1
|
Wang S, Peng C, Sheng N, Lian L, Dai J, Guan X. Occurrence, ecological risk and estrogenic effect of 19 bisphenol analogues in the surface water used for drinking water in Shanghai, China. WATER RESEARCH 2025; 279:123408. [PMID: 40048907 DOI: 10.1016/j.watres.2025.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/12/2024] [Accepted: 02/27/2025] [Indexed: 05/06/2025]
Abstract
Bisphenol analogues (BPs), a prominent group of endocrine-disrupting compounds, are widely used in the production of epoxy resins and polycarbonate plastics, leading to their inevitable release into aquatic environments. However, limited data exists on the occurrence of BPs in drinking water sources and upstream rivers. In this study, we developed and validated a solid-phase extraction method coupled with ultra-performance liquid chromatography-tandem mass spectrometry for the trace-level detection and simultaneous quantification of 19 BPs in surface water. Seventeen BPs were detected in the Taipu River with concentrations ranging from non-detectable to 38.2 ng L-1 and industrial discharges may be a primary source of BPs contamination. For the first time, the presence of bisphenol C-dichloride (BPC-di) and tetrachlorobisphenol A in surface water was reported, with mean concentrations of 11.5 ng L-1 and 2.0 ng L-1, respectively. In drinking source water, 15 BPs were found, with bisphenol A, bisphenol B, and BPC-di being the most abundant ones. Additionally, a comprehensive toxicity assessment was performed to evaluate the ecological risks associated with these BPs. Although risk quotient values indicated negligible ecological risk for these BPs, estrogen equivalence values suggested potential estrogenic risks in the river. This study provides new insights into the occurrence, ecological risks, and estrogenic effects of BPs in source water and its upstream river systems.
Collapse
Affiliation(s)
- Shuning Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Peng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lushi Lian
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
2
|
Zhang B, Fan Z, Liu X, Wu Y, Cheng L, Wang L, Liu H. Bisphenol AF induces lipid metabolism disorders, oxidative stress and upregulation of heat shock protein 70 in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 293:110164. [PMID: 40020955 DOI: 10.1016/j.cbpc.2025.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Bisphenol AF (BPAF) is a widespread endocrine disruptor in the environment, and the use of BPAF has been strongly associated with the development of several diseases. In this study, we investigated the effects of BPAF on growth, development, oxidative stress and lipid metabolism in zebrafish. We chose the concentrations based on the measured LC50 at 96 h post-fertilization (96 hpf), and the zebrafish embryos were exposed to three different concentrations (0.125, 0.5 and 2 μmol/L). The findings indicated that BPAF exposure in zebrafish leaded to alterations in heart rate, body length and hatching rate, as well as an accumulation of red blood cells in the heart. Additionally, BPAF exposure resulted in increased levels of neutrophils, reactive oxygen species (ROS) and malondialdehyde (MDA), and decreased activity of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), thus disturbing the balance between oxidative and antioxidative systems. BPAF promoted fatty acid catabolism and inhibited fatty acid synthesis, ultimately leading to a reduction in fatty acid content. Mechanistically, RNA-seq analysis and RT-qPCR revealed a significant upregulation of heat shock protein 70 (hsp70) after BPAF exposure. Inhibition of hsp70 with VER-155008 ameliorated BPAF-induced oxidative stress. These data provided a novel approach to investigate BPAF-induced oxidative stress and suggested that regulation of hsp70 is a crucial target for alleviating this process.
Collapse
Affiliation(s)
- Bingya Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Zhonghua Fan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Xuan Liu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yuanyuan Wu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China.
| |
Collapse
|
3
|
Guo X, Wu X, Cao S, Wang L, Kong D, Wang Y, Ji R. Fate and Persistence of Bisphenol AF (BPAF) in Agricultural Soils: Role of Nonextractable Residues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40393952 DOI: 10.1021/acs.est.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Bisphenol AF (BPAF), a polyfluorinated compound and widely used substitute for bisphenol A, is ubiquitous in the environment. However, the fate of BPAF in soil is still obscure. Here, we used [ring-U-14C]-labeled BPAF to investigate its fate in three agricultural soils for 240 days, based on a four-compartment fate model. BPAF dissipated in the soils with a half-life of 35-110 days, accompanied by low mineralization (8.5-11.3% of the initial radioactivity). The main fate of BPAF in the soils was formation of nonextractable residues (NERs) (44.2-65.3%), mostly (>90%) via physicochemical sequestration (31.2-42.7%) and ester bonds (10.0-22.6%). Notably, the sequestered free BPAF in the NERs increased the half-life by 1.4-2.5 times. Six transformation products (TPs) were identified, including BPAF mono- and dimethyl ethers, monosulfate ester, and three single-ring monophenolic compounds. BPAF monomethyl ether was the predominant extractable TP, while the polar TPs were the predominant physico-chemically sequestered and ester-linked TPs in the NERs. Three transformation pathways for BPAF in the soils are proposed, including type II ipso-substitution, O-methylation, and sulfate conjugation. Our study provides the first quantitative information on the fate of BPAF in soil, and highlights the importance of NERs in determining the persistence of BPAF.
Collapse
Affiliation(s)
- Xiaoran Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Siqi Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lianhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Deyang Kong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Nanjing 210042, China
| | - Yongfeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Chen Y, Chen Y, Yao S, Wang X, Chen T, Chen K, Li J, Yin C, Ye Q, Wang H. Uptake, subcellular accumulation and metabolism of 14C-bisphenol S in flowering cabbage. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138646. [PMID: 40393287 DOI: 10.1016/j.jhazmat.2025.138646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
Due to the growing environmental and health concerns surrounding bisphenol S (BPS) as a common bisphenol A (BPA) substitute, this study investigated the metabolic pathways and tissue-specific accumulation of BPS in flowering cabbage under hydroponic conditions, revealing key insights into plant detoxification processes and potential human health risks. Over a 32-day exposure of 5 mg L-1 14C-BPS, 60.2 ± 3.0 % of 14C in the nutrient solution was taken up, with the 14C-radioactivity accounting for 40.2 ± 2.6 %, 5.3 ± 0.3 %, and 14.5 ± 0.6 % in roots, stems, and leaves, respectively. Older leaves retained higher levels of BPS and/or its metabolites. Using HPLC-LSC, LC-MS/MS, and subcellular fractionation, we identified four metabolites, characterized by glycosylation, malonylation, sulfation, and amino acid conjugation pathways. BPS and its metabolites were primarily located in the cell wall, plastid, and soluble component. The segregation of BPS and metabolites into the cell wall and plastid resulted in the formation of large amounts of non-extractable residues in roots. Results highlight that BPS metabolites, particularly glycosylated forms like M526, may accumulate in edible plant parts. These findings advance understanding of BPS metabolism in plants, underlining the potential food safety risks posed by its uptake and metabolism in agricultural systems.
Collapse
Affiliation(s)
- Yandao Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sihan Yao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xilin Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Chen
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen 518055, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changfeng Yin
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen 518055, China.
| | - Qingfu Ye
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Yang X, Dai C, Zheng G, Ding S, Wu J, Zhou Q, Zhang A, Sun J. Bisphenol analogues in soils and lettuce (Lactuca sativa L.) around typical factories in eastern China: Occurrence, contamination characteristics, and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126126. [PMID: 40154866 DOI: 10.1016/j.envpol.2025.126126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Following the restrictions on bisphenol A (BPA), the production and environmental release of bisphenol analogues (BPs) have increased. However, knowledge about the occurrence of bisphenol analogues other than BPA, especially in farmland soils and edible plants, remains limited. This study investigated the occurrence, contamination characteristics, and human health risks of eight bisphenol analogues in paired soil-plant samples from areas near factories in eastern China. Results indicated that the concentrations of Σ8BPs in the collected soil and plant samples ranged from 1.4 to 897.1 ng/g dw and 2.5 to 586.2 ng/g dw, respectively. BPA, bisphenol AF (BPAF), bisphenol F (BPF), and bisphenol S (BPS) were the primary components of BPs, with BPA having the highest detection frequency (74 %). In addition, a positive correlation was observed between the root concentration factor and the log Kow of BPs (R2 = 0.471, P < 0.05), whereas the translocation factor exhibited a negative correlation with the log Kow (R2 = 0.405, P < 0.05). The hazard index (HI) values of BPs in paired soil-plant samples were <1, suggesting that the current contamination levels of BPs in soils and plants are unlikely to pose significant health risks to humans. However, potential risks from long-term exposure require careful monitoring. This study offers new insights into the spatial distributions and contamination status of BPs in farmland soils and plants, highlighting the environmental behavior and health risks of other bisphenol analogues.
Collapse
Affiliation(s)
- Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenan Dai
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoxin Zheng
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaojie Ding
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinghua Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Li C, Luo H, Chen M, Lin F, Ren X, Huang Y, Zhou L. Bisphenol AF induces cell cycle arrest and apoptosis in TM3 Leydig cells via the p53 signaling pathway. Reprod Toxicol 2025; 134:108882. [PMID: 40089166 DOI: 10.1016/j.reprotox.2025.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Bisphenol AF (BPAF), one of the most common bisphenol analogues, has been reported to exhibit higher estrogenic activity compared to bisphenol A (BPA) due to the presence of additional hydrophobic groups. To comprehensively understand the male reproductive toxicity of BPAF, TM3 Leydig cells were used to investigate the effects of BPAF on cell proliferation, apoptosis, and cell cycle arrest. The underlying mechanisms of cellular responses induced by BPAF were examined through analysis of target mRNA and protein expression. Results showed that BPAF treatment reduced cell viability and induced both G2/M cell cycle arrest and apoptosis in a time- and dose-dependent manner in TM3 Leydig cells. RNA sequencing analysis and experimental verification further revealed that the p53 signaling pathway was involved in BPAF-induced cytotoxicity. Furthermore, Pifithrin-α (PFT-α), a p53 inhibitor, attenuated BPAF-induced G2/M cell cycle arrest and apoptosis. These results demonstrate that the p53 signaling pathway mediates BPAF-induced cell cycle arrest and apoptosis in Leydig cells, providing mechanistic insights into BPAF's toxicological effects on the male reproductive system.
Collapse
Affiliation(s)
- Chenlu Li
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Chen
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yefei Huang
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
7
|
Atkare S, Jagtap S, Late DJ. Exploring the potential of metal-organic framework based composites as key players in bisphenol detection. Chem Soc Rev 2025; 54:3736-3774. [PMID: 39960342 DOI: 10.1039/d4cs01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The extensive usage of bisphenols in the production of plastics and other materials has raised concerns about their potential adverse effects on human and marine ecosystems. This comprehensive review paper aims to provide insights into the various types of bisphenols and their derivatives, as well as the multiple pathways through which human and marine life can be exposed to these compounds. Additionally, it highlights the growing importance of developing effective detection methods for bisphenols and their derivatives due to their potential health and environmental implications. The focus then shifts towards metal-organic frameworks (MOFs) as promising materials for the detection of bisphenols. We delve into the characteristic properties of MOFs and their potential and limitations in the detection of bisphenols and their derivatives. This paper also addresses the significance of pristine MOFs and explores the potential of MOF-based composites for achieving enhanced detection performance. Subsequently, various detection techniques utilizing MOFs and their composites are reviewed. In the final sections, the recent strategic developments and challenges in this field, offering a concise summary of the principal findings of this review, novel approaches, limitations of current methodologies, and emerging trends for future directions, are discussed. This comprehensive exploration of the subject matter not only illuminates the current state of research on the detection of bisphenols but also provides valuable insights into the opportunities and challenges in this evolving field. In conclusion, this review underscores the critical importance of advancing the detection of bisphenols and their derivatives, with MOFs and their composites emerging as promising candidates for more efficient and sensitive detection. The potential for their applications in diverse fields, coupled with ongoing research efforts, suggests a bright future for MOF-based bisphenol detection technologies.
