. CONCLUSION NaB may exert its effects by inhibiting the activation of the IL-4/STAT6 signaling pathway through the upregulation of LKB1, which suppress the polarization of M2 macrophages and consequently reduce renal fibrosis. These findings establish a theoretical foundation for NaB as a novel drug candidate for renal fibrosis and indicate its potential applicability in clinical treatments for this condition.
Collapse
Affiliation(s)
- Weifei Liang
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510180 Guangzhou, Guangdong, China
| | - Haoyu Wu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology Application, Wenzhou 325809, China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qishan Long
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hong Lin
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, Guangdong, China
| | - Xiaoyu Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Wen Ma
- Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Tao Wu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Ai Li
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510000, China
| | - Qingyou Zheng
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Xiangqiu Chen
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Jing Guo
- Center of Oncology, Heyou Hospital, Shunde District, Foshan City 528306, Address:No. 1 of Heren Road, Junlan Community, Beijiao Town, Shunde District, Foshan City, Guangdong Province, China.
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| |
Collapse
|
24
|
Jin Y, Zhang C, Jia M, Chen M. Enhanced Dermal Delivery of Nanoparticulate Formulation of Cutibacterium acnes Using Sponge Spicules for Atopic Dermatitis Treatment. Int J Nanomedicine 2025; 20:3235-3249. [PMID: 40103747 PMCID: PMC11917440 DOI: 10.2147/ijn.s509798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction The pathogenesis of atopic dermatitis (AD) is closely linked to both genetic and environmental factors, with patients often exhibiting a range of immunological abnormalities, including a pronounced Th2-type overreaction, which is a key feature of the disease. Purpose Cutibacterium acnes has been shown to induce a robust Th1 immune response through intraperitoneal injections, potentially preventing the development of AD. In this study, a novel nanoparticulate formulation of Cutibacterium acnes (NFCA) was developed with the formulation optimization for the dermal delivery. Materials and Methods Sponge Haliclona sp. spicules (SHS) were isolated from the explants of sponge Haliclona sp. with our proprietary method. The NFCA was prepared by high-speed grinding followed by film extrusion. The skin penetration of the model drugs in NFCA with SHS were visualized using confocal microscopy. The therapeutic effects of NFCA coupled with SHSs against AD in mice were assessed by using pathohistological examination and cytokine ELISA assay. Results The NFCA particle size was 254.1±39.4 nm, with a PDI of 0.29±0.08 and a Zeta potential of -7.9±0.6 mV. SHS significantly enhanced total skin absorption of FD10K (39.6±6.7%, p=0.00076) as well as deposition in the viable epidermis (3.2±1.6%, p=0.08) and deep skin (dermis & receptor) (36.0±5.9%, p=1.82E-5) compared to the control. In vitro cytotoxicity tests showed that NFCA had low toxicity to HaCaT cells (IC50=63.8 mg/mL). The study confirmed that NFCA can activate immune signaling pathways, promoting the high expression of IL-6 and IL-8 in keratinocytes, enhancing TNF-α and IL-1β expression in macrophages, and inducing Th1 and Th17-type immune responses. Furthermore, we demonstrated that the dermal delivery of NFCA using SHS in vivo significantly reduced epidermal thickness, serum IgE levels, and tissue IL-4 levels, thereby accelerating skin repair and mitigating Th2 polarization. Conclusion SHS were employed to effectively deliver NFCA to the deeper skin layers to exert its immune functions. Moreover, the combination of SHS and NFCA can significantly cure mice with atopic dermatitis.
Collapse
Affiliation(s)
- Youmei Jin
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chi Zhang
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Mengnan Jia
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Ming Chen
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, People's Republic of China
- Pingtan Research Institute of Xiamen University, Pingtan, 350400, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, People's Republic of China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, Xiamen, 361102, People's Republic of China
| |
Collapse
|
25
|
Hussen J, Al-Mubarak AIA, Shawaf T, Bukhari K, Alkharsah KR. Modulatory Effects of the Recombinant Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike S1 Subunit Protein on the Phenotype of Camel Monocyte-Derived Macrophages. BIOLOGY 2025; 14:292. [PMID: 40136548 PMCID: PMC11940123 DOI: 10.3390/biology14030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging zoonotic pathogen with different pathogenesis in humans and camels. The mechanisms behind the higher tolerance of camels to MERS-CoV infection are still unknown. Monocytes are innate myeloid cells that are able, depending on the local stimulation in their microenvironment, to differentiate into different functional subtypes of macrophages with an impact on the adaptive immune response. Several in vitro protocols have been used to induce the differentiation of monocyte-derived macrophages (MDMs) in human and several veterinary species. Such protocols are not available for camel species. In the present study, monocytes were separated from camel blood and differentiated in vitro in the presence of different stimuli into MDM. Camel MDMs generated in the presence of a combined stimulation of monocytes with LPS and GM-CSF resulted in the development of an M1 macrophages phenotype with increased abundance of the antigen-presentation receptor MHCII molecules and a decreased expression of the scavenger receptor CD163. The expression pattern of the cell markers CD163, CD14, CD172a, CD44, and CD9 on MDM generated in the presence of the MERS-CoV S1 protein revealed similarity with M-CSF-induced MDM, suggesting the potential of the MERS-CoV S1 protein to induce an M2 macrophages phenotype. Similarly to the effect of M-CSF, MERS-CoV-S protein-induced MDMs showed enhanced phagocytosis activity compared to non-polarized or LPS/GM-CSF-polarized MDMs. Collectively, our study represents the first report on the in vitro generation of monocyte-derived macrophages (MDMs) in camels and the characterization of some phenotypic and functional properties of camel MDM under the effect of M1 and M2 polarizing stimuli. In addition, the results suggest a polarizing effect of the MERS-CoV S1 protein on camel MDMs, developing an M2-like phenotype with enhanced phagocytosis activity. To understand the clinical relevance of these in vitro findings on disease pathogenesis and camel immune response toward MERS-CoV infection, further studies are required.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.I.A.A.-M.); (K.B.)
| | - Abdullah I. A. Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.I.A.A.-M.); (K.B.)
| | - Turke Shawaf
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Khulud Bukhari
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.I.A.A.-M.); (K.B.)