Collapse
Affiliation(s)
- Sayali Atkare
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Shweta Jagtap
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Dattatray J Late
- Department of Physics, Federal University of Lavras, Campus Universitário, PO Box 3037, Lavras, Minas Gerais 37200-000, Brazil.
| |
Collapse
|
8
|
Guo C, Lv L, Chen X, Wang H, Song S, Li Y, Qin Z. Low-dose bisphenol AF exerts slight effects on glycolipid metabolism but causes metabolic disorders under the stress of Western diet in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125861. [PMID: 39954763 DOI: 10.1016/j.envpol.2025.125861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
High doses of bisphenol AF (BPAF), a widely used chemical in many products, has been reported to exert adverse effects on lipid or glucose metabolism, but whether low-dose exposure, especially in combination with a high-sugar, high-fat diet (Western diet, WD), has unacceptable effects remains unexplored. Here, we investigated the effects of postnatal exposure to 50 μg/kg/d (low) BPAF on glycolipid homeostasis in mice receiving administration through drinking water under the WD stress after weaning or not, in comparison with the effects 5000 (high) BPAF without stress. After approximately 8-week exposure, blood tests of glucose metabolism revealed that high-dose BPAF caused insulin resistance and elevated insulin levels in a normal diet (ND)-fed mice; low-dose BPAF exerted slight effects in ND-fed mice but caused significant glucose metabolic impairment under the WD stress. Also, low-dose BPAF exerted limited effects on pancreas islets as well as hepatic histology and metabolic homeostasis in ND-fed mice, but aggravated pancreatic and hepatic impairments caused by the WD stress. We also conducted cell culture experiments using β-TC-6 and HepG2 cells to explore whether BPAF could directly interfere with pancreatic cells and hepatocytes. In vitro assays showed that BPAF affected insulin secretion of pancreatic β-TC-6 cells in a glucose-dependent manner and glucose sensitivity of HepG2 cells, with slight effects on lipid metabolism in HepG2 cells. All results collectively demonstrate that low-dose BPAF caused metabolic disorders under the WD stress, highlighting its health risks. Besides, in vitro data suggest that BPAF may directly affect glucose metabolism rather than lipid metabolism.
Collapse
Affiliation(s)
- Chengzhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanzhang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Fabrello J, Matozzo V. DNA strand breaks in the crab Carcinus aestuarii exposed to three BPA analogues and their mixture. MARINE POLLUTION BULLETIN 2025; 212:117555. [PMID: 39826159 DOI: 10.1016/j.marpolbul.2025.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
In this study, the genotoxic effects of three different bisphenols (BPAF, BPF and BPS) and their mixture were assessed in the crab Carcinus aestuarii. Crabs were exposed for 7 and 14 days to 300 ng/L of BPA analogues, alone or as a mixture (100 ng/L for each compound). After 7- and 14-day exposure, gills and hepatopancreas were sampled from crabs to evaluate damage to DNA by quantifying the levels of DNA single- and double-strand breaks. Results indicated that BPA analogues increased the DNA damage in both gills and hepatopancreas. In detail, BPAF, the most hydrophobic compound tested, exerted a marked effect on DNA. Overall, results suggest that such relatively new compounds can cause damage to DNA in crabs, raising doubts about the toxicological profile of BPA analogues, at least in the species studied and under the conditions tested in this study.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy.
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
10
|
Zhu Y, Liu X, Liu X, Shi Y, Li H, Ru S, Tian H. Toxicokinetics and reproductive toxicity of maternal bisphenol AF exposure during gestation in offspring of Sprague Dawley rats. Chem Biol Interact 2025; 409:111424. [PMID: 39938710 DOI: 10.1016/j.cbi.2025.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
Bisphenol AF (BPAF) has been widely used as a main alternative to bisphenol A (BPA), and previous in vitro studies have shown that BPAF has higher reproductive toxicity potentials than BPA. However, data on in vivo toxicity of BPAF is still limited. In this study, Sprague Dawley rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to study toxicokinetics and reproductive toxicity in offspring. The results showed that plasma concentrations BPAF peaked within 6 h after birth, followed by a two-phase decay, with clearance rates of approximately 3.0 l/h and terminal half-life values ranging from 77 h to 114 h, suggesting fast absorption and high persistence of BPAF. At postnatal day 21 (PND21), BPAF was found to be bioaccumulated in reproductive organs (testes and ovaries) of the offspring, resulting in adverse effects on reproduction in both sexes. Lower anogenital distance, reduced relative testicular weight, dissolved interstitial cells, fewer primary spermatocytes, decreased testosterone levels, and increased luteinizing hormone levels were detected in male offspring. In female offspring, vacuolization in follicular antrum, fewer follicles, increased 17β-estradiol levels, and increased luteinizing hormone levels in female offspring were found. Gene expression of scavenger receptor class B type I (SR-B1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), sterol regulatory element-binding protein-1c (SREBP-1c), and several steroidogenic enzymes was significantly decreased in male offspring following maternal exposure to BPAF, suggesting that the decreases in testosterone levels is a result of inhibited cholesterol uptake, cholesterol de novo synthesis, and steroidogenesis. In addition, inhibition of pathways of phagosome and cell adhesion molecules might be the underlying molecular mechanism involved in BPAF-induced reproductive disorders in male offspring. This study provides the scientific basis for a comprehensive assessment of the safety of BPAF.
Collapse
Affiliation(s)
- Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuxiang Liu
- Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Xiuying Liu
- Wudi County Hospital of Traditional Chinese Medicine, Binzhou, 251900, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
11
|
Alexander MV, Ayyar A, Gannon AW, Linares KE, Vincent SJ, Lowe S, To A, Blesson CS. The biological effects of bisphenol AF in reproduction and development: What do we know so far? Reprod Toxicol 2025; 132:108857. [PMID: 39954826 DOI: 10.1016/j.reprotox.2025.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Due to the established endocrine-disrupting effects of Bisphenol A (BPA), alternative bisphenols entered the market. Bisphenol AF (BPAF) is now commonly used in the industrial manufacturing of polycarbonate plastics and epoxy resins. However, BPAF's effects on reproduction and development have not been thoroughly reviewed. We investigated the relationship between BPAF exposure and reproduction and early development. We performed a literature review of studies on BPAF and reproductive physiology. Using keywords, we searched PubMed, Medline, Cochrane Library Database, Embase, and ClinicalTrials.gov for English language literature available until December 2024; we additionally identified and included studies from bibliographies. We included 125 articles, spanning in vitro and in vivo model organism and human studies. BPAF is a selective estrogen receptor modulator and an androgen receptor antagonist and is more potent than BPA. It is detected in urine, blood products, saliva, amniotic fluid, and breast milk. In vitro and in vivo studies demonstrate a spectrum of BPAF-induced endocrine and reproductive changes in both sexes. There is strong evidence of alterations in the hypothalamic-pituitary-gonadal axis and of altered steroidogenesis pathways. Multiple studies using zebrafish, Xenopus, chickens, and rodents, show BPAF's effects on embryogenesis, morphology, and sexual differentiation. Decreased serum testosterone and impaired spermatogenesis and oocyte viability have been demonstrated. The current literature shows clear disruptive effects of BPAF on reproductive health and embryonic development. Though further investigation is warranted, there is ample converging evidence to support limiting the use of BPAF and other similar bisphenols.
Collapse
Affiliation(s)
- Megan V Alexander
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archana Ayyar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra W Gannon
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Alvin To
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chellakkan S Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Moorchilot VS, Louis H, Haridas A, Praveena P, Arya SB, Nair AS, Aravind UK, Aravindakumar CT. Bisphenols in indoor dust: A comprehensive review of global distribution, exposure risks, transformation, and biomonitoring. CHEMOSPHERE 2025; 370:143798. [PMID: 39647794 DOI: 10.1016/j.chemosphere.2024.143798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Bisphenols (BPs) are pervasive environmental contaminants extensively found in indoor environments worldwide. Despite their ubiquitous presence and potential health risks, there remains a notable gap in the comprehensive reviews focusing on BPs in indoor dust. Existing literature often addresses specific aspects such as exposure pathways, transformation products, or biomonitoring techniques, but lacks a consolidated, in-depth review encompassing all these facets. This review provides a comprehensive overview of the global distribution of BPs, emphasizing their prevalence in diverse indoor settings ranging from households and workplaces to public areas. Variations in BP concentrations across these environments are explored, influenced by factors such as industrial activities, consumer product usage patterns, and geographical location. Exposure assessments highlight ingestion, inhalation, and dermal contact as primary pathways for BP exposure, with ingestion being particularly significant for vulnerable groups such as infants and young children. Studies consistently reveal higher concentrations of BPs in urban indoor dust compared to rural settings, reflecting the impact of urbanization and intensive consumer practices. Moreover, BPs from mobile sources like vehicles contribute significantly to overall human exposure, further complicating exposure assessments. The review also delves into the transformation of BPs within indoor environments, emphasizing the diverse roles of physical, chemical, and biological processes in generating various transformation products (TPs). These TPs can exhibit heightened toxicity compared to their parent compounds, necessitating deeper investigations into their environmental fate and potential health implications. Critical examination of biomonitoring techniques for BPs and their metabolites underscores the importance of non-invasive sampling methods, offering ethical advantages and practicality in assessing human exposure levels. The emerging use of bioindicators, encompassing plants, animals, and innovative approaches like spider webs, presents promising avenues for effectively monitoring environmental contamination.
Collapse
Affiliation(s)
- Vishnu S Moorchilot
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Helency Louis
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Aiswarya Haridas
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - P Praveena
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - S B Arya
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Arya S Nair
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, 682508, Kerala, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India
| | - C T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; International Centre for Polar Studies, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India.
| |
Collapse
|
13
|
Wu Y, Yang T, Wu Y, Liang Y, Zeng X, Yu Z, Peng P. Co-metabolic Biotransformation of Bisphenol AF by a Bisphenol A-Growing Bacterial Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22799-22807. [PMID: 39665776 DOI: 10.1021/acs.est.4c10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The fluorinated bisphenol A (2,2-bis[4-hydroxyphenyl]propane, BPA) substitute bisphenol AF (BPAF) could be more persistent and toxic than BPA, but little is known about its environmental fate. In this study, we established a co-metabolic BPAF-degrading bacterial enrichment culture with BPA as the growth substrate. BPAF degradation by the enrichment culture was dependent on BPA, and BPAF could be eliminated to below the detection limit with successive additions of BPA. BPAF was mainly degraded via phenolic ring hydroxylation and sequential ring cleavage, which are minor BPA transformation pathway. Conjugated BPAF products were also identified based on the characteristic CF3- fragment and were found to accumulate during BPAF degradation. Sphingopyxis was the key BPA and BPAF degrader in the aerobic enrichment cultures, which was the most abundant genera in only BPA-added and BPA and BPAF-added cultures and was proven to be able to degrade BPA and BPAF by isolation. The aerobic co-metabolic BPAF degrading community also contain non-BPA and BPAF degraders, such as Pandoraea, which may play a supporting role in the community.
Collapse
Affiliation(s)
- Yiding Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyue Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511457, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Chen Z, Zhou T, Chen X, Huan Z, Huang J, Lu S, Zeng M, Guo Y, Wang Z, Dong Z. Toxic effects of chronic exposure to BPAF and perturbation of gut microbiota homeostasis in marine medaka (Oryzias melastigma). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177745. [PMID: 39608261 DOI: 10.1016/j.scitotenv.2024.177745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Bisphenol AF (BPAF), a substitute for bisphenol A (BPA), exhibits potent endocrine-disrupting properties that pose a serious health hazard to organisms. This study employed marine medaka as a model, subjecting them to different concentrations of BPAF (0.61, 6.65, and 91.88 μg/L) from the embryonic stage for a period of 160 days. Findings showed that 91.88 μg/L BPAF reduced survival rates and altered sex ratios. Furthermore, exposure to BPAF at all concentrations led to a significant increase in body length and weight. Behavioral analysis revealed that BPAF exposure impaired the swimming ability of the medaka. Histological changes included disrupted ovarian development, reduced sperm count, liver inflammation, and intestinal damage. Gene expression analysis revealed impacts on nervous system (e.g., gap43, itr, elavl3), HPG axis (e.g., gthα, erα, 3βhsd), and liver genes (e.g., chgl, vtg2). Additionally, BPAF altered the diversity and richness of gut microbes in marine medaka, leading to significant changes in specific bacterial species and intestinal functions. In conclusion, long-term BPAF exposure induced neurotoxicity, reproductive toxicity, and impaired digestive and immune systems in marine medaka, with sex-specific effects. These results provide further evidence of the potential hazards of BPAF as an environmental pollutant.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tianyang Zhou
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhang Huan
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianxuan Huang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shulan Lu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Manwen Zeng
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
15
|
Cao Y, Sheriff TS. Ultrasound-assisted bisphenol AF degradation using in situ generated hydrogen peroxide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123267. [PMID: 39531761 DOI: 10.1016/j.jenvman.2024.123267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol AF (BPAF) is degraded through the ultrasound-assisted in situ generation and activation of hydrogen peroxide (H2O2) by the copper(II) catalysed oxidation of hydroxylamine (NH2OH) with dioxygen (O2). Compared to added H2O2, in situ generated H2O2 significantly improves the degradation of BPAF from 46.7% to 94.8% in ∼15 min. The reaction follows a pseudo-first-order kinetic model. This study examines the influence of solution pH, anions, humic acid, and different concentrations of the reactants on BPAF degradation. Mass spectrometry was used to identify the BPAF degradation products, and a degradation pathway is proposed. This work advances the understanding of in situ hydrogen peroxide generation and activation in advanced oxidation (Fenton-like) processes (AOPs).
Collapse
Affiliation(s)
- Ye Cao
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Tippu S Sheriff
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
16
|
Fabrello J, Tarussio E, Romanello A, Schiavon A, Damoli VR, Luisi F, Roverso M, Bogialli S, Matozzo V. A multibiomarker approach to assess the effects of a BPA analogue-contaminated diet in the crab Carcinus aestuarii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107084. [PMID: 39276604 DOI: 10.1016/j.aquatox.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Bisphenol A analogues are largely used plasticisers that are going to replace bisphenol A in many sectors. Due to this replacement, their discharge and presence in the marine coastal areas are increasing, with unknown consequences for organisms and the trophic chain. This study assessed the effects of three different bisphenols (BPAF, BPF and BPS) - alone or as a mixture - provided via food (exposed clams) to the crab Carcinus aestuarii. First, clams were exposed for two weeks to 300 ng/L of each of the three bisphenols and their mixture (100 ng/L of each) to allow the bioaccumulation of the contaminants in bivalves. Then, crabs were fed for two weeks with BPA analogue-exposed clams, while unexposed clams were used to feed control crabs. After 7 and 14 days, haemolymph, gills and hepatopancreas were collected from crabs to measure a battery of biomarkers indicative of cytotoxicity, oxidative stress and damage, neurotoxicity, physiological performance (respiration and excretion rate) and electron transport system activity. Lastly, bioaccumulation of BPA analogues was assessed by UHPLC-HRMS in crabs. Our findings revealed that BPA analogue-exposed clams were able to alter total haemocyte count, haemocyte size and their proliferation. The activity of immune enzymes, such as phosphatases and phenoloxidase was altered. Moreover, we observed an impairment of antioxidant and detoxifying enzymes like SOD, CAT, GST and GPX activities. Alterations of metabolism-involved enzymes and physiological parameters and increased oxidative damage to macromolecules like proteins, lipids, and DNA were also observed in crabs. Among BPA analogues, only bioaccumulation of BPAF, which has the highest Logkow value among the tested bisphenols, was evidenced in crabs. Overall, the obtained results indicated that crabs, under the tested experimental conditions at least, underwent alterations in cellular, biochemical and physiological responses following a diet of bisphenol-exposed clams, suggesting a potential ecotoxicological risk in the marine food chain.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy.
| | - Elisabetta Tarussio
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Alessia Romanello
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Anna Schiavon
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | | | - Francesco Luisi
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
17
|
Champmartin C, Seiwert C, Aubertin M, Joubert E, Marquet F, Chedik L, Cosnier F. Percutaneous absorption of two bisphenol a analogues, BPAF and TGSA: Novel In vitro data from human skin. CHEMOSPHERE 2024; 367:143564. [PMID: 39424152 DOI: 10.1016/j.chemosphere.2024.143564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Bisphenol AF (BPAF) and TGSA are analogues of Bisphenol A (BPA). BPAF is used in polymer synthesis, while TGSA is applied in thermal papers. The EU classifies BPAF as toxic to reproduction and TGSA as a skin sensitizer. However, TGSA's other health effects remain unclear. BPAF contamination has been noted among electronic waste workers, and TGSA exposure is documented in various professions. Despite the significance of skin contact, data on skin permeation rates for BPAF and TGSA are limited. This study aimed to generate percutaneous absorption data for BPAF and TGSA following OECD guidelines. [14C]-labeled BPAF or TGSA was applied to human skin samples in vitro using Franz diffusion cells for 20 and 40 h, respectively. Key parameters such as steady-state flux, lag time, and skin permeability coefficient (Kp) were calculated. Furthermore, the distribution of the dose across different compartments, particularly within the skin, was evaluated at the conclusion of the experiment. Sequential strippings and epidermis-dermis separation were conducted for BPAF to predict the potential absorption of the remaining dose present within the skin. The permeability coefficients for BPAF and TGSA were found to be 1.9 E-03 and 1.6 E-03 cm/h, with 22% and 23% of the applied doses absorbed, respectively. Both chemicals are classified as "fast" penetrants based on their Kp values. These findings suggest that BPAF and TGSA are absorbed through the skin, highlighting potential occupational risks through dermal exposure. The new percutaneous absorption data will enhance the assessment of the occupational risks.
Collapse
Affiliation(s)
- Catherine Champmartin
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Claire Seiwert
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Matthieu Aubertin
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Emmy Joubert
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Fabrice Marquet
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Lisa Chedik
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Frédéric Cosnier
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
18
|
Zhou Y, Feng F, Sun J, Shan Y, Su W, Shang W, Li Y. Distribution and source analysis of soil toxic organic compounds of coal-electricity production base in arid and semi-arid region of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135317. [PMID: 39059298 DOI: 10.1016/j.jhazmat.2024.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The presence and distribution of toxic organic compounds in soil pose significant challenges. Whether their distributional characteristics are more complex, especially in arid and semi-arid regions with harsh climatic conditions? This study analyzed the composition, classification, spatial distribution, and sources of 123 toxic organic compounds in 56 soil samples of coal-electricity production base. Those compounds were classified into 11 categories, mainly pesticides (41 compounds), organic synthesis intermediates (31 compounds), and drugs (23 compounds). Seventeen of those compounds were detected over the rate of 30 %, with 13 of them being under the Toxic Substances Control Act (TSCA) inventory. The primary sources of toxic organic compounds were determined using Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), including the degradation of pesticide residues (22.03 %), emissions of plastic pellets (16.64 %), industrial waste emissions (12.80 %), emissions from livestock (12.74 %), plastic films (11.22 %) and coal-to-liquid projects (10.78 %). This research underscores the widespread presence of toxic organic compounds in soil, highlighting their origins and distribution patterns, which are essential for developing targeted environmental management strategies in arid and semi-arid regions.
Collapse
Affiliation(s)
- Yong Zhou
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Feisheng Feng
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Jie Sun
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| | - Wanli Su
- CHN ENERGY Investment Group Co Ltd, Yinchuan City, Ningxia Province, China.
| | - Wenqin Shang
- School of Physics and Optoelectronic Engineering, Anhui University, China.
| | - Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| |
Collapse
|
19
|
Moon HG, Bae S, Lee HJ, Chae Y, Kang W, Min J, Kim HM, Seo JS, Heo JD, Hyun M, Kim S. Assessment of potential environmental and human risks for Bisphenol AF contaminant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116598. [PMID: 38896897 DOI: 10.1016/j.ecoenv.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Bisphenol AF (BPAF) is found in high concentrations in aquatic environments due to the increased use of thermal paper and food packaging. However, there have been relatively few toxicological studies and potential risk assessments of BPAF. In this study, the risk quotient (RQ) and hazard quotient (HQ) of BPAF were derived to present the safety standards for environmental risk management and protection in lakes, rivers, bays, and Italian regions. We applied the species sensitivity distribution (SSD) method based on the previous ecotoxicological data and the results of supplementary toxicity tests on BPAF. From the SSD curves, the hazardous concentration for 5 % of the species (HC5) values for the acute and chronic toxicity data were 464.75 µg/L and 3.59 µg/L, respectively, and the acute- and chronic-based predicted no-effect concentration were derived as 154.92 µg/L and 1.20 µg/L, respectively. The acute-based RQ (RQA)values of BPAF in all regions were negligible (RQ < 0.1). The chronic-based RQ (RQC) in the Xitang River (XR) and the Central Italy (CI) showed a considerably high ecological risk (12.77 and 1.29) and the Hangzhou Bay (0.21), the South and North Italy (0.79 and 0.27), and the Tamagawa River (0.13) had a medium ecological risk (0.1 < RQ < 1.0). However, the HQ values based on the tolerable daily intake for BPAF over all age groups in these regions was < 0.1, indicating the low health risk. Nonetheless, the result of this study indicates that BPAF contamination is serious in XR and CI, and their use and emissions require continuous monitoring.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Seonhee Bae
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Ho Jeong Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Yooeun Chae
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Wonman Kang
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Jungeun Min
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Hyung-Min Kim
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Jong-Su Seo
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Moonjung Hyun
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Sooyeon Kim
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| |
Collapse
|
20
|
Liao M, Gan Z, Sun W, Su S, Li Z, Zhang Y. Spatial distribution, source identification, and potential risks of 14 bisphenol analogues in soil under different land uses in the megacity of Chengdu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124064. [PMID: 38701965 DOI: 10.1016/j.envpol.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
This study explored the levels, distribution, potential sources, ecological risks and estrogenic activities of 14 bisphenol analogues (BPs) in soil under eight land-use types in the megacity of Chengdu, China. Eleven BPs were detected in the soil samples and the total concentrations ranged from 32.3 to 570 ng/g d.w. Levels of bisphenol BP (BPBP) in the soil (up to 208 ng/g d.w.) only second to the most dominant compound bisphenol A (BPA) were found. Relatively higher Σ14BP accumulation in the soil was observed in the commercial and residential areas (median: 136 ng/g d.w. and 131 ng/g d.w.) compared with agricultural area (median: 67.5 ng/g d.w.). Source identification indicated the role of atmospheric particulate deposition and consecutive anthropogenic activities in BP emission. The ecotoxicity assessment implied that BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol PH (BPPH) might pose low to medium risk to the ecosystem due to their extensive use and biological effects. The calculated 17β-estradiol equivalents of BPs were in the range of 0.501-7.74 pg E2/g d.w, and the estrogenic activities were inferior to those contributed by natural estrogens in the soil.