| | - Khaled R. Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam 34212, Saudi Arabia;
| |
Collapse
|
26
|
Zhou Y, Wen T, Yang S, Meng B, Wei J, Zhang J, Wang L, Shen X. Sesquiterpene lactones from Cichorium intybus exhibit potent anti-inflammatory and hepatoprotective effects by repression of NF-κB and enhancement of NRF2. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119439. [PMID: 39904423 DOI: 10.1016/j.jep.2025.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cichorium intybus is a traditional medicinal herb for hepatitis treatment in China and Europe. Sesquiterpene lactones are the main active ingredients in C. intybus. However, their structure-activity relationship (SAR) and molecular mechanisms of anti-inflammatory and hepatoprotective effects require further elucidation. AIM OF THE STUDY To identify new sesquiterpene lactones from C. intybus, and further evaluate their anti-inflammatory effects, SAR, and mechanisms of anti-inflammatory and hepatoprotective properties. METHODS Identification of sesquiterpene lactones from C. intybus using chromatographic fractionation, NMR, and mass spectrometry. The repression of inflammation was evaluated in RAW264.7 macrophages incubated with LPS. Western blotting was employed to investigate the anti-inflammatory mechanisms. The hepatoprotective effect was measured in LPS/D-galactosamine (D-GalN)-induced acute hepatitis in mice. RESULTS We identified 3 new sesquiterpene lactones and 15 known analogues from C. intybus. SAR analysis showed that the α-methylene-γ-lactone moiety was essential for their anti-inflammatory properties. Furthermore, 8-deoxylactucin was identified as the most potent anti-inflammatory component in LPS-induced RAW264.7 macrophages by reduction of nitric oxide production via inhibiting iNOS expression, and suppression of IL-1β, IL-6, and TNF-α expression. Mechanistically, 8-deoxylactucin not only blocked LPS-induced IKKα/β phosphorylation, IκBα phosphorylation and degradation, and NF-κB nuclear accumulation, but also enhanced NRF2 expression and nuclear translocation, HO-1 and NQO1 expression, and reduced ROS generation in vitro. In vivo, 8-deoxylactucin mitigated LPS/D-GalN-induced acute hepatitis, which manifested as reduction in inflammatory infiltration, live injury, serum levels of AST and ALT, and production of pro-inflammatory cytokines and 4-hydroxynonenal. CONCLUSION 8-Deoxylactucin, the sesquiterpene lactone isolated from C. intybus, exerted anti-inflammatory and hepatoprotective effects by blocking NF-κB activation and enhancing NRF2 activation.
Collapse
Affiliation(s)
- Yan Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binru Meng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wei
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lun Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
27
|
Bond S, Saxena S, Sierra-Delgado JA. Microglia in ALS: Insights into Mechanisms and Therapeutic Potential. Cells 2025; 14:421. [PMID: 40136670 PMCID: PMC11941390 DOI: 10.3390/cells14060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons, leading to escalating muscle weakness, atrophy, and eventually paralysis. While neurons are the most visibly affected, emerging data highlight microglia-the brain's resident immune cells-as key contributors to disease onset and progression. Rather than existing in a simple beneficial or harmful duality, microglia can adopt multiple functional states shaped by internal and external factors, including those in ALS. Collectively, these disease-specific forms are called disease-associated microglia (DAM). Research using rodent models, patient-derived cells, and human postmortem tissue shows that microglia can transition into DAM phenotypes, driving inflammation and neuronal injury. However, these cells can also fulfill protective roles under certain conditions, revealing their adaptable nature. This review explores recent discoveries regarding the multifaceted behavior of microglia in ALS, highlights important findings that link these immune cells to motor neuron deterioration, and discusses emerging therapies-some already used in clinical trials-that aim to recalibrate microglial functions and potentially slow disease progression.
Collapse
Affiliation(s)
- Silvano Bond
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA;
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| | - Smita Saxena
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA;
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| | - Julieth A. Sierra-Delgado
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA;
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
28
|
Deng Y, Jia X, Liu L, He Q, Liu L. The role of intestinal macrophage polarization in colitis-associated colon cancer. Front Immunol 2025; 16:1537631. [PMID: 40109347 PMCID: PMC11919874 DOI: 10.3389/fimmu.2025.1537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Collapse
Affiliation(s)
- Yujie Deng
- Medical Research Center, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaobing Jia
- The First Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Liu Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Scie Technology of China, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Li N, Mu X, Zhang S, Wang H. Recent advances in the multifaceted mechanisms of catalpol in treating osteoporosis. Front Pharmacol 2025; 16:1560715. [PMID: 40103589 PMCID: PMC11913683 DOI: 10.3389/fphar.2025.1560715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Catalpol (CAT) is a landmark active ingredient in traditional Chinese medicine Rehmannia (TCT), also known as dehydroxybenzoate catalpone, which is a kind of iridoid terpene glycoside with strong antioxidant, anti-inflammatory, antitumor and other biological activities. It can exert its anti-disease effect in a variety of ways. For some patients with chronic diseases, the application of azalea alcohol in rehmannia may bring more comprehensive and long-lasting efficacy. Studies have shown that the anti-disease effect of catalpol in osteoporosis (OP) is mainly achieved through various pathways such as Wnt/β-catenin signaling pathways to promote osteogenic differentiation, and RANKL/RANK and other signaling pathways to inhibit osteoclastic differentiation. At present, there is a slight lack of analysis of the mechanism of action of catalpa alcohol in the treatment of osteoporosis, so this study comprehensively searched the literature on the mechanism of action of catalpa alcohol in the treatment of osteoporosis in various databases, and reviewed the research progress of its role and mechanism, to provide reference and theoretical basis for the further development and application of catalpol.