Collapse
Affiliation(s)
- Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yunqian Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, Beijing, China
| |
Collapse
|
21
|
Lai K, Zhang L, Xu J. Evaluation of the chronic toxicity of bisphenol A and bisphenol AF to sea cucumber Apostichopus japonicus after long-term single and combined exposure at environmental relevant concentration. ENVIRONMENTAL RESEARCH 2024; 251:118748. [PMID: 38522740 DOI: 10.1016/j.envres.2024.118748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
Bisphenols are emerging endocrine disrupting pollutant, and several studies have reported that they are already ubiquitous in various environmental matrices and intend to deposit in sediment. The primary sources of bisphenols are river and sewage discharge. Sea cucumber (Apostichopus japonicus), a typical deposit feeder, is one of the most important commercial marine species in Aisa. However, the effects of the bisphenol A (BPA) and its analogues bisphenol AF (BPAF) on sea cucumber was unclear. In this study, we carried out field survey in major sea cucumber farming areas in northern China, with the aim of determining which bisphenol analogue is the major bisphenol contamination in this aquaculture area. The results showed that the presence of BPAF was detected in four sampling sites (Dalian, Tangshan, Laizhou, and Longpan). The mean level of BPAF in Laizhou sediment samples was the highest which reached to 9.007 ± 4.702 μ g/kg. Among the seawater samples, the BPAF only have been detected in the samples collected at Longpan. (0.011 ± 0.003 μ g/L). Furthermore, we conducted an experiment to evaluate the single and combined toxicity of BPA and BPAF on sea cucumbers. The concentrations were informed by the findings based on the results of field research. (0.1, 1.0, and 10 μ g/L). After exposure, the body weight gain, and specific growth rate showed no significant changes (P > 0.05). We observed the histological alterations in respiratory tree of treated sea cucumbers including the fusion and detachment of lining epithelial tissue, and increase of lumen space. However, the catalase (CAT), malondialdehyde (MDA), and glutathione (GSH) activity was not significantly changed (P > 0.05). We evaluated the effects of BPA and BPAF through calculating the integrated biomarker response index (IBR), and the results indicated that the toxicity of combined treatment was higher than single treatment. Additionally, BPAF exposure to A. japonicus was more toxic than BPA.
Collapse
Affiliation(s)
- Kaiqi Lai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jialei Xu
- Shandong Tonhe Ocean Technology Co., Ltd., Dongying, 257200, China
| |
Collapse
|
22
|
Xu G, Huang M, Hu J, Liu S, Yang M. Bisphenol A and its structural analogues exhibit differential potential to induce mitochondrial dysfunction and apoptosis in human granulosa cells. Food Chem Toxicol 2024; 188:114713. [PMID: 38702036 DOI: 10.1016/j.fct.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.
Collapse
Affiliation(s)
- Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Hu
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Gynaecology), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
23
|
Chen Z, Zhang G, Xie M, Zheng Z, Chen Y, Zhang N, Guo Y, Wang Z, Dong Z. Toxic effects of environmental concentration Bisphenol AF exposure on the survival, growth and reproduction of adult male Oryzias curvinotus. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109903. [PMID: 38508354 DOI: 10.1016/j.cbpc.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Bisphenol AF (BPAF) is a novel environmental endocrine disruptor, and is widely detected in the aquatic environment, which is a potential threat to the health of fish. In this study, male Oryzias curvinotus were exposed to environmental concentrations (0.93 and 9.33 μg/L) of BPAF for 21 days. The effects of BPAF on survival, growth, reproduction, liver and testis histology, and gene transcriptional profiles of O. curvinotus were investigated. The results showed that the survival rate of male O. curvinotus slight decrease with increasing BPAF concentration, and there was no significant effect on body length, body weight, and K-factor. BPAF (9.33 μg/L) caused significant changes in testicular structure and reduced spermatid count in O. curvinotus. Changes in transcript levels of some antioxidant-related genes in gills and liver following BPAF exposure, imply an effect of BPAF on the immune system. After BPAF exposure, chgs and vtgs were up-regulated, validating the estrogenic effect of BPAF. In the hypothalamic - pituitary - gonadal axis (HPG) results, erα, erγ and cyp19a1b were all up-regulated in the brain, and the 0.93 μg/L BPAF group was more up-regulated than the 9.33 μg/L BPAF group. In testis, BPAF significantly up-regulated the mRNA expression level of cyp17a1 and cyp11b, while significantly down-regulated mRNA expression level of cyp11a, and cyp19a1 was significantly down-regulated only in the 0.93 μg/L BPAF group. In conclusion, environmental levels of BPAF have adverse effects on the survival and reproduction of O. curvinotus, and the potential toxic effects of environmental levels of BPAF cannot be ignored.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guiming Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minghua Xie
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zikang Zheng
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
24
|
Ling X, Lu G, Zhang L, Zhang J, Fu H, Yan Z. Cotransport of nanoplastics and plastic additive bisphenol AF (BPAF) in unsaturated hyporheic zone: Coupling effects of surface functionalization and protein corona. WATER RESEARCH 2024; 256:121574. [PMID: 38593606 DOI: 10.1016/j.watres.2024.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 μm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Heyun Fu
- School of the Environment, Nanjing University, Nanjing 210046, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
25
|
Zhang S, Fan Y, Qian X, Feng S, Wu Z, Liu Q, Xu W, Wang G. Occurrence, source apportionment and ecological risk of bisphenol analogues in river sediments in areas with different land use patterns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121041. [PMID: 38703651 DOI: 10.1016/j.jenvman.2024.121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Bisphenol analogues (BPs) have gained increasing attention in recent years due to their ubiquitousness and potential endocrine disrupting properties in environments. However, little information is available on their spatiotemporal distribution, source apportionment and ecological risk in river sediments, especially the case in river basins with a high population density and those typical regions with agricultural-urban gradient, where land use patterns and intensity of human activity are varying. In this study, field investigations of BPs in the sediment of the entire Qinhuai River Basin, a typical agricultural-suburban agricultural-urban gradient area, were conducted before and after the flood period. Thirty-two sites were sampled for six types of BPs, resulted in no significant difference in the concentration of ΣBPs between the two periods, with ΣBPs ranging from 3.92 to 151 ng/g and 2.16-59.0 ng/g, respectively. Bisphenol A (BPA) was the main contributor. Whereas a multivariate analysis of variance (MANOVA) suggested that the composition structure of BPs had been influenced by water periods. The land use patterns had an impact on the distribution of ΣBPs in river sediments, which was more significant in after the flood period, with ΣBPs in urban rivers was 1.85 times, 3.44 times, and 3.08 times higher than the suburban rivers, agricultural rivers, and reservoirs, respectively. Yet land use types did not significantly alter the composition structure of BPs. The correlation analysis between BPs and the physicochemical properties of sediments showed a significant positive correlation between BPA and total organic carbon (TOC). The positive matrix factorization model (PMF) suggested that BPs in sediments of the basin might be influenced by industrial coatings, textiles, electronics and biopharmaceuticals, as well as urban wastewater or solid waste generated from daily life. The ecological risk assessment posed by BPA, based on the risk quotient, indicated that the ecological risk of BPA in sediments was low for three indicator benthic organisms: crustaceans, worms, and mollusks. However, the risk of BPA in river sediments varied among different land use patterns, with the risk ranking as follows: reservoirs < agricultural rivers < suburban rivers < urban rivers.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Shaoyan Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Zeqiang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qi Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wanlu Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Guoqiang Wang
- Innovation Research Center of Satellite Application, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
26
|
Li P, Gan Z, Li Z, Wang B, Sun W, Su S, Ding S. Occurrence and exposure evaluation of bisphenol A and its analogues in indoor and outdoor dust from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170833. [PMID: 38367725 DOI: 10.1016/j.scitotenv.2024.170833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Bisphenol A (BPA) and its analogues have been proved to be harmful to human reproduction, endocrine and nervous system. But information on the occurrence and human exposure to bisphenol compounds (BPs) in dust (especially outdoor dust) is limited. In this study, 14 BPs were determined in 174 indoor dust samples and 202 outdoor dust samples from Chinese mainland, Hong Kong, Macau and Taiwan. BPA, BPS, BPAF, BPF, BPAP and BPE were widely detected with detection frequencies of 98.94 %, 98.67 %, 97.87 %, 95.21 %, 87.23 % and 71.54 %, respectively. The median total concentrations of the most detected six BPs in the dust were in the order of south urban indoors (556 ng/g) > south rural outdoors (438 ng/g) > south urban outdoors (432 ng/g) > south rural outdoors (418 ng/g) > north rural indoors (412 ng/g) > north urban outdoors (341 ng/g) > north urban indoors (311 ng/g) > north rural outdoors (246 ng/g). The amounts of garbage incineration, plastic output and recycled paper may have influence on the BPs levels. Some BPs (BPAF, BPAP, BPF and BPS) in the indoor and outdoor samples were significantly positively correlated. In addition, the BPs in the indoor dust from different indoor micro environments in Chengdu were investigated. BPA (median concentration: 571.2 ng/g) and BPF (median concentration: 114.3 ng/g) were the two primary BPs, accounting for 78.1 % of the median total concentrations of the investigated BPs. High concentration of BPA appeared in printing workshops and offices, while high concentration of BPAP, BPC, BPE and BPF appeared in electronic repair shops. Occupational exposure to BPs deserves attention in the future. ΣBPs exposure risk for children and adults in the urban areas of southern China was the highest. To our knowledge, this is the first report in China to study BPs in outdoor dust sample.