Collapse
Affiliation(s)
- Na Li
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoying Mu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Huaxin Wang
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
30
|
Zhou H, Zhou M, Liao X, Zhang L, Wei H, Lu Y, Zhang Y, Huang H, Hu Y, Chen T, Lv Z. The Innate Immune Sensor Zbp1 Mediates Central Nervous System Inflammation Induced by Angiostrongylus Cantonensis by Promoting Macrophage Inflammatory Phenotypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413675. [PMID: 39853924 PMCID: PMC11923990 DOI: 10.1002/advs.202413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant. RNA-seq and SMART-seq analysis of pattern recognition receptor (PRR) and DNA sensor gene sets revealed a marked increase in Z-DNA binding protein 1 (Zbp1) expression in infected mice. Confocal microscopy, RT-qPCR, western blotting, and immunohistochemistry further confirmed that Zbp1 is specifically upregulated in macrophages and microglia. Using Zbp1-knockout mice and flow cytometry, it is found that knockout of Zbp1 enhanced lymphocyte infiltration and natural killer cell cytotoxicity, modulating the immune microenvironment in the central nervous system (CNS) during AC infection. Mechanistically, it is revealed that in macrophage Zbp1 directly binds to receptor-interacting protein 3 (RIP3) to promote its phosphorylation, subsequently facilitating the phosphorylation of mixed lineage kinase domain-like protein (Mlkl). The activated Zbp1-pRIP3-pMlkl axis leads to necroptosis and upregulates pro-inflammatory cytokines including TNF-α, IL-1α, CXCL9, CXCL10 in macrophages, which recruits and activates immune cells. These findings offer new insights into the pathogenic mechanisms of angiostrongyliasis and suggest potential therapeutic strategies.
Collapse
Affiliation(s)
- Hongli Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Minyu Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, 510080, China
| | - XiPing Liao
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Liangyu Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hang Wei
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuting Lu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yiqing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tao Chen
- Department of Neurology, Hainan General Hospital,Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Neurology, Hainan General Hospital,Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, 570216, China
| |
Collapse
|
31
|
Xue P, Wang J, Fu Y, He H, Gan Q, Liu C. Material-Mediated Immunotherapy to Regulate Bone Aging and Promote Bone Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409886. [PMID: 39981851 DOI: 10.1002/smll.202409886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Indexed: 02/22/2025]
Abstract
As the global population ages, an increasing number of elderly people are experiencing weakened bone regenerative capabilities, resulting in slower bone repair processes and associated risks of various complications. This review outlines the research progress on biomaterials that promote bone repair through immunotherapy. This review examines how manufacturing technologies such as 3D printing, electrospinning, and microfluidic technology contribute to enhancing the therapeutic effects of these biomaterials. Following this, it provides detailed introductions to various anti-osteoporosis drug delivery systems, such as injectable hydrogels, nanoparticles, and engineered exosomes, as well as bone tissue engineering materials and coatings used in immunomodulation. Moreover, it critically analyzes the current limitations of biomaterial-mediated bone immunotherapy and explores future research directions for material-mediated bone immunotherapy. This review aims to inspire new approaches and broaden perspectives in addressing the challenges of bone repair and aging by exploring innovative biomaterial-mediated immunotherapy strategies.
Collapse
Affiliation(s)
- Pengfei Xue
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
32
|
Chen L, Fang R, Cai Z, Huang B, Zhang J, Li Y, Chen Y, Xu Z, Lei W, Zhang M. CD271 high cancer stem cells regulate macrophage polarization in head and neck squamous cell carcinoma. Oral Oncol 2025; 162:107181. [PMID: 39854870 DOI: 10.1016/j.oraloncology.2025.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE Cancer stem cells (CSCs) are considered key drivers of progression in head and neck squamous cell carcinoma (HNSCC). Our single-cell RNA sequencing (scRNA-seq) analysis revealed predominant expression of CD271 in CSCs, however, its role as a CSC marker in HNSCC requires further elucidation. We investigated the stemness characteristics of CD271high HNSCC cells and their interactions with the tumor immune microenvironment. METHODS scRNA-seq data from hypopharyngeal squamous cell carcinoma (HPSCC) tissues were analyzed to identify expression profile of CSCs. Overall survival was compared between CD271high and CD271low patients based on immunostaining of HPSCC samples. The stemness of CD271high HNSCC cells was evaluated via an in vivo limiting dilution assay. In a C57BL/6 mice model, the percentage of immune cells and macrophage subtypes were analyzed by flow cytometry. The role of CD271 in macrophage polarization was further examined by in vitro coculture of CD271high cells with CD14+ monocytes. Gene expressions were analyzed by qPCR. RESULTS CD271 is predominantly expressed in CSCs identified by scRNA-seq analysis. CD271 enhances HNSCC cell proliferation and is negatively correlated with patient prognosis in HPSCC. CD271 knockdown suppressed HNSCC tumor growth and regulated macrophage polarization within the TME. CD271high cells exhibited stemness features and enhanced tumor growth in vivo. CONCLUSIONS CD271high HNSCC cells exhibit CSC characteristics and regulate macrophage polarization. Targeting CD271 may improve the immunosuppressive TME to inhibit tumor growth. Combining CD271-targeting agents with other therapies presents a promising strategy that may enhance therapeutic efficacy and prognosis in HNSCC.
Collapse
Affiliation(s)
- Lifan Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China
| | - Ruihua Fang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China
| | - Zhimou Cai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China
| | - Bixue Huang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China
| | - Jinhong Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China
| | - Yun Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China
| | - Yi Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China
| | - Zhenglin Xu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China
| | - Wenbin Lei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China.
| | - Minjuan Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China.
| |
Collapse
|
33
|
Liegeois L, Borie M, Lecloux G, Van Hede D, Lambert F. Influence of Implant Component Materials on Peri-Implant Soft Tissue Healing: A Comparative Histological and Immunohistochemical Study in Humans. Clin Oral Implants Res 2025; 36:397-409. [PMID: 39676638 DOI: 10.1111/clr.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Recently, the importance of peri-implant soft tissue integration quality has been recognised as an essential factor in the long-term success of dental implant rehabilitation. AIM The aim of this study was to explore the influence of three materials commonly used in implant dentistry, namely titanium (Ti), dental adhesive resin (Re) and polyetheretherketone (PEEK), on the peri-implant soft tissues. METHODS In this clinical randomised comparative study, 37 bone-level implants were placed, and experimental transmucosal healing abutments made of different materials were randomly assigned to each implant. These abutments were removed together with the surrounding soft tissues after 8 weeks. Immunohistochemical analyses were performed to determine the presence and localisation of different immune cells. In addition, clinical and radiographic data were collected and peri-implant bone remodeling was assessed. RESULTS Compared to the Ti and PEEK groups, Re abutments revealed a higher infiltration of macrophages in the connective tissue (p = 0.04) and neutrophils in the adjacent epithelium (p = 0.03). In the Re abutments, peri-implant bone remodeling was higher compared to the other groups (p = 0.01). CONCLUSION The use of resin material as a transmucosal healing abutment should be carefully considered as it was associated with a higher presence of inflammatory cells at 8 weeks post-implantation as well as superior bone remodeling compared to PEEK and Ti.