Collapse
Affiliation(s)
- Peixuan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bin Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - ShiJun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Jeseta M, Kalina J, Franzova K, Fialkova S, Hosek J, Mekinova L, Crha I, Kempisty B, Ventruba P, Navratilova J. Cross sectional study on exposure to BPA and its analogues and semen parameters in Czech men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123445. [PMID: 38325504 DOI: 10.1016/j.envpol.2024.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Exposure to bisphenols has been found to have adverse effects on male reproductive function in animals. Human exposure to bisphenols is widespread. Bisphenol A (BPA) and its analogues, including bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) are utilized in various consumer products such as food contact materials and dental resins. The effects of these compounds on male fertility and spermatogenesis are unclear and findings from human studies are inconsistent. In this cross-sectional study, we evaluated the influence of BPA, BPS, BPF, BPAF (BPs) measured in semen on number of spermatozoa, total motility, progressive motility, morphology, and DNA fragmentation. We also examined the association of bisphenols (BPs) exposure with patients' occupation. A total of 358 patients aged 17-62 years with BMI 18-42 were included in the study from 2019 to 2021. BPs were extracted using solvent extraction followed by preconcentration step and determined by high-performance liquid chromatography and tandem mass spectrometry (LC/MSMS). Bisphenols were detected in 343 from 349 analysed samples (98.3% of all the samples). In 6 samples, the concentration of all BPs was under the limit of detection and in 20 samples under the limit of quantification. We did not find a statistically significant relationship between occupation and BPs. However, we observed significant correlations between the concentration of BPA and a lower motility and normal morphology. For BPS, a significant correlation with a lower ejaculate volume and a lower total sperm count was found. BPF and BPAF were detected only in 14.3% and 23.9% of samples, respectively. For BPF and BPAF, no significant correlations with spermiogram parameters were observed. Our results show that BPs are widespread in the male population (more than 90% of analysed samples), independently of an occupation and in case of BPA and BPS having a negative impact on spermiogram parameters.
Collapse
Affiliation(s)
- Michal Jeseta
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Czech Republic.
| | - Jiri Kalina
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Franzova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sandra Fialkova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hosek
- Veterinary Research Institute, Hudcova 70, Brno, Czech Republic; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Lenka Mekinova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Crha
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Wroclaw Medical University, Poland; Physiology Graduate Faculty, North Carolina State University, Raleigh NC, USA
| | - Pavel Ventruba
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Navratilova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
28
|
Zhu X, Cao L, Liu Y, Tang X, Miao Y, Zhang J, Zhang L, Jia Z, Chen J. Genotoxicity of bisphenol AF in rats: Detrimental to male reproductive system and probable stronger micronucleus induction potency than BPA. J Appl Toxicol 2024; 44:428-444. [PMID: 37837293 DOI: 10.1002/jat.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Bisphenol AF (BPAF), as one of structural analogs of BPA, has been increasingly used in recent years. However, limited studies have suggested its adverse effects similar to or higher than BPA. In order to explore the general toxicity and genotoxicity of subacute exposure to BPAF, the novel 28-day multi-endpoint (Pig-a assay + micronucleus [MN] test + comet assay) genotoxicity evaluation platform was applied. Male rats were randomly distributed into seven main experimental groups and four satellite groups. The main experimental groups included BPAF-treated groups (0.5, 5, and 50 μg/kg·bw/d), BPA group (10 μg/kg·bw/d), two solvent control groups (PBS and 0.1% ethanol/99.9% oil), and one positive control group (N-ethyl-N-nitrosourea, 40 mg/kg bw). The satellite groups included BPAF high-dose recovery group (BPAF-HR), oil recovery group (oil-R), ENU recovery group (ENU-R), and PBS recovery group (PBS-R). All groups received the agents orally via gavage for 28 consecutive days, and satellite groups were given a recovery period of 35 days. Among all histopathologically examined organs, testis and epididymis damage was noticed, which was further manifested as blood-testis barrier (BTB) junction protein (Connexin 43 and Occludin) destruction. BPAF can induce micronucleus production and DNA damage, but the genotoxic injury can be repaired after the recovery period. The expression of DNA repair gene OGG1 was downregulated by BPAF. To summarize, under the design of this experiment, male reproductive toxicity of BPAF was noticed, which is similar to that of BPA, but its ability to induce micronucleus production may be stronger than that of BPA.
Collapse
Affiliation(s)
- Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Second People's Hospital of Yibin City, Yibin, China
| | - Li Cao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yufei Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhenchao Jia
- Department of Prevention and Health Care, Sichuan University Hospital of Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
29
|
Xu C, Xu C, Zhou Q, Shen C, Peng L, Liu S, Yin S, Li F. Spatial distribution, isomer signature and air-soil exchange of legacy and emerging poly- and perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123222. [PMID: 38145639 DOI: 10.1016/j.envpol.2023.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Widespread occurrences of various poly- and perfluoroalkyl substances (PFAS) in terrestrial environment calls for the growing interest in their transport behaviors. However, limited studies detected PFAS with structural diversity in tree barks, which reflect the long-term contamination in atmosphere and play a vital role in air-soil exchange behaviors. In this study, 26 PFAS congeners and typical branched isomers were investigated in surface soils and tree barks at 28 sites along the Taihu Lake, Taipu River, and Huangpu River. Concentrations of total PFAS in soils and tree barks were 0.991-29.4 and 7.99-188 ng/g dw, with PFPeA and PFDoA were the largest contributors in the two matrices. The highest PFAS levels were found in the Taihu Lake watershed, where textile manufacturing and metal plating activities highly prosper. With regard to the congener and isomer signatures, short-chain homologs dominated in soils (65.5%), whereas long-chain PFAS showed a major proportion in barks (41.9%). The composition of linear isomers of PFOS, PFOA and PFHxS implied that precursor degradation might be an important source of PFAS in addition to the 3M electrochemical fluorination (ECF). Additionally, the distance from the emission source, total organic carbon (TOC), logKOA and logKOW were considered potential influencing factors in PFAS distributions. Based on the multi-media fugacity model, about 71% of the fugacity fraction (ffs) values of the PFAS were below 0.3, indicating the dominant deposition from the atmosphere to the soil. The average fluxes of air-soil exchange for PFAS were -0.700 ± 11.0 ng/(m2·h). Notably, the estimated daily exposure to PFAS ranged from 9.57 × 10-2 to 8.59 × 10-1 ng/kg·bw/day for children and 3.31 × 10-2 to 3.09 × 10-1 ng/kg·bw/day for adults, suggesting low risks from outdoor inhalation and dermal uptake. Overall, results from distribution with structural diversity, air-soil exchange and preliminary risk assessment. This study provided in-depth insight of PFAS in multi-medium environment and bridged gaps between field data and policy-making for pollution control.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Chenman Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Quan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Leni Peng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
30
|
Gong Y, Liu P. A Novel Magnetic β-Cyclodextrin-Modified Graphene Oxide and Chitosan Composite as an Adsorbent for Trace Extraction of Four Bisphenol Pollutants from Environmental Water Samples and Food Samples. Molecules 2024; 29:867. [PMID: 38398619 PMCID: PMC10893499 DOI: 10.3390/molecules29040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a novel functionalized magnetic composite (MNCGC) for magnetic solid-phase extraction of bisphenols from environmental and food samples was developed, featuring a multistep synthesis with Fe3O4, chitosan, graphene oxide, and β-cyclodextrin, crosslinked by glutaraldehyde. Characterization confirmed its advantageous morphology, intact crystal structure of the magnetic core, specific surface area, and magnetization, enabling efficient adsorption and separation via an external magnetic field. The optimized MSPE-HPLC-FLD method demonstrated excellent sensitivity, linearity, and recovery rates exceeding 80% for bisphenol pollutants, validating the method's effectiveness in enriching and detecting trace levels of bisphenols in complex matrices. This approach offers a new avenue for analyzing multiple bisphenol residues, with successful application to environmental water and food samples, showing high recovery rates.
Collapse
Affiliation(s)
- Yichao Gong
- School of Eco-Environment, Hebei University, Baoding 071000, China
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054001, China
| | - Pengyan Liu
- School of Eco-Environment, Hebei University, Baoding 071000, China
| |
Collapse
|
31
|
Zheng Q, Xiao J, Zhang D, Li X, Xu J, Ma J, Xiao Q, Fu J, Guo Z, Zhu Y, Ji J, Lu S. Bisphenol analogues in infant foods in south China and implications for infant exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168509. [PMID: 37977386 DOI: 10.1016/j.scitotenv.2023.168509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Bisphenol analogues (BPs) are commonly used as modifiers, stabilizers and photo-initiators in polymer materials, including those used in food packaging. Compared to adults, infants are more sensitive to chemicals because their bodies are growing and not fully developed. Therefore, it is essential to determine the concentrations of BPs in common infant foods to assess infant exposure and prevent hazards. We collected 54 infant formula (IF) samples, 90 complementary food (CMF) samples and 62 breastmilk samples from breastfeeding women in south China. Tandem mass spectrometry coupled to liquid chromatography separation (HPLC-MS/MS) was used to detect the concentrations of 8 BPs in the three types of food samples. The estimated daily intake (EDI) of infants was also assessed. The results showed that the detection frequency of bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF) and bisphenol AP (BPAP) were relatively high among the different infant foods. BPF, BPP and BPS were predominant among the detected BPs. The lowest 95th EDI for BPA was 0.67 ng kg-bw-1 day-1, exceeding the tolerable daily intake (TDI) limit for BPA set by the European Food Safety Authority in 2023. Thus, BP exposure is a significant risk to infants. More attention should be paid to the presence of BPs in daily use products and food, and intake limits should be set for BPs other than BPA.