Collapse
Affiliation(s)
- Lemmy Liegeois
- Department of Periodontology, Oro-Dental and Implant Surgery Faculty of Medicine, University of Liège, CHU of Liège, Liège, Belgium
| | - Manon Borie
- Dental Biomaterials Research Unit, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Geoffrey Lecloux
- Department of Periodontology, Oro-Dental and Implant Surgery Faculty of Medicine, University of Liège, CHU of Liège, Liège, Belgium
| | - Dorien Van Hede
- Dental Biomaterials Research Unit, Faculty of Medicine, University of Liège, Liège, Belgium
- Oro-Dental and Implant Surgery Faculty of Medicine, University of Liège, CHU of Liège, Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oro-Dental and Implant Surgery Faculty of Medicine, University of Liège, CHU of Liège, Liège, Belgium
- Dental Biomaterials Research Unit, Faculty of Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
34
|
Cui X, Song Y, Han J, Yuan Z. The multifaceted role of SMAD4 in immune cell function. Biochem Biophys Rep 2025; 41:101902. [PMID: 39802394 PMCID: PMC11721226 DOI: 10.1016/j.bbrep.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response. Understanding SMAD4's role in immune cells is crucial, as its dysregulation can lead to autoimmune disorders, chronic inflammation, and immune deficiencies. The review emphasizes the significance of SMAD4 in immune regulation, proposing that deeper investigation could reveal novel therapeutic targets for immune-mediated conditions. Insights into SMAD4's involvement in processes like T cell differentiation, B cell class switch recombination, and macrophage polarization underscore its potential as a therapeutic target for a range of diseases, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Xinmu Cui
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Jianfeng Han
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
- Cellular Biomedicine Group Inc, Shanghai, 201203, China
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| |
Collapse
|
35
|
Ni H, Reitman ZJ, Zou W, Akhtar MN, Paul R, Huang M, Zhang D, Zheng H, Zhang R, Ma R, Ngo G, Zhang L, Diffenderfer ES, Motlagh SAO, Kim MM, Minn AJ, Dorsey JF, Foster JB, Metz J, Koumenis C, Kirsch DG, Gong Y, Fan Y. FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy. NATURE CANCER 2025; 6:460-473. [PMID: 39910249 DOI: 10.1038/s43018-025-00905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
FLASH radiotherapy holds promise for treating solid tumors given the potential lower toxicity in normal tissues but its therapeutic effects on tumor immunity remain largely unknown. Using a genetically engineered mouse model of medulloblastoma, we show that FLASH radiation stimulates proinflammatory polarization in tumor macrophages. Single-cell transcriptome analysis shows that FLASH proton beam radiation skews macrophages toward proinflammatory phenotypes and increases T cell infiltration. Furthermore, FLASH radiation reduces peroxisome proliferator-activated receptor-γ (PPARγ) and arginase 1 expression and inhibits immunosuppressive macrophage polarization under stimulus-inducible conditions. Mechanistically, FLASH radiation abrogates lipid oxidase expression and oxidized low-density lipid generation to reduce PPARγ activity, while standard radiation induces reactive oxygen species-dependent PPARγ activation in macrophages. Notably, FLASH radiotherapy improves infiltration and activation of chimeric antigen receptor (CAR) T cells and sensitizes medulloblastoma to GD2 CAR-T cell therapy. Thus, FLASH radiotherapy reprograms macrophage lipid metabolism to reverse tumor immunosuppression. Combination FLASH-CAR radioimmunotherapy may offer exciting opportunities for solid tumor treatment.
Collapse
Affiliation(s)
- Haiwei Ni
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Md Naushad Akhtar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ritama Paul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Zheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruitao Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruiying Ma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gina Ngo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Liu M, Wang C, Hu Q, Wu X, Wang Q, Wang J, Xu K, Lu X, Tian W. Single-cell sequencing revealed the necessity of macrophages in brain microenvironment remodeling by breast cancer metastasis. Transl Oncol 2025; 53:102287. [PMID: 39837060 PMCID: PMC11788856 DOI: 10.1016/j.tranon.2025.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Breast cancer is one of the most common cancers worldwide, 30-50 % of patients with advanced breast cancer develop brain metastasis, causing severe damage to their life quality. Due to the existence of the blood-brain barrier (BBB), brain lesions were recognized to be a unique microenvironment with limited infiltration of circulating immune cells and drugs. However, emerging studies reported the immunology of the brain tumor microenvironment (TME) and indicated the potential of immunotherapy against brain metastases. Therefore, it is of great value to comprehensively investigate the TME and identify the pro-tumoral mechanisms facilitating brain metastases and the crucial molecules involved in this process. In this research, we re-analyzed public data on three brain surgical specimens of breast cancer metastases and identified the immunosuppressive roles of macrophages in the metastatic TME. Then, we conducted the first single-cell RNA sequencing on a murine model of breast cancer brain metastasis. In the brain TME, immune cells showed prominent heterogeneity, especially the mononuclear phagocyte system (MPS). We identified the alteration of macrophage subclusters in the central nerve system (CNS) after breast cancer invasion and found that metastatic cancer cells re-shaped the TME cellular interactions for immune evasion and nutrition supply. Finally, this research could serve as a reference for further analysis of new therapies against brain metastatic lesions.
Collapse
Affiliation(s)
- Maotang Liu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300041, China; Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - CenZhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qin Hu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - XueChao Wu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Jing Wang
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Kun Xu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - XiaoJie Lu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300041, China; Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China; Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| | - Wei Tian
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China; Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| |
Collapse
|
37
|
Dutta SD, An JM, Hexiu J, Randhawa A, Ganguly K, Patil TV, Thambi T, Kim J, Lee YK, Lim KT. 3D bioprinting of engineered exosomes secreted from M2-polarized macrophages through immunomodulatory biomaterial promotes in vivo wound healing and angiogenesis. Bioact Mater 2025; 45:345-362. [PMID: 39669126 PMCID: PMC11636135 DOI: 10.1016/j.bioactmat.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Biomaterial composition and surface charge play a critical role in macrophage polarization, providing a molecular cue for immunomodulation and tissue regeneration. In this study, we developed bifunctional hydrogel inks for accelerating M2 macrophage polarization and exosome (Exo) cultivation for wound healing applications. For this, we first fabricated polyamine-modified three-dimensional (3D) printable hydrogels consisting of alginate/gelatin/polydopamine nanospheres (AG/NSPs) to boost M2-exosome (M2-Exo) secretion. The cultivated M2-Exo were finally encapsulated into a biocompatible collagen/decellularized extracellular matrix (COL@d-ECM) bioink for studying angiogenesis and in vivo wound healing study. Our findings show that 3D-printed AGP hydrogel promoted M2 macrophage polarization by Janus kinase/signal transducer of activation (JAK/STAT), peroxisome proliferator-activated receptor (PPAR) signaling pathways and facilitated the M2-Exo secretion. Moreover, the COL@d-ECM/M2-Exo was found to be biocompatible with skin cells. Transcriptomic (RNA-Seq) and real-time PCR (qRT-PCR) study revealed that co-culture of fibroblast/keratinocyte/stem cells/endothelial cells in a 3D bioprinted COL@d-ECM/M2-Exo hydrogel upregulated the skin-associated signature biomarkers through various regulatory pathways during epidermis remodeling and downregulated the mitogen-activated protein kinase (MAPK) signaling pathway after 7 days. In a subcutaneous wound model, the 3D bioprinted COL@d-ECM/M2-Exo hydrogel displayed robust wound remodeling and hair follicle (HF) induction while reducing canonical pro-inflammatory activation after 14 days, presenting a viable therapeutic strategy for skin-related disorders.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Institute of Forest Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
- School of Medicine, University of California Davis, 95817, Sacramento, United States
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, 04763, Seoul, Republic of Korea
| | - Jin Hexiu
- Department of Plastic and Traumatic Surgery, Capital Medical University, 100069, Beijing, China
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 17104, Yongin, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 27470, Chungju, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Institute of Forest Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| |
Collapse
|
38
|
Xue C, Liu W, Li Y, Yin Y, Tang B, Zhu J, Dong Y, Liu H, Ren H. Mesenchymal stem cells alleviate idiopathic pneumonia syndrome by facilitating M2 polarization via CCL2/CCR2 axis and further inducing formation of regulatory CCR2 + CD4 + T cells. Stem Cell Res Ther 2025; 16:108. [PMID: 40025564 PMCID: PMC11872334 DOI: 10.1186/s13287-025-04232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Our previous study revealed that mesenchymal stem cells (MSCs) can secrete large amounts of the chemokine CCL2 under inflammatory conditions and alleviate idiopathic pneumonia syndrome (IPS) by promoting regulatory CCR2 + CD4 + T-cell formation through the CCL2‒CCR2 axis. Given the abundance of macrophages in lung tissue, how these macrophages are regulated by MSC-based prophylaxis via IPS and their interactions with T cells in lung tissue during allo-HSCT are still not fully understood. METHODS An IPS mouse model was established, and MSC-based prophylaxis was administered. In vitro coculture systems and an IPS model were used to study the interactions among MSCs, macrophages and T cells. RESULTS Prophylactic administration of MSCs induced M2 polarization and alleviated acute graft-versus-host disease (aGVHD) and lung injury in an IPS mouse model. In vitro coculture studies revealed that M2 polarization was induced by MSC-released CCL2 and that these M2 macrophages promoted the formation of regulatory CCR2 + CD4 + T cells. Blocking the CCL2-CCR2 interaction in vitro reversed MSC-induced M2 polarization and abolished the induction of CCR2 + CD4 + T-cell formation. Additionally, in vivo administration of a CCL2 or CCR2 antagonist in the IPS mouse model exacerbated aGVHD and lung injury, accompanied by a reduction in M2 macrophages and reduced formation of regulatory CCR2 + CD4 + T cells in lung tissue. CONCLUSIONS MSCs alleviate IPS by facilitating M2 polarization via the CCL2‒CCR2 axis and further inducing the formation of regulatory CCR2 + CD4 + T cells.
Collapse
Affiliation(s)
- Chao Xue
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Jinye Zhu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| |
Collapse
|
39
|
Kodagoda YK, Hanchapola HACR, Rodrigo DCG, Lim C, Liyanage DS, Omeka WKM, Ganepola GANP, Dilshan MAH, Kim J, Lee JH, Jeong T, Wan Q, Kim G, Lee J. Expression profiling and functional role of cyclooxygenase-2 in the immune and inflammatory responses of red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110158. [PMID: 39890039 DOI: 10.1016/j.fsi.2025.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Cyclooxygenase-2 (Cox-2) is a well-studied enzyme and a significant medicinal target associated with various inflammatory disorders. However, its role in pathogen-induced inflammatory responses in fish remains poorly understood. This study characterized the structural and functional properties of a Cox-2 homolog from red-spotted grouper (Epinephelus akaara) (EaCox-2). The three-dimensional structure of EaCox-2 revealed a homodimer with two functional domains: a catalytic domain with two active sites and a membrane-binding domain. EaCox-2 transcripts were ubiquitously expressed in all tested tissues of E. akaara, with the highest expression in the gills, followed by the spleen. Immune stimulation with polyinosinic:polycytidylic acid (poly I:C), lipopolysaccharides (LPS), and nervous necrosis virus (NNV) led to significant upregulation in EaCox-2 transcripts 12 and 24 h post-injection in both gill and spleen tissues. EaCox-2 overexpression in murine macrophages triggered a pro-inflammatory response characterized by M1 macrophage polarization, upregulation of pro-inflammatory mediators such as TNF-α, IL-1β, and IL-6, and iNOS enzyme, enhanced production of reactive nitric oxide (NO), and mitochondrial depolarization. These findings highlight the crucial role of EaCox-2 in regulating immune and inflammatory responses in E. akaara, providing valuable insights into the molecular mechanisms underlying teleost immunity.