Collapse
Affiliation(s)
- Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jinqiu Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
32
|
Mu X, Liu Z, Zhao X, Yuan L, Li Y, Wang C, Xiao G, Mu J, Qiu J, Qian Y. Bisphenol A Analogues Induce Neuroendocrine Disruption via Gut-Brain Regulation in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1022-1035. [PMID: 38165294 DOI: 10.1021/acs.est.3c05282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
There is epidemiological evidence in humans that exposure to endocrine-disrupting chemicals such as bisphenol A (BPA) is tied to abnormal neuroendocrine function with both behavioral and intestinal symptoms. However, the underlying mechanism of this effect, particularly the role of gut-brain regulation, is poorly understood. We exposed zebrafish embryos to a concentration series (including environmentally relevant levels) of BPA and its analogues. The analogue bisphenol G (BPG) yielded the strongest behavioral impact on zebrafish larvae and inhibited the largest number of neurotransmitters, with an effective concentration of 0.5 μg/L, followed by bisphenol AF (BPAF) and BPA. In neurod1:EGFP transgenic zebrafish, BPG and BPAF inhibited the distribution of enteroendocrine cells (EECs), which is associated with decreased neurotransmitters level and behavioral activity. Immune staining of ace-α-tubulin suggested that BPAF inhibited vagal neural development at 50 and 500 μg/L. Single-cell RNA-Seq demonstrated that BPG disrupted the neuroendocrine system by inducing inflammatory responses in intestinal epithelial cells via TNFα-trypsin-EEC signaling. BPAF exposure activated apoptosis and inhibited neural developmental pathways in vagal neurons, consistent with immunofluorescence imaging studies. These findings show that both BPG and BPAF affect the neuroendocrine system through the gut-brain axis but by different mechanisms, revealing new insights into the modes of bisphenol-mediated neuroendocrine disruption.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 214081, China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 214081, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100083, China
| | - Guohua Xiao
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066000, China
- Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066004, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066000, China
- Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066004, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
33
|
Liu M, Zhou X, Wang XJ, Wang YS, Yang SJ, Ding ZM, Zhang SX, Zhang LD, Duan ZQ, Liang AX, Huo LJ. Curcumin alleviates bisphenol AF-induced oxidative stress and apoptosis in caprine endometrial epithelial cells via the Nrf2 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2904-2914. [PMID: 37555465 DOI: 10.1002/tox.23925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/01/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Bisphenol AF (BPAF), a BPA-substitute, has been widely used in industrial compounds throughout the world. Several studies have shown that BPAF has endocrine interference and reproductive toxicity. However, the toxic effects of BPAF on pregnancy and placenta of goats are still unclear. Therefore, the objective of this study was to reveal the toxic effect of BPAF by using an in vitro culture model of caprine endometrial epithelial cells (EECs) and further attempted to alleviate the toxicity by curcumin pretreatment. The results showed that BPAF induces significant effects on EECs, including decreased cell viability and mitochondrial membrane potential (△ψm), elevating intracellular reactive oxygen species (ROS), promoting cell apoptosis through upregulating the expression of Bax, Cytochrome c, and downregulating the expression of Bcl-2. Meanwhile, BPAF induced dysregulation of oxidative stress by increasing the levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) but decreasing the activities of superoxide dismutase (SOD). However, curcumin pretreatment could significantly attenuate BPAF-induced toxic effects in EECs. Further study revealed that BPAF treatment could activate mitogen-activated protein kinase (MAPK) pathway and nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, but curcumin pretreatment significantly inhibited the activation of MAPK signal pathway and Nrf2 expression induced by BPAF. Overall, this study indicated that curcumin could prevent BPAF-induced EECs cytotoxicity, which provides a potential therapeutic strategy for female infertility associated with BPAF exposure.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiao-Jie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Dan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
34
|
Mu X, Liu Z, Zhao X, Chen L, Jia Q, Wang C, Li T, Guo Y, Qiu J, Qian Y. Bisphenol analogues induced social defects and neural impairment in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166307. [PMID: 37586522 DOI: 10.1016/j.scitotenv.2023.166307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
There is evidence in humans that endocrine disrupting chemicals exposure, such as bisphenol A (BPA), is tied to social behavior impacts when evaluated in early life stage. However, the potential social impact of BPA alternatives and its association with central nervous system (CNS) is poorly understood. Here, we performed behavioral test for zebrafish that are continuously exposed to environmental relevant concentrations (5 and 500 ng/L) of BPA, BPF, and BPAF since embryonic stage. Surprisingly, significant social behavior defects, including increased social distance and decreased contact time, were identified in zebrafish treated by 500 ng/L BPAF and BPA. These behavioral changes were accompanied by apparent histological injury, microglia activation, enhanced apoptosis and neuron loss in brain. The gut-brain transcriptional profile showed that genes involved in neuronal development pathways were up-regulated in all bisphenol analogs treatments, indicating a protective phenotype of CNS; however, these pathways were inhibited in gut. Besides, a variety of key regulators in the gut-brain regulation were identified based on protein interaction prediction, such as rac1-limk1, insrb1 and fosab. These findings implicated that the existence of bisphenol analogues in water would influence the social life of fish, and revealed a potential role of gut-brain transcriptional alteration in mediating this effect.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qi Jia
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, China
| | - Yuanming Guo
- Zhejiang Marine Fisheries Research Institute, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
35
|
Yang X, Zhou Q, Wang Q, Wu J, Zhu H, Zhang A, Sun J. Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122552. [PMID: 37714399 DOI: 10.1016/j.envpol.2023.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
Collapse
Affiliation(s)
- Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qinghua Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qianwen Wang
- Research and Teaching Center of Agriculture, Zhejiang Open University, Hangzhou, 310012, China
| | - Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haofeng Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
36
|
Huang S, Wang K, Huang D, Su X, Yang R, Shao C, Jiang J, Wu J. Bisphenol AF Induces Prostatic Dorsal Lobe Hyperplasia in Rats through Activation of the NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:16221. [PMID: 38003411 PMCID: PMC10671145 DOI: 10.3390/ijms242216221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bisphenol AF (BPAF) represents a common environmental estrogenic compound renowned for its capacity to induce endocrine disruptions. Notably, BPAF exhibits an enhanced binding affinity to estrogen receptors, which may have more potent estrogenic activity compared with its precursor bisphenol A (BPA). Notwithstanding, the existing studies on BPAF-induced prostate toxicity remain limited, with related toxicological research residing in the preliminary stage. Our previous studies have confirmed the role of BPAF in the induction of ventral prostatic hyperplasia, but its role in the dorsal lobe is not clear. In this study, BPAF (10, 90 μg/kg) and the inhibitor of nuclear transcription factor-κB (NF-κB), pyrrolidinedithiocarbamate (PDTC, 100 mg/kg), were administered intragastrically in rats for four weeks. Through comprehensive anatomical and pathological observations, as well as the assessment of PCNA over-expression, we asserted that BPAF at lower doses may foster dorsal prostatic hyperplasia in rats. The results of IHC and ELISA indicated that BPAF induced hyperplastic responses in the dorsal lobe of the prostate by interfering with a series of biomarkers in NF-κB signaling pathways, containing NF-κB p65, COX-2, TNF-α, and EGFR. These findings confirm the toxic effect of BPAF on prostate health and emphasize the potential corresponding mechanisms.
Collapse
Affiliation(s)
- Sisi Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Kaiyue Wang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Dongyan Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Xin Su
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Rongfu Yang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Congcong Shao
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Juan Jiang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Jianhui Wu
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| |
Collapse
|
37
|
Feng Y, Wu J, Lei R, Zhang Y, Qiao M, Zhou J, Xu Z, Li Z, Sun H, Peng X, Mei S. N-Acetyl-L-Cysteine Ameliorates BPAF-Induced Porcine Sertoli Cell Apoptosis and Cell Cycle Arrest via Inhibiting the ROS Level. TOXICS 2023; 11:923. [PMID: 37999575 PMCID: PMC10675769 DOI: 10.3390/toxics11110923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol AF (BPAF) is a newly identified contaminant in the environment that has been linked to impairment of the male reproductive system. However, only a few studies have systematically studied the mechanisms underlying BPAF-induced toxicity in testicular Sertoli cells. Hence, this study primarily aims to explore the toxic mechanism of BPAF on the porcine Sertoli cell line (ST cells). The effects of various concentrations of BPAF on ST cell viability and cytotoxicity were evaluated using the Counting Kit-8 (CCK-8) assay. The results demonstrated that exposure to a high concentration of BPAF (above 50 μM) significantly inhibited ST cell viability due to marked cytotoxicity. Flow cytometry analysis further confirmed that BPAF facilitated apoptosis and induced cell cycle arrest in the G2/M phase. Moreover, BPAF exposure upregulated the expression of pro-apoptotic markers BAD and BAX while downregulating anti-apoptotic and cell proliferation markers BCL-2, PCNA, CDK2, and CDK4. BPAF exposure also resulted in elevated intracellular levels of reactive oxygen species (ROS) and malondialdehyde (MDA), alongside reduced activities of the antioxidants glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Furthermore, the ROS scavenger N-acetyl-L-cysteine (NAC) effectively blocked BPAF-triggered apoptosis and cell cycle arrest. Therefore, this study suggests that BPAF induces apoptosis and cell cycle arrest in ST cells by activating ROS-mediated pathways. These findings enhance our understanding of BPAF's role in male reproductive toxicity and provide a foundation for future toxicological assessments.
Collapse
Affiliation(s)
- Yue Feng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Runyu Lei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.F.); (J.W.); (R.L.); (Y.Z.); (M.Q.); (J.Z.); (Z.X.); (Z.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
38
|
Peng X, Zhou J, Chen G, Tan J, Zhu Z. Profile, Tissue Distribution, and Time Trend of Bisphenol Plastic Additives in Freshwater Wildlife of the Pearl River Ecosystem, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2130-2142. [PMID: 37431940 DOI: 10.1002/etc.5715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/22/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Plastic-related contaminants in the environment have attracted increasing attention, with plastic pollution becoming a serious issue globally. The present study investigated the potential bioaccumulation and biotransfer of bisphenol (BP) compounds that are widely added in various products such as plastics and other products in a freshwater ecosystem, China. Among commonly applied 14 BP analogues, bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) were predominant, representing 64%-100% of the total concentrations of BPs (ΣBPs) in freshwater wildlife. Both the concentrations and analogue profiles in the fish showed seasonal differences and species dependence. Higher BP concentrations were observed in fish collected during the dry season than the wet season. Higher percentages of non-BPA analogues (e.g., BPS and BPF) were observed in fish collected during the wet season. Pelagic species accumulated notably higher levels of BPs than midwater and bottom species. The liver generally contained the highest ΣBPs, followed successively by the swim bladder, belly fat, and dorsal muscle. The analogue profile also showed some differences among tissues, varying by species and season. Lower ΣBPs but higher percentages of non-BPA analogues were observed in female than male common carp. Time trends of the BPA concentration in fish varied by species, probably related to habitats and diets of the fish. Habitats, feeding behaviors, and trophic transfer may have significant impacts on exposure of wildlife to BPs in natural ecosystems. The BPs did not demonstrate strong potential for bioaccumulation. More research is warranted about metabolism and transgenerational transfer of BPs in wildlife to fully reveal the bioaccumulation and consequently ecological risks of these chemicals in the environment. Environ Toxicol Chem 2023;42:2130-2142. © 2023 SETAC.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Moreno-Gómez-Toledano R, Delgado-Marín M, Cook-Calvete A, González-Cucharero C, Alcharani N, Jiménez-Guirado B, Hernandez I, Ramirez-Carracedo R, Tesoro L, Botana L, Sánchez-Esteban S, Diez-Mata J, Zamorano JL, Bosch RJ, Zaragoza C, Saura M. New environmental factors related to diabetes risk in humans: Emerging bisphenols used in synthesis of plastics. World J Diabetes 2023; 14:1301-1313. [PMID: 37664470 PMCID: PMC10473949 DOI: 10.4239/wjd.v14.i8.1301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is one of the largest global health emergencies of the 21st century. In recent years, its connection with environmental pollutants, such as bisphenol A (BPA), has been demonstrated; consequently, new structurally similar molecules are used to replace BPA in the plastics industry (BPS, BPF and BPAF). AIM To carry out a systematic review to allow coherent evaluation of the state of the art. Subsequently, a meta-analysis was performed to unify the existing quantitative data. METHODS Firstly, a systematic review was carried out, using the terms "(bisphenol) AND (Diabetes OR Hyperglycemia)", to maximize the number of results. Subsequently, three authors analyzed the set of articles. Finally, a meta-analysis was performed for each BP, using RevMan software. In addition, funnel plots were developed to study publication bias. RESULTS The systematic analysis of the literature revealed 13 recent articles (2017-2023) related to the study paradigm. The qualitative analysis showed interesting data linking diabetes to the three most widely used substitute BPs in the industry: BPS, BPF and BPAF. Finally, the meta-analysis determined a positive relationship with BPS, BPF and BPAF, which was only statistically significant with BPS. CONCLUSION There is a need to apply the precautionary principle, regulating the use of new BPs. Therefore, replacing BPA with BPS, BPF or BPAF is unlikely to protect the population from potential health risks, such as DM.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - María Delgado-Marín
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| | - Alberto Cook-Calvete
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| | - Claudia González-Cucharero
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Nunzio Alcharani
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Beatriz Jiménez-Guirado
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Ignacio Hernandez
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Rafael Ramirez-Carracedo
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Laura Tesoro
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Laura Botana
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Sandra Sánchez-Esteban
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| | - Javier Diez-Mata
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Jose Luis Zamorano
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Ricardo J. Bosch
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| | - Carlos Zaragoza
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Marta Saura
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| |
Collapse
|
40
|
Zhao X, Zhang Y, Yu T, Cai L, Liang J, Chen Z, Pan C, Yang M. Transcriptomics-based analysis of sex-differentiated mechanisms of hepatotoxicity in zebrafish after long-term exposure to bisphenol AF. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115324. [PMID: 37556959 DOI: 10.1016/j.ecoenv.2023.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Bisphenol AF (BPAF) is an emerging endocrine-disrupting chemical (EDC) prevalent in the environment as one of the main substitutes for bisphenol A. Sex-specific effects of EDCs have been commonly reported and closely linked to sexually dimorphic patterns of hormone metabolism and related gene expression during different exposure windows, but our understanding of these mechanisms is still limited. Here, following 28-day exposure of adult zebrafish to an environmentally relevant concentration of BPAF at 10 μg/L, the global transcriptional networks applying RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) were respectively investigated in the male and female fish liver, connecting the sex-dependent toxicity of the long-term exposure of BPAF to molecular responses. As a result, more differentially expressed genes (DEGs) were detected in males (811) than in females (195), and spermatogenesis was the most enriched Gene Ontology (GO) functional classification in males, while circadian regulation of gene expression was the most enriched GO term in females. The expression levels of selected DEGs were routinely verified using qRT-PCR, which showed consistent alterations with the transcriptional changes in RNA-seq data. The causal network analysis by IPA suggested that the adverse outcomes of BPAF in males including liver damage, apoptosis, inflammation of organ, and liver carcinoma, associated with the regulation of several key DEGs detected in RNA-seq, could be linked to the activation of upstream regulatory molecules ifnα, yap1, and ptger2; while, the inhibition of upstream regulators hif1α, ifng, and igf1, leading to the down-regulated expression of several key DEGs, might be involved in BPAF's effects in females. Furthermore, BPAF exposure altered hepatic histological structure and inhibited antioxidant capability in both male and female livers. Overall, this study revealed different regulation networks involved in the sex-dependent effects of BPAF on the fish liver, and these detected DEGs upon BPAF exposure might be used as potential biomarkers for further assessing sex-specific hepatotoxicity following environmental EDC exposure.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China.