Collapse
Affiliation(s)
- Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyun Lim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - G A N P Ganepola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Ji Hun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
40
|
Wang C, Li J, Wu C, Wu Z, Jiang Z, Hong C, Ying J, Chen F, Yang Q, Xu H, Sheng S, Feng Y. Pectolinarin Promotes Functional Recovery after Spinal Cord Injury by Regulating Microglia Polarization Through the PI3K/AKT Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04793-w. [PMID: 40014266 DOI: 10.1007/s12035-025-04793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
After spinal cord injury (SCI), microglia polarization plays an important role in spinal cord recovery and axon regeneration. In this study, we conducted mRNA microarrays to identify genes associated with different microglial phenotypes. The results showed a correlation between microglial polarization and the PI3K/AKT signaling pathway, a key regulator of inflammatory responses. In addition, we found that Pectolinarin (PTR) could effectively inhibit lipopolysaccharide (LPS)-induced M1 polarization of microglia and facilitate their transition to the M2 phenotype by directly suppressing the PI3K/AKT signaling pathway. In our established animal model of SCI, it was confirmed that PTR treatment induced microglial polarization towards the M2 phenotype, resulting in reduced fibrous scar formation, enhanced myelin reconstitution, and improved axonal regeneration. In conclusion, targeting the PI3K/AKT signaling pathway with PTR presents a promising new direction for SCI treatment.
Collapse
Affiliation(s)
- Chenggui Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenyu Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhouwei Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhichen Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenglong Hong
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Juntao Ying
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fancheng Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi Yang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hui Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| | - Sunren Sheng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| | - Yongzeng Feng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
41
|
He J, Dai Y, Xu F, Huang X, Gao Y, Liu L, Zhang W, Liu J. High-density lipoprotein-based nanoplatforms for macrophage-targeted diagnosis and therapy of atherosclerosis. Int J Biol Macromol 2025; 306:140826. [PMID: 40010459 DOI: 10.1016/j.ijbiomac.2025.140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/19/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Atherosclerosis, the primary cause of cardiovascular disease, which has the highest mortality worldwide, is a chronic inflammatory disease mainly induced by excessive lipid accumulation in plaque macrophages. Lipid-laden macrophages are crucial at all stages of atherosclerotic lesion progression and are, thus, regarded as popular therapeutic targets for atherosclerosis. High-density lipoprotein (HDL), an endogenous particle with excellent atherosclerotic plaque-homing properties, is considered a potential therapeutic agent for treating atherosclerosis. Based on the excellent properties of HDL, reconstituted HDL (rHDL), with physiological functions similar to those of its natural counterparts, have been successfully prepared as therapeutics and are also recognized as a potential nanoplatform for delivering drugs or contrast agents to atherosclerotic plaques owing to their high biocompatibility, amphiphilic structure, and macrophage-targeting capability. In this review, we focus on the (a) important role of macrophages in atherosclerotic lesions, (b) biological properties of rHDL as a delivery nanoplatform in atherosclerotic diseases, and (c) multiple applications of rHDL in the diagnosis and treatment of atherosclerosis. We systematically summarize the novel applications of rHDL with unique advantages in atherosclerosis, aiming to provide specific insights and inspire additional innovative research in this field.
Collapse
Affiliation(s)
- Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Fengfei Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yu Gao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
42
|
Abe T. Isoschaftoside in Fig Leaf Tea Alleviates Nonalcoholic Fatty Liver Disease in Mice via the Regulation of Macrophage Polarity. Nutrients 2025; 17:757. [PMID: 40077628 PMCID: PMC11902273 DOI: 10.3390/nu17050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a subset of fatty liver disease that is not caused by alcohol or viruses, and its increasing incidence presents a major global health concern. As few pharmacotherapies are available for NAFLD, lifestyle modifications, including diet and exercise, serve as the foundation for treatment. Therefore, NAFLD prevention is more important than cure, emphasizing the need for drugs with excellent safety and long-term efficacy. Fig leaf tea contains rutin and isoschaftoside (ISS), which may possess anti-inflammatory properties. Therefore, the aim of this murine-model-based study was to investigate the potential benefits of fig leaf tea in alleviating NAFLD and to determine the underlying mechanism by gene expression analysis. RESULTS We found that in mice with NAFLD induced by a high-fat diet, the administration of high concentration fig leaf tea or 50 µM ISS significantly ameliorated lobule inflammation. In contrast, low concentration fig leaf tea containing 75 µM ISS did not improve inflammation. The balance between the NAFLD-promoting component of fig leaf tea and the inhibitory effect of ISS was thought to be affected. Gene expression analysis of the liver showed that high concentration fig leaf tea or ISS significantly suppressed the expression of M1 macrophage markers such as CD antigens, toll-like receptors (TLR), chemokines, and cytokines. Further, ISS suppressed the amount of TNF-α released during the M1 polarization of macrophage cells upon lipopolysaccharide (LPS) stimulation. CONCLUSIONS Overall, these results suggest that controlling macrophage polarization may improve NAFLD. Furthermore, these findings highlight the potential clinical applicability of ISS.
Collapse
Affiliation(s)
- Tatsuya Abe
- Toyo Institute of Food Technology, 23-2, 4-chome, Minami-Hanayashiki, Kawanishi 666-0026, Hyogo, Japan
| |
Collapse
|
43
|
Liu H, Cui H, Liu G. The Intersection between Immune System and Idiopathic Pulmonary Fibrosis-A Concise Review. FIBROSIS (HONG KONG, CHINA) 2025; 3:10004. [PMID: 40124525 PMCID: PMC11928166 DOI: 10.70322/fibrosis.2025.10004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by progressive alveolar destruction, impaired tissue regeneration, and relentless fibrogenesis, culminating in respiratory failure and death. A diverse array of resident and non-resident cells within the lung contribute to disease pathogenesis. Notably, immune cells, both resident and recruited, respond to cues from sites of lung injury by undergoing phenotypic transitions and producing a wide range of mediators that influence, initiate, or dictate the function, or dysfunction, of key effector cells in IPF pathology, such as alveolar epithelial cells, lung fibroblasts, and capillary endothelial cells. The role of the immune system in IPF has undergone an interesting evolution, oscillating from initial enthusiasm to skepticism, and now to a renewed focus. This shift reflects both the past failures of immune-targeting therapies for IPF and the unprecedented insights into immune cell heterogeneity provided by emerging technologies. In this article, we review the historical evolution of perspectives on the immune system's role in IPF pathogenesis and examine the lessons learned from previous therapeutic failures targeting immune responses. We discuss the major immune cell types implicated in IPF progression, highlighting their phenotypic transitions and mechanisms of action. Finally, we identify key knowledge gaps and propose future directions for research on the immune system in IPF.
Collapse
Affiliation(s)
- Hongli Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
44
|
Barilo J, Ratsimor M, Chan A, Hembruff H, Basta S. Polarized Tissue-Derived Macrophages Display Enhanced M2d Phenotype after Prolonged Stimulation with Adenosine A 2A Receptor Agonist in the Presence of LPS. FRONT BIOSCI-LANDMRK 2025; 30:27638. [PMID: 40018944 DOI: 10.31083/fbl27638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Macrophages (Mφ) are innate immune cells known for their different activation phenotypes, classically described as falling within two broad categories, M1 and M2. The latter were originally described as alternatively activated M2 cells to differentiate them from classically activated M1 cells. M2 cells were later classified into M2a (interleukin (IL)-4), M2b (immune complex), M2c (IL-10) and M2d (5-(N-ethylcarboxamido) adenosine (NECA) + lipopolysaccharide (LPS)) based on their inducing stimuli. Considering the established role of M2d/tumour-associated macrophage (TAM) cells within cancer initiation and proliferation, expanding on the knowledge of M2d characteristics can provide fundamental information for Mφ targeted immunotherapy. The precise characterization of M2d cells derived from tissues has not been described in detail. METHODS Our study focused on spleen-derived macrophages (SpM), which were also compared to bone marrow-derived macrophages (BMDMs). RESULTS By investigating different conditions for M2d-specific stimulation and employing various assays including functional tests, we show how Mφ M2d (NECA + LPS) polarization can be affected by prolonged culture conditions to induce a phenotype that was clearly different from M2a cells. CONCLUSION This work offers new insights into the properties of primary M2d Mφ following extended stimulation with LPS and NECA.
Collapse
Affiliation(s)
- Julia Barilo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mariane Ratsimor
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Agnes Chan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Hannah Hembruff
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
45
|
Cai Y, Shang L, Zhou F, Zhang M, Li J, Wang S, Lin Q, Huang J, Yang S. Macrophage pyroptosis and its crucial role in ALI/ARDS. Front Immunol 2025; 16:1530849. [PMID: 40028334 PMCID: PMC11867949 DOI: 10.3389/fimmu.2025.1530849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a severe clinical syndrome characterized by high morbidity and mortality, primarily due to lung injury. However, the pathogenesis of ALI/ARDS remains a complex issue. In recent years, the role of macrophage pyroptosis in lung injury has garnered extensive attention worldwide. This paper reviews the mechanism of macrophage pyroptosis, discusses its role in ALI/ARDS, and introduces several drugs and intervening measures that can regulate macrophage pyroptosis to influence the progression of ALI/ARDS. By doing so, we aim to enhance the understanding of the mechanism of macrophage pyroptosis in ALI/ARDS and provide novel insights for its treatment.
Collapse
Affiliation(s)
- Yuju Cai
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifeng Lin
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianghua Huang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
46
|
Sin MK, Dage JL, Nho K, Dowling NM, Seyfried NT, Bennett DA, Levey AI, Ahmed A. Plasma Biomarkers for Cerebral Amyloid Angiopathy and Implications for Amyloid-Related Imaging Abnormalities: A Comprehensive Review. J Clin Med 2025; 14:1070. [PMID: 40004604 PMCID: PMC11856447 DOI: 10.3390/jcm14041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Anti-amyloid therapies (AATs) are increasingly being recognized as promising treatment options for Alzheimer's disease (AD). Amyloid-related imaging abnormalities (ARIAs), small areas of edema and microbleeds in the brain presenting as abnormal signals in MRIs of the brain for patients with AD, are the most common side effects of AATs. While most ARIAs are asymptomatic, they can be associated with symptoms like nausea, headache, confusion, and gait instability and, less commonly, with more serious complications such as seizures and death. Cerebral amyloid angiopathy (CAA) has been found to be a major risk for ARIA development. The identification of sensitive and reliable non-invasive biomarkers for CAA has been an area of AD research over the years, but with the approval of AATs, this area has taken on a new urgency. This comprehensive review highlights several potential biomarkers, such as Aβ40, Aβ40/42, phosphorylated-tau217, neurofilament light chain, glial fibrillary acidic protein, secreted phosphoprotein 1, placental growth factor, triggering receptor expressed on myeloid cells 2, cluster of differentiation 163, proteomics, and microRNA. Identifying and staging CAA even before its consequences can be detected via neuroimaging are critical to allow clinicians to judiciously select appropriate candidates for AATs, stratify monitoring, properly manage therapeutic regimens for those experiencing symptomatic ARIAs, and optimize the treatment to achieve the best outcomes. Future studies can test potential plasma biomarkers in human beings and evaluate predictive values of individual markers for CAA severity.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | - Jeffrey L. Dage
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (J.L.D.); (K.N.)
| | - Kwangsik Nho
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (J.L.D.); (K.N.)
| | - N. Maritza Dowling
- School of Nursing, George Washington University, Washington, DC 20052, USA;
| | - Nicholas T. Seyfried
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30329, USA;
| | | | - Allan I. Levey
- School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Ali Ahmed
- Department of Medicine, Veterans Affairs Medical Center, Washington, DC 20422, USA;
- Department of Medicine, George Washington University, Washington, DC 20037, USA
- Department of Medicine, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
47
|
Peng W, Qin Q, Li R, Liu Y, Li L, Zhang Y, Zhu L. Blimp-1 orchestrates macrophage polarization and metabolic homeostasis via purine biosynthesis in sepsis. Cell Death Dis 2025; 16:72. [PMID: 39915460 PMCID: PMC11802726 DOI: 10.1038/s41419-025-07405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Sepsis is a life-threatening condition characterized by a dysregulated immune response to infection, leading to systemic inflammation and organ dysfunction. Macrophage polarization plays a critical role in pathogenesis of sepsis, and the influence of B lymphocyte-induced maturation protein-1 (Blimp-1) on this polarization is an underexplored yet pivotal aspect. This study aimed to elucidate the role of Blimp-1 in macrophage polarization and metabolism during sepsis. Using a murine cecal ligation and puncture model, we observed elevated Blimp-1 expression in M2 macrophages. Knockdown of Blimp-1 by macrophage-targeted adeno-associated virus in this model resulted in decreased survival rates, exacerbated tissue damage, and impaired M2 polarization, underscoring its protective role in sepsis. In vitro studies with bone marrow-derived macrophage (BMDM), RAW264.7, and THP-1 cells further demonstrated Blimp-1 promotes M2 polarization and modulates key metabolic pathways. Metabolomics and dual-luciferase assays revealed Blimp-1 significantly influences purine biosynthesis and the downstream Ornithine cycle, which are essential for M2 macrophage polarization. In vitro studies with BMDM further suggested that the purine biosynthesis and Ornithine cycle metabolic regulation is involved in Blimp-1's effects on M2 macrophage polarization, and mediates Blimp-1's impact on septic mice. Our findings unveil a novel mechanism by which Blimp-1 modulates macrophage polarization through metabolic regulation, presenting potential therapeutic targets for sepsis. This study highlights the significance of Blimp-1 in orchestrating macrophage responses and metabolic adaptations in sepsis, offering valuable insights into its role as a critical regulator of immune and metabolic homeostasis.