| | - Junlang Liang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhong Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian 362200, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
41
|
Tan H, Zheng Z, Wang S, Yang L, Widelka M, Chen D. Neonatal exposure to bisphenol analogues disrupts genital development in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121783. [PMID: 37164221 DOI: 10.1016/j.envpol.2023.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
The public concern and governmental regulations on bisphenol A (BPA) have stimulated the development and production of alternative analogues to replace BPA in a myriad of applications. Given the endocrine disrupting activities of BPA and potentially other analogues, the present study investigated and compared the effects of neonatal exposure to BPA, BPB, BPE, BPF, and BPS on the genital development in male mice. Pups were injected subcutaneously on the right shoulder in the mornings of postnatal days P0.5, P2, P4, and P6, resulting in a low dose of 0.05 μg/g body weight (bw)/day and a high dose of 10 μg/g bw/day. Mice were sacrificed at predetermined time and evaluated for gene expression levels (3 days after birth or P3), steroid hormone levels (P5), and morphological changes (P21). The results demonstrated that BPA, BPB, BPE, or BPF significantly shortened glans penis length and anogenital distance, while BPS didn't. Testis weight and anogenital distance were also significantly affected by BPA, BPE or BPF. The results also revealed that bisphenol analogues exposure significantly reduced testosterone levels, and altered the expression levels of developmental genes networks in developing penis of mice. Our data demonstrate that selected bisphenol analogues may possess similar endocrine disrupting effects compared to BPA, and exposure to these analogues could affect reproductive development of male mice. This raises the concern on the environmental and health safety of bisphenol analogues applied as industrial BPA replacements.
Collapse
Affiliation(s)
- Hongli Tan
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhengui Zheng
- Department of Physiology, Southern Illinois University, School of Medicine, Carbondale, IL, 62901, United States
| | - Shanshan Wang
- Department of Physiology, Southern Illinois University, School of Medicine, Carbondale, IL, 62901, United States
| | - Liu Yang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Margaret Widelka
- Department of Physiology, Southern Illinois University, School of Medicine, Carbondale, IL, 62901, United States
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
42
|
Wu LH, Liu YX, Zhang YJ, Jia LL, Guo Y. Occurrence of bisphenol diglycidyl ethers and bisphenol analogs, and their associations with DNA oxidative damage in pregnant women. ENVIRONMENTAL RESEARCH 2023; 227:115739. [PMID: 36963715 DOI: 10.1016/j.envres.2023.115739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Bisphenol diglycidyl ethers (BDGEs) and Bisphenol A and its analogs (bisphenols) may have the same exposure routes and coexposure phenomenon in sensitive populations such as pregnant women. Previous biomonitoring studies on BDGEs are limited. Levels of fifteen bisphenols, six BDGEs and the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) were measured in the urine of pregnant women recruited in south China (n = 358). We aimed to provide the occurrence of bisphenols and BDGEs in pregnant women, and to investigate the potential relationship between their exposure and oxidative stress. Bisphenol A, bisphenol S, bisphenol F, bisphenol AP and all BDGEs (except for BADGE·2HCl) were frequently detected. The total concentrations of all bisphenols and BDGEs were 0.402-338 and 0.104-32.5 ng/mL, with geometric means of 2.87 and 2.48 ng/mL, respectively. BFDGE was the most abundant chemical of BDGEs, with a median concentration of 0.872 ng/mL, followed by BADGE·H2O·HCl (0.297 ng/mL). Except for pre-pregnancy obesity, maternal age/height, employment, fasting in the morning and parity did not affect the urinary concentrations of BDGEs. Significant and weak correlations were observed between concentrations (unadjusted) of total bisphenols and BDGEs (r = 0.389, p < 0.01), indicating their similar sources and exposure routes. The biomarker 8-OHdG was detected in all samples, with concentrations ranging from 1.98 to 32.6 ng/mL (median: 9.96 ng/mL). Levels of 8-OHdG were positively correlated with urinary several bisphenol concentrations (adjusted β range: 0.037-0.089, p < 0.05) but were not correlated with those of BDGEs. Further studies should focus on whether BDGEs and bisphenols exert combined effects on oxidative stress. Our study provided the first BDGEs exposure data in pregnant women and indicated that BDGEs exposure was highly prevalent in pregnant women as early as 2015 in south China.
Collapse
Affiliation(s)
- Liu-Hong Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Xiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
43
|
Huang Z, Gao J, Chen Y, Huan Z, Liu Y, Zhou T, Dong Z. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma). ENVIRONMENTAL TOXICOLOGY 2023; 38:1445-1454. [PMID: 36929865 DOI: 10.1002/tox.23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
Bisphenol AF (BPAF), an emerging environmental endocrine disruptor, has been detected in surface waters worldwide and has adverse effects on aquatic organisms. The accumulation of BPAF in oceans and its potential toxic effect on marine organisms are important concerns. In this study, the effects of BPAF (10, 100, 1, and 5 mg/L) on marine medaka (Oryzias melastigma) were evaluated, including effects on the survival rate, heart rate, hatchability, morphology, and gene expression in embryos. The survival rate of marine medaka embryos was significantly lower after treatment with 5 mg/L BPAF than in the solvent control group. Exposure to 1 mg/L and 5 mg/L BPAF significantly reduced hatchability. Low-dose BPAF (10 μg/L) significantly accelerated the heart rate of embryos, while high-dose BPAF (5 mg/L) significantly decreased the heart rate. BPAF exposure also resulted in notochord curvature, pericardial edema, yolk sac cysts, cardiovascular bleeding, and caudal curvature in marine medaka. At the molecular level, BPAF exposure affected the transcript levels of genes involved in the thyroid system (dio1, dio3a, trhr2, tg, and thra), cardiovascular system (gata4, atp2a1, and cacna1da), nervous system (elavl3 and gap43), and antioxidant and inflammatory systems (sod, pparβ, and il-8) in embryos. These results indicate that BPAF exposure can alter the expression of functional genes, induce abnormal development, and reduce the hatching and survival rates in marine medaka embryos. Overall, BPAF can adversely affect the survival and development of marine medaka embryos, and BPAF may not be an ideal substitute for BPA.
Collapse
Affiliation(s)
- Zeyin Huang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhang Huan
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Tianyang Zhou
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
44
|
Zainuddin AH, Roslan MQJ, Razak MR, Yusoff FM, Haron DEM, Aris AZ. Occurrence, distribution, and ecological risk of bisphenol analogues in marine ecosystem of urbanized coast and estuary. MARINE POLLUTION BULLETIN 2023; 192:115019. [PMID: 37201347 DOI: 10.1016/j.marpolbul.2023.115019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Bisphenol analogues are prevalent globally because of rampant usage and imprecise processing techniques, prompting alerts about environmental and health hazards. The method employed in this study by solid phase extraction (SPE) and liquid chromatography-tandem quadrupole mass spectrometer (LC-MS/MS) for both quantification and qualitative analysis of the bisphenol compounds in the surface water samples. The coastal and estuarine surface water of Port Dickson and Lukut ranges from 1.32 ng/L to 1890.51 ng/L of bisphenol analogues. BPF mean concentration at 1143.88 ng/L is the highest, followed by BPA and BPS at 59.01 ng/L and 10.96 ng/L, respectively. Based on RQm for bisphenol analogues, the highest for BPF at 2.49 (RQ > 1, high risk), followed by BPS at 0.12 (0.1 < RQ < 1, medium risk) and BPA at 0.09 (0.1 < RQ < 1, medium risk). The presence and current risk of bisphenols analogues should alert the possible water quality degradation soon.
Collapse
Affiliation(s)
- Azim Haziq Zainuddin
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Muhammad Qusyairi Jori Roslan
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Didi Erwandi Mohamad Haron
- Research Services Division, The Institute of Research Management and Services, Deputy Vice-Chancellor (Research and Innovation), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmad Zaharin Aris
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
45
|
Agarwal R, Joshi SS. Toxicity of Bisphenol in Pregnant Females: First Review of Literature in Humans. Cureus 2023; 15:e39168. [PMID: 37332408 PMCID: PMC10276200 DOI: 10.7759/cureus.39168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Bisphenol analogues are widely used in consumer products such as disposable dinnerware, canned food, personal care products, bottled beverages, and more, and dietary exposure is the main pathway. Bisphenol A is used to manufacture synthetic resins and commercial plastics in large quantities. According to epidemiological and animal studies, bisphenols disrupt the reproductive, immunological, and metabolic systems. These analogues are estrogenic like Bisphenol A, although human studies are limited. We did a thorough search of the literature on the toxicity of bisphenol on reproductive and endocrine systems in pregnancy, focusing particularly on human studies. Hence, we present a comprehensive literature review on this topic. During our literature search, three epidemiological studies and one human observational study demonstrated a substantial link between bisphenol toxicity and recurrent miscarriages. The aforementioned research shows that bisphenol may harm pregnancy and cause miscarriages. We believe this is the first literature review on the topic.