Collapse
Affiliation(s)
- Wenjuan Peng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiushi Qin
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, 100015, China
| | - Rui Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yujia Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Lan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
48
|
Wu X, Pan T, Fang Z, Hui T, Yu X, Liu C, Guo Z, Liu C. Identification of EGR1 as a Key Diagnostic Biomarker in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Through Machine Learning and Immune Analysis. J Inflamm Res 2025; 18:1639-1656. [PMID: 39925925 PMCID: PMC11806694 DOI: 10.2147/jir.s499396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/25/2025] [Indexed: 02/11/2025] Open
Abstract
Background Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), as a common chronic liver condition globally, is experiencing an increasing incidence rate which poses significant health risks. Despite this, the detailed mechanisms underlying the disease's onset and progression remain poorly understood. In this study, we aim to identify effective diagnostic biomarkers for MASLD using microarray data combined with machine learning techniques, which will aid in further understanding the pathogenesis of MASLD. Methods We collected six datasets from the Gene Expression Omnibus (GEO) database, using five of them as training sets and one as a validation set. We employed three machine learning methods-LASSO, SVM, and Random Forest (RF)-to identify hub genes associated with MASLD. These genes were further validated using the external dataset GSE164760. Additionally, functional enrichment analysis, immune infiltration analysis, and immune function analysis were conducted. A TF-miRNA-mRNA network was constructed, and single-cell RNA sequencing was used to determine the distribution of key genes within key cell clusters. Finally, the expression of the key genes was further validated using the palmitic acid-induced AML-12 cell line and the MCD mouse model. Results In this study, through differential gene expression (DEGs) analysis and machine learning techniques, we successfully identified 10 hub genes. Among these, the key gene EGR1 was validated and screened using an external dataset, with an area under the curve (AUC) of 0.882. Enrichment analyses and immune infiltration assessments revealed multiple pathways involving EGR1 in the pathogenesis and progression of MASLD, showing significant correlations with various immune cells. Furthermore, additional cellular experiments and animal model validations confirmed that the expression trends of EGR1 are highly consistent with our analytical findings. Conclusion Our research has confirmed EGR1 as a key gene in MASLD, providing novel insights into the disease's pathogenesis and identifying new therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Xuanlin Wu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tao Pan
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Zhihao Fang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Titi Hui
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiaoxiao Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Changxu Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Zihao Guo
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Chang Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
49
|
Chida S, Chiba T, Uchida Y, Matsushima T, Kurimoto R, Miyazaki T, Yagasaki L, Nakamura S, Mihara E, Takagi J, Moriyama K, Asahara H. Impact of mechanotransduction on gene expression changes in periodontal ligament during orthodontic tooth movement. J Bone Miner Metab 2025:10.1007/s00774-025-01581-3. [PMID: 39893595 DOI: 10.1007/s00774-025-01581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION The periodontal ligament (PDL) is a structure between the alveolar bone and cementum, essential for tooth stability and composed of diverse cell types. Mohawk homeobox (Mkx) is a master transcription factor that regulates tendon and ligament homeostasis. However, the specific cell populations expressing Mkx and its role in mechanotransduction during orthodontic tooth movement (OTM) remain unclear. MATERIALS AND METHODS We conducted single-cell RNA sequencing on wild-type rat PDL at 0 day, 1 week, and 2 weeks of post-OTM using coil springs to elucidate Mkx's function and the changes in cell populations under continuous mechanical stimulation. In addition, RT-qPCR was performed to assess the relationship between tenogenic gene expression and Mkx expression in human PDL cells. RESULTS The rat PDL was identified to consist of 14 clusters, with Mkx and Scleraxis (Scx) expressed in distinct cell populations. Collagen and ECM production increased throughout the OTM period, while the sterile inflammatory response was initially heightened and later diminished, indicating that bone remodeling occurs later in the inflammatory response. Overexpression of MKX in human PDL cells enhanced COL1A1 and DECORIN expression. CONCLUSION Mechanical stimulation of the PDL appears to trigger an aseptic inflammatory response that disrupts PDL homeostasis and promotes bone remodeling. Mkx may exert a protective effect on the PDL during mechanical stimulation.
Collapse
Affiliation(s)
- Suzu Chida
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Takahide Matsushima
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Takayuki Miyazaki
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Lisa Yagasaki
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Satoshi Nakamura
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Emiko Mihara
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Yaamadaoka, 3-2, Suita, 565-0871, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Yaamadaoka, 3-2, Suita, 565-0871, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA.
| |
Collapse
|
50
|
Liu Y, Wu L, Peng W, Mao X. Glial polarization in neurological diseases: Molecular mechanisms and therapeutic opportunities. Ageing Res Rev 2025; 104:102638. [PMID: 39672208 DOI: 10.1016/j.arr.2024.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Glial cell polarization plays a pivotal role in various neurological disorders. In response to distinct stimuli, glial cells undergo polarization to either mitigate neurotoxicity or facilitate neural repair following injury, underscoring the importance of glial phenotypic polarization in modulating central nervous system function. This review presents an overview of glial cell polarization, focusing on astrocytes and microglia. It explores the involvement of glial polarization in neurological diseases such as Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis and meningoencephalitis. Specifically, it emphasizes the role of glial cell polarization in disease pathogenesis through mechanisms including neuroinflammation, neurodegeneration, calcium signaling dysregulation, synaptic dysfunction and immune response. Additionally, it summarizes various therapeutic strategies including pharmacological treatments, dietary supplements and cell-based therapies, aimed at modulating glial cell polarization to ameliorate brain dysfunction. Future research focused on the spatio-temporal manipulation of glial polarization holds promise for advancing precision diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lei Wu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|