Collapse
Affiliation(s)
- Radhika Agarwal
- Physiology, All India Institute of Medical Sciences Rishikesh, Rishikesh, IND
| | - Shrirang S Joshi
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
46
|
Liao H, Gao D, Junaid M, Liu S, Kong C, Chen X, Pan T, Zheng Q, Ai W, Chen G, Wang J. Parental exposure to polystyrene nanoplastics and di(2-ethylhexyl) phthalate induces transgenerational growth and reproductive impairments through bioaccumulation in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163657. [PMID: 37084918 DOI: 10.1016/j.scitotenv.2023.163657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous presence of polystyrene nanoplastics (PSNPs) and di(2-ethylhexyl) phthalate (DEHP) in the aquatic environment may cause unpredictable negative effects on aquatic organisms and even continue to the offspring. This study assessed the transgenerational impacts of parental exposure to PSNPs and DEHP over four generations (F0-F3) of Daphnia magna. A total of 480 D. magna larvae (F0, 24 h old) were divided into four groups with six replicates (each of them contains 20 D. magna) and exposed with dechlorinated tap water (control), 1 mg/L PSNPs, 1 μg/L DEHP, and 1 mg/L PSNPs + 1 μg/L DEHP (PSNPs-DEHP) until spawning begins. Subsequent to exposure, all the surviving F1 offspring were transferred to new water and continued to be cultured until the end of F3 generation births in all groups. The results showed that the PSNPs accumulated in F0 generation and were inherited into F1 and F2 generations, and disappeared in F3 generation in PSNPs and PSNPs-DEHP groups. However, the accumulation of DEHP lasted from F0 generation to F3 generation, despite a significant decline in F2 and F3 generations in DEHP and PSNPs-DEHP groups. The accumulation of PSNPs and DEHP caused overproduction of reactive oxygen species in F0-F2 generations and fat deposition in F0-F3 generations. Additionally, single and in combination parental exposure to PSNPs and DEHP induced regulation of growth-related genes (cyp18a1, cut, sod and cht3) and reproduction-related genes (hr3, ftz-f1, vtg and ecr) in F0-F3 generations. Survival rates were decreased in F0-F1 generations and recovered in F2 generation in all treatment groups. Furthermore, the spawning time was prolonged and the average number of offspring was increased in F1-F2 generaions as a defense mechanism against population mortality. This study fosters a greater comprehension of the transgenerational and reproductive effects and associated molecular mechanisms in D. magna.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Ai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
47
|
Zhang D, Liu X, Qi Y, Lin Y, Zhao K, Jin Y, Luo J, Xu L, Yu D, Li C. Binding, activity and risk assessment of bisphenols toward farnesoid X receptor pathway: In vitro and in silico study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161701. [PMID: 36709907 DOI: 10.1016/j.scitotenv.2023.161701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/27/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Bisphenols have been identified as emerging environmental pollutants of high concern with potential adverse effects through interactions with receptor-mediated pathways. However, their potential mechanism of action and health risks through the farnesoid X receptor (FXR) pathway remain poorly understood. In the present study, we aimed to explore the potential disruption mechanism of bisphenols through the FXR signalling pathway. Receptor binding assays showed that bisphenols bound to FXR directly, with tetrabromobisphenol A (TBBPA; 34-fold), tetrachlorobisphenol A (TCBPA; 8.7-fold), bisphenol AF (BPAF; 2.0-fold), and bisphenol B (BPB; 1.9-fold) showing a significantly stronger binding potency than bisphenol A (BPA). In receptor transcriptional activity assays, bisphenols showed agonistic activity toward FXR, with BPAF, BPB, and bisphenol F (BPF) exhibiting higher activity than BPA, but TBBPA and TCBPA showing significantly weaker activity than BPA. Molecular docking results indicated that the number of hydrogen bonds dictated their binding strength. Intracellular concentrations of bisphenols were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in receptor activity assays, and it was found that the intracellular concentrations of TBBPA and TCBPA were 40-fold lower than those of BPA. Using the bioactivity concentrations in the FXR receptor activity assay, the liver concentrations of bisphenols were estimated using physiologically-based pharmacokinetic (PBPK) models through their serum concentrations, and the hazard quotient (HQ) values were calculated. The results suggest a potentially high concern for the risk of activating the FXR pathway for some populations with high exposure. Overall, these results indicate that bisphenols can bind to and activate FXR receptors, and that the activation mechanism is dependent on cellular uptake and binding strength. This study provides important information regarding the exposure risk of bisphenols, which can promote the development of environmentally friendly bisphenols.
Collapse
Affiliation(s)
- Donghui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinya Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Jin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiao Luo
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Xu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
48
|
Hu M, Zhang Z, Zhang Y, Zhan M, Qu W, He G, Zhou Y. Development of human dermal PBPK models for the bisphenols BPA, BPS, BPF, and BPAF with parallel-layered skin compartment: Basing on dermal administration studies in humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161639. [PMID: 36649768 DOI: 10.1016/j.scitotenv.2023.161639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Risk assessment of human exposure to bisphenols (BPs) including bisphenol A, S, F and AF (BPA, BPS, BPF and BPAF) have suggested that except for ingestion, health risk resulting from dermal contact is not negligible. However, the absorption kinetics of BPA substitutes in humans following dermal exposure have been poorly studied. This study aimed to address the knowledge gap in physiologically based pharmacokinetic (PBPK) modeling of BPA and its high-concerned substitutes (BPS, BPF and BPAF) following dermal administration. Parallel-layered skin compartmental model for dermal absorption of BPs was for the first time proposed and human dermal administration studies were conducted to determine dermal bio-accessibility of BPS from thermal paper (TP) (n = 4), BPF (n = 4) and BPAF (n = 5) from personal care products (PCPs). Further, pharmacokinetics of BPS and its metabolites following human handling TP were investigated and the dermal PBPK models for BPA and BPS were validated using the available human biomonitoring data. Overall, 28.03 % ± 13.76 % of BPS in TP was transferred to fingers followed by absorption of 96.17 % ± 2.78 % of that. The dermal bio-accessibilities of BPs in PCPs were 31.65 % ± 2.90 % for BPF and 12.49 % ± 1.66 % for BPAF. Monte Carlo analysis indicated that 90 % of the predicted variability fell within one order of magnitude, which suggested that the developed PBPK models had medium uncertainty. Global sensitivity analysis revealed that the model uncertainty is mainly attributed to the variabilities of dermal absorption parameters. Compared with the previous models for BPs, the developed dermal PBPK models were capable of more accurate predictions of the internal dose metric in target organs following human dermal exposure to BPs via TP and PCPs routes. These results suggested that the developed human dermal PBPK models would provide an alternative tool for assessing the risk of human exposure to BPs through dermal absorption.
Collapse
Affiliation(s)
- Man Hu
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Zhichun Zhang
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Yining Zhang
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Ming Zhan
- Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China
| | - Weidong Qu
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Gengsheng He
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Ying Zhou
- School of Public Health/Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; School of Public Health, Fudan University, Shanghai 200032, China; Pudong New Area Centers for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, China.
| |
Collapse
|
49
|
Kubota A, Hirano M, Yoshinouchi Y, Chen X, Nakamura M, Wakayama Y, Lee JS, Nakata H, Iwata H, Kawai YK. In vivo and in silico assessments of estrogenic potencies of bisphenol A and its analogs in zebrafish (Danio rerio): Validity of in silico approaches to predict in vivo effects. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109619. [PMID: 37003593 DOI: 10.1016/j.cbpc.2023.109619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
This study assessed the estrogen-like potencies of bisphenol A (BPA) and its analogs (BPs) using in vivo and in silico approaches in zebrafish. Zebrafish embryos were exposed to 16 BPs, most of which concentration-dependently induced cytochrome P450 19A1b (CYP19A1b) expression. BPs-induced CYP19A1b expression was suppressed by fulvestrant, a nonselective high affinity antagonist for estrogen receptor (Esr) subtypes. For BPs that concentration-dependently induced CYP19A1b expression, we estimated their 50 % effective concentration (EC50) and relative potencies (REPs) with respect to the potency of BPA for inducing CYP19A1b expression. BP C2, Bis-MP, and BPAF showed lower EC50 than BPA, BPE, and BPF, while BPZ and BPB showed moderate EC50. The REP order of the BPs was BP C2 (26) > Bis-MP (24) > BPAF (21) > BPZ (5.8) > BPB (2.7) > BPE (1.5) > BPF (0.63) > 2,4'-BPF (0.22), indicating that some BPs showed greater estrogenic potencies than BPA in our system. We also constructed in silico homology models of ligand binding domains for zebrafish Esr subtypes, including Esr1, Esr2a, and Esr2b. Molecular docking simulations of ligands with the Esr subtypes revealed the interaction energies of some BPs were lower than that of BPA. The interaction energies showed significant positive correlations with their EC50 values for inducing CYP19A1b expression in vivo. This study showed that some BPA analogs have greater estrogenic potencies than BPA and that in silico simulations of interactions between ligands and Esr subtypes may help predict in vivo estrogenic potencies of untested chemicals.
Collapse
Affiliation(s)
- Akira Kubota
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan.
| | - Masashi Hirano
- Department of Food and Life Sciences, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-city, Kumamoto 862-8652, Japan
| | - Yuka Yoshinouchi
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Xing Chen
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Michiko Nakamura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Yumi Wakayama
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Jae Seung Lee
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Haruhiko Nakata
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yusuke K Kawai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
50
|
Qin C, Qi Y, Teng X, Ajarem JS, Allam AA, Qu R. Degradation of Bisphonel AF (BPAF) by zero-valent iron activated persulfate: Kinetics, mechanisms, theoretical calculations, and effect of co-existing chloride. CHEMOSPHERE 2023; 316:137774. [PMID: 36642137 DOI: 10.1016/j.chemosphere.2023.137774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The removal of Bisphonel AF (BPAF) by zero-valent iron activated persulfate (Fe0/PS) system was systematically evaluated in this work. 30.0 μM BPAF was removed by 94.4% in 60 min of treatment under optimal conditions of pH = 3.0 and [PS] = [Fe0] = 3.0 mM. Cl- significantly accelerated the removal of BPAF, resulting from accelerated Fe2+ release and reactive chlorine species (RCS) formation. Liquid chromatography-time-of-flight-mass spectrometry identified thirteen degradation products, and bond breaking, coupling reactions, hydroxylation and sulfate addition were considered as the major transformation pathways. When Cl- was present, six new chlorinated byproducts were also generated. Based on density functional theory (DFT) calculations, the occurrence of radical addition reactions was verified and the preferential reaction channels were determined. Significantly BPAF degradation products were less toxic, according to toxicity assessment by the ECOSAR program. Moreover, a high removal efficiency of BPAF (>90%) was also obtained in the three actual water matrixes. The present work demonstrates the feasibility of Fe0/PS system for treating BPAF, which could also provide new insights into the influence of coexisting Cl- on the environmental fate of organic pollutants in sulfate radicals based advanced oxidation processes.
Collapse
Affiliation(s)
- Cheng Qin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|